JP2005099111A - Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it - Google Patents
Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it Download PDFInfo
- Publication number
- JP2005099111A JP2005099111A JP2003329733A JP2003329733A JP2005099111A JP 2005099111 A JP2005099111 A JP 2005099111A JP 2003329733 A JP2003329733 A JP 2003329733A JP 2003329733 A JP2003329733 A JP 2003329733A JP 2005099111 A JP2005099111 A JP 2005099111A
- Authority
- JP
- Japan
- Prior art keywords
- charging device
- wire
- deterioration
- casing
- photosensitive member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Cleaning In Electrography (AREA)
Abstract
Description
本発明は、電子写真用感光体の特性を評価するための劣化加速試験方法とそれに用いられる帯電装置に関する。 The present invention relates to a deterioration acceleration test method for evaluating the characteristics of an electrophotographic photoreceptor and a charging device used therefor.
従来、光導電性層が設けられた電子写真用感光体の特性の1つである寿命を評価する方法が提案されている。
像形成サイクルのサイクル操作寿命が確認されてある少なくとも1つの電子写真用感光体を用意し、該電子写真用感光体を静電気帯電工程と光放電工程を含むサイクルに繰り返しかけて、サイクル中に発生する光導電性層の暗減衰を、暗減衰量が最高値に達するまで測定し、該最高値を基にして暗減衰最高値対像形成サイクルの標準データを確立した後、新らたに作製された電子写真用感光体について同様にして、静電気帯電工程と光放電工程を含む上記サイクルに、更にサイクル操作にかけても実質的に一定のままである最高値に暗減衰量が達するまで繰り返しかけ、上記新鮮な電子写真像形成部材の暗減衰最高値を上記参照データと比較して、該新らたに作製された電子写真用感光体の推定サイクル寿命を確認する方法がある(例えば、特許文献1参照。)。
この方法は、静電気帯電工程と光放電工程を含むサイクルに繰り返しかけて、新らたに作製された電子写真用感光体と、劣化した電子写真用感光体の暗減衰とを比較して、前者の推定サイクル寿命を確認することを特徴とするものであるが、具体的には透明ガラスを圧着させてバイアス印可と光を照射させ、実際の電子写真プロセスで適用されるコロナ帯電・ローラ帯電というとは異なる方法で行なう劣化試験である。
また、この方法は、寿命に到ったサンプルの暗減衰特性を予め確認しておく必要があり、そのために、一旦電子写真用感光体をマシンに搭載して通紙試験を行なわなければならず、多大な手間がかかってしまう問題があった。
Conventionally, a method for evaluating the lifetime, which is one of the characteristics of an electrophotographic photoreceptor provided with a photoconductive layer, has been proposed.
Prepare at least one electrophotographic photoconductor having a confirmed cycle operation life of an image forming cycle, and repeat the electrophotographic photoconductor through a cycle including an electrostatic charging step and a photodischarge step. The dark decay of the photoconductive layer is measured until the dark attenuation reaches the maximum value. Based on the maximum value, the dark decay maximum value vs. the image formation cycle standard data is established, and then newly prepared. In the same manner for the electrophotographic photosensitive member, the cycle including the electrostatic charging step and the photodischarge step was repeated until the dark attenuation amount reached the maximum value that remained substantially constant even after the cycle operation, There is a method of confirming the estimated cycle life of the newly produced electrophotographic photoreceptor by comparing the dark decay maximum value of the fresh electrophotographic image forming member with the reference data (for example, Patent Document 1 reference.).
This method is repeated through a cycle including an electrostatic charging process and a light discharge process, and the newly prepared electrophotographic photoreceptor is compared with the dark decay of a deteriorated electrophotographic photoreceptor. This is characterized by the fact that the estimated cycle life is confirmed. Specifically, it is called corona charging / roller charging applied in an actual electrophotographic process by pressing a transparent glass and applying bias and irradiating light. Is a deterioration test performed by a different method.
In addition, in this method, it is necessary to confirm in advance the dark decay characteristics of a sample that has reached the end of its life. For this reason, a photosensitive member for electrophotography must be once mounted in a machine and a paper passing test must be performed. There was a problem that took a lot of time and effort.
そこで、通紙試験を行なわないで寿命を確認する方法として、電子写真用感光体を高速で回転させた状態(1,000〜2,000r.p.m)で、その周囲に配置された帯電器、露光装置で帯電、露光を繰り返し、寿命を予測する方法がある。この方法は、さらに2つの試験方法に分かれる。
第一の方法は、帯電器の出力と露光装置の光量をあらかじめ決めた条件で固定し、決められた時間内で試験を行ない、その後電子写真用感光体の特性を評価する測定を行ない、劣化状態を判定する。
第二の方法は、試験中の電子写真用感光体の露光後電位Vと電子写真用感光体を通して流れる通過電流Iを計測し、この2つが常に決められたレベルにあるように帯電器の出力と露光装置の光量を調整しながら行なうことを特徴とするものである。
これらの2つの方法で重要な点は、試験中に電子写真用感光体に流れた通過電流を計測し、この値を変換して電荷量(単位面積当りの値)Qを求め、一方、A4サイズ1枚を実機でプリントアウトする際の電子写真用感光体に流れる通過電流は、感光体の静電容量C(単位面積当りの値)と帯電電位Vから、感光体のサイズはA4紙1枚が感光体上をダブリなく印字されるサイズとすると、C・Vが求められ、その結果、Q/(C・V)の値によって寿命試験時間を実機のプリント枚数に対応させることができることである。
さらに別の重要な点は、この試験が加速寿命試験になっていることである。
すなわち、具体的に示すと、電子写真用感光体に5μA/10cm2の試料通過電流を流して20時間の試験を行なうと(1日10時間の試験とすると2日間)、5/10×10-6×20×60×60=0.036(C/cm2)の電荷が感光体を通過したことになる。そして、A4用紙縦送りで印字する場合を想定すると、電子写真用感光体の静電容量を100(pF/cm2)、帯電電位を−700(V)、除電後も含めた露光後電位を0(V)とすると、100×10-12×700=7×10-8(C/cm2)が、A4−1枚をプリントアウトする際の感光体を通過する電荷になるので、0.036/(7×10-8)≒514,000(枚)のプリントアウトしたことになり、大幅な加速試験になる。
このため2つ目の方法で寿命試験が行なわれることが多いが、前述の具体的な計算で分かるように、試験中に感光体を通過する電流が一定であれば、プリントアウト何枚相当の試験を行なったのか、計算がしやすい。
そのため、一般的に、試験は通過電流を一定にするようにして実施される。その本質は通過電荷量を知ることにある。また、感光体によっては帯電電位がどのレベルにあるかによって寿命試験の結果が異なることがあり、帯電電位も一定にして試験を行なうことが要求される。
このように、帯電電位および通過電流を一定にするために、帯電器の高圧電源出力調整、および露光装置の光量調整を行なうシステムが必要となり、従来の寿命試験装置が構築された。
Therefore, as a method for confirming the life without carrying out the paper passing test, the charging is arranged around the electrophotographic photosensitive member rotated at a high speed (1,000 to 2,000 rpm). There is a method of predicting the lifetime by repeatedly charging and exposing with a light source and an exposure apparatus. This method is further divided into two test methods.
The first method is to fix the output of the charger and the light intensity of the exposure device under predetermined conditions, perform the test within a predetermined time, and then perform the measurement to evaluate the characteristics of the electrophotographic photosensitive member. Determine the state.
The second method measures the post-exposure potential V of the electrophotographic photoreceptor under test and the passing current I flowing through the electrophotographic photoreceptor, and outputs the charger so that these two are always at a predetermined level. And adjusting the light quantity of the exposure apparatus.
The important point in these two methods is that the current passing through the electrophotographic photoreceptor during the test is measured, and this value is converted to obtain the charge amount (value per unit area) Q, while A4 The current passing through the electrophotographic photosensitive member when printing out one size with an actual machine is based on the electrostatic capacity C (value per unit area) of the photosensitive member and the charging potential V. The size of the photosensitive member is A4 paper 1 Assuming that the size of the sheet is such that it can be printed on the photoconductor without duplication, C · V is obtained. As a result, the life test time can be made to correspond to the number of printed sheets of the actual machine by the value of Q / (C · V). is there.
Yet another important point is that this test is an accelerated life test.
Specifically, when a 20-hour test is conducted by passing a sample-passing current of 5 μA / 10 cm 2 through the electrophotographic photosensitive member (10 days a day for 2 days), 5/10 × 10 5 −6 × 20 × 60 × 60 = 0.036 (C / cm 2 ) of charge passed through the photoconductor. Assuming that printing is performed with A4 paper vertical feed, the electrostatic capacity of the electrophotographic photosensitive member is 100 (pF / cm 2 ), the charging potential is −700 (V), and the post-exposure potential including after static elimination is set. Assuming 0 (V), 100 × 10 −12 × 700 = 7 × 10 −8 (C / cm 2 ) becomes a charge that passes through the photoconductor when the A4-1 sheet is printed out. This means that 036 / (7 × 10 −8 ) ≈514,000 (sheets) has been printed out, which is a significant acceleration test.
For this reason, the life test is often performed by the second method. As can be seen from the specific calculation described above, if the current passing through the photoconductor is constant during the test, the number of printouts corresponding to It is easy to calculate whether the test was done.
Therefore, in general, the test is performed with a constant passing current. The essence is to know the passing charge amount. Depending on the level of the charged potential depending on the photosensitive member, the result of the life test may differ, and it is required to perform the test with the charged potential kept constant.
Thus, in order to make the charging potential and the passing current constant, a system for adjusting the high-voltage power supply output of the charger and adjusting the light amount of the exposure apparatus is required, and a conventional life test apparatus has been constructed.
この従来のシステムにおける、2つの測定量、表面電位X,通過電流Yと、2つの操作量、帯電器高圧電源の出力制御値A、除電露光ランプ光量の出力制御値Bの関係は、Aを増加するとX,Yは増加し、Aを減少させるとX,Yも減少し、Bを増加するとXは減少、Yは増加し、Bを減少するとXは増加し、Yは減少する関係があり、仮にXが目標値からはずれ、これを目標範囲に入れようとAまたはBを操作すると、もう1つの測定量Yが変化してしまい、Yにとっては外乱が作用することになる。
これを目標範囲に維持しようとAまたはBを操作すると、今度はXが変化するという状態になってしまい、複雑な制御を行なわなければならなかった。
また、劣化加速試験中に感光体表面電位・通過電流の瞬間的なバラツキがあった場合でも、それらが瞬間的な誤差として通過電荷量算出に反映されないシステムとなっており、正確な劣化加速試験を行なうことが出来なかった。
In this conventional system, the relationship between the two measured quantities, the surface potential X, the passing current Y, the two manipulated variables, the output control value A of the charger high-voltage power supply, and the output control value B of the discharge lamp light quantity is X and Y increase when increasing, X and Y decrease when A decreases, X decreases when Y increases, Y increases, X decreases when B decreases, and Y decreases If X deviates from the target value and A or B is manipulated so as to be within the target range, another measured amount Y changes, and disturbances act on Y.
If A or B is operated to maintain this within the target range, X will change this time, and complicated control must be performed.
In addition, even if there is a momentary variation in the photoreceptor surface potential / passing current during the deterioration acceleration test, it is a system that does not reflect this in the calculation of the passing charge as an instantaneous error. Could not be done.
そこで、これらの問題を解決する方法が提案されている(例えば、特許文献2参照。)。
この特許文献2では、電子写真用感光体を高速回転させ、帯電装置による静電気帯電工程と光放電とを含むサイクルを繰り返し実行し、感光体の表面電位を一定条件に保つように制御され、計測された通過電流から通過電荷量を算出されることによって、単純で精度の良い電子写真感光体の劣化加速試験装置が考えられている。
この特許文献2に示されている劣化加速試験装置の概略を図1に示す。
ターンテーブル(1)の開口部(3)に、電子写真用感光体の試料片の感光層面を下向きに装着して試料片押さえ板(2)によりセットした後、コロナ帯電器(4)で試料片の感光層面を帯電処理する。
帯電処理する間、ターンテーブル(1)は、電子写真用感光体試料片を前記コロナ帯電器(4)に対向静止させるような位置で停止することが出来、また、実機と同程度のスピードで回転させることが出来、また、試料片を帯電させて帯電の立ちあがりの様子を観察するため、高速で回転させて試料片を帯電器に何度も通過させることが出来る。
コロナ帯電器(4)から試料片に与えられ試料片を充電するパルス電流は、電流計(6)に送られその中の平滑化回路で平滑化等がされた後、A/D変換器(8)で変換されコントローラー(9)に送られ演算処理される。
また、試料片の表面電位は、コロナ帯電器(4)と別の位置に配置された表面電位計(7)のモニタ部である表面電位計電極(5)でモニタされ、モニタされた信号は表面電位計(7)に送られその中の増幅器で増幅等がされた後、A/D変換器(8)で変換され、コントローラー(9)に送られ演算処理される。劣化加速試験では、ターンテーブルを高速で回転させ、劣化試験用コロナ帯電器(4)で試料片の感光面を帯電処理し、その後露光装置(5)によって光放電処理をする。これを繰り返し行なうことによって、感光層中の電荷を強制的に通過させ、実機よりも早く寿命を判断することが出来るようになっている。
Thus, a method for solving these problems has been proposed (see, for example, Patent Document 2).
In
An outline of the deterioration acceleration test apparatus shown in
The photosensitive layer surface of the sample piece of the electrophotographic photosensitive member is mounted face down in the opening (3) of the turntable (1) and set by the sample piece holding plate (2), and then the sample is collected by the corona charger (4). The photosensitive layer surface of one piece is charged.
During the charging process, the turntable (1) can be stopped at a position where the electrophotographic photoconductor sample piece is placed stationary against the corona charger (4), and at the same speed as the actual machine. In addition, since the sample piece is charged and the state of the rising of the charge is observed, the sample piece can be passed through the charger many times by rotating at high speed.
The pulse current applied to the sample piece from the corona charger (4) and charged to the sample piece is sent to the ammeter (6) and smoothed by the smoothing circuit therein, and then the A / D converter ( In 8), it is converted and sent to the controller (9) for calculation processing.
Further, the surface potential of the sample piece is monitored by the surface electrometer electrode (5) which is a monitor unit of the surface electrometer (7) arranged at a position different from the corona charger (4), and the monitored signal is After being sent to the surface electrometer (7) and amplified by an amplifier therein, it is converted by the A / D converter (8), sent to the controller (9) and processed. In the deterioration acceleration test, the turntable is rotated at a high speed, the photosensitive surface of the sample piece is charged with the corona charger (4) for deterioration test, and then the photodischarge process is performed with the exposure device (5). By repeating this, the charge in the photosensitive layer is forcibly passed and the lifetime can be judged earlier than the actual machine.
しかし、最近の電子写真用感光体は高寿命化されてきており、以上説明した劣化加速試験装置を用いると、寿命を判断するまで試験を行なうには多大な時間が必要となってきている。そこで、さらに劣化を加速し、短時間で寿命を判断可能な劣化加速試験方法が要望されるようになった。その実現のために、単位面積当りの電子写真用感光体面への電流量を増加することが重要であることが分かった。 However, recent electrophotographic photoconductors have a long life, and when the above-described deterioration acceleration test apparatus is used, it takes much time to perform a test until the life is determined. Accordingly, there has been a demand for an accelerated deterioration test method that can further accelerate deterioration and judge the life in a short time. In order to realize this, it has been found that it is important to increase the amount of current to the electrophotographic photoreceptor surface per unit area.
従って、本発明の目的は、上記従来技術に鑑みて、サンプルの単位面積当りに流れる電流の増加等による、安定かつ一層の加速した劣化加速試験方法の提供することを目的とする。 Accordingly, an object of the present invention is to provide a stable and accelerated accelerated acceleration test method by increasing the current flowing per unit area of a sample in view of the above prior art.
上記課題は、本発明の(1)「電子写真用感光体に静電気帯電工程と露光工程とを含むサイクルを繰り返しかけて電子写真用感光体の劣化を加速させる試験方法であって、該静電気帯電工程に用いられる帯電装置が、高電圧が印可される複数のワイヤを有しワイヤが1方向のみに張架されており、かつワイヤを囲むケーシングの形状は、かつ該ワイヤを囲むケーシングの形状が該電子写真用感光体面に対して平行な面には全てケーシングされていないものであることを特徴とする感光体劣化加速試験方法」、
(2)「電子写真用感光体面と帯電装置のワイヤとの距離を2mm以上にすることを特徴とする前記第(1)項に記載の電子写真用感光体劣化加速試験方法」、
(3)「帯電装置のワイヤに印可する高電圧がDC電圧にAC電圧を重畳させることを特徴とする前記第(1)項又は第(2)項に記載の感光体劣化加速試験方法」、
(4)「該静電気帯電工程と該露光工程とを同時に行なうことを特徴とする前記第(1)項乃至第(3)項の何れかに記載の感光体劣化加速試験方法」により達成される。
The above-described problem is (1) a test method for accelerating deterioration of an electrophotographic photosensitive member by repeating a cycle including an electrostatic charging step and an exposure step on the electrophotographic photosensitive member. The charging device used in the process has a plurality of wires to which a high voltage is applied, the wires are stretched in only one direction, and the shape of the casing that surrounds the wires is the shape of the casing that surrounds the wires. `` Photoconductor deterioration acceleration test method characterized in that the entire surface parallel to the electrophotographic photoreceptor surface is not casing ''
(2) “Electrophotographic photosensitive member deterioration acceleration test method according to item (1), wherein the distance between the electrophotographic photosensitive member surface and the charging device wire is 2 mm or more”;
(3) “The photoreceptor deterioration acceleration test method according to (1) or (2) above, wherein the high voltage applied to the wire of the charging device superimposes the AC voltage on the DC voltage”,
(4) “A photoreceptor deterioration acceleration test method according to any one of items (1) to (3), wherein the electrostatic charging step and the exposure step are performed simultaneously”. .
また、上記課題は、本発明の(5)「電子写真用感光体に静電気帯電工程と露光工程とを含むサイクルを繰り返しかけて電子写真用感光体の劣化を加速させる試験方法の該静電気帯電工程に用いられる帯電装置であって、高電圧が印可される複数のワイヤを有しワイヤが1方向のみに張架されており、かつ該ワイヤを囲むケーシングの形状が該電子写真用感光体面に対して平行な面には全てケーシングされていないものであることを特徴とする帯電装置」、
(6)「ケーシング部分の表面が絶縁性部材によって形成されていることを特徴とする前記第(5)項に記載の帯電装置」、
(7)「複数のワイヤの間隔が2mm以上であることを特徴とする前記第(5)項又は第(6)項に記載の帯電装置」により達成される。
In addition, the above-described problem is solved by (5) the electrostatic charging step of the test method of accelerating the deterioration of the electrophotographic photosensitive member by repeating a cycle including the electrostatic charging step and the exposure step on the electrophotographic photosensitive member. A plurality of wires to which a high voltage is applied, the wires are stretched in only one direction, and the shape of the casing surrounding the wires is relative to the surface of the electrophotographic photoreceptor In addition, the charging device is characterized in that all the parallel surfaces are not casing "
(6) “Charging device according to item (5), wherein the surface of the casing portion is formed of an insulating member”;
(7) This is achieved by “the charging device according to (5) or (6) above, wherein the interval between the plurality of wires is 2 mm or more”.
本発明の電子写真用感光体の劣化を加速させる試験方法においては、電子写真用感光体に静電気帯電工程と露光工程を含むサイクルを繰り返しかけ、静電気帯電工程における帯電装置として、高電圧が印可される複数のワイヤを有しワイヤが1方向のみに張架され、かつワイヤを囲むケーシングの形状が、感光体面に対して平行な面は全てケーシングされていないものを用いて行なうと、感光体面に流れる単位面積当りの電流量を増加することができる。
また、本発明の試験方法に用いられる帯電装置が、そのケーシング部分の表面が絶縁性部材によって形成されたものであると、ケーシング部分へ電流が流れるのを防ぐことができ、感光体面に流れる単位面積当りの電流量をさらに増加させることができる。
また、本発明の試験方法に用いられる帯電装置として、帯電装置のワイヤ間隔が2mmより大きいものを用いると、感光体面への火花放電を防ぐことができる。
また、本発明の試験方法において、感光体面と帯電装置のワイヤとの距離を2mm以上にすると、感光体面への火花放電を防ぐのに有効である。
また、本発明の試験方法において、帯電装置に印可する高電圧がDC電圧にACを重畳させると、感光体へ流れる電流の調整幅が広がり扱いやすくなるので、好ましい。
また、本発明の試験方法において、静電気帯電工程と露光工程を同時に行なうと、感光体劣化を加速させ、劣化加速試験時間を短縮させることができる。
In the test method for accelerating the deterioration of the electrophotographic photosensitive member of the present invention, a cycle including an electrostatic charging step and an exposure step is repeated on the electrophotographic photosensitive member, and a high voltage is applied as a charging device in the electrostatic charging step. If the wire is stretched in only one direction and the shape of the casing surrounding the wire is such that all surfaces parallel to the surface of the photoconductor are not casing, The amount of current per unit area that flows can be increased.
In addition, when the charging device used in the test method of the present invention is such that the surface of the casing portion is formed of an insulating member, it is possible to prevent a current from flowing to the casing portion, and a unit that flows on the surface of the photoreceptor. The amount of current per area can be further increased.
Further, when a charging device having a wire interval of more than 2 mm is used as the charging device used in the test method of the present invention, it is possible to prevent spark discharge on the surface of the photoreceptor.
In the test method of the present invention, if the distance between the photoreceptor surface and the wire of the charging device is 2 mm or more, it is effective to prevent spark discharge to the photoreceptor surface.
Further, in the test method of the present invention, it is preferable that the high voltage applied to the charging device superimposes AC on the DC voltage because the adjustment range of the current flowing to the photosensitive member is widened and easy to handle.
In the test method of the present invention, if the electrostatic charging step and the exposure step are performed simultaneously, the photoreceptor deterioration can be accelerated and the deterioration acceleration test time can be shortened.
以上及び以下の詳細かつ具体的な説明から明らかなように、電子写真用感光体を静電気帯電工程と露光工程を含むサイクルを繰り返しかけて電子写真用感光体の劣化を加速させる試験方法において、静電気帯電工程に用いられる帯電装置は、高電圧が印可される複数のワイヤを有しワイヤが1方向のみに張架され、かつワイヤを囲むケーシングの形状は、感光体面に対して平行な面は全てケーシングされていない帯電装置であるため、感光体面に流れる単位面積当りの電流量を増加させることが出来、劣化加速試験での試験時間を短縮することが出来る。
また、帯電装置のケーシング部分は表面が絶縁性部材によって形成されているため、ケーシング部分へ電流を流すのを防ぎ、感光体面へ流れる単位面積当りの電流量を増加させることが出来るため、劣化加速試験での試験時間を短縮するのにより効果的である。
また、帯電装置のワイヤ間隔を2mmより大きくすると、感光体面への火花放電を防ぐことが出来、正確な劣化加速試験を行なうことが出来る。
また、感光体面と帯電装置のワイヤとの距離を2mm以上にすると、感光体面への火花放電を防ぐことが出来、正確な劣化加速試験を行なうことが出来る。
また、帯電装置に印可する高電圧がDC電圧にACを重畳させると、感光体へ流れる電流の調整幅が広がり、扱いやすくなる。
また、静電気帯電工程と露光工程を同時に行なうと、感光体劣化を加速させ劣化加速試験時間を短縮させることが出来る。
As is apparent from the above and the following detailed and specific description, in the test method for accelerating the deterioration of the electrophotographic photosensitive member by repeating the cycle including the electrostatic charging step and the exposure step, The charging device used in the charging process has a plurality of wires to which a high voltage is applied, the wires are stretched in only one direction, and the shape of the casing surrounding the wires is all parallel to the photoreceptor surface. Since the charging device is not casing, the amount of current per unit area flowing on the surface of the photosensitive member can be increased, and the test time in the deterioration acceleration test can be shortened.
In addition, since the surface of the casing portion of the charging device is formed of an insulating member, it is possible to prevent current from flowing to the casing portion and increase the amount of current per unit area that flows to the surface of the photosensitive member. It is more effective to shorten the test time in the test.
Further, if the wire interval of the charging device is larger than 2 mm, it is possible to prevent spark discharge on the surface of the photosensitive member, and an accurate deterioration acceleration test can be performed.
Further, if the distance between the photosensitive member surface and the wire of the charging device is 2 mm or more, spark discharge to the photosensitive member surface can be prevented, and an accurate deterioration acceleration test can be performed.
Further, when AC is superimposed on the DC voltage by the high voltage applied to the charging device, the adjustment range of the current flowing to the photosensitive member is widened, and the handling becomes easy.
Further, if the electrostatic charging step and the exposure step are performed simultaneously, the photoreceptor deterioration can be accelerated and the deterioration acceleration test time can be shortened.
以下に、本発明の実施例により具体的に説明するが、本発明はこれに限定されるものではない。
〔実施例1(請求項1に対応)〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔で1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)を張り、帯電装置の枠に絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置(帯電装置概略図を図2−1と図2−2に示す。)を使用し、サンプルとワイヤの距離を5mmとしたときに、アルミ板へコロナ放電させたときのコロナ電流を測定した結果を図6に示す。(実験装置概略図を図3に示す。)
一方、該実施例1に対応する比較例1として、サンプル対向面のみに開口部をもったケーシングを有し、ケーシング内部には1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)を10mm間隔で2本張り、ワイヤとサンプル面との間隔を5mmとしたときに、アルミ板へコロナ放電させた時のコロナ電流を測定し、その結果についても図6に示す。(帯電装置概略図を図3、実験装置概略図を図4に示す。)
図6の結果から、帯電装置は複数本のワイヤを有し、ワイヤは1方向にのみ張架されており、かつワイヤを囲むケーシングの形状は、感光体面に対して平行な面は全てケーシングされていないことにより、感光体対向面のみに開口部を持ったケーシングを有し、ケーシング内部には1方向のみワイヤで張架された帯電装置よりも同じ印加電圧で電流量を大きくすることが出来ることがわかる。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[Example 1 (corresponding to claim 1)]
As a charging device, there is no casing on the surface parallel to the sample, and there is an opening frame of 50 x 50 (mm), and wires (material: gold-plated tungsten wire, wire diameter: 60 μm) are only in one direction at intervals of 10 mm within the frame. Using a charging device (charging device schematic diagram shown in FIGS. 2-1 and 2-2) using an insulating member (material: polytetrafluoroethylene-based fluororesin) for the frame of the tensioning and charging device, a sample FIG. 6 shows the results of measuring the corona current when corona discharge is performed on the aluminum plate when the distance between the wire and the wire is 5 mm. (A schematic diagram of the experimental apparatus is shown in FIG. 3.)
On the other hand, as Comparative Example 1 corresponding to Example 1, a casing having an opening only on the sample facing surface is provided, and a wire (material: gold-plated tungsten wire, wire diameter: 60 μm) is provided only in one direction inside the casing. When two wires are stretched at intervals of 10 mm and the distance between the wire and the sample surface is 5 mm, the corona current when corona discharge is performed on the aluminum plate is measured, and the results are also shown in FIG. (The schematic diagram of the charging device is shown in FIG. 3, and the schematic diagram of the experimental device is shown in FIG. 4.)
From the result of FIG. 6, the charging device has a plurality of wires, the wires are stretched only in one direction, and the shape of the casing surrounding the wires is that all surfaces parallel to the photoreceptor surface are casing. Therefore, it is possible to increase the amount of current with the same applied voltage as compared with a charging device having a casing having an opening only on the surface facing the photoconductor, and extending inside the casing with a wire only in one direction. I understand that.
〔実施例2〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔で1方向にのみワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠に絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、サンプルとワイヤの距離を5mmとしたときに、アルミ板へコロナ放電させたときのコロナ電流を測定した結果を図7に示す。(帯電装置概略図は実施例1同様、図2−1と図2−2、実験装置概略図は図3に示す。)
一方、該実施例2に対応する比較例2として、帯電装置がサンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に5mm間隔で1方向にのみワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠は導電性部材(材質:アルミ)を使用した帯電装置を使用し、サンプルとワイヤの距離を5mmとしたときに、アルミ板へコロナ放電させたときのコロナ電流を測定し、その結果についても図7に示す。(帯電装置概略図は実施例2同様、図2−1と図2−2、実験装置概略図を図4に示す。)
図7の結果から、帯電装置の表面を絶縁性部材にすると、サンプルへ流れる電流量が増加することがわかる。
[Example 2]
As a charging device, there is no casing on the surface parallel to the sample, and there is an opening frame of 50 x 50 (mm), and the wire is only in one direction at intervals of 10 mm within the frame (material: gold-plated tungsten wire, wire diameter: 60 μm) Using a charging device that uses an insulating member (material: polytetrafluoroethylene-based fluororesin) for the frame of the charging device, when the distance between the sample and the wire was 5 mm, corona discharge was applied to the aluminum plate. The result of measuring the corona current is shown in FIG. (Similar to Example 1, the schematic diagram of the charging device is shown in FIGS. 2-1 and 2-2, and the schematic diagram of the experimental device is shown in FIG. 3.)
On the other hand, as Comparative Example 2 corresponding to Example 2, the charging device has no casing on the surface parallel to the sample and has an opening frame of 50 × 50 (mm), and the frame is only in one direction at intervals of 5 mm in the frame. When a wire (material: gold-plated tungsten wire, wire diameter: 60 μm) is stretched, and the frame of the charging device uses a charging device using a conductive member (material: aluminum), and the distance between the sample and the wire is 5 mm, The corona current when corona discharge is applied to the aluminum plate is measured, and the results are also shown in FIG. (Similar to Example 2, the schematic diagram of the charging device is shown in FIGS. 2-1 and 2-2, and the schematic diagram of the experimental device is shown in FIG. 4.)
From the result of FIG. 7, it can be seen that when the surface of the charging device is an insulating member, the amount of current flowing to the sample increases.
〔実施例3〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に1方向のみワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)が張られ、帯電装置の枠は絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、サンプルとワイヤの距離を5mmとした。
ワイヤ間隔の水準を振ったときに、アルミ板へコロナ放電させたときの放電開始電圧の結果を表1に示す。(帯電装置概略図は実施例1、2同様、図2−1と図2−2、実験装置概略図は図3に示す。)
Example 3
As a charging device, there is no casing on a surface parallel to the sample, and there is a 50 × 50 (mm) opening frame, and a wire (material: gold-plated tungsten wire, wire diameter: 60 μm) is stretched only in one direction in the frame, As the frame of the charging device, a charging device using an insulating member (material: polytetrafluoroethylene-based fluororesin) was used, and the distance between the sample and the wire was 5 mm.
Table 1 shows the results of the discharge start voltage when corona discharge is applied to the aluminum plate when the wire spacing level is varied. (A schematic diagram of the charging device is shown in FIGS. 2-1 and 2-2 as in Examples 1 and 2, and a schematic diagram of the experimental device is shown in FIG. 3.)
〔実施例4〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔でメッシュ状にワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠は絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、サンプルとワイヤ間の距離の水準を振ったときに、アルミ板へコロナ放電させたときの放電開始電圧の結果を表2に示す。(帯電装置概略図は実施例1〜3同様、図2−1と図2−2、実験装置概略図は図3に示す。)
Example 4
As a charging device, there is no casing on the surface parallel to the sample, and there is a 50 × 50 (mm) opening frame, and wires (material: gold-plated tungsten wire, wire diameter: 60 μm) are formed in the frame at intervals of 10 mm. Use a charging device that uses an insulating material (material: polytetrafluoroethylene-based fluororesin) for the frame of the tensioning and charging device. When the distance between the sample and the wire is varied, corona discharge is applied to the aluminum plate. Table 2 shows the results of the discharge start voltage. (The schematic diagram of the charging device is the same as in Examples 1-3, and FIGS. 2-1 and 2-2, and the schematic diagram of the experimental device is shown in FIG. 3.)
〔実施例5〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔で1方向のみにワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠に絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、帯電装置への印加電圧はDCにACを重畳させ(AC重畳条件:Vpp=2000V,f=500Hz)、サンプルとワイヤ間の距離の水準を振ったときに、アルミ板へコロナ放電させたときの0〜−20(μA/cm2)に調整するときの高圧電源調整幅の結果を表2に示す。
一方、該実施例5に対応する比較例4として、感光体面に平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔でメッシュ状にワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠は絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、帯電装置への印加電圧はDCのみであり、サンプルとワイヤ間の距離の水準を振ったときに、アルミ板へコロナ放電させたときの0〜−20(μA/cm2)に調整するときの高圧電源調整幅の結果(0〜−20(μA/cm2)調整時)を表3に示す。(帯電装置概略図は実施例1〜4同様、図2−1と図2−2、実験装置は図3に示す。)
Example 5
As a charging device, there is no casing on the surface parallel to the sample, and there is an opening frame of 50 x 50 (mm), and within that frame, wires are arranged in only one direction at intervals of 10 mm (material: gold-plated tungsten wire, wire diameter: 60 μm) A charging device using an insulating member (material: polytetrafluoroethylene-based fluororesin) for the frame of the charging device is used, and the voltage applied to the charging device is superimposed on AC (AC superimposition condition: Vpp) = 2000 V, f = 500 Hz), when adjusting the distance between the sample and the wire, the adjustment range of the high voltage power supply when adjusting to 0 to -20 (μA / cm 2 ) when corona discharge is applied to the aluminum plate Table 2 shows the results.
On the other hand, as Comparative Example 4 corresponding to Example 5, there is no casing on a surface parallel to the surface of the photosensitive member, and there is a 50 × 50 (mm) opening frame, and a wire (material) in a mesh shape at intervals of 10 mm in the frame. : Gold-plated tungsten wire, wire diameter: 60 μm) The charging device frame uses a charging device that uses an insulating material (material: polytetrafluoroethylene-based fluororesin), and the voltage applied to the charging device is DC only When the level of the distance between the sample and the wire is changed, the result of the adjustment range of the high voltage power supply when adjusting to 0 to −20 (μA / cm 2 ) when corona discharge is applied to the aluminum plate (0 to −20 (μA / cm 2 )) is shown in Table 3. (The schematic diagram of the charging device is shown in FIGS. 2-1 and 2-2 as in Examples 1 to 4, and the experimental device is shown in FIG. 3.)
〔実施例6〕
帯電装置として、サンプルに平行な面にケーシングはなく50×50(mm)の開口枠を有し、その枠内に10mm間隔で1方向にのみにワイヤ(材質:金メッキタングステンワイヤー、ワイヤ径:60μm)を張り、帯電装置の枠は絶縁性部材(材質:ポリテトラフロロエチレン系フッ素樹脂)を使用した帯電装置を使用し、サンプルとワイヤの距離を5mmとしたときに、アルミ板へコロナ放電させたときのコロナ電流を測定した結果を図8に示す。(帯電装置概略図は実施例1〜5同様、図2−1と図2−2、実験装置概略図は図3に示す。)
一方、該実施例6に対応する比較例4として、図1に示す従来の劣化加速試験装置を使用し、かつ帯電器には、サンプル対向面のみに開口部をもったケーシングを有し、ケーシング内部には1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)が10mm間隔で2本張られ、ワイヤとサンプルとの間隔が5mmとした帯電器を利用し、劣化加速試験と同様に回転(1100rpm)させたときに、アルミ板へコロナ放電させたときのコロナ電流を測定した結果も図8に示す。(帯電装置概略図を図3に示す。また比較例6では、回転中にコロナ電流は平滑化回路によって平滑化されるため、回転中に電流値は変動せず一定である。)
図8の結果から、感光体面に平行な面にケーシングがない帯電器を使用し、更に感光体面に平行な面はケーシングされていないことにより、帯電工程と同時に露光工程を実施できるため、従来の劣化加速試験と比較し非常に大きな電流を得ることができ、劣化加速試験時間の短縮につながることがわかる。
Example 6
As a charging device, there is no casing on a surface parallel to the sample, and there is an opening frame of 50 × 50 (mm), and a wire (material: gold-plated tungsten wire, wire diameter: 60 μm) only in one direction at intervals of 10 mm within the frame. ) And using a charging device that uses an insulating material (material: polytetrafluoroethylene-based fluororesin) as the frame of the charging device. When the distance between the sample and the wire is 5 mm, corona discharge is applied to the aluminum plate. The result of measuring the corona current is shown in FIG. (A schematic diagram of the charging device is shown in FIGS. 2-1 and 2-2 as in Examples 1 to 5, and a schematic diagram of the experimental device is shown in FIG. 3.)
On the other hand, as Comparative Example 4 corresponding to Example 6, the conventional deterioration acceleration test apparatus shown in FIG. 1 was used, and the charger had a casing having an opening only on the surface facing the sample. Inside, only two wires (material: gold-plated tungsten wire, wire diameter: 60 μm) are stretched at 10 mm intervals, and a charger with a 5 mm gap between the wire and the sample is used. FIG. 8 also shows the results of measuring the corona current when the corona discharge is performed on the aluminum plate when rotating (1100 rpm). (A schematic diagram of the charging device is shown in FIG. 3. In Comparative Example 6, the corona current is smoothed by the smoothing circuit during the rotation, so that the current value does not change during the rotation and is constant.)
From the result of FIG. 8, the exposure process can be performed simultaneously with the charging process by using a charger without a casing on the surface parallel to the surface of the photoconductor, and further without the casing parallel to the surface of the photoconductor. It can be seen that a much larger current can be obtained compared to the accelerated deterioration test, leading to a reduction in the accelerated deterioration test time.
1 ターンテーブル
2 試料片押え板
3 開口部
4 コロナ帯電器
5 表面電位計電極部・露光装置
6 電流計
7 表面電位計
8 インターフェース(A/D変換)
9 コントローラー
10 ケーシング
11 ワイヤ
12 アルミ板
13 サンプル台
14 高圧電源
DESCRIPTION OF SYMBOLS 1
9
Claims (7)
The charging device according to claim 5 or 6, wherein an interval between the plurality of wires is 2 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003329733A JP2005099111A (en) | 2003-09-22 | 2003-09-22 | Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003329733A JP2005099111A (en) | 2003-09-22 | 2003-09-22 | Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005099111A true JP2005099111A (en) | 2005-04-14 |
Family
ID=34458904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003329733A Pending JP2005099111A (en) | 2003-09-22 | 2003-09-22 | Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005099111A (en) |
-
2003
- 2003-09-22 JP JP2003329733A patent/JP2005099111A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7715743B2 (en) | Charger with a probe and controller | |
US9726999B2 (en) | Image forming apparatus | |
US10359728B2 (en) | Image forming apparatus | |
JP2009103829A (en) | Image forming device | |
EP3232273A1 (en) | Image formation device | |
JP5293100B2 (en) | Method and apparatus for evaluating characteristics of electrophotographic photosensitive member | |
JP2005099111A (en) | Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it | |
JP2005099133A (en) | Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for the same | |
JP4428527B2 (en) | Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment | |
JP4964702B2 (en) | Device for evaluating characteristics of electrophotographic photosensitive member | |
JP4953185B2 (en) | Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus | |
JP4234080B2 (en) | Photoconductor deterioration acceleration test method and acceleration test apparatus | |
JP2005352176A (en) | Photoreceptor deterioration acceleration test method and acceleration test equipment | |
JP4324519B2 (en) | Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus | |
JP2007155993A (en) | Method for accelerated testing of degradation in electrophotographic photoreceptor and accelerated testing machine for degradation in electrophotographic photoreceptor | |
JP3759400B2 (en) | Photoconductor deterioration acceleration test equipment | |
JP4914250B2 (en) | Method and apparatus for evaluating characteristics of electrophotographic photoreceptor | |
US20190187583A1 (en) | Image forming apparatus | |
US9733608B2 (en) | Determining light quantity of pre-charging exposure device in an image forming apparatus and cartridge | |
JP4546784B2 (en) | Photoreceptor characteristic evaluation device | |
JP2012189952A (en) | Characteristic evaluation apparatus and characteristic evaluation method for electrophotographic photoreceptor | |
JP2002139958A (en) | Photoreceptor deterioration acceleration test device | |
JP2007206242A (en) | Deterioration accelerating test method for photoreceptor | |
JP2010286612A (en) | Device for evaluating characteristic of electrophotographic photoreceptor | |
JP2019053254A (en) | Inspection apparatus of electrophotographic photoreceptor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060828 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090113 |
|
A02 | Decision of refusal |
Effective date: 20090212 Free format text: JAPANESE INTERMEDIATE CODE: A02 |