JP5059329B2 - Photoconductor performance measuring apparatus and image forming apparatus - Google Patents

Photoconductor performance measuring apparatus and image forming apparatus Download PDF

Info

Publication number
JP5059329B2
JP5059329B2 JP2006028647A JP2006028647A JP5059329B2 JP 5059329 B2 JP5059329 B2 JP 5059329B2 JP 2006028647 A JP2006028647 A JP 2006028647A JP 2006028647 A JP2006028647 A JP 2006028647A JP 5059329 B2 JP5059329 B2 JP 5059329B2
Authority
JP
Japan
Prior art keywords
photoconductor
charged particle
particle beam
image
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006028647A
Other languages
Japanese (ja)
Other versions
JP2007206030A (en
Inventor
健 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006028647A priority Critical patent/JP5059329B2/en
Publication of JP2007206030A publication Critical patent/JP2007206030A/en
Application granted granted Critical
Publication of JP5059329B2 publication Critical patent/JP5059329B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Description

本発明は、デジタル複写機、レーザプリンタ、レーザプロッタ、レーザファクシミリ、あるいはこれらの複合機等の画像形成装置で用いられる感光体の性能測定装置に関し、さらには、その感光体性能測定装置で評価された感光体を用いる画像形成装置に関する。   The present invention relates to a photoconductor performance measuring apparatus used in an image forming apparatus such as a digital copying machine, a laser printer, a laser plotter, a laser facsimile, or a composite machine of these, and further evaluated by the photoconductor performance measuring apparatus. The present invention relates to an image forming apparatus using a photoconductor.

デジタル複写機、レーザプリンタ、レーザファクシミリ等に応用される画像形成装置の一例を図9に示す。
図9に示す画像形成装置では、像担持体としての円筒状に形成された感光体ドラム111を有し、その周辺には帯電手段112(図では帯電ローラによる接触式のものを示しているが、この他、帯電ブラシや、非接触式のコロナチャージャ等を用いることもできる)、光走査装置117、現像装置113、転写手段114(図では転写ローラを示しているが、コロナチャージャ等を用いるものであってもよい)、クリーニング装置115を有している。また、符号116は定着装置を示している。
An example of an image forming apparatus applied to a digital copying machine, a laser printer, a laser facsimile, etc. is shown in FIG.
The image forming apparatus shown in FIG. 9 has a photosensitive drum 111 formed in a cylindrical shape as an image carrier, and a charging means 112 (a contact type using a charging roller is shown in the periphery thereof). In addition, a charging brush, a non-contact type corona charger or the like can also be used), an optical scanning device 117, a developing device 113, a transfer unit 114 (a transfer roller is shown in the figure, but a corona charger or the like is used). The cleaning device 115 may be included. Reference numeral 116 denotes a fixing device.

感光体ドラム111は、接地された金属等の導電性を持つ円筒の外側表面に、暗中では誘電体、光が当たると電導体となる光導電性の感光体材料が塗布されている。
感光体ドラム111は図中の矢印方向へ等速回転され、帯電手段112によって感光体表面に均一に電荷が与えられる。
次に、光走査装置117によって感光体ドラム111の一部に光が当てられる。感光体ドラム111の光の当たった部分は電導体となり、感光体表面の電荷が導電性を持つ円筒を介して逃げることにより感光体表面の電荷が無くなる。また、光の当たらなかった部分の電荷はそのまま保持される。この様にして静電潜像が形成される。
In the photoconductive drum 111, a photoconductive photoconductive material that becomes a dielectric when exposed to light and a conductor when exposed to light is coated on the outer surface of a conductive cylinder such as a grounded metal.
The photosensitive drum 111 is rotated at a constant speed in the direction of the arrow in the figure, and the charging means 112 uniformly charges the surface of the photosensitive drum.
Next, light is applied to a part of the photosensitive drum 111 by the optical scanning device 117. The exposed portion of the photosensitive drum 111 becomes an electric conductor, and the electric charge on the surface of the photosensitive member is eliminated by escaping the electric charge on the surface of the photosensitive member through the conductive cylinder. In addition, the charge of the portion not exposed to light is held as it is. In this way, an electrostatic latent image is formed.

次に、現像装置によって感光体表面と同じ極性の電荷に帯電されたトナーが感光体表面の電荷の無くなった部分にのみ付着し、トナー画像として可視像化される。
感光体上のトナー画像は、図示しない給紙部から給紙される転写紙やOHPシート等のシート状記録媒体S上に転写手段114によって静電力及び圧力により転写され、定着装置116によって熱及び圧力を加えることにより定着される。
トナー画像を定着されたシート状記録媒体Sは装置外へ排出され、トナー画像転写後の感光体111はクリーニング装置115によりクリーニングされて残留トナーや紙粉が除去される。
Next, the toner charged to the same polarity as that of the surface of the photoreceptor by the developing device adheres only to the portion where the charge on the surface of the photoreceptor disappears, and is visualized as a toner image.
The toner image on the photoconductor is transferred by a transfer unit 114 by electrostatic force and pressure onto a sheet-like recording medium S such as a transfer sheet or an OHP sheet fed from a sheet feeding unit (not shown), and heat and pressure are transferred by a fixing device 116. It is fixed by applying pressure.
The sheet-like recording medium S on which the toner image is fixed is discharged out of the apparatus, and the photoreceptor 111 after the toner image is transferred is cleaned by a cleaning device 115 to remove residual toner and paper dust.

ここで、感光体の製造方法によっては何度も上記のサイクルを繰り返していると、帯電から現像に移る間に光走査装置117によって光を当てていない場所でも電荷が逃げてしまう個所が発生することがある。これは何度も高電圧をかけているうちに感光体が変質または劣化し、恒常的な電荷の通り道が出来てしまうためである。このような個所が発生するとトナーが不必要な所に付着し、出力画像としては地汚れとなり、著しく画像品質を落とすこととなる。   Here, depending on the method of manufacturing the photoconductor, if the above cycle is repeated many times, a portion where the electric charge escapes even in a place where no light is applied by the optical scanning device 117 during the transition from charging to development occurs. Sometimes. This is because the photoconductor is deteriorated or deteriorated while a high voltage is applied many times, and a constant path for electric charge is created. When such a portion is generated, the toner adheres to an unnecessary portion, and the output image becomes soiled and the image quality is remarkably deteriorated.

そこで、この様な地汚れの発生しない感光体の製造方法を確立する必要があるが、これまでの感光体の性能評価では、地汚れが発生するかどうかは実際に画像形成装置を組み立てた後、長時間の連続画像出力実験を行わなければならず、非常に非効率であった。   Therefore, it is necessary to establish a method for manufacturing such a photoconductor that does not cause scumming. However, in the performance evaluation of a photoconductor so far, whether or not scumming occurs is determined after the image forming apparatus is actually assembled. Therefore, it was necessary to conduct a continuous image output experiment for a long time, which was very inefficient.

特開2003−295696号公報JP 2003-295696 A

本出願人は先に、感光体の性能測定に応用できる技術として、静電潜像の測定方法および測定装置を提案している(特許文献1参照)。
この先願技術では、荷電粒子ビームを照射して、測定を行う装置内で静電潜像を形成する手段を持ち、潜像形成後の短い時間内に測定を行うことができ、また、非破壊で測定することが可能な、静電潜像の測定方法および装置を得ることを課題としている。そして、この静電潜像の測定方法および装置では、感光体等の試料面を荷電粒子ビームで走査し、この走査で得られる検出信号により試料面の静電潜像を測定するものである。より具体的には、荷電粒子ビームを走査する装置内で、試料に対して帯電させ、光学系を介して帯電した試料を露光させることにより、試料上に静電潜像(電荷分布)を生成させる。そして電荷分布を有する試料を移動させながら試料面の静電潜像を測定する。また、帯電手段は電子ビームを照射させる手段とし、試料からの2次電子を検出する手段を設けている。
The present applicant has previously proposed a method and an apparatus for measuring an electrostatic latent image as a technique that can be applied to the performance measurement of a photoreceptor (see Patent Document 1).
In this prior application technique, a charged particle beam is irradiated and a means for forming an electrostatic latent image is formed in the measuring apparatus, and the measurement can be performed within a short time after the latent image is formed. It is an object of the present invention to obtain an electrostatic latent image measuring method and apparatus that can be measured by the above method. In this method and apparatus for measuring an electrostatic latent image, a sample surface such as a photoconductor is scanned with a charged particle beam, and the electrostatic latent image on the sample surface is measured by a detection signal obtained by this scanning. More specifically, an electrostatic latent image (charge distribution) is generated on a sample by charging the sample in an apparatus that scans a charged particle beam and exposing the charged sample through an optical system. Let Then, the electrostatic latent image on the sample surface is measured while moving the sample having the charge distribution. The charging means is means for irradiating an electron beam, and means for detecting secondary electrons from the sample is provided.

上記の先願技術では、荷電粒子ビームを走査する装置内で、試料上に電荷分布を形成させる手段(例えば帯電手段と露光手段)を有することにより、従来は極めて困難であった、試料の表面電荷分布を測定することが可能となるが、帯電、露光による潜像形成の後に試料の表面電荷分布を測定する構成なので、荷電粒子ビームの照射手段の他に、潜像形成用の露光手段等を必要とし、測定装置の大型化の問題や、測定に時間がかかるという問題がある。   In the above-mentioned prior application technique, the surface of the sample, which has been extremely difficult in the past, has a means (for example, a charging means and an exposure means) for forming a charge distribution on the sample in an apparatus that scans a charged particle beam. Although the charge distribution can be measured, the surface charge distribution of the sample is measured after the latent image is formed by charging and exposure. Therefore, in addition to the charged particle beam irradiation means, the exposure means for latent image formation, etc. There is a problem of increasing the size of the measuring device and taking time for the measurement.

本発明は上記事情に鑑みなされたものであり、感光体面を荷電粒子ビームで走査して性能測定を行う技術を応用し、より簡易な構成で且つ短時間で感光体の性能を測定することができる構成の感光体性能測定装置を提供することを目的としている。そして本発明は、感光体性能測定装置で性能を評価され、選別された感光体を用いて、地汚れの発生しにくい良好な画像を出力できる画像形成装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and it is possible to measure the performance of a photoconductor with a simpler configuration and in a short time by applying a technique for measuring performance by scanning the surface of the photoconductor with a charged particle beam. An object of the present invention is to provide a photoconductor performance measuring apparatus having a configuration that can be used. An object of the present invention is to provide an image forming apparatus capable of outputting a good image which is less likely to cause scumming by using a photoconductor whose performance is evaluated by a photoconductor performance measuring device.

上記目的を達成するための手段として、特許請求の範囲の請求項1に記載の発明は、荷電粒子ビームを発生させる荷電粒子ビーム発生手段と、前記荷電粒子ビームを屈曲させる電子レンズと、前記荷電粒子ビームの通過を制限するアパーチャ部材と、前記荷電粒子ビームを偏向させるビーム偏向手段と、前記荷電粒子ビームが感光体に当たることによって発生する2次荷電粒子を検出する2次荷電粒子検出手段と、光源とを有する感光体性能測定装置において、制御命令を発信するタイミングを管理するための基準時間発生手段を有し、前記荷電粒子ビーム発生手段と、前記電子レンズと、前記アパーチャ部材と、前記ビーム偏向手段とを少なくとも制御し、プログラムの保存及び実行が可能なプログラミング制御手段を備え、性能測定時に前記電子レンズの少なくとも2つは屈折力を変化させ、該屈折力を変化させる電子レンズは前記アパーチャ部材より荷電粒子ビーム発生手段側と感光体側のそれぞれに少なくとも1つ配置してあり、性能測定の第1段階から第2段階への移行時に前記アパーチャ部材より荷電粒子ビーム発生手段側の電子レンズの屈折力を調整し、前記アパーチャ部材を通過する電子線量を減らすことを特徴とする。 As a means for achieving the above object, the invention according to claim 1 of the present invention includes a charged particle beam generating means for generating a charged particle beam, an electron lens for bending the charged particle beam, and the charging. An aperture member for restricting passage of the particle beam, beam deflecting means for deflecting the charged particle beam, secondary charged particle detecting means for detecting secondary charged particles generated when the charged particle beam hits a photoreceptor, In a photoconductor performance measuring apparatus having a light source, the apparatus has reference time generating means for managing timing of transmitting a control command, the charged particle beam generating means, the electron lens, the aperture member, and the beam at least controls the deflection means comprises a programming control means capable to store and execute program when performance measurement Serial least two electron lenses varying the refractive power, an electron lens for changing the the refractive power Yes to at least one disposed in each of said aperture member from the charged particle beam generating means side and the photosensitive member side, the performance measurement In the transition from the first stage to the second stage, the refractive power of the electron lens on the charged particle beam generating means side from the aperture member is adjusted to reduce the electron dose passing through the aperture member.

請求項2に記載の発明は、請求項1に記載の感光体性能測定装置において、前記アパーチャ部材に照射される荷電粒子ビームの照射範囲を大きくすることを特徴とする。 According to a second aspect of the present invention, in the photosensitive member performance measuring apparatus according to the first aspect, an irradiation range of the charged particle beam irradiated to the aperture member is increased .

請求項3に記載の発明は、請求項1または2記載の感光体性能測定装置において、
前記性能測定時に屈折力を変化させる電子レンズは、前記プログラミング制御手段により制御される印加電圧発生手段によって屈折力を変化させることを特徴とする。
また、請求項に記載の発明は、請求項1乃至のいずれか1項に記載の感光体性能測定装置において、前記2次電子検出手段からの2次電子検出信号の強度の時間変化から前記感光体面上の2次電子発生量の分布を濃度に置き換えた画像に変換する画像変換手段を有することを特徴とする。
さらに、請求項に記載の発明は、請求項3または4記載の感光体性能測定装置において、前記印加電圧発生手段は、低電圧の可変電圧発生手段と、電圧増幅手段を有し、前記可変電圧発生手段と電圧増幅手段は、信号線のみによって接続され、別々の筐体に分離し、電気的に分離されていることを特徴とする。
According to a third aspect of the invention, the photoreceptor performance measuring device of the mounting according to claim 1 or 2 SL,
The electron lens that changes the refractive power at the time of the performance measurement changes the refractive power by the applied voltage generation means controlled by the programming control means .
According to a fourth aspect of the present invention, there is provided the photosensitive member performance measuring apparatus according to any one of the first to third aspects, wherein the intensity of the secondary electron detection signal from the secondary electron detection means is changed over time. An image conversion means for converting the distribution of the amount of secondary electron generation on the surface of the photosensitive member into an image replaced with a density is provided.
Further, the invention described in claim 5 is the photosensitive member performance measuring apparatus according to claim 3 or 4 , wherein the applied voltage generating means includes a low voltage variable voltage generating means and a voltage amplifying means. The voltage generating means and the voltage amplifying means are connected only by a signal line, separated into separate casings, and electrically separated.

請求項に記載の発明は、像担持体に静電潜像を形成し、該静電潜像を現像して可視像化した後、像担持体上の可視像を記録媒体に転写して画像を形成する画像形成装置において、前記像担持体として、請求項1乃至のいずれか1項に記載の感光体性能測定装置よって性能を評価され、選別された感光体を用いたことを特徴とする。 According to the sixth aspect of the present invention, an electrostatic latent image is formed on the image carrier, and the electrostatic latent image is developed and visualized, and then the visible image on the image carrier is transferred to a recording medium. an image forming apparatus for forming an image by, as the image bearing member is evaluated Accordingly performance photoreceptor performance measuring device according to any one of claims 1 to 5, with the sorted photosensitive member It is characterized by that.

本発明の感光体性能測定装置では、測定の第1段階では感光体表面に均一に強力な荷電粒子ビームを当てることにより、感光体表面を均一に帯電させ、第2段階では荷電粒子ビームを弱めて走査させ、荷電粒子ビームが感光体に当たることによって発生する2次荷電粒子を2次荷電粒子検出手段で検出して2次電子の発生量の分布を得るので、先願技術のような露光手段は必要がなく、簡易な構成で且つ短時間で感光体の性能を測定することが可能でとなる。従って感光体の性能評価および選別を容易に行うことが可能となる。
なお、ここでの性能とは、露光されない状態で帯電が保持されるか否かのことである。帯電が保持されない(性能が悪い)と、この感光体を用いた画像形成装置は地汚れが発生し、著しく画像性能を落とすことになる。
本発明では、上記の感光体性能測定装置により性能を評価され、選定された感光体を用いて画像形成装置を構成することにより、地汚れの発生しにくい良好な画像を出力できる画像形成装置を実現することが可能となる。
In the photoconductor performance measuring apparatus of the present invention, the surface of the photoconductor is uniformly charged by applying a uniformly strong charged particle beam to the photoconductor surface in the first stage of measurement, and the charged particle beam is weakened in the second stage. The secondary charged particles generated by the charged particle beam hitting the photosensitive member are detected by the secondary charged particle detecting means to obtain the distribution of the generation amount of secondary electrons. Therefore, it is possible to measure the performance of the photoreceptor in a short time with a simple configuration. Therefore, it is possible to easily evaluate and sort the performance of the photoreceptor.
Here, the performance is whether or not the charge is maintained without being exposed. If the charge is not maintained (poor performance), the image forming apparatus using this photoconductor is soiled and the image performance is significantly deteriorated.
In the present invention, an image forming apparatus that is capable of outputting a good image that is less likely to cause background contamination by configuring the image forming apparatus using the selected photoconductor, the performance of which is evaluated by the above-described photoconductor performance measuring apparatus. It can be realized.

本発明に係る感光体性能測定装置は、荷電粒子ビームを発生させる荷電粒子ビーム発生手段と、前記荷電粒子ビームを屈曲させる電子レンズと、前記荷電粒子ビームの通過を制限するアパーチャと、前記荷電粒子ビームを偏向させるビーム偏向手段と、前記荷電粒子ビームが感光体に当たることによって発生する2次荷電粒子を検出する2次荷電粒子検出手段と、光源とを有する構成である。そして、本発明の感光体性能測定装置による測定、評価の概要としては、以下のようなものである。
(1)感光体の測定範囲全体に均一に強力な荷電粒子ビームを当てることにより、感光体表面を均一に帯電させる。この際、感光体に負荷をかけることにより加速試験にもなる。
(2)荷電粒子ビームを弱めて走査させ、2次電子の発生量の分布を得る。
(3)測定範囲全体の面積に対する電荷の失われている個所の面積比から感光体の性能を評価する。
(4)評価結果から性能の良い感光体を選別して、画像形成装置の作像部に組み込む。
The photoconductor performance measuring apparatus according to the present invention includes a charged particle beam generating unit that generates a charged particle beam, an electron lens that bends the charged particle beam, an aperture that restricts the passage of the charged particle beam, and the charged particle A beam deflecting means for deflecting the beam, a secondary charged particle detecting means for detecting secondary charged particles generated when the charged particle beam hits the photosensitive member, and a light source. The outline of measurement and evaluation by the photoconductor performance measuring apparatus of the present invention is as follows.
(1) The surface of the photoreceptor is uniformly charged by applying a uniformly charged particle beam uniformly over the entire measurement range of the photoreceptor. At this time, an acceleration test is performed by applying a load to the photoconductor.
(2) Scanning with the charged particle beam weakened to obtain the distribution of the amount of secondary electrons generated.
(3) The performance of the photoreceptor is evaluated from the area ratio of the portion where the charge is lost with respect to the area of the entire measurement range.
(4) A photoconductor with good performance is selected from the evaluation result and incorporated in the image forming unit of the image forming apparatus.

本発明の感光体性能測定装置は、性能測定時に電子レンズの少なくとも2つは屈折力を変化させ、その2つの電子レンズの内、少なくとも1つはアパーチャより荷電粒子ビーム発生手段側に配置され(あるいは、性能測定時に電子レンズの少なくとも2つは屈折力を変化させ、その電子レンズはアパーチャより荷電粒子ビーム発生手段側と感光体側のそれぞれに配置され)、且つ、性能測定時にビーム偏向手段の機能状態と停止状態を切り替えることより、荷電粒子ビームを測定範囲全体に強力に均一に当てることと弱めて走査させることの切替が可能となる。また、電子レンズの屈折力を変化させるためには、印加電圧発生手段を用いる。   In the photoreceptor performance measuring apparatus of the present invention, at least two of the electron lenses change the refractive power during the performance measurement, and at least one of the two electron lenses is disposed closer to the charged particle beam generating means side than the aperture ( Alternatively, at least two of the electron lenses change the refractive power during the performance measurement, and the electron lenses are arranged on the charged particle beam generation means side and the photosensitive body side from the aperture), respectively, and the function of the beam deflection means during the performance measurement By switching between the state and the stopped state, it is possible to switch between applying the charged particle beam strongly and uniformly to the entire measurement range and scanning with weakening. Further, an applied voltage generating means is used to change the refractive power of the electron lens.

さらに本発明の感光体性能測定装置では、プログラムの保存及び実行が可能なプログラミング制御装置を有している。このプログラミング制御装置を有することにより、一連の測定作業を自動化でき、測定の効率化が図れる。
また、帯電及び電荷が逃げて行く過程は刻々と状態が変わって行く過渡現象であり、比較測定を行う場合に条件を揃えるためには時間管理が重要であり、そのために基準時間発生手段を有していなければならない。
Furthermore, the photoconductor performance measuring apparatus of the present invention has a programming control device capable of storing and executing a program. By having this programming control device, a series of measurement operations can be automated, and the measurement efficiency can be improved.
In addition, the process of escaping the charge and charge is a transient phenomenon in which the state changes from moment to moment, and time management is important in order to align the conditions when performing comparative measurements.Therefore, there is a reference time generation means. Must be.

次に、本発明の感光体性能測定装置では、2次電子の発生量の分布を得るために、2次電子検出手段からの2次電子検出信号の強度の時間変化から感光体面上の2次電子発生量の分布を濃度に置き換えた画像に変換する画像変換手段を有することにより、既存の様々な画像処理ツールを使用することができ、測定範囲全体の面積に対する電荷の失われている個所の面積比も容易に算出できる。   Next, in the photoconductor performance measuring apparatus of the present invention, in order to obtain the distribution of the generation amount of secondary electrons, the secondary on the photoconductor surface is detected from the time change of the intensity of the secondary electron detection signal from the secondary electron detection means. By having an image conversion means that converts the distribution of the amount of electron generation into an image replaced with a density, various existing image processing tools can be used, and the area where the charge is lost with respect to the area of the entire measurement range can be used. The area ratio can also be easily calculated.

また、本発明の感光体性能測定装置では、電子レンズの屈折力を変化させる印加電圧発生手段を有し、この印加電圧発生手段は低電圧の可変電圧発生手段と、電圧増幅手段で構成し、低電圧の可変電圧発生手段で低電圧で電圧可変を行い、電圧増幅手段で増幅し、高電圧の電圧可変を行っている。ここで、可変電圧発生手段と電圧増幅手段は、信号線を除いて電気的に分離されていることが望ましい。電気的に分離とは高電圧の電流が急激に変化した時発生する磁場変化や電波が相手側に伝わり誘導電流を発生させることが無い状態にすることである。具体的には空間的に離す、それぞれの手段を独立に電気伝導性を持つ筐体で覆う、別々の経路でアースを取る等がある。これにより、高電圧を扱う電圧増幅手段で発生するノイズが可変電圧発生手段を破壊することが防げる。   Further, the photoreceptor performance measuring apparatus of the present invention has an applied voltage generating means for changing the refractive power of the electron lens, and this applied voltage generating means comprises a low voltage variable voltage generating means and a voltage amplifying means, The low voltage variable voltage generating means performs voltage variable at a low voltage, the voltage amplifying means amplifies, and the high voltage voltage is varied. Here, it is desirable that the variable voltage generating means and the voltage amplifying means are electrically separated except for the signal line. Electrical separation is a state in which a change in magnetic field generated when a high-voltage current suddenly changes or a radio wave is transmitted to the other side and no induced current is generated. Concretely, they are spatially separated, each means is independently covered with a casing having electrical conductivity, and grounding is performed through separate paths. As a result, it is possible to prevent noise generated by the voltage amplifying means that handles a high voltage from destroying the variable voltage generating means.

本発明では、上記の感光体性能測定装置よって性能を評価され、選定された感光体を用いて画像形成装置を構成することにより、地汚れの発生しにくい良好な画像を出力できる画像形成装置を実現することが可能となる。
また、画像形成装置が廃棄された際に、本発明の感光体性能測定装置で感光体の劣化の程度を判定することにより、劣化の程度が小さいものはリサイクルでき、資源の有効活用が可能となる。
In the present invention, an image forming apparatus that is capable of outputting a good image that is less likely to cause background smearing is configured by using the selected photoconductor to evaluate the performance by the above-described photoconductor performance measuring apparatus. It can be realized.
In addition, when the image forming apparatus is discarded, by determining the degree of deterioration of the photoconductor with the photoconductor performance measuring apparatus of the present invention, it is possible to recycle those with a low degree of deterioration and to effectively use resources. Become.

以下、本発明の具体的な構成、動作および作用を、図示の実施例に基づいて詳細に説明する。   Hereinafter, specific configurations, operations, and actions of the present invention will be described in detail based on illustrated embodiments.

[実施例1]
図1に本発明の第1の実施例を示す。性能を評価する感光体18は、電子を照射する側と反対の面を接地させた状態で配置される。ここでは円筒状の感光体18の内側を接地する。なお、図示の例では、感光体全体をそのまま測定装置の真空槽(以下、チャンバと言う)25内に入れた状態を示しているが、感光体の一部を切り出した小片やテスト用に作成した平板の試料(サンプル)であっても構わない。
[Example 1]
FIG. 1 shows a first embodiment of the present invention. The photoconductor 18 whose performance is to be evaluated is arranged in a state where the surface opposite to the electron irradiation side is grounded. Here, the inside of the cylindrical photosensitive member 18 is grounded. In the illustrated example, the entire photoconductor is shown as it is in a vacuum chamber (hereinafter referred to as a chamber) 25 of the measuring apparatus. However, the photoconductor is partially cut out and prepared for testing. It may be a flat plate sample.

一方、チャンバ25内には、荷電粒子ビーム照射部15が設置されている。そして測定時には、チャンバ内は図示しない真空排気装置によって真空状態に排気される。なお、真空排気後に微量の不活性ガス等を導入することも可能である。
荷電粒子ビーム照射部15は、荷電粒子ビーム発生手段10と、複数の電子レンズ11,13,14、アパーチャ12等で構成されており、測定に用いる荷電粒子ビーム(ここでは電子ビームを用いるが、イオン等の電荷を持った粒子のビームであったら何でも構わない)は、荷電粒子ビーム発生手段10で発生する。荷電粒子ビーム発生手段10の詳細は図示しないが、電子を発生させるフィラメント、該電子を引き出す電極、加速する電極、ビーム照射を開始及び停止する機構等からなる。
On the other hand, a charged particle beam irradiation unit 15 is installed in the chamber 25. At the time of measurement, the inside of the chamber is evacuated to a vacuum state by a vacuum evacuation device (not shown). Note that a trace amount of inert gas or the like can be introduced after evacuation.
The charged particle beam irradiation unit 15 includes a charged particle beam generating means 10, a plurality of electron lenses 11, 13, 14, an aperture 12, and the like. A charged particle beam (in this case, an electron beam is used for measurement). Any particle beam having a charge such as ions may be generated by the charged particle beam generation means 10. Although details of the charged particle beam generating means 10 are not shown, the charged particle beam generating means 10 includes a filament for generating electrons, an electrode for extracting the electrons, an electrode for accelerating, a mechanism for starting and stopping beam irradiation, and the like.

荷電粒子ビーム発生手段10で発生した電子ビームは、電子レンズ(ここでは、コンデンサーレンズとする)11によって収束させられる。コンデンサーレンズ11はコイルまたは電極からなり、いずれの場合も印加する電圧によって電子ビームの収束度合いを変えることができる。このコンデンサーレンズ11よって収束させられた電子ビームは、アパーチャ12で通過を制限され、アパーチャ12の開口を通った電子ビームのみが感光体18へ向かうことになる。   The electron beam generated by the charged particle beam generator 10 is converged by an electron lens (here, a condenser lens) 11. The condenser lens 11 is composed of a coil or an electrode, and in any case, the degree of convergence of the electron beam can be changed by the applied voltage. The electron beam converged by the condenser lens 11 is limited in passage by the aperture 12, and only the electron beam passing through the opening of the aperture 12 is directed to the photosensitive member 18.

アパーチャ12の開口を通った電子ビームは、ビーム偏向手段としての電子レンズ(以下、走査レンズと言う)13によって偏向される。走査レンズ13は複数のコイルまたは電極からなり、一定の電圧変化パターンを与えることにより電子ビームが偏向され、感光体上を2次元的に走査することができる。
さらに、走査レンズ13の後段にも電子レンズ(以下、対物レンズと言う)14が設けられており、この対物レンズ14によって再度電子ビームは収束させられる。対物レンズ14の構造は基本的にコンデンサーレンズ11と同じである。
The electron beam that has passed through the opening of the aperture 12 is deflected by an electron lens (hereinafter referred to as a scanning lens) 13 as beam deflecting means. The scanning lens 13 is composed of a plurality of coils or electrodes, and an electron beam is deflected by giving a constant voltage change pattern, so that the photosensitive member can be scanned two-dimensionally.
Further, an electron lens (hereinafter referred to as an objective lens) 14 is also provided after the scanning lens 13, and the electron beam is converged again by the objective lens 14. The structure of the objective lens 14 is basically the same as that of the condenser lens 11.

対物レンズ14で収束された電子ビームが感光体18に当ると、電子が感光体18に留まり、感光体表面が帯電すると共に、2次電子として感光体18から飛び出す電子もある。この2次電子は、2次荷電粒子検出手段16によって捕獲され、捕獲された2次電子量に比例する検出電流となる。
2次荷電粒子検出手段16の構造の一例としては、シンチレータ(蛍光体)と光電子増倍管を組み合わせたものであり、シンチレータの表面に印加された引き込み電圧の電界により2次電子はシンチレータに引き付けられて捕獲され、シンチレーション光に変換される。この光はライトパイプを通って光電子増倍管で増幅され、2次電子検出信号となる。
When the electron beam converged by the objective lens 14 strikes the photoconductor 18, the electrons stay on the photoconductor 18, the surface of the photoconductor is charged, and some electrons jump out of the photoconductor 18 as secondary electrons. The secondary electrons are captured by the secondary charged particle detector 16 and become a detection current proportional to the amount of secondary electrons captured.
An example of the structure of the secondary charged particle detection means 16 is a combination of a scintillator (phosphor) and a photomultiplier tube, and secondary electrons are attracted to the scintillator by an electric field of a drawing voltage applied to the surface of the scintillator. Captured and converted into scintillation light. This light is amplified by a photomultiplier through a light pipe and becomes a secondary electron detection signal.

ここで、図2は2次荷電粒子検出手段16と感光体18との間の空間における電位分布を等高線で示した図である。
感光体18の負極性に帯電している部分(Q1,Q2)では、感光体18から飛び出した2次電子(e11,e12)は実線の電位等高線に従い、矢印G1,G2で示すように、2次荷電粒子検出手段のシンチレータ24へ到達する。
一方、負極性の帯電量が少ない部分(Q3)では破線の電位等高線が示す様にQ3に近い方が電位が高く、感光体18から飛び出した2次電子(e13)は矢印G3で示すように、感光体18に戻ってしまい、2次荷電粒子検出手段へは到達しない。故に、電子ビームを走査させて2次電子検出信号の強度変化を測ることにより、感光体表面の帯電状態を測定することができる。
Here, FIG. 2 is a diagram showing the potential distribution in the space between the secondary charged particle detecting means 16 and the photoconductor 18 by contour lines.
In the negatively charged portions (Q1, Q2) of the photoconductor 18, secondary electrons (e11, e12) that have jumped out of the photoconductor 18 follow the solid line potential contours, and as indicated by arrows G1, G2, 2 It reaches the scintillator 24 of the next charged particle detection means.
On the other hand, in the portion (Q3) where the negative charge amount is small, the potential close to Q3 is higher as indicated by the broken potential contour line, and the secondary electrons (e13) jumping out from the photoreceptor 18 are indicated by the arrow G3. Then, it returns to the photoconductor 18 and does not reach the secondary charged particle detection means. Therefore, the charged state of the photoreceptor surface can be measured by scanning the electron beam and measuring the intensity change of the secondary electron detection signal.

2次荷電粒子検出手段16からの2次電子検出信号は画像変換手段20により2次電子発生量の分布を濃度に置き換えた画像データに変換される。この画像データはプログラミング制御装置22によって静止画、または動画ファイルとしてメモリに記録される。また、光源(例えばランプ、LED等)17は感光体18に光を当てて無帯電状態に(除電)するために用いる。   The secondary electron detection signal from the secondary charged particle detection means 16 is converted by the image conversion means 20 into image data in which the distribution of secondary electron generation amount is replaced with concentration. This image data is recorded in the memory as a still image or a moving image file by the programming control device 22. A light source (for example, a lamp, an LED, etc.) 17 is used to irradiate the photoreceptor 18 with light (to eliminate the charge).

感光体性能測定装置の電子ビーム照射部15を構成する荷電粒子ビーム発生手段10や、電子レンズ(コンデンサーレンズ11、走査レンズ13、対物レンズ14)は、プログラミングの保存及び実行が可能なプログラミング制御装置22によって制御を行う。制御装置22を、プログラミングの保存及び実行が可能な構成とすることにより、帯電電位や光に対する感度の異なる様々な感光体18に対して最適な測定条件を決定し、メモリに保存しておき、必要なときに呼び出して使うことで、様々な感光体に対して最適な測定条件で測定を行うことができる。   The charged particle beam generating means 10 and the electronic lens (condenser lens 11, scanning lens 13, objective lens 14) constituting the electron beam irradiation unit 15 of the photosensitive member performance measuring apparatus are capable of storing and executing programming. The control is performed by 22. By configuring the control device 22 to be able to store and execute programming, optimum measurement conditions for various photosensitive members 18 having different sensitivities to charging potential and light are determined and stored in a memory. By calling and using it when necessary, it is possible to perform measurement on various photoconductors under optimum measurement conditions.

次に本発明の感光体性能測定装置による具体的な測定手順を示す。
準備段階として、感光体18の表面にある帯電を無くし、初期状態を揃えるために、光源17を一定時間点灯させる。
そして第1段階として、荷電粒子ビーム照射部15により、感光体18に多量の電子ビームを照射し、感光体18を帯電させる。
また、多量の電子ビームを長時間照射することにより、感光体18の劣化を早める効果を与えることもできる。
なお、照射の時間が感光体18に与えるダメージの大きさを決定するので、複数の感光体で比較測定するためには照射時間を厳密に管理することが重要である。
Next, a specific measurement procedure using the photoconductor performance measuring apparatus of the present invention will be described.
As a preparation stage, the light source 17 is turned on for a certain period of time in order to eliminate the charge on the surface of the photoconductor 18 and to make the initial state uniform.
As a first stage, the charged particle beam irradiation unit 15 irradiates the photoconductor 18 with a large amount of electron beams to charge the photoconductor 18.
Further, by irradiating a large amount of electron beams for a long time, an effect of accelerating the deterioration of the photoreceptor 18 can be given.
Since the irradiation time determines the amount of damage to the photoconductor 18, it is important to strictly control the irradiation time in order to perform comparative measurement with a plurality of photoconductors.

この第1段階では、図1に示すように、コンデンサーレンズ11でアパーチャ12近傍に焦点を結ぶように電子ビームを収束させることにより、荷電粒子ビーム発生手段10で発生した電子ビームのほとんどが感光体18に到達する様にしている。さらに対物レンズ13によって感光体近傍に焦点を結ぶように電子ビームが収束され、走査レンズ13により感光体表面を2次元的に走査することにより、一様な帯電状態を作り出す。   In this first stage, as shown in FIG. 1, the electron beam is converged so that the condenser lens 11 is focused in the vicinity of the aperture 12, so that most of the electron beam generated by the charged particle beam generating means 10 is a photosensitive member. 18 is reached. Further, the electron beam is converged by the objective lens 13 so as to focus on the vicinity of the photoconductor, and the surface of the photoconductor is scanned two-dimensionally by the scanning lens 13 to create a uniform charged state.

次に第2段階として、感光体に照射する電子の量を10分の1〜数千分の1に減少させて電子ビームを走査させ、2次荷電粒子検出手段16へ到達する2次電子量を測定し、感光体18の性能を測定する。負極性の帯電量が少ない部分は電荷が逃げてしまった所であり、この個所の面積の多い感光体は地汚れが生じやすい悪い感光体ということになる。   Next, as a second stage, the amount of secondary electrons reaching the secondary charged particle detecting means 16 by scanning the electron beam while reducing the amount of electrons irradiated to the photosensitive member to 1/10 to several thousandths. And the performance of the photoreceptor 18 is measured. The portion where the negative charge amount is small is where the charge has escaped, and a photoconductor with a large area in this area is a bad photoconductor that is prone to soiling.

第2段階で、感光体18に照射する電子ビームの量を減少させる方法としては、測定の第1段階から第2段階への移行時に、アパーチャ12より荷電粒子ビーム発生手段10側の電子レンズであるコンデンサーレンズ11の屈折力を調整することにより可能である。より具体的には、図3(a)に示すように、コンデンサーレンズ11の屈折力を弱めるか、あるいは、図3(b)に示すように、コンデンサーレンズ11の屈折力を強めることよって、アパーチャ12を通る電子量を可変させることにより可能である。   As a method for reducing the amount of the electron beam applied to the photosensitive member 18 in the second stage, an electron lens on the charged particle beam generating means 10 side from the aperture 12 is used when the measurement is shifted from the first stage to the second stage. This is possible by adjusting the refractive power of a certain condenser lens 11. More specifically, the aperture is reduced by decreasing the refractive power of the condenser lens 11 as shown in FIG. 3A or by increasing the refractive power of the condenser lens 11 as shown in FIG. This is possible by varying the amount of electrons passing through 12.

図4(a),(b)に、図3の(a),(b)にそれぞれ対応した、光源と電子レンズへの印加電圧と、感光体到達電流のタイムチャートを示す。
電子照射量を可変する手段としては、アパーチャ12の開口径を変化させる方法も考えられるが、このためにはメカ機構が必要であり、切替時間が数十ミリ秒はかかってしまい、潜像現象の様な数マイクロ秒単位で状態が変化する系を観測するには遅すぎるので望ましく無い。
また、測定中も量は少ないとは言え電子が当たっているために感光体の劣化が進み、時間によって状態が変わるため、ここでも時間管理をした上で測定しなければならない。
FIGS. 4A and 4B are time charts of the applied voltage to the light source and the electron lens, and the current reached by the photoreceptor corresponding to FIGS. 3A and 3B, respectively.
As a means for changing the electron irradiation amount, a method of changing the aperture diameter of the aperture 12 is also conceivable. However, for this purpose, a mechanical mechanism is necessary, and the switching time takes several tens of milliseconds. This is not desirable because it is too late to observe a system whose state changes in units of several microseconds.
In addition, even though the amount is small during the measurement, since the electron hits the photoconductor, the deterioration of the photoconductor progresses and the state changes depending on the time. Therefore, the measurement must be performed with time management again.

この様に本装置による測定は時間管理が重要である。従って、装置各部に命令を発信するプログラム制御装置22は、命令を発信するタイミングを管理するために、基準時間発生手段23が接続されていることが望ましい。
基準時間発生手段23とは、水晶発振子の様な一定時間間隔で電気信号を発生させる部分と、該電気信号をカウントし、規定のカウント数で新たな電気信号を発生させる部分とからなる。
In this way, time management is important for the measurement by this apparatus. Therefore, it is desirable that the program control device 22 that sends a command to each part of the device is connected to the reference time generating means 23 in order to manage the timing of sending the command.
The reference time generating means 23 includes a portion that generates an electric signal at a constant time interval, such as a crystal oscillator, and a portion that counts the electric signal and generates a new electric signal at a specified count number.

また、荷電粒子ビーム発生手段10や、電子レンズ(コンデンサーレンズ11、走査レンズ13、対物レンズ14)を制御する手段としては、まず、プログラム制御装置22の命令により数ボルトの電圧を発生させる低電圧の可変電圧発生手段21と、その電圧を数百ボルトに増幅する電圧増幅手段19を有し、低電圧の可変電圧発生手段21と電圧増幅手段19が別々の筐体に分離されていることが望ましい。これは、電圧増幅手段19では高電圧を扱うために、強度の強いノイズが発生し易く、このノイズによって、低電圧の可変電圧発生手段21及びプログラム制御装置22の弱電素子を破壊してしまわないためである。   As a means for controlling the charged particle beam generating means 10 and the electron lens (condenser lens 11, scanning lens 13, objective lens 14), first, a low voltage that generates a voltage of several volts according to a command from the program control device 22 is used. Variable voltage generating means 21 and voltage amplifying means 19 for amplifying the voltage to several hundred volts, and the low voltage variable voltage generating means 21 and the voltage amplifying means 19 are separated into separate casings. desirable. This is because the voltage amplifying means 19 handles high voltage, so that strong noise is likely to occur, and this noise does not destroy the low voltage variable voltage generating means 21 and the weak electric elements of the program control device 22. Because.

[実施例2]
次に本発明の第2の実施例を示す。第1の実施例との違いは、図5に示すように、測定時の第1段階で、感光体18を帯電させる方法が異なる点であり、その他の構成、動作は第1の実施例と同様である。
本実施例では、図5に示すように、コンデンサーレンズ11でアパーチャ12近傍に焦点を結ぶように電子ビームを収束させることにより、荷電粒子ビーム発生手段10で発生した電子のほとんどが感光体18に到達する様にしており、さらに、対物レンズ14の屈折力を弱め、感光体18の広い範囲に電子ビームが照射される様にしている。また、ここでは、ビーム偏向手段である走査レンズ13は機能を停止させている。
図6(a),(b)に、光源17と電子レンズ(コンデンサーレンズ11と対物レンズ14)への印加電圧と感光体到達電流のタイムチャートの例を2例示す。
[Example 2]
Next, a second embodiment of the present invention will be described. The difference from the first embodiment is that, as shown in FIG. 5, the method of charging the photosensitive member 18 is different in the first stage at the time of measurement, and other configurations and operations are the same as those of the first embodiment. It is the same.
In this embodiment, as shown in FIG. 5, the electron beam is converged so that the condenser lens 11 is focused on the vicinity of the aperture 12, so that most of the electrons generated by the charged particle beam generating means 10 are applied to the photoreceptor 18. Furthermore, the refractive power of the objective lens 14 is weakened so that a wide range of the photoconductor 18 is irradiated with an electron beam. Here, the function of the scanning lens 13 which is a beam deflecting unit is stopped.
FIGS. 6A and 6B show two examples of time charts of the voltage applied to the light source 17 and the electron lens (the condenser lens 11 and the objective lens 14) and the photoreceptor arrival current.

なお、図7に示すように、対物レンズ14の屈折力を調整し、感光体18より荷電粒子ビーム発生手段10側に焦点を結ぶように電子ビームを収束させてもよく、上記と同じ効果が得られるので構わない。
図8(a),(b)に、この場合の光源17と電子レンズ(コンデンサーレンズ11と対物レンズ14)への印加電圧と感光体到達電流のタイムチャートの例を2例示す。
As shown in FIG. 7, the refractive power of the objective lens 14 may be adjusted to converge the electron beam so as to focus on the charged particle beam generating means 10 side from the photosensitive member 18, and the same effect as described above can be obtained. You can get it.
FIGS. 8A and 8B show two examples of time charts of the voltage applied to the light source 17 and the electron lens (condenser lens 11 and objective lens 14) and the current reached by the photosensitive member in this case.

さて、以上の実施例1または実施例2に示した構成、動作の感光体性能測定装置よって感光体の性能を測定し、性能を評価することにより、性能の良い感光体を選定でき、選定された感光体を用いて図9に示したような画像形成装置を構成することにより、地汚れの発生しにくい良好な画像を出力できる画像形成装置を実現することができる。   Now, by measuring the performance of the photoconductor using the photoconductor performance measuring apparatus having the configuration and operation shown in the first embodiment or the second embodiment and evaluating the performance, a photoconductor with good performance can be selected and selected. By configuring the image forming apparatus as shown in FIG. 9 using the photosensitive member, it is possible to realize an image forming apparatus that can output a good image that is less likely to cause background contamination.

本発明の第1の実施例を示す感光体性能測定装置の概略構成図である。1 is a schematic configuration diagram of a photoreceptor performance measuring apparatus showing a first embodiment of the present invention. 2次荷電粒子検出手段と感光体との間の空間における電位分布を等高線で示した図である。It is the figure which showed the electric potential distribution in the space between a secondary charged particle detection means and a photoconductor with the contour line. 測定の第1段階から第2段階への移行時に、アパーチャより荷電粒子ビーム発生手段側のコンデンサーレンズの屈折力を調整して感光体表面への電子量を調整する場合の説明図である。FIG. 6 is an explanatory diagram when adjusting the refractive power of the condenser lens on the charged particle beam generating means side from the aperture to adjust the amount of electrons on the surface of the photosensitive member during the transition from the first stage to the second stage of measurement. 図3の(a),(b)にそれぞれ対応した、光源と電子レンズへの印加電圧と、感光体到達電流のタイムチャートを示す図である。It is a figure which shows the time chart of the applied voltage to a light source and an electronic lens, and the photoreceptor arrival current corresponding to (a) and (b) of FIG. 3, respectively. 本発明の第2の実施例を示す感光体性能測定装置の概略構成図である。It is a schematic block diagram of the photoreceptor performance measuring apparatus which shows the 2nd Example of this invention. 図5に示す構成で、光源と電子レンズ(コンデンサーレンズと対物レンズ)への印加電圧と感光体到達電流のタイムチャートの例を2例示した図である。FIG. 6 is a diagram illustrating two examples of time charts of the voltage applied to the light source and the electron lens (condenser lens and objective lens) and the photoreceptor arrival current in the configuration shown in FIG. 5. 第2の実施例の別の例を示す感光体性能測定装置の概略要部構成図である。It is a schematic principal part block diagram of the photoreceptor performance measuring apparatus which shows another example of a 2nd Example. 図7に示す構成で、光源と電子レンズ(コンデンサーレンズと対物レンズ)への印加電圧と感光体到達電流のタイムチャートの例を2例示した図である。FIG. 8 is a diagram illustrating two examples of time charts of a voltage applied to a light source and an electronic lens (condenser lens and objective lens) and a photoreceptor arrival current in the configuration illustrated in FIG. 7. 本発明に係る画像形成装置の一例を示す図である。1 is a diagram illustrating an example of an image forming apparatus according to the present invention.

符号の説明Explanation of symbols

10:荷電粒子ビーム発生手段
11:コンデンサーレンズ(電子レンズ)
12:アパーチャ
13:走査レンズ(ビーム偏向手段)
14:対物レンズ(電子レンズ)
15:荷電粒子ビーム照射部
16:2次荷電粒子検出手段
17:光源
18:感光体
19:電圧増幅手段
20:画像変換手段
21:低電圧の可変電圧発生手段
22:プログラム制御装置
23:基準時間発生手段
25:チャンバ
111:感光体ドラム
112:帯電手段
113:現像装置
114:転写手段
115:クリーニング装置
116:定着装置
10: Charged particle beam generating means 11: Condenser lens (electron lens)
12: Aperture 13: Scanning lens (beam deflection means)
14: Objective lens (electronic lens)
15: Charged particle beam irradiation unit 16: Secondary charged particle detecting means 17: Light source 18: Photoconductor 19: Voltage amplifying means 20: Image converting means 21: Low voltage variable voltage generating means 22: Program control device 23: Reference time Generation means 25: chamber 111: photosensitive drum 112: charging means 113: developing device 114: transfer means 115: cleaning device 116: fixing device

Claims (6)

荷電粒子ビームを発生させる荷電粒子ビーム発生手段と、前記荷電粒子ビームを屈曲させる電子レンズと、前記荷電粒子ビームの通過を制限するアパーチャ部材と、前記荷電粒子ビームを偏向させるビーム偏向手段と、前記荷電粒子ビームが感光体に当たることによって発生する2次荷電粒子を検出する2次荷電粒子検出手段と、光源とを有する感光体性能測定装置において、制御命令を発信するタイミングを管理するための基準時間発生手段を有し、前記荷電粒子ビーム発生手段と、前記電子レンズと、前記アパーチャ部材と、前記ビーム偏向手段とを少なくとも制御し、プログラムの保存及び実行が可能なプログラミング制御手段を備え、性能測定時に前記電子レンズの少なくとも2つは屈折力を変化させ、該屈折力を変化させる電子レンズは前記アパーチャ部材より荷電粒子ビーム発生手段側と感光体側のそれぞれに少なくとも1つ配置してあり、性能測定の第1段階から第2段階への移行時に前記アパーチャ部材より荷電粒子ビーム発生手段側の電子レンズの屈折力を調整し、前記アパーチャ部材を通過する電子線量を減らすことを特徴とする感光体性能測定装置。 Charged particle beam generating means for generating a charged particle beam; an electron lens for bending the charged particle beam; an aperture member for restricting passage of the charged particle beam; beam deflecting means for deflecting the charged particle beam; A reference time for managing the timing of transmitting a control command in a photoconductor performance measuring apparatus having a secondary charged particle detecting means for detecting secondary charged particles generated when a charged particle beam hits the photoconductor and a light source A measuring means for generating a charged particle beam; the electron lens; the aperture member; and the beam deflecting means, and a programming control means capable of storing and executing a program. Sometimes at least two of the electron lenses change their refracting power, which changes the refracting power. Figure Yes to at least one disposed in each of said aperture member from the charged particle beam generating means side and the photosensitive side, the aperture member from the charged particle beam generating means side from the first stage during the transition to the second stage of the performance measurement An apparatus for measuring the performance of a photoreceptor, wherein a refractive power of an electron lens is adjusted to reduce an electron dose passing through the aperture member. 請求項1記載の感光体性能測定装置において、
前記アパーチャ部材に照射される荷電粒子ビームの照射範囲を大きくすることを特徴とする感光体性能測定装置。
In the photoconductor performance measuring device according to claim 1,
An apparatus for measuring the performance of a photosensitive member, wherein an irradiation range of a charged particle beam applied to the aperture member is increased.
請求項1または2記載の感光体性能測定装置において、
前記性能測定時に屈折力を変化させる電子レンズは、前記プログラミング制御手段により制御される印加電圧発生手段によって屈折力を変化させることを特徴とする感光体性能測定装置。
In the photoconductor performance measuring device according to claim 1 or 2,
The photoconductor performance measuring apparatus, wherein the refractive power of the electron lens that changes the refractive power at the time of the performance measurement is changed by the applied voltage generating means controlled by the programming control means .
請求項1乃至3のいずれか1項に記載の感光体性能測定装置において、
前記2次電子検出手段からの2次電子検出信号の強度の時間変化から前記感光体面上の2次電子発生量の分布を濃度に置き換えた画像に変換する画像変換手段を有することを特徴とする感光体性能測定装置。
In the photoconductor performance measuring device according to any one of claims 1 to 3,
An image conversion means for converting a distribution of the amount of secondary electrons generated on the surface of the photosensitive member into an image in which the distribution of the amount of secondary electrons generated on the surface of the photoreceptor is replaced with a density from a change in intensity of a secondary electron detection signal from the secondary electron detection means. Photoconductor performance measuring device.
請求項3または4記載の感光体性能測定装置において、
前記印加電圧発生手段は、低電圧の可変電圧発生手段と、電圧増幅手段を有し、前記可変電圧発生手段と電圧増幅手段は、信号線のみによって接続され、別々の筐体に分離し、電気的に分離されていることを特徴とする感光体性能測定装置。
In the photoconductor performance measuring device according to claim 3 or 4 ,
The applied voltage generating means includes a low voltage variable voltage generating means and a voltage amplifying means, and the variable voltage generating means and the voltage amplifying means are connected only by a signal line, separated into separate casings, The photoconductor performance measuring device is characterized by being separated from each other .
像担持体に静電潜像を形成し、該静電潜像を現像して可視像化した後、像担持体上の可視像を記録媒体に転写して画像を形成する画像形成装置において、An image forming apparatus that forms an electrostatic latent image on an image carrier, develops the electrostatic latent image into a visible image, and then transfers the visible image on the image carrier to a recording medium to form an image. In
前記像担持体として、請求項1乃至5のいずれか1項に記載の感光体性能測定装置よって性能を評価され、選別された感光体を用いたことを特徴とする画像形成装置。  6. An image forming apparatus comprising: a photoconductor selected and evaluated by the photoconductor performance measuring apparatus according to claim 1 as the image carrier.
JP2006028647A 2006-02-06 2006-02-06 Photoconductor performance measuring apparatus and image forming apparatus Expired - Fee Related JP5059329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028647A JP5059329B2 (en) 2006-02-06 2006-02-06 Photoconductor performance measuring apparatus and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028647A JP5059329B2 (en) 2006-02-06 2006-02-06 Photoconductor performance measuring apparatus and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2007206030A JP2007206030A (en) 2007-08-16
JP5059329B2 true JP5059329B2 (en) 2012-10-24

Family

ID=38485606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028647A Expired - Fee Related JP5059329B2 (en) 2006-02-06 2006-02-06 Photoconductor performance measuring apparatus and image forming apparatus

Country Status (1)

Country Link
JP (1) JP5059329B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5553374B2 (en) * 2008-06-24 2014-07-16 独立行政法人産業技術総合研究所 Optical measuring apparatus and optical measuring method for molten material
JP5332705B2 (en) * 2009-02-18 2013-11-06 株式会社リコー Image evaluation method and apparatus / image forming apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622607Y2 (en) * 1972-09-06 1981-05-27
JPS6476655A (en) * 1987-09-16 1989-03-22 Jeol Ltd Radiation quantity stabilizing device for electron microscope
JP2004251800A (en) * 2003-02-21 2004-09-09 Ricoh Co Ltd Method and instrument for measuring surface charge distribution
JP4608272B2 (en) * 2004-09-17 2011-01-12 株式会社リコー Insulation resistance measuring method and apparatus, and latent image carrier evaluation method
JP4478491B2 (en) * 2004-03-29 2010-06-09 株式会社リコー Charging device, electrostatic latent image forming device, image forming device, electrostatic latent image measuring device, charging method, electrostatic latent image forming method, image forming method, and electrostatic latent image measuring method
JP4292066B2 (en) * 2003-12-05 2009-07-08 株式会社日立ハイテクノロジーズ Scanning electron microscope

Also Published As

Publication number Publication date
JP2007206030A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP5262322B2 (en) Electrostatic latent image evaluation apparatus, electrostatic latent image evaluation method, electrophotographic photosensitive member, and image forming apparatus
JP5086671B2 (en) Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus
JP4702880B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
US9069023B2 (en) Latent-image measuring device and latent-image carrier
JP4344909B2 (en) Electrostatic latent image measuring apparatus and electrostatic latent image measuring method
JP5176328B2 (en) Electrostatic characteristic measuring method and electrostatic characteristic measuring apparatus
JP2004251800A (en) Method and instrument for measuring surface charge distribution
JP5059329B2 (en) Photoconductor performance measuring apparatus and image forming apparatus
JP2008076100A (en) Measuring method of surface charge distribution or surface potential distribution, measuring device, and image forming device
JP4438439B2 (en) Surface charge distribution measuring method and apparatus, and photoreceptor electrostatic latent image distribution measuring method and apparatus
JP5091081B2 (en) Method and apparatus for measuring surface charge distribution
JP5374816B2 (en) Electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP2004233261A (en) Electrostatic latent image observation method and system
JP2008047393A (en) Electrostatic latent image measuring method, electrostatic latent image measuring device, image forming device, program, and recording medium
JP2007093594A (en) Surface potential distribution measuring device, latent image carrier, and image forming device
US9008526B2 (en) Method of measuring total amount of latent image charge, apparatus measuring total amount of latent image charge, image forming method and image forming apparatus
JP4801613B2 (en) Electrostatic latent image evaluation method / electrostatic latent image evaluation apparatus
JP5089865B2 (en) Surface potential distribution measuring method and surface potential distribution measuring apparatus
JP5369369B2 (en) Surface potential distribution measuring method, surface potential measuring device, photoconductor electrostatic latent image measuring device, latent image carrier, and image forming apparatus
JP6031959B2 (en) Electrostatic latent image evaluation method, electrostatic latent image evaluation apparatus, and image forming apparatus
JP5454099B2 (en) Evaluation method of electrostatic latent image
JP5072081B2 (en) Photoconductor electrostatic latent image measuring device, image forming apparatus, and photoconductor electrostatic latent image measuring method
JP2007170949A (en) Method and device for measuring surface electric potential distribution, surface, latent image carrier, and image forming apparatus
JP2008058247A (en) Method and device for measuring surface potential distribution, and image forming device
JP2005085518A (en) Sample transfer method, sample transfer device, and electrostatic latent image measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees