JP4428527B2 - Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment - Google Patents

Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment Download PDF

Info

Publication number
JP4428527B2
JP4428527B2 JP2004321568A JP2004321568A JP4428527B2 JP 4428527 B2 JP4428527 B2 JP 4428527B2 JP 2004321568 A JP2004321568 A JP 2004321568A JP 2004321568 A JP2004321568 A JP 2004321568A JP 4428527 B2 JP4428527 B2 JP 4428527B2
Authority
JP
Japan
Prior art keywords
charger
deterioration
test
electrophotographic photoreceptor
acceleration test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004321568A
Other languages
Japanese (ja)
Other versions
JP2006133441A (en
Inventor
紀保 齋藤
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004321568A priority Critical patent/JP4428527B2/en
Publication of JP2006133441A publication Critical patent/JP2006133441A/en
Application granted granted Critical
Publication of JP4428527B2 publication Critical patent/JP4428527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Description

本発明は、レーザープリンタ、複写機等の画像形成装置に使用される電子写真用感光体の劣化加速試験方法および劣化加速試験を実施する装置に関するものである。   The present invention relates to a deterioration acceleration test method for an electrophotographic photoreceptor used in an image forming apparatus such as a laser printer and a copying machine, and an apparatus for performing a deterioration acceleration test.

従来から、感光体の使用寿命を迅速に決定するシステムが求められている。このような要請に応えるため、例えば、(1)導電性層と少なくとも1つの光導電性層を含み、既知数の像形成サイクルのサイクル寿命を有する第1の電子写真像形成部材を用意し、(2)
電圧を適用して光導電性層を横切る電場を形成し、(3)その電圧の適用を終了し、(4)光導電性層を活性化放射に露光して電子写真像形成部材を放電し、(5)電圧提供終了時と光導電性層を露光する前の所定時間との間、または電圧提供終了時と光導電性層を露光する時との間に、暗減衰を測定し、(6)光導電性層の測定した暗減衰を記録し、(7)上記の適用、終了、露光、測定および記録の工程を暗減衰量が実質的に一定のままの最高値に達するまで繰り返し、(8)既知数の像形成サイクルと異なるサイクル寿命を有する第2の電子写真像形成部材で前述の工程を繰り返して、上記第1と第2の電子写真像形成部材の暗減衰対像形成サイクルから参照データを確立し、(9)新鮮な電子写真像形成部材の暗減衰最高値と上記参照データを比較して新鮮な電子写真像形成部材の推定サイクル寿命を確認する方法が提案されている(例えば、特許文献1参照。)。
Conventionally, there is a need for a system that quickly determines the service life of a photoreceptor. In order to meet such a demand, for example, (1) a first electrophotographic image forming member including a conductive layer and at least one photoconductive layer and having a known number of image forming cycle lifespans is prepared. (2)
A voltage is applied to form an electric field across the photoconductive layer, (3) the application of the voltage is terminated, and (4) the photoconductive layer is exposed to activating radiation to discharge the electrophotographic imaging member. (5) Measure the dark decay between the end of voltage provision and a predetermined time before exposing the photoconductive layer, or between the end of voltage provision and exposure of the photoconductive layer; 6) Record the measured dark decay of the photoconductive layer, and (7) repeat the above application, termination, exposure, measurement and recording steps until the dark decay amount reaches a maximum value which remains substantially constant, (8) The dark decay versus image formation cycle of the first and second electrophotographic image forming members is repeated by repeating the above steps with a second electrophotographic image forming member having a cycle life different from the known number of image forming cycles. (9) Maximum dark decay value of fresh electrophotographic imaging member and the above reference data. By comparing the data has been proposed a method of confirming the estimation cycle life of fresh electrophotographic imaging member (for example, see Patent Document 1.).

しかしながら、上記寿命評価方法の場合、電子写真像形成部材サンプルに透明ガラスを圧着させてバイアス印加し、光を照射しているため、電子写真プロセスにおけるコロナ帯電、ローラ帯電による帯電条件とは異なり、実機条件を反映した劣化加速試験法とは云えない。また、寿命に到ったサンプルの暗減衰特性が予め既知でなければならず、このためには少なくとも一度は感光体を実機に搭載して長時間の通紙試験を行い像形成サイクルのサイクル寿命を評価しておくことが必要である。このため、多大な手間と時間を要するという問題があった。   However, in the case of the above-mentioned life evaluation method, since the transparent glass is pressure-bonded to the electrophotographic image forming member sample and bias is applied and irradiated with light, unlike the charging conditions by corona charging and roller charging in the electrophotographic process, It cannot be said that this is an accelerated deterioration test method that reflects actual machine conditions. In addition, the dark decay characteristics of the samples that have reached the end of their life must be known in advance. To this end, the photoconductor is mounted on the actual machine at least once and a long-time paper passing test is performed, and the cycle life of the imaging cycle It is necessary to evaluate For this reason, there has been a problem that it takes a lot of labor and time.

その他の従来技術として、通紙試験を行わないで寿命を予測する方法がある。すなわち、この方法は、高速、例えば1,000〜2,000r.p.mで回転させた状態の電子写真用感光体(以下、感光体と略す)に対して、感光体の周囲に配置された帯電器、露光装置により帯電、露光を繰り返して寿命を予測するものである。この方法は、さらに二つの試験方法に分けることができる。   As another conventional technique, there is a method of predicting the life without performing a paper passing test. That is, in this method, an electrophotographic photosensitive member (hereinafter abbreviated as a photosensitive member) rotated at a high speed, for example, 1,000 to 2,000 rpm is disposed around the photosensitive member. The life is predicted by repeating charging and exposure with a charger and exposure device. This method can be further divided into two test methods.

一方の方法は、帯電器の出力と露光装置の光量を予め設定された条件に固定し、決められた時間だけ試験を行った後に感光体の特性を測定し、劣化状態を判定するものである。他の方法は、試験中の感光体露光後における電位Vと感光体を通して流れる通過電流Iを計測し、この2つが常に決められたレベルにあるように帯電器の出力と露光装置の光量を調整して試験を行い、感光体の特性を測定して劣化状態を判定するものである。   One method is to fix the output of the charger and the light amount of the exposure device to preset conditions, measure the characteristics of the photoconductor after performing a test for a predetermined time, and determine the deterioration state. . The other method is to measure the potential V and the passing current I flowing through the photoconductor after exposure of the photoconductor under test, and adjust the output of the charger and the amount of light from the exposure device so that these two are always at a predetermined level. Thus, the test is performed and the characteristics of the photoconductor are measured to determine the deterioration state.

上記いずれの方法においても重要な点は、試験中に感光体に流れた通過電流を計測することにより、この通過電流から電荷量(単位面積当りの値)Qが求められ、一方、A4サイズ用紙1枚を実機でプリントアウトする際に感光体を流れる通過電流は、感光体の静電容量をC(単位面積当りの値)、帯電電位VとするとC×Vで求められ、これらの値から総プリントアウト枚数は、Q/(C×V)となり、寿命試験時間を実機のプリント枚数に対応させることができる点にある。なお、感光体のサイズはA4紙1枚が感光体上をダブリなく印字されるサイズとする。   In any of the above methods, the important point is that the amount of charge (value per unit area) Q is obtained from this passing current by measuring the passing current flowing through the photoconductor during the test. The passing current flowing through the photoconductor when printing out one sheet with an actual machine is obtained by C × V, where C (value per unit area) and electrostatic potential of the photoconductor are C × V. The total number of printed out sheets is Q / (C × V), and the life test time can be made to correspond to the number of printed sheets of the actual machine. Note that the size of the photosensitive member is a size that allows one A4 sheet to be printed on the photosensitive member without duplication.

もう1つ重要な点は上記試験が加速寿命試験になっていることである。
具体的に示すと、感光体に、例えば5μA/10cm2の試料通過電流を流し、20Hr試験すると(1日10時間の試験とすると2日間に相当)、(5/10)×10-6×20×60×60=0.036(C/cm2)の電荷が感光体を通過したことになる。なお、以下、「感光体を通過した電荷量」のことを、「通過電荷量」と呼ぶ。
そして、A4サイズ用紙縦送りで印字する場合を想定した場合、感光体の静電容量を100(pF/cm2)、帯電電位−700(V)、除電後も含めた露光後電位を0(V)とすると、100×10-12×700=7×10-8(C/cm2)がA4サイズ用紙1枚をプリントアウトする時の通過電荷量であるので、0.036/(7×10-8)≒514,000(枚)のプリントアウトをしたことになり、加速試験を行ったことに相当する。
Another important point is that the above test is an accelerated life test.
Specifically, for example, when a current passing through the sample of 5 μA / 10 cm 2 is passed through the photoreceptor and tested for 20 hours (corresponding to 2 days for a test of 10 hours per day), (5/10) × 10 −6 × The charge of 20 × 60 × 60 = 0.036 (C / cm 2 ) has passed through the photoconductor. Hereinafter, the “amount of charge that has passed through the photosensitive member” is referred to as a “amount of charged charge”.
Assuming that printing is performed by A4 size paper longitudinal feed, the electrostatic capacity of the photoconductor is 100 (pF / cm 2 ), the charging potential is −700 (V), and the post-exposure potential after static elimination is 0 ( V), 100 × 10 −12 × 700 = 7 × 10 −8 (C / cm 2 ) is the passing charge amount when printing out one A4 size sheet, so that 0.036 / (7 × 10 −8 ) ≈514,000 (sheets) was printed out, which corresponds to an accelerated test.

上記理由から、電位Vと感光体を通して流れる通過電流Iが常に決められたレベルにあるように調整する後者の方法により寿命試験が行われることが多い。この場合、前述の具体的な計算で分かるように、試験中に感光体を通過する電流が一定であれば、プリントアウト何枚相当の試験を行ったのか計算がしやすい。そのため、試験は通過電流を一定にするようにして実施する方法が一般的に採られる。本質的には、通過電荷量を知ることが重要な点である。また、感光体によっては帯電電位がどのレベルにあるかによって寿命試験の結果が異なることがあり、帯電電位も一定にして試験を行うことが要求される。このように、帯電電位および通過電流を一定にするため、帯電器の高圧電源出力調整、および露光装置の光量調整を行うシステムが必要となり、これに対応できるように従来の寿命試験装置は構築されている。   For the above reasons, the life test is often performed by the latter method in which the potential V and the passing current I flowing through the photosensitive member are always adjusted to a predetermined level. In this case, as can be seen from the specific calculation described above, if the current passing through the photosensitive member is constant during the test, it is easy to calculate how many printouts of the test have been performed. For this reason, a method is generally employed in which the test is performed with a constant passing current. Essentially, it is important to know the passing charge amount. Also, depending on the level of the charged potential depending on the photoreceptor, the result of the life test may differ, and it is required to perform the test with the charged potential kept constant. As described above, in order to make the charging potential and the passing current constant, a system for adjusting the high-voltage power supply output of the charger and the light amount of the exposure apparatus is necessary, and a conventional life test apparatus has been constructed to cope with this. ing.

上記従来の劣化加速試験として、図1の概略構成図に示すような感光体試料片の特性評価装置、例えば、(株)川口電気製作所製EPA8200が知られている。
この特性評価装置には、図1に示すようにターンテーブル1と感光体試料片を装着する開口部3が設けられており、開口部3の面積は19.36cm2(開口部:44mm×44mm)である。さらに、ターンテーブル1に付属して導電性金属板からなる試料片押え板2が設けられている。この装置では、約1,100r.p.mで感光体の周囲に配置された帯電器4と露光装置5で帯電・露光を繰り返し、実機と同程度のスピードで回転させることができる。また、高速で回転させて試料片をコロナ帯電器4に何度も通過させることができるようになっている。また、コロナ帯電器4から与えられ試料片を充電するパルス電流は、所定の検出間隔で電流計6に送られ電流計6中の平滑化回路で平滑化等がされた後、A/D変換器8で変換されコントローラ9に送られて演算処理される。また、試料片の表面電位は、コロナ帯電器4と別の位置に配置された表面電位計7のモニタ部である表面電位計電極5でモニタされ、モニタされた信号は所定の検出間隔で表面電位計7に送られ、表面電位計7中の増幅器で増幅等がされた後、A/D変換器8で変換され、コントローラ9に送られ演算処理される。なお、図中の符号5は露光装置と表面電位計電極の両方を一緒に示している。
この装置を用いることにより劣化加速試験や感光体の帯電能、電荷保持性能、感度等の特性評価を行うことできるように構成されている。
As the conventional deterioration acceleration test, there is known a photoreceptor sample piece characteristic evaluation apparatus, for example, EPA8200 manufactured by Kawaguchi Electric Co., Ltd. as shown in the schematic configuration diagram of FIG.
As shown in FIG. 1, this characteristic evaluation apparatus is provided with an opening 3 for mounting the turntable 1 and a photosensitive sample piece. The area of the opening 3 is 19.36 cm 2 (opening: 44 mm × 44 mm). ). Further, a sample piece presser plate 2 made of a conductive metal plate is attached to the turntable 1. In this apparatus, charging / exposure is repeated by the charger 4 and the exposure apparatus 5 arranged around the photosensitive member at about 1,100 rpm and can be rotated at the same speed as the actual machine. Further, the sample piece can be passed through the corona charger 4 many times by rotating at high speed. The pulse current supplied from the corona charger 4 to charge the sample piece is sent to the ammeter 6 at a predetermined detection interval, smoothed by a smoothing circuit in the ammeter 6, and then A / D converted. The data is converted by the device 8 and sent to the controller 9 for arithmetic processing. Further, the surface potential of the sample piece is monitored by a surface potential meter electrode 5 which is a monitor unit of the surface potential meter 7 arranged at a position different from the corona charger 4, and the monitored signal is detected at a predetermined detection interval. After being sent to the electrometer 7 and amplified by the amplifier in the surface electrometer 7, it is converted by the A / D converter 8 and sent to the controller 9 for arithmetic processing. Note that reference numeral 5 in the figure indicates both the exposure apparatus and the surface electrometer electrode.
By using this apparatus, a deterioration acceleration test and evaluation of characteristics such as the charging ability, charge retention performance, and sensitivity of the photosensitive member can be performed.

しかし、上記従来システムにおける、2つの測定量、すなわち表面電位Xおよび通過電流Yと、2つの操作量、すなわち帯電器高圧電源の出力制御値Aおよび除電露光ランプ光量の出力制御値Bとはお互いに関係しており、複雑な制御が必要である。
すなわち、例えば、Aを増加するとX、Yは増加し、Aを減少させるとX、Yも減少し、また、Bを増加するとXは減少、Yは増加し、Bを減少するとXは増加し、Yは減少するという関係がある。そのため、仮にXが目標値からはずれた場合に、このXを目標範囲に入れるべくAまたはBを操作すると、もう1つの測定量Yが変化してしまい、Yにとっては外乱が作用することになる。一方、Yを目標範囲に維持するべくAまたはBを操作すると今度はXが変化するという状態になってしまい、非常に複雑な制御を行わなければならなかった。また、劣化加速試験中に感光体表面電位、通過電流の瞬間的なバラツキがあった場合でも、それらが瞬間的な誤差として通過電荷量算出に反映されないシステムとなっており、正確な劣化加速試験を行う上で改善の余地があった。
However, in the above-described conventional system, the two measured amounts, that is, the surface potential X and the passing current Y, and the two manipulated variables, that is, the output control value A of the charger high-voltage power supply and the output control value B of the discharge lamp light amount are mutually. Complicated control is necessary.
That is, for example, when A is increased, X and Y increase, when A is decreased, X and Y also decrease, when B is increased, X decreases, Y increases, and when B decreases, X increases. , Y decreases. For this reason, if X deviates from the target value, if A or B is operated so that X falls within the target range, another measurement amount Y changes, and disturbance is applied to Y. . On the other hand, when A or B is operated to maintain Y within the target range, this time, X changes, and very complicated control has to be performed. In addition, even if there are momentary variations in the photoreceptor surface potential and passing current during the accelerated deterioration test, these systems are not reflected in the calculation of the passing charge amount as an instantaneous error. There was room for improvement in doing.

そこで、本発明者は上記問題を解決するために、計測手段によって電子写真感光体の通過電位を計測し、その計測結果に基づいて感光体の電位を一定条件に保つように制御し、試験中計測された通過電流から通過電荷量を算出するシステムとすることにより、単純で精度の良い感光体の劣化加速試験装置を提案した(例えば、特許文献2参照。)。   Therefore, in order to solve the above problem, the present inventor measures the passing potential of the electrophotographic photosensitive member by the measuring means, and controls the electric potential of the photosensitive member to be kept at a constant condition based on the measurement result, and during the test By adopting a system that calculates the passing charge amount from the measured passing current, a simple and accurate photoconductor deterioration acceleration testing apparatus has been proposed (for example, see Patent Document 2).

この劣化加速試験装置により単純で精度良く劣化加速試験が実施できるようになったが、最近の感光体はさらに一段と高寿命化されてきており、上記提案の劣化加速試験装置においても、寿命を判断することができるまで試験を行うには多大な時間が必要となってきている。そこで、さらに劣化を加速し、短時間で寿命を判断することができる劣化加速試験方法の開発が要望されるようになった。   Although this deterioration acceleration test device enables simple and accurate deterioration acceleration tests, recent photoconductors have a much longer life, and the proposed deterioration acceleration test device also determines the life. It takes a lot of time to test until it can be done. Accordingly, there has been a demand for the development of an accelerated deterioration test method capable of further accelerating the deterioration and judging the life in a short time.

特許第3204327号明細書(特開平5−1973号公報)Japanese Patent No. 3204327 (JP-A-5-1973) 特開2002−149005号公報JP 2002-149005 A

本発明は、上記従来技術に鑑みてなされたものであり、電子写真用感光体の寿命を短時間で判断することができる劣化加速試験方法とその評価に用いる劣化加速試験装置を提供することを目的とする。   The present invention has been made in view of the above prior art, and provides a deterioration acceleration test method capable of determining the life of an electrophotographic photoreceptor in a short time and a deterioration acceleration test apparatus used for the evaluation thereof. Objective.

本発明者らは鋭意検討した結果、高電圧が印加される複数の放電ワイヤを同一方向のみに張架させ、かつ筐体が絶縁性部材で構成された帯電器を用い、コロナ放電によって生ずる感光体に流れる電流量を増加させ、感光体の単位面積当りの通過電荷量を増加させることにより、電子写真用感光体の寿命を短時間で判断することができ、上記課題が解決されることを見出し本発明に至った。以下、本発明について具体的に説明する。   As a result of intensive studies, the inventors of the present invention have used a charger in which a plurality of discharge wires to which a high voltage is applied are stretched only in the same direction and the casing is made of an insulating member. By increasing the amount of current flowing through the body and increasing the amount of passing charge per unit area of the photoreceptor, the life of the electrophotographic photoreceptor can be determined in a short time, and the above problems can be solved. The headline has led to the present invention. Hereinafter, the present invention will be specifically described.

すなわち、本発明は、帯電器を用いた帯電工程と露光装置を用いた露光工程とを含む試験サイクルを繰り返し実行して劣化を加速させる電子写真用感光体の劣化加速試験方法において、
前記試験サイクルは、前記帯電器の筐体が絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部を備えると共に、筐体内に感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤが配設された帯電器を用いて実行されることを特徴とする電子写真用感光体の劣化加速試験方法である。
ここで、前記帯電工程と露光工程を同時に行うことが望ましい。
That is, the present invention relates to a deterioration acceleration test method for an electrophotographic photoreceptor in which deterioration is accelerated by repeatedly executing a test cycle including a charging step using a charger and an exposure step using an exposure apparatus.
In the test cycle, the casing of the charger is formed of an insulating member, has an opening on the front side facing at least the photoconductor, and transparent insulation that transmits the irradiation light from the exposure apparatus on the back side. And an exposure unit formed of a photosensitive member, and a charger in which a plurality of discharge wires are provided in a housing parallel to the surface of the photosensitive member and stretched only in the same direction. This is a method for accelerating degradation of an electrophotographic photoreceptor.
Here, it is desirable to perform the charging step and the exposure step simultaneously.

上記電子写真用感光体の劣化加速試験方法において、前記帯電器の放電ワイヤ間隔を2mm以上とすることが好ましい。   In the electrophotographic photoreceptor deterioration acceleration test method, it is preferable that a distance between discharge wires of the charger is 2 mm or more.

上記いずれかの電子写真用感光体の劣化加速試験方法において、前記感光体面と帯電器の放電ワイヤとの距離を2mm以上とすることが好ましい。   In any one of the above electrophotographic photoconductor degradation acceleration test methods, the distance between the photoconductor surface and the discharge wire of the charger is preferably 2 mm or more.

また、本発明は、画像形成プロセスにおける通紙枚数に伴って画像形成装置の感光体に流れる通過電荷量と同じ量の電荷を劣化加速試験方法により短時間に流して通紙後における感光体の静電特性を評価する電子写真用感光体の静電特性評価方法であって、
前記劣化加速試験方法は上記した劣化加速試験方法であることを特徴とする電子写真用感光体の静電特性評価方法に係るものである。
In addition, the present invention allows a charge of the same amount as the passing charge amount that flows to the photoreceptor of the image forming apparatus to flow in a short time by the deterioration acceleration test method according to the number of sheets passed in the image forming process. An electrostatic property evaluation method for an electrophotographic photoreceptor for evaluating electrostatic properties, comprising:
The deterioration acceleration test method is the above-described deterioration acceleration test method, and relates to a method for evaluating electrostatic characteristics of an electrophotographic photoreceptor.

さらに、本発明は、少なくとも帯電器と露光装置とを備えた電子写真用感光体の劣化加速試験装置において、
前記帯電器は、筐体が絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部を備えると共に、筐体内に感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤが配設された構造を有することを特徴とする電子写真用感光体の劣化加速試験装置に係るものである。
Furthermore, the present invention relates to an electrophotographic photoreceptor deterioration acceleration testing apparatus comprising at least a charger and an exposure device.
The charger has a casing formed of an insulating member, and has an opening on the front side facing at least the photosensitive member, and a transparent insulating member that transmits irradiation light from the exposure apparatus on the back side. A deterioration acceleration of an electrophotographic photoreceptor characterized by having a structure in which a plurality of discharge wires are provided in the housing and are parallel to the surface of the photoreceptor and stretched only in the same direction. It relates to the test equipment.

さらに、本発明は、上記いずれかに記載の電子写真用感光体の劣化加速試験装置を用いたことを特徴とする電子写真用感光体の劣化加速試験方法に係るものである。   Furthermore, the present invention relates to a method for accelerating deterioration of an electrophotographic photoreceptor, characterized in that the apparatus for accelerating deterioration of an electrophotographic photoreceptor described in any one of the above is used.

本発明の劣化加速試験装置および劣化加速試験方法によれば、コロナ放電により感光体に流れる電流量を増加し、単位面積あたりの通過電荷量を増加させることができるため、短時間で寿命を判断することが可能となる。また、操作が簡便で精度が高く、さらに非接触あるいは非破壊で誘電体薄膜の劣化試験等に応用することができる。   According to the deterioration acceleration test apparatus and the deterioration acceleration test method of the present invention, the amount of current flowing through the photoconductor by corona discharge can be increased and the amount of passing charge per unit area can be increased. It becomes possible to do. Further, the operation is simple and high in accuracy, and further, it can be applied to a deterioration test of a dielectric thin film without contact or nondestructive.

前述のように本発明は、帯電器筐体が絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部を備えると共に、筐体内に感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤが配設された帯電器を用いた帯電工程と露光装置を用いた露光工程とを含む試験サイクルを繰り返し実行して劣化を加速させ、短時間で電子写真用感光体の寿命を判断するものである。
以下、本発明の好適な実施の形態について図を参照して説明する。
As described above, according to the present invention, the charger casing is formed of an insulating member, has an opening on the front side facing at least the photosensitive member, and is transparent on the back side for transmitting the irradiation light from the exposure apparatus. A charging process and an exposure apparatus using a charger that includes an exposure unit formed of an insulating member, and in which a plurality of discharge wires that are parallel to the surface of the photoconductor and stretched only in the same direction are disposed in the housing. The test cycle including the used exposure process is repeatedly executed to accelerate deterioration, and the life of the electrophotographic photoreceptor is judged in a short time.
Preferred embodiments of the present invention will be described below with reference to the drawings.

図2に、本発明における電子写真用感光体の劣化加速試験装置の概略構成図を示す。
図2において10は露光装置、11は帯電器、15は試験試料台、14は試験試料(ここでは感光体試料片)、12は試験試料押え、13は高圧電源を示す。なお図2には、被試験試料の表面を帯電処理するための帯電装置用電源回路の制御手段、あるいは被試験試料を光照射するための光源用電源回路の制御手段は示されてないが、これら手段は、従来公知のものをそのまま用いることができる。
FIG. 2 is a schematic configuration diagram of an electrophotographic photoreceptor deterioration acceleration test apparatus according to the present invention.
In FIG. 2, 10 is an exposure apparatus, 11 is a charger, 15 is a test sample stage, 14 is a test sample (photoreceptor sample piece here), 12 is a test sample holder, and 13 is a high voltage power source. FIG. 2 does not show control means for the charging device power circuit for charging the surface of the sample to be tested, or control means for the light source power circuit for irradiating the sample to be tested. Conventionally known means can be used as they are.

図3に帯電器の背面側(a)、側面側(b)、前面側(c)から見た概略模式図を示す。
帯電手段として用いられる帯電器11の筐体11aは、絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部11bを備えた構成となっており、帯電器11の筐体11a内には、感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤ16が配設されている。なお、放電ワイヤーのテンションは、ワイヤ張架治具17によって、調整可能とされている。また、図4は帯電器を前面側から見た場合のワイヤ張架有効領域(A×B領域)を示す概略模式図である。
FIG. 3 is a schematic diagram illustrating the charger as viewed from the back side (a), the side surface side (b), and the front side (c).
The casing 11a of the charger 11 used as the charging means is formed of an insulating member, has an opening on the front side facing at least the photoconductor, and transmits the irradiation light from the exposure apparatus on the back side. The exposure unit 11b is formed of a transparent insulating member, and a plurality of discharge wires 16 are stretched in the casing 11a of the charger 11 in parallel with the surface of the photoreceptor and stretched only in the same direction. Is arranged. The tension of the discharge wire can be adjusted by the wire tension jig 17. FIG. 4 is a schematic diagram showing a wire stretch effective region (A × B region) when the charger is viewed from the front side.

上記のように本発明の劣化加速試験装置で使用する帯電器は、絶縁性部材で形成され、かつ帯電器の背面側、例えば中央部領域が背面から被試験試料の劣化領域に光を照射することが可能な光透過性の絶縁性部材で形成された露光部を備えている。光を透過しない部材では、帯電時に感光体面に光を照射することが難しくなり、帯電同時露光で試験中の感光体への電流量を増加することが困難となる。また、減光フィルター・バンドパスフィルター等を使用したい場合は、帯電器背面側に単純に配置すればよいが、帯電器の中央部領域が空洞、いわゆる感光体面に対して垂直方向が空洞となっている帯電器の場合には、保持治具を介してフィルターを感光体面に対して垂直に設置する必要がある。   As described above, the charger used in the deterioration acceleration test apparatus of the present invention is formed of an insulating member, and the back side of the charger, for example, the central region irradiates light from the back to the deterioration region of the sample to be tested. It is possible to provide an exposure portion formed of a light-transmitting insulating member. With a member that does not transmit light, it is difficult to irradiate the surface of the photosensitive member with light during charging, and it becomes difficult to increase the amount of current to the photosensitive member under test by simultaneous charging exposure. If you want to use a neutral density filter, bandpass filter, etc., you can simply place it on the back side of the charger, but the central area of the charger is hollow, and the so-called perpendicular to the surface of the photoreceptor is hollow. In the case of the charging device, it is necessary to install the filter perpendicular to the surface of the photoreceptor through a holding jig.

光を透過する絶縁性部材で形成された露光部の領域は、被試験試料である感光体の劣化領域より大きいことが望ましく、例えば帯電器全てが光を透過する絶縁性部材で構成されていても構わない。露光部の領域が被試験試料の劣化領域よりも小さい場合は、被試験試料に対して劣化が均一に行われない可能性が生じ、劣化領域での正確な単位面積あたりの通過電荷量が評価できなくなる。
本発明における帯電器筐体は絶縁性部材から形成されているが、絶縁性部材が原因による異常放電発生は無く、コロナ放電による感光体に流れる電流量を増加させることができる。従って、単位面積あたりの通過電荷量を増加させることができる。
The area of the exposed portion formed of an insulating member that transmits light is preferably larger than the deteriorated region of the photoconductor that is the sample to be tested. For example, all the chargers are formed of an insulating member that transmits light. It doesn't matter. If the area of the exposed area is smaller than the degradation area of the sample under test, there is a possibility that the sample under test will not be uniformly degraded, and the amount of passing charge per unit area in the degraded area will be evaluated. become unable.
Although the charger casing in the present invention is formed of an insulating member, no abnormal discharge occurs due to the insulating member, and the amount of current flowing through the photoconductor due to corona discharge can be increased. Therefore, the amount of passing charge per unit area can be increased.

図2を参照しながら劣化加速試験の方法を説明する。
まず、試験試料14の感光体表面が上、すなわち帯電器11に対向するように試験試料台15に載せる。試験試料台15表面には、アースに接続された導電性の部材が取り付けられている。次に、試験試料14を試験試料台15に密着するように試験試料押え12で押える。図5は、試験試料14を試験試料押え12で押えて試験試料台15に装着した様子を模式的に示す上面図である。
劣化加速試験装置で使用する試験試料押え12は、絶縁性部材が望ましい。導電性部材では帯電時に試験試料押さえに放電され易くなることと、感光体の電荷が試験試料押え12に移動し易くなるため、試験試料への電流量を増加することが困難となる。
次いで、高圧電源13に接続された帯電器11でコロナ放電を行うと共に、所定の光量になるように設定された露光装置10によって感光体面に露光する。帯電工程と露光工程を同時に行う、いわゆる帯電同時露光によって劣化加速試験が可能となる。
The method of the deterioration acceleration test will be described with reference to FIG.
First, the surface of the photoconductor of the test sample 14 is placed on the test sample stage 15 so that the surface of the photoconductor faces the charger 11. A conductive member connected to the ground is attached to the surface of the test sample table 15. Next, the test sample 14 is pressed by the test sample presser 12 so as to be in close contact with the test sample stage 15. FIG. 5 is a top view schematically showing a state in which the test sample 14 is pressed by the test sample presser 12 and mounted on the test sample stand 15.
The test sample holder 12 used in the deterioration acceleration test apparatus is preferably an insulating member. In the conductive member, it becomes easy to be discharged to the test sample presser during charging, and the charge of the photoconductor easily moves to the test sample presser 12, so that it is difficult to increase the amount of current to the test sample.
Next, the charger 11 connected to the high voltage power source 13 performs corona discharge, and the exposure device 10 set to have a predetermined light quantity exposes the surface of the photoreceptor. A deterioration acceleration test can be performed by so-called simultaneous charging exposure in which the charging step and the exposure step are performed simultaneously.

上記劣化加速試験において試験試料(感光体)に流れる電流値を変化させることにより、時間当りの通過電荷量を変えることができ、これによって劣化の加速度合いを制御することが可能になる。劣化加速試験を終了した後、帯電能や電荷保持性能、感光層中の蓄積電荷(残留電位)等の特性値を測定し、感光体の劣化状態等を評価することができる。あるいは、感光体の表面観察によって、感光体の劣化度合いを確認することもできる。   By changing the value of the current flowing through the test sample (photoreceptor) in the deterioration acceleration test, it is possible to change the passing charge amount per time, and thereby control the acceleration of deterioration. After the deterioration acceleration test is completed, characteristics such as charging ability, charge retention performance, and accumulated charge (residual potential) in the photosensitive layer can be measured to evaluate the deterioration state of the photoreceptor. Alternatively, the degree of deterioration of the photoconductor can be confirmed by observing the surface of the photoconductor.

上記評価において用いる劣化加速試験装置における帯電器の放電ワイヤ間隔は、2mm以上であることが好ましい。放電ワイヤ間隔が2mmよりも小さいと放電開始と同時に火花放電が発生し、感光体面に対して均一なコロナ放電を付与することができず、劣化加速試験を行うことができなくなる。
また、感光体面と帯電器の放電ワイヤとの距離が2mm以上であることが好ましい。感光体と放電ワイヤ間の距離が2mmよりも小さいと放電開始と同時に火花放電が発生し、感光体面に対して均一にコロナ放電がされず、劣化加速試験を行うことができなくなる。
The distance between the discharge wires of the charger in the deterioration acceleration test apparatus used in the above evaluation is preferably 2 mm or more. If the distance between the discharge wires is less than 2 mm, a spark discharge is generated at the same time as the start of discharge, so that a uniform corona discharge cannot be applied to the photoreceptor surface, and a deterioration acceleration test cannot be performed.
The distance between the photoreceptor surface and the discharge wire of the charger is preferably 2 mm or more. When the distance between the photoconductor and the discharge wire is less than 2 mm, spark discharge occurs simultaneously with the start of discharge, and the corona discharge is not uniformly applied to the surface of the photoconductor, making it impossible to perform the deterioration acceleration test.

また本発明の劣化加速試験方法に用いれば、画像形成装置により通紙した後の電子写真用感光体の静電特性を短時間で評価することができる。
すなわち、画像形成プロセスにおける通紙枚数に伴って画像形成装置の感光体に流れる通過電荷量と同じ量の電荷を本発明の劣化加速試験装置を用いて短時間に流した後、感光体の静電特性を評価することで、実機による通紙後の静電特性を予測することができる。
Further, when used in the degradation acceleration test method of the present invention, the electrostatic characteristics of the electrophotographic photoreceptor after passing through the image forming apparatus can be evaluated in a short time.
That is, after passing a charge of the same amount as the passing charge flowing through the photosensitive member of the image forming apparatus with the number of sheets in the image forming process using the deterioration acceleration test apparatus of the present invention for a short time, By evaluating the electric characteristics, it is possible to predict the electrostatic characteristics after passing the paper by the actual machine.

前記本発明の実施に用いる電子写真用感光体は、導電性支持体の上に電荷発生層、電荷輸送層が形成されたもの、あるいはさらに電荷輸送層の上に保護層が形成されたもの等が使用される。導電性支持体および電荷発生層、電荷輸送層としては、公知のものならば如何なるものでも使用することができる。   The electrophotographic photosensitive member used in the practice of the present invention has a charge generating layer, a charge transport layer formed on a conductive support, or a protective layer formed on the charge transport layer. Is used. As the conductive support, the charge generation layer, and the charge transport layer, any known ones can be used.

以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により、何等限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited at all by these Examples.

(実施例1)
前記図3(a)、(b)、(c)に示したのと同じ構成の帯電器を用いて下記条件によりアルミニウム板にコロナ放電させ、単位面積当りの電流量を測定した。用いた実験装置の概略構成を図6に示す。評価結果を図7に示す。
<帯電器構成と試験条件>
ワイヤ張架有効領域:前記図4の概略模式図におけるA×B領域に相当;50mm×50mm。
放電ワイヤ:枠内に10mm間隔で同一方向のみに張架(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)。
帯電器筐体:絶縁性部材(材質:テフロン(登録商標))。
筐体背面側に設けられた露光部:帯電器背面側中央領域(40mm×40mm)に光を透過する絶縁性部材(材質:石英ガラス)で形成。
放電ワイヤと試験試料(アルミニウム板)の距離:5mm。
アルミニウム板の放電対象領域:40mm×40mm。
Example 1
Using a charger having the same configuration as shown in FIGS. 3A, 3B, and 3C, the aluminum plate was corona discharged under the following conditions, and the amount of current per unit area was measured. A schematic configuration of the experimental apparatus used is shown in FIG. The evaluation results are shown in FIG.
<Charger configuration and test conditions>
Wire stretch effective region: equivalent to the A × B region in the schematic diagram of FIG. 4; 50 mm × 50 mm.
Discharge wire: Stretched only in the same direction at intervals of 10 mm in the frame (material: gold-plated tungsten wire, wire diameter: 60 μm).
Charger housing: insulating member (material: Teflon (registered trademark)).
Exposure unit provided on the back side of the housing: formed of an insulating member (material: quartz glass) that transmits light to the central region (40 mm × 40 mm) on the back side of the charger.
Distance between discharge wire and test sample (aluminum plate): 5 mm.
Discharge target area of the aluminum plate: 40 mm × 40 mm.

(比較例1)
図8の模式図に示すような構成の帯電器を用いてアルミニウム板にコロナ放電させ、単位面積当りの電流量を測定した。用いた実験装置の概略構成図を図9に示す。結果を実施例1と併せて図7に示す。
<帯電器構成と試験条件>
帯電器の開口部:46mm×30mm。
放電ワイヤ:枠内に10mm間隔で同一方向のみにワイヤが2本張架(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)。
帯電器筐体:導電性部材(材質:ステンレス)。
放電ワイヤと試験試料(アルミニウム板)の距離:10mm。
アルミニウム板の放電対象領域:40mm×40mm。
(Comparative Example 1)
Using a charger configured as shown in the schematic diagram of FIG. 8, the aluminum plate was corona discharged and the amount of current per unit area was measured. A schematic configuration diagram of the experimental apparatus used is shown in FIG. The results are shown in FIG. 7 together with Example 1.
<Charger configuration and test conditions>
Charger opening: 46 mm × 30 mm.
Discharge wire: Two wires are stretched in the same direction at 10 mm intervals in the frame (material: gold-plated tungsten wire, wire diameter: 60 μm).
Charger housing: conductive member (material: stainless steel).
Distance between discharge wire and test sample (aluminum plate): 10 mm.
Discharge target area of the aluminum plate: 40 mm × 40 mm.

上記実施例1と比較例1の電流量測定結果、すなわち印加電圧に対する電流密度の関係から、複数のワイヤが同一方向のみに張架され、かつ筐体の材質が絶縁性部材とされた本発明の帯電器を用いることにより、同じ放電ワイヤ印加電圧であっても比較例に比べて試験試料面への単位面積当りの電流量が大きくなることが分る。   The present invention in which a plurality of wires are stretched only in the same direction and the material of the housing is an insulating member based on the current amount measurement results of Example 1 and Comparative Example 1, that is, the relationship of current density to applied voltage. By using this charger, it can be seen that the amount of current per unit area to the test sample surface is larger than that of the comparative example even when the same voltage applied to the discharge wire is used.

(比較例2)
前記図3(a)、(b)、(c)に示したのと同じ構成の帯電器を用いて下記条件によりアルミニウム板にコロナ放電させ、単位面積当りの電流量を測定した。用いた実験装置は実施例1と同じく図6に示す構成である。結果を図10に示す。なお、比較のため実施例1の結果を併記した。
<帯電器構成と試験条件>
ワイヤ張架有効領域:前記図4の概略模式図におけるA×B領域に相当;50mm×50mm。
放電ワイヤ:枠内に10mm間隔で同一方向のみに張架(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)。
帯電器筐体:導電性部材(材質:アルミニウム)
筐体背面側に設けられた露光部:帯電器背面側中央領域(40mm×40mm)に光を透過する絶縁性部材(材質:石英ガラス)で形成。
放電ワイヤと試験試料(アルミニウム板)の距離:5mm。
アルミニウム板の放電対象領域:40mm×40mm。
(Comparative Example 2)
Using a charger having the same configuration as shown in FIGS. 3A, 3B, and 3C, the aluminum plate was corona discharged under the following conditions, and the amount of current per unit area was measured. The experimental apparatus used has the configuration shown in FIG. The results are shown in FIG. For comparison, the results of Example 1 are also shown.
<Charger configuration and test conditions>
Wire stretch effective region: equivalent to the A × B region in the schematic diagram of FIG. 4; 50 mm × 50 mm.
Discharge wire: Stretched only in the same direction at intervals of 10 mm in the frame (material: gold-plated tungsten wire, wire diameter: 60 μm).
Charger housing: Conductive member (Material: Aluminum)
Exposure unit provided on the back side of the housing: formed of an insulating member (material: quartz glass) that transmits light to the central region (40 mm × 40 mm) on the back side of the charger.
Distance between discharge wire and test sample (aluminum plate): 5 mm.
Discharge target area of the aluminum plate: 40 mm × 40 mm.

図10に示した印加電圧に対する電流密度の関係から、帯電器筐体の材質を本発明における絶縁性部材とすることにより、同じワイヤ印加電圧であっても比較例の導電性部材の場合に比べて試験試料へ流れる電流量が増加することが分る。   From the relationship of the current density with respect to the applied voltage shown in FIG. 10, the material of the charger housing is the insulating member in the present invention, so that even when the wire applied voltage is the same, compared with the case of the conductive member of the comparative example. It can be seen that the amount of current flowing to the test sample increases.

(実施例2〜4および比較例3)
放電ワイヤ間隔の水準を振ったほかは実施例1と同様に前記図3(a)、(b)、(c)に示した構成の帯電器を用い、実施例1と同じ帯電器構成と試験条件でアルミニウム板にコロナ放電させ、その際の放電開始電圧を測定した。なお、実験装置は実施例1と同様図6に示す装置を使用した。測定結果を下記表1に示す。
(Examples 2 to 4 and Comparative Example 3)
Except for changing the level of the discharge wire interval, the same charger configuration and test as in Example 1 were used, using the charger having the configuration shown in FIGS. 3A, 3B, and 3C as in Example 1. Under the conditions, the aluminum plate was subjected to corona discharge, and the discharge starting voltage was measured. The experimental apparatus used was the apparatus shown in FIG. The measurement results are shown in Table 1 below.

Figure 0004428527
Figure 0004428527

表1の結果から放電ワイヤ間隔が2mmよりも小さい場合、−7.3kVで火花放電が発生している。この結果から、放電ワイヤ間隔が2mm以上でなければ試験試料面に均一にコロナ放電がされず、正確な劣化加速試験を行うことができないことが分かる。   From the results in Table 1, when the discharge wire interval is smaller than 2 mm, a spark discharge is generated at -7.3 kV. From this result, it can be seen that unless the interval between the discharge wires is 2 mm or more, corona discharge is not uniformly applied to the test sample surface, and an accurate deterioration acceleration test cannot be performed.

(実施例5〜9および比較例4)
試験試料(アルミニウム板)と放電ワイヤとの距離の水準を振ったほかは実施例1と同様に前記図3(a)、(b)、(c)に示した構成の帯電器を用い、実施例1と同じ帯電器構成と試験条件でアルミニウム板にコロナ放電させ、その際の放電開始電圧を測定した。用いた実験装置は実施例1と同様の装置である。測定結果を下記表2に示す。
(Examples 5 to 9 and Comparative Example 4)
Except that the level of the distance between the test sample (aluminum plate) and the discharge wire was varied, the charger of the configuration shown in FIGS. 3A, 3B, and 3C was used in the same manner as in Example 1. The aluminum plate was corona discharged with the same charger configuration and test conditions as in Example 1, and the discharge start voltage was measured. The experimental apparatus used is the same apparatus as in Example 1. The measurement results are shown in Table 2 below.

Figure 0004428527
Figure 0004428527

表2の結果から、試験試料と放電ワイヤとの距離が2mmよりも小さい場合には火花放電が発生することが分る。この結果から、試験試料と放電ワイヤとの距離が2mm以上でなければ試験試料面に対して均一にコロナ放電がされず、正確な劣化加速試験を行うことができないことが分かる。   From the results in Table 2, it can be seen that spark discharge occurs when the distance between the test sample and the discharge wire is less than 2 mm. From this result, it can be seen that unless the distance between the test sample and the discharge wire is 2 mm or more, corona discharge is not uniformly applied to the surface of the test sample, and an accurate deterioration acceleration test cannot be performed.

(実施例10および比較参照実験(比較例5))
前記図2に示した構成の本発明の劣化加速試験装置を使用し、前記図3(a)、(b)、(c)に示したのと同じ構成の帯電器を用いて下記条件で劣化加速試験を実施すると共に、実機プリンター(リコーIPSIO Color6500)を用いて比較参照実験を実施した。
<劣化加速試験の条件>
ワイヤ張架有効領域:前記図4の概略模式図におけるA×B領域に相当;50mm×50mm。
放電ワイヤ:枠内に10mm間隔で同一方向のみに張架(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)。
帯電器筐体:絶縁性部材(材質:テフロン(登録商標))。
筐体背面側に設けられた露光部:帯電器背面側中央領域(40mm×40mm)に光を透過する絶縁性部材(材質:石英ガラス)で形成。
放電ワイヤと試験試料(感光体)の距離:5mm。
試料の設置:試験試料台の上に感光体試料片を置き、試験試料押えによって、開口部のサイズが40mm×40mmとなるようにし、かつサンプル台に密着するようにした。試験試料押えは絶縁性部材(材質:テフロン(登録商標)、厚み:0.09mm)を使用した。
試験試料(感光体):感光体試料片は、リコーIPSIO Color6500用感光体と同じ材料、処方構成のものを使用し、劣化加速試験中の感光体試料面の通過電流を92.6μA(感光体の劣化面積:40mm×40mm)、照度を130luxに設定。
上記条件で劣化加速試験を実施した。
(Example 10 and comparative reference experiment (Comparative Example 5))
Using the deterioration acceleration test apparatus of the present invention having the configuration shown in FIG. 2 and using the charger having the same configuration as shown in FIGS. 3A, 3B, and 3C, the deterioration is caused under the following conditions. In addition to performing an acceleration test, a comparative reference experiment was performed using an actual printer (Ricoh IPSIO Color 6500).
<Conditions for accelerated deterioration test>
Wire stretch effective region: equivalent to the A × B region in the schematic diagram of FIG. 4; 50 mm × 50 mm.
Discharge wire: Stretched only in the same direction at intervals of 10 mm in the frame (material: gold-plated tungsten wire, wire diameter: 60 μm).
Charger housing: insulating member (material: Teflon (registered trademark)).
Exposure unit provided on the back side of the housing: formed of an insulating member (material: quartz glass) that transmits light to the central region (40 mm × 40 mm) on the back side of the charger.
Distance between discharge wire and test sample (photoreceptor): 5 mm.
Sample installation: A photoconductor sample piece was placed on the test sample stage, and the size of the opening was adjusted to 40 mm × 40 mm by the test sample holder, and was in close contact with the sample stage. For the test sample holder, an insulating member (material: Teflon (registered trademark), thickness: 0.09 mm) was used.
Test sample (photoconductor): The photoconductor sample piece is of the same material and composition as the photoconductor for Ricoh IPSIO Color 6500, and the current passing through the photoconductor sample surface during the deterioration acceleration test is 92.6 μA (photoconductor). Degradation area: 40 mm × 40 mm), and illuminance set to 130 lux.
A deterioration acceleration test was performed under the above conditions.

<比較参照実験(比較例5)の条件>
プリンター:リコーIPSIO Color6500
感光体:リコーIPSIO Color6500用感光体。
感光体の径:φ168mm。
感光体の静電容量:110pF/cm2
プリンターの現像条件:帯電電位;700V、露光後電位;100V、紙間;A4横の1.5、通紙条件;A4横、QL;有り、原稿のべた密度;7%で通紙。
上記条件で実機プリンターにより実際に通紙して感光体を劣化させる試験を実施した。
<Conditions for Comparative Reference Experiment (Comparative Example 5)>
Printer: Ricoh IPSIO Color6500
Photoconductor: Photoconductor for Ricoh IPSIO Color 6500.
Photoconductor diameter: φ168 mm.
Capacitance of the photoreceptor: 110 pF / cm 2 .
Printer development conditions: charging potential: 700 V, post-exposure potential: 100 V, between papers: A4 landscape 1.5, paper feed conditions: A4 landscape, QL: Yes, solid density of the original;
Under the above conditions, a test was conducted to actually deteriorate the photoconductor by passing paper through an actual printer.

上記条件により実機プリンターによる通紙枚数125、000枚(125k枚)毎の通過電荷量と、その通過電荷量に到達するまでの試験時間、および相当する通過電荷量に到達するまでの劣化加速試験による試験時間を下記表3に示す。また、各試験時間における感光体の残留電位(所定の電位から十分露光させた後の電位)の測定結果を下記表4に示す。   Under the above conditions, the passing charge amount for every 125,000 (125k) sheets passed by the actual printer, the test time until reaching the passing charge amount, and the deterioration acceleration test until reaching the corresponding passing charge amount Table 3 below shows the test time. In addition, Table 4 below shows the measurement results of the residual potential of the photoreceptor (the potential after sufficient exposure from a predetermined potential) at each test time.

Figure 0004428527
Figure 0004428527

Figure 0004428527
Figure 0004428527

表3の結果から、試験に供される感光体の特性(径、静電容量)と、その感光体を使用するプリンターの現像条件(帯電電位、露光後電位、紙間、通紙条件、QL、原稿のべた密度)から算出される任意の通紙枚数における実機プリンターの通過電荷量と同じ量の通過電荷を本発明の劣化加速試験装置を用いて付与することにより、実機を用いて通紙試験するよりも大幅に時間を短縮できることが分る。
また、表4に示す結果から、通過電荷量が同じであれば劣化後の残留電位もほぼ同じであり、本発明の劣化加速試験装置を用いて感光体を劣化すれば、実際に通紙した任意の枚数における特性値の予測が可能であることが分る。すなわち、実際のプリンターにおける寿命枚数での特性値を短時間で予測することが可能となる。
From the results in Table 3, the characteristics (diameter, capacitance) of the photoconductor used for the test, and the development conditions of the printer using the photoconductor (charging potential, post-exposure potential, gap between paper, paper passing condition, QL) , The passing charge of the same amount as the passing charge amount of the actual printer at an arbitrary number of passing sheets calculated from the solid density of the original) is applied by using the deterioration acceleration test apparatus of the present invention, so that the sheet is passed using the actual machine. It can be seen that the time can be significantly reduced compared to testing.
Further, from the results shown in Table 4, if the amount of passing charge is the same, the residual potential after deterioration is almost the same. If the photoreceptor is deteriorated using the deterioration acceleration test apparatus of the present invention, the paper is actually passed. It can be seen that the characteristic value can be predicted for any number of sheets. That is, it is possible to predict the characteristic value of the actual number of sheets in an actual printer in a short time.

従来の感光体試料片の劣化加速試験に用いられている特性評価装置を説明するための概略構成図である。It is a schematic block diagram for demonstrating the characteristic evaluation apparatus used for the deterioration acceleration test of the conventional photoconductor sample piece. 本発明における電子写真用感光体の劣化加速試験装置を示す概略構成図である。1 is a schematic configuration diagram illustrating an electrophotographic photoreceptor deterioration acceleration test apparatus according to the present invention. 本発明における劣化加速試験装置に配備される帯電器の背面側(a)、側面側(b)、前面側(c)から見た概略模式図である。It is the schematic diagram seen from the back side (a), side surface side (b), and front side (c) of the charger provided in the deterioration acceleration test apparatus in the present invention. 本発明における帯電器を前面側から見た場合のワイヤ張架有効領域(A×B領域)を示す概略模式図である。It is a schematic diagram which shows the wire stretch effective area | region (A * B area | region) at the time of seeing the charger in this invention from the front side. 本発明の劣化加速試験において試験試料を試験試料台に装着する様子を模式的に示した上面図である。It is the top view which showed typically a mode that the test sample was mounted | worn on a test sample stand in the deterioration acceleration test of this invention. 実施例1〜9、比較例1〜4において用いた実験装置の概略構成図である。It is a schematic block diagram of the experimental apparatus used in Examples 1-9 and Comparative Examples 1-4. 実施例1および比較例1において測定された印加電圧と電流密度との関係を示すグラフである。6 is a graph showing the relationship between applied voltage and current density measured in Example 1 and Comparative Example 1. 比較例1において用いた帯電器の模式図である。6 is a schematic diagram of a charger used in Comparative Example 1. FIG. 比較例1において用いた実験装置の概略構成図である。It is a schematic block diagram of the experimental apparatus used in the comparative example 1. 比較例2において測定された印加電圧と電流密度との関係を実施例1と比較したグラフである。6 is a graph comparing the relationship between applied voltage and current density measured in Comparative Example 2 with Example 1. FIG.

符号の説明Explanation of symbols

1 ターンテーブル
2 試料片押え板
3 開口部
4 帯電器
5 露光装置、表面電位計電極部
6 電流計
7 表面電位計
8 A/D変換器
9 コントローラ
10 露光装置
11 帯電器
11a 筐体
11b 露光部
12 試験試料押え
13 高圧電源
14 試験試料
15 試験試料台
16 放電ワイヤ
17 ワイヤ張架治具

DESCRIPTION OF SYMBOLS 1 Turntable 2 Sample piece pressing plate 3 Opening part 4 Charger 5 Exposure apparatus, surface potential meter electrode part 6 Ammeter 7 Surface potential meter 8 A / D converter 9 Controller 10 Exposure apparatus 11 Charger 11a Case
11b Exposure unit 12 Test sample holder 13 High-voltage power supply 14 Test sample 15 Test sample table 16 Discharge wire 17 Wire stretching jig

Claims (7)

帯電器を用いた帯電工程と露光装置を用いた露光工程とを含む試験サイクルを繰り返し実行して劣化を加速させる電子写真用感光体の劣化加速試験方法において、
前記試験サイクルは、前記帯電器の筐体が絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部を備えると共に、筐体内に感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤが配設された帯電器を用いて実行されることを特徴とする電子写真用感光体の劣化加速試験方法。
In a method for accelerating deterioration of an electrophotographic photoreceptor in which deterioration is accelerated by repeatedly executing a test cycle including a charging step using a charger and an exposure step using an exposure apparatus,
In the test cycle, the casing of the charger is formed of an insulating member, has an opening on the front side facing at least the photoconductor, and transparent insulation that transmits the irradiation light from the exposure apparatus on the back side. And an exposure unit formed of a photosensitive member, and a charger in which a plurality of discharge wires are provided in a housing parallel to the surface of the photosensitive member and stretched only in the same direction. Method for accelerating degradation of electrophotographic photoreceptor.
前記帯電工程と露光工程を同時に行うことを特徴とする請求項1に記載の電子写真用感光体の劣化加速試験方法。   The method for accelerating deterioration of an electrophotographic photoreceptor according to claim 1, wherein the charging step and the exposure step are performed simultaneously. 前記帯電器の放電ワイヤ間隔を2mm以上とすることを特徴とする請求項1に記載の電子写真用感光体の劣化加速試験方法。   The method for accelerating deterioration of an electrophotographic photoreceptor according to claim 1, wherein an interval between discharge wires of the charger is 2 mm or more. 前記感光体面と帯電器の放電ワイヤとの距離を2mm以上とすることを特徴とする請求項1に記載の電子写真用感光体の劣化加速試験方法。   2. The deterioration acceleration test method for an electrophotographic photoreceptor according to claim 1, wherein a distance between the photoreceptor surface and a discharge wire of the charger is 2 mm or more. 画像形成プロセスにおける通紙枚数に伴って画像形成装置の感光体に流れる通過電荷量と同じ量の電荷を劣化加速試験方法により短時間に流して通紙後における感光体の静電特性を評価する電子写真用感光体の静電特性評価方法であって、
前記劣化加速試験方法は請求項1〜4のいずれかに記載の劣化加速試験方法であることを特徴とする電子写真用感光体の静電特性評価方法。
Evaluate the electrostatic characteristics of the photoconductor after passing the paper by passing the same amount of charge as the passing charge that flows to the photoconductor of the image forming apparatus in a short time by the deterioration acceleration test method as the number of paper passes in the image forming process. An electrostatic property evaluation method for an electrophotographic photoreceptor,
5. The method for evaluating electrostatic characteristics of an electrophotographic photoreceptor, wherein the deterioration acceleration test method is the deterioration acceleration test method according to claim 1.
少なくとも帯電器と露光装置とを備えた電子写真用感光体の劣化加速試験装置において、
前記帯電器は、筐体が絶縁性部材から形成され、少なくとも感光体に対面する前面側に開口部を有し、背面側には前記露光装置からの照射光を透過する透明絶縁性部材で形成された露光部を備えると共に、筐体内に感光体面と平行しかつ同一方向のみに張架された複数の放電ワイヤが配設された構造を有することを特徴とする電子写真用感光体の劣化加速試験装置。
In an electrophotographic photoreceptor deterioration acceleration testing apparatus comprising at least a charger and an exposure device,
The charger has a casing formed of an insulating member, and has an opening on the front side facing at least the photosensitive member, and a transparent insulating member that transmits irradiation light from the exposure apparatus on the back side. A deterioration acceleration of an electrophotographic photoreceptor characterized by having a structure in which a plurality of discharge wires are provided in the housing and are parallel to the surface of the photoreceptor and stretched only in the same direction. Test equipment.
請求項6に記載の電子写真用感光体の劣化加速試験装置を用いたことを特徴とする電子写真用感光体の劣化加速試験方法。




An electrophotographic photoreceptor deterioration acceleration test method using the electrophotographic photoreceptor deterioration acceleration test apparatus according to claim 6.




JP2004321568A 2004-11-05 2004-11-05 Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment Expired - Fee Related JP4428527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321568A JP4428527B2 (en) 2004-11-05 2004-11-05 Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321568A JP4428527B2 (en) 2004-11-05 2004-11-05 Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment

Publications (2)

Publication Number Publication Date
JP2006133441A JP2006133441A (en) 2006-05-25
JP4428527B2 true JP4428527B2 (en) 2010-03-10

Family

ID=36727052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321568A Expired - Fee Related JP4428527B2 (en) 2004-11-05 2004-11-05 Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment

Country Status (1)

Country Link
JP (1) JP4428527B2 (en)

Also Published As

Publication number Publication date
JP2006133441A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JPH11166915A (en) Non-contact detecting method of micro defect in electrostatic image member and non-contact scanning system
US7518376B2 (en) Electric field probe
US7715743B2 (en) Charger with a probe and controller
US10359728B2 (en) Image forming apparatus
JP4428527B2 (en) Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment
JP4953185B2 (en) Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus
JP4324519B2 (en) Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus
JP4234080B2 (en) Photoconductor deterioration acceleration test method and acceleration test apparatus
JP2005352176A (en) Photoreceptor deterioration acceleration test method and acceleration test equipment
JP4128232B2 (en) Method and apparatus for measuring electrical properties of electrophotographic media
JP2007155993A (en) Method for accelerated testing of degradation in electrophotographic photoreceptor and accelerated testing machine for degradation in electrophotographic photoreceptor
JP2005099133A (en) Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for the same
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP3759400B2 (en) Photoconductor deterioration acceleration test equipment
JP5059329B2 (en) Photoconductor performance measuring apparatus and image forming apparatus
JP2005099111A (en) Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it
Tse et al. Predicting charge roller performance in electrophotography using electrostatic charge decay measurements
JP2007206242A (en) Deterioration accelerating test method for photoreceptor
US6469513B1 (en) Automated stationary/portable test system for applying a current signal to a dielectric material being tested
JP4546784B2 (en) Photoreceptor characteristic evaluation device
JP2012189952A (en) Characteristic evaluation apparatus and characteristic evaluation method for electrophotographic photoreceptor
JP2011113089A (en) Electrophotographic printer toner charge measurement during normal operation
JP2004077125A (en) Apparatus and method for detecting defect in electrophotography photoreceptor
JP4057448B2 (en) Electrophotographic photoreceptor test equipment
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees