JP2005352176A - Photoreceptor deterioration acceleration test method and acceleration test equipment - Google Patents

Photoreceptor deterioration acceleration test method and acceleration test equipment Download PDF

Info

Publication number
JP2005352176A
JP2005352176A JP2004172855A JP2004172855A JP2005352176A JP 2005352176 A JP2005352176 A JP 2005352176A JP 2004172855 A JP2004172855 A JP 2004172855A JP 2004172855 A JP2004172855 A JP 2004172855A JP 2005352176 A JP2005352176 A JP 2005352176A
Authority
JP
Japan
Prior art keywords
acceleration test
photosensitive member
electrophotographic
deterioration acceleration
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172855A
Other languages
Japanese (ja)
Inventor
Noriyasu Saito
紀保 齋藤
Kiyoshi Masuda
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004172855A priority Critical patent/JP2005352176A/en
Publication of JP2005352176A publication Critical patent/JP2005352176A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To carry out a deterioration acceleration test of an electrophotographic photoreceptor without transporting paper in an image forming apparatus. <P>SOLUTION: In a deterioration acceleration test method for an electrophotographic photoreceptor which is carried out by repeating a cycle including a charging step for charging an electrophotographic photoreceptor 13 on a sample table 12 with a charging device 10 and an exposure step for exposing the electrophotographic photoreceptor 13 with an exposure device 14 to achieve discharge, an amount of charges passing through the electrophotographic photoreceptor is adjusted to ≥3.5×10<SP>-5</SP>(C/cm<SP>2</SP>) per minute. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザープリンター・複写機等の画像形成装置に使用される電子写真用感光体の劣化加速試験方法及び加速試験装置に関する。   The present invention relates to an electrophotographic photoreceptor deterioration acceleration test method and an acceleration test apparatus used in an image forming apparatus such as a laser printer or a copying machine.

電子写真用感光体の劣化加速試験方法及び加速試験装置に関する従来技術を示す文献について以下説明する。
特許文献1には、既知数の像形成サイクルのサイクル操作寿命を有する少なくとも1つの電子写真像形成部材を用意し、静電気帯電工程と光放電工程を含むサイクルに繰り返しかけてサイクル中の上記光導電性層の暗減衰を暗減衰量が最高値に達するまで測定し、上記最高値により暗減衰最高値対像形成サイクルの参照データを確立し、新鮮な電子写真像形成部材を静電気帯電工程と光放電工程を含む上記サイクルに、更にサイクル操作にかけても実質的に一定のままである最高値に暗減衰量が達するまで繰り返しかけ、上記新鮮な電子写真像形成部材の暗減衰最高値を上記参照データと比較して上記新鮮な電子写真像形成部材の推定サイクル寿命を確認する各工程を含む劣化加速試験方法が記載されている。
References showing prior art relating to an electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus will be described below.
In Patent Document 1, at least one electrophotographic image forming member having a known number of image forming cycles and a cycle operation lifetime is prepared, and the photoconductivity in the cycle is repeated by repeating a cycle including an electrostatic charging step and a photodischarge step. The dark decay of the photosensitive layer is measured until the dark decay amount reaches the maximum value, and the reference value of the dark decay maximum value vs. image formation cycle is established by the above-mentioned maximum value. The cycle including the discharge step is repeated until the dark attenuation reaches the maximum value that remains substantially constant even after the cycle operation, and the dark attenuation maximum value of the fresh electrophotographic imaging member is referred to the reference data. A deterioration acceleration test method including each step of confirming the estimated cycle life of the fresh electrophotographic image forming member as compared with the above is described.

しかしながら、この方法では、透明ガラスを圧着させてバイアス印加を行うと共に光を照射させており、コロナ帯電・ローラ帯電という実際の電子写真プロセスとは異なる方法での劣化加速試験法である。また、寿命に到ったサンプルの暗減衰特性があらかじめ分かっていないといけない為、一度感光体を実機に搭載して通紙試験を行わなければならず、多大な手間がかかってしまうという問題があった。   However, this method is a deterioration acceleration test method that is different from the actual electrophotographic process of corona charging / roller charging, in which a transparent glass is pressed and bias is applied and light is irradiated. In addition, since the dark decay characteristics of samples that have reached the end of their life must be known in advance, it is necessary to perform a paper-passing test once the photoconductor is mounted on the actual machine, which takes a lot of trouble. there were.

その他の従来技術として、通紙試験を行わないで寿命を確認する方法がある。この方法は、電子写真用感光体(以下、感光体と略す)を高速で回転させた状態(1,000〜2,000r.p.m)で感光体の周囲に配置された帯電器、露光装置で帯電、露光を繰り返し、寿命を予測する方法がある。この方法は更に2つの試験方法に分かれる。   As another conventional technique, there is a method of checking the life without performing a paper passing test. In this method, an electrophotographic photosensitive member (hereinafter abbreviated as a photosensitive member) is rotated at a high speed (1,000 to 2,000 rpm), a charger disposed around the photosensitive member, and an exposure. There is a method of predicting the lifetime by repeatedly charging and exposing with an apparatus. This method is further divided into two test methods.

一つは帯電器の出力と露光装置の光量をあらかじめ決めた条件で固定し、決められた時間だけ試験を行い、その後感光体の特性を測定し、劣化状態を判定する。2つめの方法は試験中の感光体露光後電位Vと感光体を通して流れる通過電流Iを計測し、この2つが常に決められたレベルにあるように帯電器の出力と露光装置の光量を調整しながら行う方法である。   One is to fix the output of the charger and the light quantity of the exposure device under predetermined conditions, perform the test for a predetermined time, and then measure the characteristics of the photoconductor to determine the deterioration state. The second method measures the post-exposure potential V of the photoconductor under test and the passing current I flowing through the photoconductor, and adjusts the output of the charger and the amount of light of the exposure device so that these two are always at a predetermined level. It is a method to do while.

この2つの方法で重要な点は、試験中に感光体に流れた通過電流を計測し、これを電荷量(単位面積当りの値)Qに変換し、一方、A4サイズ1枚を実機でプリントアウトする時、感光体を流れる通過電流が感光体の静電容量をC(単位面積当りの値)、帯電電位V、感光体のサイズはA4紙1枚が感光体上をダブリなく印字されるサイズとするとC・Vで求まることから、Q/(C・V)とすることで寿命試験時間を実機のプリント枚数に対応させることが出来る点である。   The important point in these two methods is that the passing current that flows through the photoconductor during the test is measured and converted into a charge amount (value per unit area) Q, while one A4 size sheet is printed on the actual machine. When the toner is out, the current passing through the photoconductor is C (capacity per unit area) of the photoconductor, the charging potential is V, and the size of the photoconductor is A4 sheet of paper printed on the photoconductor without duplication. Since the size is determined by C · V, the life test time can be made to correspond to the number of printed sheets of the actual machine by setting Q / (C · V).

もう1つ重要な点はこの試験が加速寿命試験になっていることである。具体的に示すと、感光体に5μA/10cmの試料通過電流を流し20Hr試験すると(1日10時間の試験とすると2日間)、5/10×10−6×20×60×60=0.036(C/cm)の電荷が感光体を通過したことになる。(感光体を通過した電荷量のことを、通過電荷量と呼ぶ)そしてA4用紙縦送りで印字する場合を想定すると、感光体の静電容量を100(pF/cm)、帯電電位−700(V)、除電後も含めた露光後電位を0(V)とすると、100×10−12×700=7×10−8(C/cm)がA4―1枚をプリントアウトする時の通過電荷量であるので、0.036/(7×10−8)≒514,000(枚)のプリントアウトしたことになり、大幅な加速試験になる。 Another important point is that this test is an accelerated life test. Specifically, when a current passing through the sample of 5 μA / 10 cm 2 is passed through the photoconductor and a 20 Hr test is performed (a test of 10 hours per day is 2 days), 5/10 × 10 −6 × 20 × 60 × 60 = 0. The charge of 0.036 (C / cm 2 ) has passed through the photoreceptor. (The amount of charge that has passed through the photosensitive member is referred to as the amount of passing charge.) Assuming that printing is performed with A4 paper longitudinal feed, the electrostatic capacity of the photosensitive member is 100 (pF / cm 2 ), and the charging potential is −700. (V) When the post-exposure potential including after static elimination is 0 (V), 100 × 10 −12 × 700 = 7 × 10 −8 (C / cm 2 ) Since it is the passing charge amount, 0.036 / (7 × 10 −8 ) ≈514,000 (sheets) is printed out, and this is a significant acceleration test.

このため、2つ目の方法で寿命試験が行われることが多いが、前述の具体的な計算で分かるように、試験中に感光体を通過する電流が一定であれば、プリントアウト何枚相当の試験を行ったのか、計算がしやすい。そのため試験は通過電流を一定にするようにして実施する方法が一般的に採られる。その本質は通過電荷量を知ることにある。また、感光体によっては帯電電位がどのレベルにあるかによって寿命試験の結果が異なることがあり、帯電電位も一定にして試験を行うことが要求される。この様に、帯電電位および通過電流を一定にする為に、帯電器の高圧電源出力調整、および露光装置の光量調整を行うシステムが必要となり従来の寿命試験装置が構築された。   For this reason, the life test is often performed by the second method. As can be seen from the specific calculation described above, if the current passing through the photoconductor is constant during the test, the number of printouts is equivalent. It is easy to calculate whether or not the test was conducted. Therefore, a method is generally employed in which the test is performed so that the passing current is constant. The essence is to know the passing charge amount. Depending on the level of the charged potential depending on the photoreceptor, the result of the life test may differ, and it is required to perform the test with the charged potential kept constant. As described above, in order to make the charging potential and the passing current constant, a system for adjusting the high-voltage power supply output of the charger and the light amount of the exposure apparatus is required, and a conventional life test apparatus has been constructed.

この従来の劣化加速試験には、例えば、概略構成図の図1に示す様な、感光体試料片の特性評価装置((株)川口電気製作所製EPA8200)によって劣化を加速する方法がある。この特性評価装置での劣化加速試験方法では、ターンテーブル1には感光体試料片を装着する開口部3が設けられており、開口部3の大きさは、例えば、中心から見て44°の開口角度をもち、面積は19.36cm(開口部:44×44mm)である。更に、ターンテーブル1に付属して導電性金属板からなる試料片押さえ板2が設けられている。この装置では、約1,100r.p.mで感光体の周囲に配置された帯電器4と露光装置5で帯電・露光を繰り返し、実機と同程度のスピードで回転させることができ、また、高速で回転させて試料片をコロナ帯電器4に何度も通過させることができるようになっている。更に、コロナ帯電器4から試料片に与えられ試料片を充電するパルス電流は、所定の検出間隔で電流計6に送られその中の平滑化回路で平滑化等がされた後、A/D変換器8で変換されコントローラ9に送られ演算処理される。 In this conventional deterioration acceleration test, for example, there is a method of accelerating the deterioration by a photoconductor sample piece characteristic evaluation apparatus (EPA8200 manufactured by Kawaguchi Electric Co., Ltd.) as shown in FIG. In the deterioration acceleration test method in this characteristic evaluation apparatus, the turntable 1 is provided with an opening 3 for mounting a photosensitive sample piece, and the size of the opening 3 is, for example, 44 ° when viewed from the center. It has an opening angle and the area is 19.36 cm 2 (opening: 44 × 44 mm). Further, a sample piece holding plate 2 made of a conductive metal plate is provided with the turntable 1. In this apparatus, charging / exposure is repeated with the charger 4 and the exposure apparatus 5 arranged around the photoconductor at about 1,100 rpm, and the apparatus can be rotated at the same speed as the actual machine. The sample piece can be passed through the corona charger 4 many times by rotating at high speed. Further, a pulse current applied to the sample piece from the corona charger 4 and sent to the sample piece is sent to the ammeter 6 at a predetermined detection interval and smoothed by a smoothing circuit therein, and then A / D It is converted by the converter 8 and sent to the controller 9 for arithmetic processing.

また、試料片の表面電位は、コロナ帯電器4と別の位置に配置された表面電位計7のモニタ部である表面電位計電極5でモニタされ、モニタされた信号は所定の検出間隔で表面電位計7に送られ、その中の増幅器で増幅等がされた後、A/D変換器8で変換され、コントローラ9に送られ演算処理される。この様に、この装置により劣化加速試験が可能であり、更に感光体の帯電能・電荷保持性能・感度等の特性評価も行うことが出来る装置である。   Further, the surface potential of the sample piece is monitored by a surface potential meter electrode 5 which is a monitor unit of the surface potential meter 7 arranged at a position different from the corona charger 4, and the monitored signal is detected at a predetermined detection interval. After being sent to the electrometer 7 and amplified by an amplifier therein, it is converted by the A / D converter 8 and sent to the controller 9 for arithmetic processing. In this way, this apparatus can perform a deterioration acceleration test, and can also evaluate characteristics such as charging ability, charge retention performance, and sensitivity of the photoreceptor.

しかし、この様な従来のシステムは、2つの測定量、表面電位X,通過電流Yと、2つの操作量、帯電器高圧電源の出力制御値A、除電露光ランプ光量の出力制御値Bの関係は、Aを増加するとX,Yは増加し、Aを減少させるとX,Yも減少し、Bを増加するとXは減少、Yは増加し、Bを減少するとXは増加し、Yは減少する関係があり、仮にXが目標値からはずれ、これを目標範囲に入れようとAまたはBを操作すると、もう1つの測定量Yが変化してしまい、Yにとっては外乱が作用することになる。これを目標範囲に維持しようとAまたはBを操作すると今度はXが変化するという状態になってしまい、複雑な制御を行わなければならなかった。また、劣化加速試験中に感光体表面電位・通過電流の瞬間的なバラツキがあった場合でも、それらが瞬間的な誤差として通過電荷量算出に反映されないシステムとなっており、正確な劣化加速試験を行う上で改善の余地があった。   However, in such a conventional system, the relationship between the two measured quantities, the surface potential X, the passing current Y, the two manipulated variables, the output control value A of the charger high-voltage power supply, and the output control value B of the discharge lamp light quantity. Increases A, X and Y increase, decreasing A decreases X and Y, increasing B decreases X, Y increases, decreasing B increases X and Y decreases If X deviates from the target value and if A or B is operated so as to make it fall within the target range, another measurement amount Y changes, and a disturbance acts on Y. . If A or B is operated to maintain this within the target range, X will change this time, and complicated control must be performed. In addition, even if there is a momentary variation in the photoreceptor surface potential / passing current during the deterioration acceleration test, it is a system in which these are not reflected in the calculation of the passing charge as an instantaneous error. There was room for improvement in doing.

そこで、これらの問題を解決する為に、特許文献2に記載の劣化加速試験装置が提案された。この装置は、電子写真感光体を高速で回転させ、静電気帯電工程と光放電工程を含むサイクルを繰り返しかけて感光体の劣化を加速させる試験システムにおいて、感光体の通過電流・表面電位を計測し、感光体の電位を一定条件に保つように制御し、試験中計測された通過電流から通過電荷量を算出されるシステムとして、単純で精度を良くした感光体の劣化加速試験装置である。   In order to solve these problems, a deterioration acceleration test apparatus described in Patent Document 2 has been proposed. This device measures the passing current and surface potential of a photoconductor in a test system that rotates an electrophotographic photoconductor at high speed and accelerates the deterioration of the photoconductor by repeating a cycle including an electrostatic charging process and a photodischarge process. This photoconductor deterioration acceleration test apparatus is simple and accurate as a system for calculating the passing charge amount from the passing current measured during the test by controlling the potential of the photosensitive member at a constant condition.

しかしながら、最近の感光体は高寿命化されてきており、この様な劣化加速試験装置においても、寿命を判断するまで試験を行うには多大な時間が必要となってきている。そこで、更に劣化を加速し、短時間で寿命を判断可能な劣化加速試験方法が要望されるようになった。その実現の為には、単位面積当りの通過電荷量を増加することが重要であることが分かった。   However, recent photoconductors have a long life, and even in such a deterioration acceleration test apparatus, it takes much time to perform a test until the life is judged. Therefore, there has been a demand for an accelerated deterioration test method capable of further accelerating deterioration and judging the life in a short time. In order to realize this, it has been found that it is important to increase the amount of passing charge per unit area.

そこで、感光体面の単位面積あたりの通過電荷量を増大させる帯電方法として、高電圧が印加される複数のワイヤを有し、ワイヤが1方向のみに張架されており、かつワイヤを囲むケーシングの形状は感光体面に対して平行な面は全てケーシングされていない帯電装置によって、単位面積あたりの感光体面への電流量を増加する方法が提案されているが、この帯電方法は、静止した状態で劣化加速試験を行う為、感光体面に帯電ムラ(放電ムラ)が発生することが分かり、改善の余地があった。   Therefore, as a charging method for increasing the amount of passing charge per unit area of the photoreceptor surface, a plurality of wires to which a high voltage is applied are provided, the wires are stretched only in one direction, and a casing surrounding the wires is used. A method has been proposed to increase the amount of current to the photoconductor surface per unit area by a charging device whose shape is parallel to the photoconductor surface but which is not entirely casing. Since the deterioration acceleration test was performed, it was found that uneven charging (discharge unevenness) occurred on the surface of the photoreceptor, and there was room for improvement.

帯電ムラを抑制する従来技術として、特許文献3には、シールドケース内にグリッド電極と放電ワイヤを有するコロナ帯電器において、前記シールドケースに当接あるいは近接して、該シールドケースを加熱する加熱部材を設けたことを特徴とするコロナ帯電器が記載されている。この発明は、湿度が高い場合に、コロナ帯電器で感光ドラムを帯電処理する際に放電ムラが起こり、帯電ムラが発生して良好な画像が得られなくなるため、コロナ帯電器に加熱部材を取り付け帯電ムラの発生を防止することを特徴としているが、これは実際の劣化加速試験で使用される帯電方法とは異なる方法であり、また、この方法ではコロナ帯電器に加熱部材を取り付ける必要が生じることや、コロナ帯電器周辺の温湿度を測定する為の温湿度計の設置も必要であり、更にそれらの制御に必要な機構も用意する必要があり容易に本劣化加速試験方法で帯電ムラを抑制する方法ではなかった。   As a conventional technique for suppressing charging unevenness, Patent Document 3 discloses a heating member that heats a shield case in contact with or close to the shield case in a corona charger having a grid electrode and a discharge wire in the shield case. There is described a corona charger characterized in that In the present invention, when the photosensitive drum is charged with the corona charger when the humidity is high, uneven discharge occurs, and the charging unevenness occurs and a good image cannot be obtained. Therefore, a heating member is attached to the corona charger. Although it is characterized by preventing the occurrence of charging unevenness, this is a method different from the charging method used in the actual deterioration acceleration test, and in this method, it is necessary to attach a heating member to the corona charger. In addition, it is necessary to install a thermo-hygrometer to measure the temperature and humidity around the corona charger, and to prepare a mechanism necessary to control them. It was not a method of suppression.

特開平5−1973号公報Japanese Patent Laid-Open No. 5-1973 特開2002−149005号公報JP 2002-149005 A 特開2001−22158号公報JP 2001-22158 A

本発明は、電子写真用感光体を帯電する帯電工程と、露光工程を含むサイクルを行う短時間の劣化によって、画像形成装置で通紙することなくかつ劣化ムラを抑制して、通紙した状態と同じ状況にすることが可能な電子写真用感光体の劣化加速試験方法を提供することを目的とする。   The present invention is a state in which the sheet is passed without passing through the image forming apparatus and suppressing deterioration unevenness due to the short-time deterioration in which the charging process for charging the electrophotographic photoreceptor and the cycle including the exposure process are performed. It is an object of the present invention to provide a method for accelerating degradation of an electrophotographic photosensitive member that can be in the same situation as the above.

前記課題を解決するための本発明の態様は次の通りである。
(1)帯電装置によって電子写真用感光体を帯電する帯電工程と、露光装置によって電子写真感光体を露光して放電させる露光工程とを含むサイクルを繰り返して行う電子写真用感光体劣化加速試験方法において、電子写真用感光体の通過電荷量を1分あたり3.5×10−5(C/cm)以上とすることを特徴とする電子写真用感光体劣化加速試験方法。
(2)帯電と露光とを同時に行うことを特徴とする上記(1)の電子写真用感光体劣化加速試験方法。
(3)前記帯電装置として、電子写真用感光体に高電圧を印加する複数の1方向のみに張架されたワイヤを有し且つワイヤを囲むケーシングの形状が電子写真用感光体面に対して平行な面が全てケーシングされていない帯電装置を用いることを特徴とする上記(1)、(2)の電子写真用感光体劣化加速試験方法。
(4)前記帯電装置と前記電子写真用感光体とを近接して配置し、該電子写真用感光体を使用する画像形成装置の画像形成プロセスにおける通紙枚数に対応した電子写真用感光体の通過電荷量と、電子写真用感光体劣化加速試験方法の通過電荷量を同じくして電子写真用感光体を劣化させることを特徴とする上記(1)〜(3)の電子写真用感光体劣化加速試験方法。
(5)前記通過電荷量と劣化加速試験後の電子写真感光体の特性値から、画像形成装置における通紙後の電子写真用感光体の特性値を予測することを特徴とする上記(1)〜(4)の電子写真用劣化加速試験方法。
(6)劣化加速試験中に電子写真用感光体を動かすことを特徴とする上記(1)〜(5)の電子写真用感光体劣化加速試験方法。
(7)劣化加速試験中の電子写真用感光体をワイヤが張架されている方向に対して垂直方向に動かすことを特徴とする上記(6)の電子写真用感光体劣化加速試験方法。
(8)前記電子写真用感光体を、試験時間の内1/2の時間は初期位置で劣化させ、残りの1/2の時間はワイヤ間隔の中間距離移動した位置で劣化させることを特徴とする上記(6)の電子写真用感光体劣化加速試験方法。
(9)少なくとも帯電装置と露光装置とを備えた、上記(1)〜(8)の電子写真用感光体劣化加速試験方法を実施するための電子写真用感光体劣化加速試験装置。
The aspect of the present invention for solving the above-described problems is as follows.
(1) A method for accelerating degradation of an electrophotographic photoreceptor, comprising repeating a cycle including a charging step of charging the electrophotographic photoreceptor with a charging device and an exposure step of exposing and discharging the electrophotographic photoreceptor with an exposure device. The electrophotographic photosensitive member deterioration acceleration test method according to claim 1, wherein a passing charge amount of the electrophotographic photosensitive member is 3.5 × 10 −5 (C / cm 2 ) or more per minute.
(2) The electrophotographic photosensitive member deterioration acceleration test method according to (1), wherein charging and exposure are performed simultaneously.
(3) The charging device has a plurality of wires stretched in only one direction for applying a high voltage to the electrophotographic photosensitive member, and the shape of the casing surrounding the wire is parallel to the surface of the electrophotographic photosensitive member. (1) and (2) the electrophotographic photosensitive member deterioration acceleration test method according to the above (1) or (2), wherein a charging device in which all surfaces are not casing is used.
(4) An electrophotographic photosensitive member corresponding to the number of sheets to be passed in an image forming process of an image forming apparatus using the electrophotographic photosensitive member in which the charging device and the electrophotographic photosensitive member are arranged close to each other. The electrophotographic photosensitive member deterioration according to the above (1) to (3), wherein the electrophotographic photosensitive member is deteriorated by making the passing charge amount and the passing charge amount of the electrophotographic photosensitive member deterioration acceleration test method the same. Accelerated test method.
(5) The characteristic value of the electrophotographic photosensitive member after paper passing in the image forming apparatus is predicted from the passing charge amount and the characteristic value of the electrophotographic photosensitive member after the deterioration acceleration test. (4) Deterioration acceleration test method for electrophotography.
(6) The electrophotographic photoreceptor deterioration acceleration test method according to any one of (1) to (5), wherein the electrophotographic photoreceptor is moved during the deterioration acceleration test.
(7) The electrophotographic photoreceptor deterioration acceleration test method according to (6), wherein the electrophotographic photoreceptor during the deterioration acceleration test is moved in a direction perpendicular to a direction in which the wire is stretched.
(8) The electrophotographic photoreceptor is deteriorated at an initial position for a half of the test time, and deteriorated at a position moved by an intermediate distance of the wire interval for the remaining half of the test time. (6) The electrophotographic photoreceptor deterioration acceleration test method according to (6) above.
(9) An electrophotographic photoreceptor deterioration acceleration test apparatus for carrying out the electrophotographic photoreceptor deterioration acceleration test method according to the above (1) to (8), comprising at least a charging device and an exposure apparatus.

上記態様(1)〜(4)により、短時間の劣化で実際に画像形成装置で通紙した状態と同じ状況にすることが可能となる。
上記態様(5)により、短時間の劣化試験で通紙後の特性値を予測することが可能となる。
上記態様(6)、(7)により、劣化ムラを抑制することが出来る。
上記態様(8)により、複雑な制御を必要とせず劣化ムラを抑制することが出来る。
上記態様(9)により、感光体試料片を用いた劣化加速試験が可能となる。
According to the above aspects (1) to (4), it is possible to achieve the same situation as a state where paper is actually passed through the image forming apparatus with a short time deterioration.
According to the above aspect (5), it is possible to predict the characteristic value after passing through a short-term deterioration test.
By the above aspects (6) and (7), deterioration unevenness can be suppressed.
According to the aspect (8), it is possible to suppress deterioration unevenness without requiring complicated control.
According to the above aspect (9), a deterioration acceleration test using a photoconductor sample piece can be performed.

本発明に係る、劣化加速試験装置としては、例えば図2に示すような装置を使用することができる。図2に示す装置を用いて劣化加速試験を行う場合の手順を以下に述べる。
まず、感光体試料片13の感光面が上向きになるようにサンプル台12に載せる。サンプル台12表面には、アースに接続された導電性の部材が取り付けられている。次に、絶縁性のテープ等で感光体試料片13がサンプル台12に密着するように貼り付ける。所定の光量になるように設定された露光装置14によって感光体面に露光し、高圧電源11に接続された帯電装置10でコロナ放電を同時に行う。帯電同時露光のサイクルを繰り返して行うことにより劣化加速試験が可能となる。
As the deterioration acceleration test apparatus according to the present invention, for example, an apparatus as shown in FIG. 2 can be used. The procedure for performing the deterioration acceleration test using the apparatus shown in FIG. 2 will be described below.
First, the photosensitive member sample piece 13 is placed on the sample table 12 so that the photosensitive surface faces upward. A conductive member connected to the ground is attached to the surface of the sample table 12. Next, the photoconductor sample piece 13 is attached so as to be in close contact with the sample table 12 with an insulating tape or the like. The surface of the photosensitive member is exposed by the exposure device 14 set to have a predetermined light amount, and the corona discharge is simultaneously performed by the charging device 10 connected to the high voltage power source 11. A deterioration acceleration test can be performed by repeating the cycle of simultaneous charging simultaneous exposure.

この試験装置を用いることにより、劣化加速試験中の電流値の変化により単位面積あたりの通過電荷量を変化させることが可能となり、劣化加速度合いを変化させることが可能になる。劣化加速試験終了後、帯電能・電荷保持性能等の特性値を測定し評価する。あるいは感光体の表面観察によって、感光体の劣化度合いも確認する。   By using this test apparatus, it is possible to change the passing charge amount per unit area by changing the current value during the deterioration acceleration test, and it is possible to change the degree of deterioration acceleration. After the deterioration acceleration test is completed, the characteristic values such as charging ability and charge retention performance are measured and evaluated. Alternatively, the degree of deterioration of the photoconductor is also confirmed by observing the surface of the photoconductor.

通過電荷量は1分あたり3.5×10−5(C/cm)以上とすることにより、短時間での劣化試験が可能となる。
また、帯電装置10としては、図3(A)、(B)に示すような、帯電工程で高電圧を印加する複数の1方向のみに張架されたワイヤ16を有し、且つワイヤを囲むケーシング15の形状が電子写真用感光体面に対して平行な面が全てケーシングされていない帯電装置を用いることが好ましい。
By setting the passing charge amount to 3.5 × 10 −5 (C / cm 2 ) or more per minute, a deterioration test can be performed in a short time.
Further, as the charging device 10, as shown in FIGS. 3A and 3B, the charging device 10 includes a plurality of wires 16 stretched only in one direction to apply a high voltage in the charging process, and surrounds the wires. It is preferable to use a charging device in which the casing 15 has a shape whose casing is not entirely parallel to the surface of the electrophotographic photosensitive member.

帯電装置と電子写真用感光体との距離を近接させて、帯電と露光とを同時に行い、電子写真用感光体を使用する画像形成装置の画像形成プロセスにおける通紙枚数に対応した電子写真用感光体の通過電荷量と、電子写真用感光体劣化加速試験方法の通過電荷量とを同じくして、試験片を劣化させる。これにより、短時間の劣化試験で、実際に画像形成装置で通紙したのと同じ状況にすることができる。
更に、電子写真用感光体劣化加速試験での通過電荷量と特性値から、画像形成装置における通紙後の電子写真用感光体の特性値を予測することができる。
Electrophotographic photosensitive member corresponding to the number of sheets to be passed in the image forming process of the image forming apparatus using the electrophotographic photosensitive member by performing charging and exposure at the same time by bringing the charging device and the electrophotographic photosensitive member close to each other. The test piece is deteriorated in the same manner as the passing charge amount of the body and the passing charge amount of the electrophotographic photoreceptor deterioration acceleration test method. As a result, it is possible to obtain the same situation as when the paper is actually passed through the image forming apparatus in a short-time deterioration test.
Further, the characteristic value of the electrophotographic photosensitive member after the sheet passing in the image forming apparatus can be predicted from the passing charge amount and the characteristic value in the electrophotographic photosensitive member deterioration acceleration test.

前記の図3に示すような帯電装置を用いた場合の放電状況を確認する試験を行った。この試験の概要を以下に述べる。
帯電装置としては、対向する感光体面に対して平行な面にケーシングは無く40×40(mm)の開口枠を有し、その枠内に10mm間隔で1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)が張られ、帯電装置の枠は絶縁性部材(材質:テフロン(登録商標))を使用した帯電装置(帯電装置概略図を図3(A)、(B)に示す。)を使用し、感光体面とワイヤの距離は5mmとした。サンプル台(サイズ:75×75×50(mm))の上にサンプル台の上面サイズよりも大きいアルミ板(サイズ:120×120×0.25(mm))を置いた。このアルミ板の上にはアルミ蒸着したPETフィルム(サイズ:80×1×0.1(mm)、アルミ蒸着面を上側)が貼り付けられ、PETフィルム(アルミ蒸着側)には抵抗(1.5kΩ)を介して電位計が接続されており、PETフィルムに流れる電流を確認できるようになっている。このサンプル台を帯電器の真下を等速で通過させ(ワイヤが張架している方向に対して垂直方向に移動)、帯電器を通過している時のPETフィルムに流れる電流の状況を確認した。電流測定結果を図5に示す。
電流測定用実験装置の概略図を図4に示す。図5で菱形のプロットはワイヤの位置である。またこの結果は、感光体試料片を帯電装置に対向させて静止した状態での放電ムラを調査した結果を示すものである。
A test was conducted to confirm the discharge state when the charging device as shown in FIG. 3 was used. The outline of this test is described below.
As a charging device, there is no casing on a surface parallel to the surface of the opposing photoconductor, and an opening frame of 40 × 40 (mm) is provided, and a wire (material: gold-plated tungsten wire, Wire diameter: 60 μm) and a charging device frame using an insulating member (material: Teflon (registered trademark)) as a charging device frame (a schematic diagram of the charging device is shown in FIGS. 3A and 3B). The distance between the photoreceptor surface and the wire was 5 mm. An aluminum plate (size: 120 × 120 × 0.25 (mm)) larger than the upper surface size of the sample table was placed on the sample table (size: 75 × 75 × 50 (mm)). On this aluminum plate, an aluminum-deposited PET film (size: 80 × 1 × 0.1 (mm), aluminum-deposited surface on the upper side) is attached, and resistance (1. 5 kΩ) is connected to the electrometer so that the current flowing through the PET film can be confirmed. Pass this sample base under the charger at a constant speed (moving in a direction perpendicular to the direction in which the wire is stretched), and check the current flowing through the PET film while passing through the charger. did. The current measurement results are shown in FIG.
A schematic diagram of the experimental apparatus for current measurement is shown in FIG. In FIG. 5, the diamond-shaped plot is the position of the wire. This result shows the result of investigating discharge unevenness in a state where the photoconductor sample piece is opposed to the charging device and is stationary.

図5に示した測定結果から、ワイヤ真下部分に最も電流が流れるということが分かり、帯電同時露光可能なこの帯電装置を使用し、感光体劣化加速試験を行った場合、放電ムラが形成されてしまうことがわかる。帯電装置に感光体試料片を対向させ静止した状態では、感光体面へ均一に劣化されないということが判る。
次にこの静止状態の結果と、ワイヤ間隔の中間距離5mm移動した時の結果を重ね合わせる為、図5に示された結果と、図5に示された結果を5mm分(ワイヤ間隔の中間位置分)ずらした結果とを重ね合わせた結果を図6に示す。(図6で菱形のプロットはワイヤの位置である。)
図6の結果から、静止状態での結果と、ワイヤ間隔の中間距離5mm移動した時の結果を重ね合わせることによって劣化ムラが抑制できるとことがわかる。
From the measurement results shown in FIG. 5, it can be seen that the current flows most directly under the wire. When this charging device capable of simultaneous charging is used and the photoreceptor deterioration acceleration test is performed, discharge unevenness is formed. I understand that. It can be seen that the photoconductor surface is not uniformly deteriorated when the photoconductor sample piece is opposed to the charging device and is stationary.
Next, in order to superimpose the result of this stationary state and the result when the intermediate distance of the wire interval is moved by 5 mm, the result shown in FIG. 5 and the result shown in FIG. 6) The result of superimposing the shifted result is shown in FIG. (The diamond plot in FIG. 6 is the wire position.)
From the result of FIG. 6, it can be seen that the unevenness of deterioration can be suppressed by superimposing the result in the stationary state and the result when the wire is moved at an intermediate distance of 5 mm.

上記の結果から、劣化加速試験方法においては、劣化加速試験中に電子写真用感光体を動かすことにより、劣化ムラを抑制することが可能となることがわかる。また、電子写真用感光体の動かし方としては、劣化加速試験中のサンプルをワイヤが張架されている方向に対して垂直方向に動かす方法、及び、サンプルを試験時間の内1/2の時間を初期位置で劣化させ、残りの1/2の時間をワイヤ間隔の中間距離に移動させた位置で行う方法を挙げることができる。   From the above results, it can be seen that in the deterioration acceleration test method, deterioration unevenness can be suppressed by moving the electrophotographic photosensitive member during the deterioration acceleration test. The electrophotographic photosensitive member can be moved by moving the sample in the deterioration acceleration test in a direction perpendicular to the direction in which the wire is stretched, and the sample being half the test time. Can be performed at a position where the remaining time is moved to the intermediate distance of the wire interval.

以下に、本発明の実施例により具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[実施例1]
図2に示す感光体劣化加速試験装置を使用した。帯電装置としては、対向する感光体面に対して平行な面にケーシングは無く40×40(mm)の開口枠を有し、その枠内に10mm間隔で1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)が張られ、帯電装置の枠は絶縁性部材(材質:テフロン(登録商標))である帯電装置を使用した。また、この試験装置での感光体面とワイヤの距離は5mmとし、サンプル台(サイズ:75×75×50(mm))の上に感光体試料片を置いた。感光体試料片は、リコーIPSIO Color6500用感光体と同じ材料・処方構成を使用した。
[Example 1]
The photoreceptor deterioration acceleration test apparatus shown in FIG. 2 was used. As a charging device, there is no casing on a surface parallel to the surface of the opposing photoconductor, and there is a 40 × 40 (mm) opening frame, and a wire (material: gold-plated tungsten wire, The charging device used was an insulating member (material: Teflon (registered trademark)) as the frame of the charging device. The distance between the photoreceptor surface and the wire in this test apparatus was 5 mm, and a photoreceptor specimen was placed on a sample table (size: 75 × 75 × 50 (mm)). The photoconductor sample piece used the same material and composition as the photoconductor for Ricoh IPSIO Color 6500.

[比較例1]
プリンター(リコーIPSIO Color6500)を使用し、実際に通紙して感光体を劣化させた。感光体としてはリコーIPSIO Color6500用感光体と同じ材料・処方構成の感光体を使用した。感光体の径はφ168mm、静電容量は110pF/cmで実施した。また、プリンターの現像条件は、帯電電位:700V、露光後電位:100V、紙間:A4横の1.5倍、通紙条件:A4横、QL:有り、原稿のべた密度:7%とした。
[Comparative Example 1]
Using a printer (Ricoh IPSIO Color 6500), the photoreceptor was actually deteriorated by passing paper. As the photoreceptor, a photoreceptor having the same material and composition as the photoreceptor for Ricoh IPSIO Color 6500 was used. The diameter of the photoreceptor was φ168 mm, and the capacitance was 110 pF / cm 2 . The developing conditions of the printer were: charging potential: 700 V, post-exposure potential: 100 V, paper spacing: 1.5 times A4 width, paper passing conditions: A4 width, QL: yes, solid density of original: 7% .

[比較例2]
図1に示す現行の劣化加速試験装置を使用して試験を行った。感光体としてはリコーIPSIO Color6500用感光体と同じ材料・処方構成の感光体を使用した。
上記の実施例及び比較例のそれぞれの装置で、1分あたりで感光体に与えることの出来る通過電荷量の結果を表1に示す。
[Comparative Example 2]
The test was performed using the current deterioration acceleration test apparatus shown in FIG. As the photoreceptor, a photoreceptor having the same material and composition as the photoreceptor for Ricoh IPSIO Color 6500 was used.
Table 1 shows the results of the amount of passing charge that can be given to the photosensitive member per minute in each of the devices of the above-described Examples and Comparative Examples.

Figure 2005352176
Figure 2005352176

実施例1の通過電荷量を最大にした時の劣化条件は、通過電流が−161.9μA(感光体の劣化面積:35×40mm)、照度が260luxであり、比較例2の通過電荷量を最大にした時の劣化条件は、通過電流が−11.2μA(感光体の劣化面積44×44mm)、照度が106luxであった。   The deterioration conditions when the passing charge amount of Example 1 was maximized were: a passing current of −161.9 μA (photosensitive member deterioration area: 35 × 40 mm), an illuminance of 260 lux, and the passing charge amount of Comparative Example 2 The deterioration conditions at the time of maximum were a passing current of −11.2 μA (photosensitive member deterioration area 44 × 44 mm) and illuminance of 106 lux.

表1の結果から、比較例2の図1のような現行の感光体劣化加速試験装置でも、大幅に通過電荷量を増やすことが可能となることが分かるが、それ以上の劣化加速可能な方式としては、図2に示すような感光体劣化加速試験装置が必要になることが分かる。その条件として、通過電荷量3.5×10−5以上(C/cm)でより効果的な劣化加速試験となることが分かる。 From the results of Table 1, it can be seen that the current photoconductor deterioration acceleration test apparatus as shown in FIG. 1 of Comparative Example 2 can significantly increase the amount of passing charge, but a method capable of further accelerating the deterioration. As shown in FIG. 2, a photoreceptor deterioration acceleration test apparatus as shown in FIG. 2 is necessary. As the condition, it can be seen that a more effective deterioration acceleration test is obtained when the passing charge amount is 3.5 × 10 −5 or more (C / cm 2 ).

[実施例2]
図2に示す感光体劣化加速試験装置を使用した。帯電装置としては、対向する感光体面に対して平行な面にケーシングは無く40×40(mm)の開口枠を有し、その枠内に10mm間隔で1方向のみワイヤ(材質:金メッキタングステンワイヤ、ワイヤ径:60μm)が張られ、帯電装置の枠は絶縁性部材(材質:テフロン(登録商標))である帯電装置を使用した。また、この試験装置での感光体面とワイヤの距離は5mmとし、サンプル台(サイズ:75×75×50(mm))の上に感光体試料片を置いた。感光体試料片は、リコーIPSIO Color6500用感光体と同じ材料・処方構成を使用し、劣化加速試験中の感光体試料面の通過電流を−121.5μA(感光体の劣化面積:35×40mm)、照度を194luxに設定し劣化加速試験を行った(この時の電子写真用感光体に与える1分あたりの通過電荷量は、5.21×10−4C/cmであった)。
[Example 2]
The photoreceptor deterioration acceleration test apparatus shown in FIG. 2 was used. As a charging device, there is no casing on a surface parallel to the surface of the opposing photoconductor, and there is a 40 × 40 (mm) opening frame, and a wire (material: gold-plated tungsten wire, The charging device used was an insulating member (material: Teflon (registered trademark)) as the frame of the charging device. The distance between the photoreceptor surface and the wire in this test apparatus was 5 mm, and a photoreceptor specimen was placed on a sample table (size: 75 × 75 × 50 (mm)). The photoconductor sample piece uses the same material and prescription structure as the photoconductor for Ricoh IPSIO Color 6500, and the current passing through the photoconductor sample surface during the deterioration acceleration test is -121.5 μA (photoconductor deterioration area: 35 × 40 mm). The deterioration acceleration test was performed with the illuminance set to 194 lux (the amount of charge passed per minute applied to the electrophotographic photoreceptor at this time was 5.21 × 10 −4 C / cm 2 ).

[比較例3]
プリンター(リコーIPSIO Color6500)を使用し、実際に通紙して感光体を劣化させた。感光体はリコーIPSIO Color6500用感光体と同じ材料・処方構成の感光体を使用した。この感光体の径はφ168mm、静電容量は110pF/cmであった。プリンターの現像条件は、帯電電位:−700V、露光後電位:−100V、紙間:A4横の1.5倍、通紙条件:A4横、QL:有り、原稿のべた密度:7%とした。
プリンターでの通紙枚数250k枚毎の通過電荷量と、その通過電荷量に到達するまでのそれぞれの条件における試験で費やす時間を表2に示す。更に、その試験時間における感光体の残留電位(所定の電位から十分露光させた後の電位を(株)川口電気製作所製EPA8200で測定)の測定結果を表3に示す。
[Comparative Example 3]
Using a printer (Ricoh IPSIO Color 6500), the photoreceptor was actually deteriorated by passing paper. As the photoreceptor, a photoreceptor having the same material and formulation as the photoreceptor for Ricoh IPSIO Color 6500 was used. The diameter of this photoreceptor was φ168 mm, and the capacitance was 110 pF / cm 2 . The developing conditions of the printer were: charging potential: -700 V, post-exposure potential: -100 V, paper spacing: 1.5 times A4 width, paper passing conditions: A4 width, QL: Yes, solid density of original: 7% .
Table 2 shows the amount of passing charge for each 250 k sheets passed by the printer and the time spent in the test under the respective conditions until the amount of passing charge is reached. Further, Table 3 shows the measurement results of the residual potential of the photoconductor during the test time (measured with EPA8200 manufactured by Kawaguchi Electric Co., Ltd. after the potential is sufficiently exposed from a predetermined potential).

Figure 2005352176
Figure 2005352176

Figure 2005352176
Figure 2005352176

表2の結果から、試験する感光体の特性値(径・静電容量)と、感光体を使用するプリンターにおける現像条件(帯電電位・露光後電位・紙間・通紙条件・QL・原稿のべた密度)から算出されたある通紙枚数における通過電荷量と同じ通過電荷量分を、図2のような感光体劣化加速試験装置で劣化させることによって、通紙させるよりも大幅に時間を短縮できることがわかる。
また、表3の特性値の結果からは、通過電荷量が同じであれば劣化後の特性値もほぼ同じであることがわかり、図2のような劣化加速試験装置で感光体を劣化すれば、実際に通紙したある枚数における特性値の予測や、実際のプリンターにおける寿命枚数での特性値予測が短時間で可能となることが判る。
From the results in Table 2, the characteristic values (diameter / capacitance) of the photoconductor to be tested and the development conditions (charge potential, post-exposure potential, inter-paper, paper-passing conditions, QL, original document) By reducing the amount of passing charge that is the same as the passing charge amount for a certain number of sheets that is calculated from the solid density) using a photoconductor deterioration acceleration test device as shown in FIG. I understand that I can do it.
Further, from the characteristic value results in Table 3, it can be seen that if the passing charge amount is the same, the characteristic value after deterioration is almost the same. If the photoconductor is deteriorated by the deterioration acceleration test apparatus as shown in FIG. It can be seen that it is possible to predict characteristic values for a certain number of sheets that have actually been passed through and prediction of characteristic values based on the number of sheets in an actual printer in a short time.

[実施例3]
感光体試料片としてリコーIPSIO Color6500用感光体と同じ材料・処方構成の感光体試料片を使用し、劣化加速試験中の通過電流を−121.5μA(感光体の劣化面積:35×40mm)、照度を194luxに設定し30分間初期位置で劣化加速試験を行い、その後ワイヤが張架している方向に対して垂直方向に5mm移動させ30分間劣化加速試験を行った(この時の電子写真用感光体に与える1分あたりの通過電荷量は、5.21×10−4C/cmであった)。
[Example 3]
A photoconductor sample piece having the same material and composition as the photoconductor for Ricoh IPSIO Color 6500 is used as the photoconductor sample piece, and the passing current during the deterioration acceleration test is −121.5 μA (deterioration area of the photoconductor: 35 × 40 mm), The illuminance was set to 194 lux, and the deterioration acceleration test was performed at the initial position for 30 minutes, and then the deterioration acceleration test was performed for 30 minutes by moving 5 mm in the direction perpendicular to the direction in which the wire was stretched (for electrophotography at this time) The amount of passing charge per minute given to the photoreceptor was 5.21 × 10 −4 C / cm 2 ).

それぞれの条件で試験を行った後の感光体表面を観察した。
観察した結果、実施例3・比較例4のどちらも感光体の劣化面積内で変色が確認された。これは劣化による影響で変色したものであるが、変色の仕方に違いが現れており、実施例2では変色ムラは観察されなかったが、比較例2では変色ムラが確認された。このことから比較例2の試験中に感光体を移動しない静止状態では、帯電ムラ(放電ムラ)が発生しているということが分かる。
よって、ある時間劣化させる場合は、1/2の時間を初期位置・1/2の時間をワイヤ間隔の中間距離移動(ワイヤが張架している方向に対して垂直方向に)した位置で行うことが、感光体面の劣化ムラを抑制させる方法であることが分かる。
The surface of the photoreceptor after the test under each condition was observed.
As a result of observation, in both Example 3 and Comparative Example 4, discoloration was confirmed within the deterioration area of the photoreceptor. This is a color change due to the influence of deterioration, but a difference appears in the way of color change. In Example 2, no discoloration unevenness was observed, but in Comparative Example 2, discoloration unevenness was confirmed. From this, it can be seen that charging unevenness (discharge unevenness) occurs in a stationary state in which the photosensitive member is not moved during the test of Comparative Example 2.
Therefore, when deteriorating for a certain time, 1/2 time is set at the initial position and 1/2 time is moved at an intermediate distance of the wire interval (perpendicular to the direction in which the wire is stretched). It can be seen that this is a method of suppressing deterioration unevenness of the photoreceptor surface.

本発明の劣化加速試験法によれば、電子写真用感光体に通紙することなく簡便に劣化加速試験を行うことができるので、画像形成装置等に用いる電子写真用感光体の劣化加速試験を行う方法として有用である。   According to the degradation acceleration test method of the present invention, the degradation acceleration test can be easily performed without passing through the electrophotographic photoreceptor. Therefore, the degradation acceleration test of the electrophotographic photoreceptor used in an image forming apparatus or the like can be performed. Useful as a way to do it.

従来の劣化加速試験装置の概略を示す図である。It is a figure which shows the outline of the conventional deterioration acceleration test apparatus. 本発明の電子写真用感光体の劣化加速試験装置の構成を示す図である。It is a figure which shows the structure of the deterioration acceleration test apparatus of the electrophotographic photoreceptor of this invention. 本発明の電子写真用感光体の劣化加速試験装置において使用する帯電装置を示す図である。It is a figure which shows the charging device used in the deterioration test apparatus of the electrophotographic photoreceptor of this invention. 通過電流を測定するための実験装置の構成を示す図である。It is a figure which shows the structure of the experimental apparatus for measuring a passage current. 図4の実験装置によって得られた通過電流と時間との関係を示す図である。It is a figure which shows the relationship between the passage current obtained by the experimental apparatus of FIG. 4, and time. 図4の実験装置によって得られた通過電流と時間との関係を示す図である。It is a figure which shows the relationship between the passage current obtained by the experimental apparatus of FIG. 4, and time.

符号の説明Explanation of symbols

1 ターンテーブル
2 試料片押え板
3 開口部
4 コロナ帯電器
5 表面電位計電極部・露光装置
6 電流計測・平滑化回路、他
7 表面電位計:アンプ回路、他
8 インターフェース(A/D変換)
9 コントローラー
10 帯電装置
11 高圧電源
12 サンプル台
13 感光体試料片
14 露光装置
15 ケーシング
16 ワイヤ
17 アルミ板
18 アルミ蒸着PETフィルム
19 電位計
1 Turntable 2 Sample piece presser plate
3 Opening 4 Corona Charger 5 Surface Potential Meter Electrode / Exposure Device 6 Current Measurement / Smoothing Circuit, etc. 7 Surface Potential Meter: Amplifier Circuit, etc. 8 Interface (A / D Conversion)
DESCRIPTION OF SYMBOLS 9 Controller 10 Charging apparatus 11 High voltage power supply 12 Sample stand 13 Photoconductor sample piece 14 Exposure apparatus 15 Casing 16 Wire 17 Aluminum plate 18 Aluminum vapor deposition PET film 19 Electrometer

Claims (9)

帯電装置によって電子写真用感光体を帯電する帯電工程と、露光装置によって電子写真感光体を露光して放電させる露光工程とを含むサイクルを繰り返して行う電子写真用感光体劣化加速試験方法において、電子写真用感光体の通過電荷量を1分あたり3.5×10−5(C/cm)以上とすることを特徴とする電子写真用感光体劣化加速試験方法。 In an electrophotographic photoreceptor deterioration acceleration test method in which a cycle including a charging process of charging an electrophotographic photoreceptor by a charging device and an exposure process of exposing and discharging the electrophotographic photoreceptor by an exposure apparatus is repeated, A method for accelerating deterioration of an electrophotographic photosensitive member, wherein a passing charge amount of the photographic photosensitive member is set to 3.5 × 10 −5 (C / cm 2 ) or more per minute. 帯電と露光とを同時に行うことを特徴とする請求項1記載の電子写真用感光体劣化加速試験方法。   2. The electrophotographic photoreceptor deterioration acceleration test method according to claim 1, wherein charging and exposure are performed simultaneously. 前記帯電装置として、電子写真用感光体に高電圧を印加する複数の1方向のみに張架されたワイヤを有し且つワイヤを囲むケーシングの形状が電子写真用感光体面に対して平行な面が全てケーシングされていない帯電装置を用いることを特徴とする請求項1又は2記載の電子写真用感光体劣化加速試験方法。   The charging device has a plurality of wires stretched only in one direction for applying a high voltage to the electrophotographic photosensitive member, and the casing surrounding the wire is parallel to the surface of the electrophotographic photosensitive member. 3. The electrophotographic photosensitive member deterioration acceleration test method according to claim 1, wherein the charging device is not entirely casing. 前記帯電装置と前記電子写真用感光体とを近接して配置し、該電子写真用感光体を使用する画像形成装置の画像形成プロセスにおける通紙枚数に対応した電子写真用感光体の通過電荷量と、電子写真用感光体劣化加速試験方法の通過電荷量を同じくして電子写真用感光体を劣化させることを特徴とする請求項1〜3のいずれかに記載の電子写真用感光体劣化加速試験方法。   The charging device and the electrophotographic photosensitive member are arranged close to each other, and the passing charge amount of the electrophotographic photosensitive member corresponds to the number of sheets to be passed in the image forming process of the image forming apparatus using the electrophotographic photosensitive member. The electrophotographic photoconductor deterioration acceleration according to claim 1, wherein the electrophotographic photoconductor is deteriorated by using the same passage charge amount as in the electrophotographic photoconductor deterioration acceleration test method. Test method. 前記通過電荷量と劣化加速試験後の電子写真感光体の特性値から、画像形成装置における通紙後の電子写真用感光体の特性値を予測することを特徴とする請求項1〜4のいずれかに記載の電子写真用劣化加速試験方法。   5. The characteristic value of the electrophotographic photosensitive member after paper passing in the image forming apparatus is predicted from the passing charge amount and the characteristic value of the electrophotographic photosensitive member after the deterioration acceleration test. The method for accelerating deterioration test for electrophotography according to crab. 劣化加速試験中に電子写真用感光体を動かすことを特徴とする請求項1〜5のいずれかに記載の電子写真用感光体劣化加速試験方法。   6. The electrophotographic photoreceptor deterioration acceleration test method according to claim 1, wherein the electrophotographic photoreceptor is moved during the deterioration acceleration test. 劣化加速試験中の電子写真用感光体をワイヤが張架されている方向に対して垂直方向に動かすことを特徴とする請求項6記載の電子写真用感光体劣化加速試験方法。   7. The electrophotographic photosensitive member deterioration acceleration test method according to claim 6, wherein the electrophotographic photosensitive member during the deterioration acceleration test is moved in a direction perpendicular to a direction in which the wire is stretched. 前記電子写真用感光体を、試験時間の内1/2の時間は初期位置で劣化させ、残りの1/2の時間はワイヤ間隔の中間距離移動した位置で劣化させることを特徴とする請求項6記載の電子写真用感光体劣化加速試験方法。   The electrophotographic photoreceptor is deteriorated at an initial position for a half of the test time, and deteriorated at a position moved by an intermediate distance of the wire interval for the remaining half of the test time. 6. An electrophotographic photoreceptor deterioration acceleration test method according to 6. 少なくとも帯電装置と露光装置とを備えた、請求項1〜8のいずれかに記載の電子写真用感光体劣化加速試験方法を実施するための電子写真用感光体劣化加速試験装置。   An electrophotographic photoreceptor deterioration acceleration test apparatus for carrying out the electrophotographic photoreceptor deterioration acceleration test method according to claim 1, comprising at least a charging device and an exposure apparatus.
JP2004172855A 2004-06-10 2004-06-10 Photoreceptor deterioration acceleration test method and acceleration test equipment Pending JP2005352176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172855A JP2005352176A (en) 2004-06-10 2004-06-10 Photoreceptor deterioration acceleration test method and acceleration test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172855A JP2005352176A (en) 2004-06-10 2004-06-10 Photoreceptor deterioration acceleration test method and acceleration test equipment

Publications (1)

Publication Number Publication Date
JP2005352176A true JP2005352176A (en) 2005-12-22

Family

ID=35586711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172855A Pending JP2005352176A (en) 2004-06-10 2004-06-10 Photoreceptor deterioration acceleration test method and acceleration test equipment

Country Status (1)

Country Link
JP (1) JP2005352176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206242A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Deterioration accelerating test method for photoreceptor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007206242A (en) * 2006-01-31 2007-08-16 Ricoh Co Ltd Deterioration accelerating test method for photoreceptor

Similar Documents

Publication Publication Date Title
US10359728B2 (en) Image forming apparatus
KR100708126B1 (en) Method of maintaining a surface charge on a photoreceptor
JP2005352176A (en) Photoreceptor deterioration acceleration test method and acceleration test equipment
JP4234080B2 (en) Photoconductor deterioration acceleration test method and acceleration test apparatus
JP4324519B2 (en) Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus
JP4428527B2 (en) Electrophotographic photoconductor degradation acceleration test method and degradation acceleration test equipment
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP4128232B2 (en) Method and apparatus for measuring electrical properties of electrophotographic media
JP4953185B2 (en) Electrophotographic photoreceptor deterioration acceleration test method and acceleration test apparatus
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP2005099133A (en) Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for the same
Tse et al. Predicting charge roller performance in electrophotography using electrostatic charge decay measurements
JP4057448B2 (en) Electrophotographic photoreceptor test equipment
JP2007155993A (en) Method for accelerated testing of degradation in electrophotographic photoreceptor and accelerated testing machine for degradation in electrophotographic photoreceptor
US10663879B2 (en) Image forming apparatus with plural corona chargers
JP2008216704A (en) Method and device for evaluating characteristic of electrophotographic photoreceptor
JP2005099111A (en) Method for accelerated testing of deterioration in electrophotographic photoreceptor and electrostatic charger used for it
JP2002149005A (en) Test device for accelerating deterioration of photoreceptor
JP2010204655A (en) Apparatus and method for suppressing image ghost due to photoreceptor
JPH0777853A (en) Process controller
JP2004077125A (en) Apparatus and method for detecting defect in electrophotography photoreceptor
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor
JP4546784B2 (en) Photoreceptor characteristic evaluation device
JPH04251859A (en) Method for measuring electrostatic potential
JP4922067B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090223

A02 Decision of refusal

Effective date: 20090817

Free format text: JAPANESE INTERMEDIATE CODE: A02