JP2008216704A - Method and device for evaluating characteristic of electrophotographic photoreceptor - Google Patents

Method and device for evaluating characteristic of electrophotographic photoreceptor Download PDF

Info

Publication number
JP2008216704A
JP2008216704A JP2007055041A JP2007055041A JP2008216704A JP 2008216704 A JP2008216704 A JP 2008216704A JP 2007055041 A JP2007055041 A JP 2007055041A JP 2007055041 A JP2007055041 A JP 2007055041A JP 2008216704 A JP2008216704 A JP 2008216704A
Authority
JP
Japan
Prior art keywords
sample
capacitance
calculating
electrophotographic photoreceptor
charge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007055041A
Other languages
Japanese (ja)
Other versions
JP4914250B2 (en
Inventor
Noriyasu Saito
紀保 齋藤
Kiyoshi Masuda
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007055041A priority Critical patent/JP4914250B2/en
Publication of JP2008216704A publication Critical patent/JP2008216704A/en
Application granted granted Critical
Publication of JP4914250B2 publication Critical patent/JP4914250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for calculating electrostatic capacitance of electrophotographic photoreceptor capable of precisely calculating the electrostatic capacitance without being affected by the rotation, and to provide a device for evaluating characteristic of electrophotographic photoreceptor using the method for evaluating the characteristic. <P>SOLUTION: The method for calculating electrostatic capacitance of electrophotographic photoreceptor has: a step of rotating a sample as a photoreceptor drum 1; a static electricity charging step of electrifying a photosensitive surface of the sample by discharge from a corona electrifier 6; a photoemission step of performing photoemission by exposing the photosensitive surface of the sample after electrification; and an electrostatic capacitance calculation step of determining electrostatic capacitance of the sample based on a detection result of the surface potential and the amount of charged electric charge of the sample, wherein a discharge current I of the corona electrifier 6 satisfies the following relation. ¾I¾≥148.5/r[nA/cm<SP>2</SP>], therein, r presents a drum radius (unit:cm) of the sample. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、レーザープリンタ、複写機等の画像形成装置に使用される電子写真用感光体の特性評価方法及び装置に関するものである。   The present invention relates to a method and apparatus for evaluating characteristics of an electrophotographic photoreceptor used in an image forming apparatus such as a laser printer or a copying machine.

特許文献1には、電子写真感光体の試料片をセットする開口部を持つターンテーブルと、該ターンテーブルを高速回転させるための手段と、ターンテーブルに対向して配置され該感光体試料片を徐々に帯電させるコロナ帯電器と、ターンテーブルの開口部に装着された感光体試験片表面の平均帯電電位と感光体試料片に流れ込む電流を同時に計測する為の手段とを有し、該電流は時間で積分され充電電荷として処理され、Q=C・Vの関係式より感光体試料片の静電容量を非破壊、非接触で測定する装置であって、感光体試料片の静電容量の測定時に高速回転するターンテーブルの感光体試料片に流れ込む電流に対する真の電流を算出し、静電容量の測定精度を向上させた測定装置が記載されている。   In Patent Document 1, a turntable having an opening for setting a sample piece of an electrophotographic photosensitive member, a means for rotating the turntable at a high speed, and a photoconductor sample piece arranged opposite to the turntable. A corona charger for gradually charging, and means for simultaneously measuring the average charged potential of the surface of the photoconductor test piece mounted on the opening of the turntable and the current flowing into the photoconductor sample piece, This is a device that integrates with time and processes as a charged charge, and measures the electrostatic capacity of the photoconductor sample piece in a non-destructive and non-contact manner according to the relation Q = C · V. There is described a measuring apparatus that calculates the true current with respect to the current flowing into the photosensitive drum sample piece of the turntable that rotates at high speed during the measurement, thereby improving the capacitance measurement accuracy.

その他の従来技術として、特許文献2には、電子写真用感光体を高速で回転させる工程と、該電子写真用感光体の感光面を帯電させる静電気帯電工程と、該電子写真感光体の感光面に光放電させる光放電工程とを有し、該電子写真感光体に流れ込む電流の電流信号を検出してA/D変換し、算出される該電子写真感光体の充電電荷量と、該電子写真感光体の表面電位の電位信号を検出してA/D変換し、求められる該電子写真感光体の帯電電位とから該電子写真感光体の静電容量を求める電子写真感光体の静電容量算出方法であって、該電子写真感光体の充電電荷量は、電流値を時間で積分した値に補正値を加えた値とする電子写真感光体の静電容量算出方法が記載されている。なお、ここで「高速」とは、1000rpm以上、「低速」とは、200rpm以下の意味で使用している。   As other conventional techniques, Patent Document 2 discloses a step of rotating an electrophotographic photosensitive member at a high speed, an electrostatic charging step of charging the photosensitive surface of the electrophotographic photosensitive member, and a photosensitive surface of the electrophotographic photosensitive member. A photodischarge step for photodischarging the electrophotographic photosensitive member, detecting a current signal of a current flowing into the electrophotographic photosensitive member and performing A / D conversion, and calculating the charge amount of the electrophotographic photosensitive member, and the electrophotography Capacitance calculation of the electrophotographic photosensitive member for detecting the electrostatic potential of the electrophotographic photosensitive member from the obtained charging potential of the electrophotographic photosensitive member by detecting a potential signal of the surface potential of the photosensitive member and performing A / D conversion. A method for calculating the electrostatic capacity of an electrophotographic photosensitive member is described, wherein the charge amount of the electrophotographic photosensitive member is obtained by adding a correction value to a value obtained by integrating a current value with time. Here, “high speed” is used to mean 1000 rpm or more, and “low speed” means 200 rpm or less.

しかし、感光体の静電容量を算出するために測定する帯電特性測定の際、帯電装置の設定放電電流を小さくした場合、静電容量算出結果に違いが生じる事が分かった。また、低速回転で帯電装置の設定放電電流を小さくした場合には、静電容量算出結果の違いが顕著に現れる事が分かった。更に、回転数を落として静電容量を算出した場合には、設定放電電流の大きさに関係なく、回転数を落としていくほど静電容量算出結果の違いが大きい事が分かった。しかし、従来の特許文献はこの問題点に関しての記載はなく、問題として認識されていなかった。   However, it has been found that when charging characteristics are measured in order to calculate the electrostatic capacity of the photosensitive member, if the set discharge current of the charging device is reduced, the electrostatic capacity calculation results differ. In addition, it was found that when the set discharge current of the charging device is reduced at low speed rotation, the difference in the capacitance calculation result appears significantly. Further, it was found that when the electrostatic capacity was calculated with the rotational speed decreased, the difference in the electrostatic capacity calculation result was greater as the rotational speed was decreased, regardless of the magnitude of the set discharge current. However, the conventional patent document does not describe this problem and has not been recognized as a problem.

また、従来の特許文献に記載されている様に、電子写真感光体に要求される特性として、帯電能、電荷保持能、感度等があげられる。これらの電気的・光学的な特性の測定には電子写真プロセスと同様にコロナ帯電・露光を行う事によって上記特性を評価される事が多い。それらの特性を評価する特性値の一つとして、電子写真感光体をコンデンサと考え、静電容量を求め評価する方法がある。   In addition, as described in the conventional patent documents, the chargeability, charge retention ability, sensitivity, and the like are given as the characteristics required for the electrophotographic photosensitive member. In the measurement of these electrical and optical characteristics, the above characteristics are often evaluated by performing corona charging / exposure in the same manner as in the electrophotographic process. As one of characteristic values for evaluating these characteristics, there is a method in which the electrophotographic photosensitive member is regarded as a capacitor and the capacitance is obtained and evaluated.

図2はこの方法の原理を示した図である。電子写真感光体をコンデンサと考えるモデルでは、コロナ帯電により感光体試料に流れる電流Iと、この時の表面電位Vを同時計測し、通過電流は時間tで積算され、図2(c)のグラフで示されるように、Q=C・V(Qは充電電荷量、Vは感光体の帯電電位、Cは感光体の静電容量)の関係より静電容量(C)を求める。感光体にコロナ放電を施すとその表面電位(V)は、通常図2(a)の上段のグラフで示されるように立ち上がっていく。この間、感光体の充電電荷量は、図2(b)のグラフで示されるように推移する。つまり、充電電荷量(Q)は、各時間(Δt)あたりの各充電電荷量(q1)、(q2)、(q3)、・・・(qn)の積算値で表され、増大していく。各充電電荷量(q1)、(q2)(q3)、・・・(qn)は、それぞれ、時間(Δt)と電流(I)との積で表される積分値であり、電流(I)は実測の試料充電電流値/S(Sは帯電される試料の面積)で定まる。これらによって求まった充電電荷量(Q)とこれに対応する表面電位(V)をプロットして直線を引き、この傾きから静電容量(C)を算出する(図2(c))。従来の特許文献で記載されている様に、この算出方法では、徐々に帯電する状況を作り、測定する為、高速回転させて静電容量を算出する必要があった。   FIG. 2 shows the principle of this method. In the model in which the electrophotographic photosensitive member is considered as a capacitor, the current I flowing through the photosensitive member sample by corona charging and the surface potential V at this time are simultaneously measured, and the passing current is integrated at time t, and the graph of FIG. As shown, Q = C · V (Q is the charge amount, V is the charge potential of the photoconductor, and C is the capacitance of the photoconductor). When corona discharge is applied to the photoreceptor, its surface potential (V) usually rises as shown in the upper graph of FIG. During this time, the charge amount of the photoreceptor changes as shown in the graph of FIG. That is, the charge amount (Q) is represented by an integrated value of each charge amount (q1), (q2), (q3),... (Qn) per each time (Δt) and increases. . Each charge amount (q1), (q2) (q3),... (Qn) is an integral value represented by the product of time (Δt) and current (I), and current (I) Is determined by the measured sample charging current value / S (S is the area of the charged sample). The charge amount (Q) obtained from these and the surface potential (V) corresponding thereto are plotted, a straight line is drawn, and the capacitance (C) is calculated from this slope (FIG. 2 (c)). As described in the conventional patent literature, in this calculation method, it is necessary to calculate the capacitance by rotating at a high speed in order to create and measure a state of gradually charging.

被測定物となる感光体が平板などのテストピースの場合は、サンプルサイズも小さい為高速回転させて静電容量を算出する場合に特に問題はなかった。また、被測定物が感光体ドラムの場合で、感光体のドラム直径が小さい物に関しては、支持体に厚みの不均一な部分があった場合でも、回転時に大きな問題が生じるほど振れが非常に大きくなる事は無い為、高速回転させて静電容量を算出する事が可能であった。しかし、ドラム直径が大きい場合で支持体に厚みの不均一な部分があった場合は、重量バランスの悪さにより、回転時に非常に大きな振れとなる。また、それによって感光体周りに配置された帯電装置・露光装置・表面電位検出装置との距離が安定しない為に、正確な計測が出来ない状況も発生する事が分かっていた。   When the photoconductor to be measured was a test piece such as a flat plate, there was no particular problem when calculating the capacitance by rotating at high speed because the sample size was small. Also, when the object to be measured is a photosensitive drum and the drum diameter of the photosensitive member is small, even if the support has a non-uniform thickness portion, the shake is so great that a large problem occurs during rotation. Since it does not increase, it was possible to calculate the capacitance by rotating at high speed. However, when the drum diameter is large and the support has a non-uniform thickness portion, a very large vibration occurs during rotation due to poor weight balance. In addition, it has been found that a situation in which accurate measurement cannot be performed also occurs because the distance from the charging device, the exposure device, and the surface potential detection device arranged around the photosensitive member is not stable.

更に、振れが大きい場合には、感光体周りに配置された帯電装置・露光装置・表面電位検出装置に接触し装置の損傷や感光体へのダメージも起こる為、振れを抑える方法として、重量バランスの悪い位置を確認し、その位置におもりを付ける事で振れ量を抑え計測する方法があるが、バランスの悪い部分を測定する為の機構・装置等が必要となる事や、計測する場合には、測定者の手間になるという悪さがあった。その為、従来通りの装置で、測定者の手間を取らせず、低速回転で静電容量を精度良く計測する方法が要望されていた。   In addition, when the shake is large, the charging device, exposure device, and surface potential detection device placed around the photoconductor come into contact with the device and damage the photoconductor. There is a method to check the position where the position is bad and to suppress the shake amount by attaching a weight to the position, but when a mechanism or device to measure the unbalanced part is required or when measuring Had the problem of being troublesome for the measurer. For this reason, there has been a demand for a method for accurately measuring the capacitance at a low speed rotation without taking the trouble of the measurer with a conventional apparatus.

特開平10−282057号公報Japanese Patent Laid-Open No. 10-282057 特開2003−279608号公報JP 2003-279608 A

本発明は、以上の従来技術における問題に鑑みてなされたものであり、回転数に影響されず精度良く静電容量を算出可能な電子写真用感光体の静電容量算出方法及び該特性評価方法を用いた電子写真用感光体の特性評価装置を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and is a method for calculating the capacitance of an electrophotographic photoreceptor capable of accurately calculating the capacitance without being affected by the rotational speed, and a method for evaluating the characteristics. An object of the present invention is to provide an apparatus for evaluating characteristics of an electrophotographic photoreceptor using the above.

前記課題を解決するために提供する本発明は、以下の通りである。
(1) ドラム状の電子写真用感光体である試料を回転させる工程と、帯電装置からの放電により前記試料の感光面を帯電させる静電気帯電工程と、帯電後の前記試料の感光面を露光により光放電させる光放電工程と、前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求める静電容量算出工程とを有する電子写真用感光体の静電容量算出方法であって、前記帯電装置の放電電流Iを以下の式を満足するものとすることを特徴とする電子写真用感光体の静電容量算出方法。
|I| ≧ 148.5/r[nA/cm
(r:前記試料のドラム半径(単位:cm))
(2) 前記(1)記載の電子写真用感光体の静電容量算出方法において、前記静電容量算出工程では、前記試料の回転周期以上の時間間隔で採取された前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求めることを特徴とする電子写真用感光体の静電容量算出方法。
(3) 前記(2)記載の電子写真用感光体の静電容量算出方法において、前記静電容量算出工程では、前記試料の回転周期の整数倍間隔で採取された前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求めることを特徴とする電子写真用感光体の静電容量算出方法。
(4) 前記(3)記載の電子写真用感光体の静電容量算出方法において、前記試料の充電電荷量は、該試料の通過電流値を帯電経過時間で積分した値に、電流測定系の信号応答性に基づく補正を加えた値であることを特徴とする電子写真用感光体の静電容量算出方法。
(5) 前記(4)記載の電子写真用感光体の静電容量算出方法において、前記試料の充電電荷量は、該試料の通過電流値に係数を乗じる方法によって算出されることを特徴とする電子写真用感光体の静電容量算出方法。
(6) 前記(5)記載の電子写真用感光体の静電容量算出方法において、前記係数は、正の値であることを特徴とする電子写真用感光体の静電容量算出方法。
(7) ドラム状の電子写真用感光体である試料の回転装置と、該試料の感光面を放電により帯電させる帯電装置と、前記試料の感光面を露光する露光装置と、前記試料表面の帯電電位を検出する帯電電位検出装置と、前記試料の充電電荷量を検出する電荷量検出装置と、前記(1)〜(6)のいずれかに記載の電子写真用感光体の静電容量算出方法により前記試料の静電容量を求める静電容量算出手段とを備えることを特徴とする電子写真用感光体の特性評価装置。
The present invention provided to solve the above problems is as follows.
(1) A step of rotating a sample which is a drum-shaped electrophotographic photosensitive member, an electrostatic charging step of charging the photosensitive surface of the sample by discharge from a charging device, and an exposure of the photosensitive surface of the sample after charging Capacitance calculation of an electrophotographic photoreceptor having a photodischarge process for photodischarge, and a capacitance calculation process for obtaining a capacitance of the sample based on a detection result of a surface potential and a charge amount of the sample A method for calculating the capacitance of an electrophotographic photoreceptor, characterized in that the discharge current I of the charging device satisfies the following formula:
| I | ≧ 148.5 / r [nA / cm 2 ]
(R: drum radius of the sample (unit: cm))
(2) In the electrostatic capacity calculation method for the electrophotographic photoreceptor according to (1), in the electrostatic capacity calculation step, the surface potential and the charge of the sample collected at a time interval equal to or greater than the rotation period of the sample. An electrostatic capacity calculation method for an electrophotographic photosensitive member, wherein the electrostatic capacity of the sample is obtained based on a charge amount detection result.
(3) In the electrostatic capacity calculation method for the electrophotographic photoreceptor according to (2), in the electrostatic capacity calculation step, the surface potential and the charge of the sample collected at an integer multiple of the rotation period of the sample. An electrostatic capacity calculation method for an electrophotographic photosensitive member, wherein the electrostatic capacity of the sample is obtained based on a charge amount detection result.
(4) In the method of calculating the electrostatic capacity of the electrophotographic photoreceptor according to (3), the charge amount of the sample is obtained by integrating the passing current value of the sample with the elapsed charging time. A method for calculating the capacitance of an electrophotographic photoreceptor, wherein the value is a value based on correction based on signal responsiveness.
(5) In the method for calculating the electrostatic capacity of the electrophotographic photosensitive member according to (4), the charge amount of the sample is calculated by a method of multiplying a passing current value of the sample by a coefficient. A method for calculating the capacitance of an electrophotographic photoreceptor.
(6) The electrostatic capacity calculation method for an electrophotographic photoreceptor according to (5), wherein the coefficient is a positive value.
(7) A sample rotating device that is a drum-shaped electrophotographic photosensitive member, a charging device that charges the photosensitive surface of the sample by discharge, an exposure device that exposes the photosensitive surface of the sample, and charging of the sample surface A charge potential detection device for detecting a potential, a charge amount detection device for detecting a charge amount of the sample, and a method for calculating the capacitance of the electrophotographic photoreceptor according to any one of (1) to (6) And an electrostatic capacity calculating means for determining the electrostatic capacity of the sample.

本発明の電子写真用感光体の静電容量算出方法によれば、高速回転から低速回転まで、回転数に影響されず精度良く電子写真用感光体(試料)の静電容量を算出することが可能となる。特に、従来では回転数を低速にした場合には静電容量を精度良く算出する事が困難であったが、本発明によれば精度良く静電容量を算出可能となる。また、本発明の電子写真用感光体の静電容量算出方法を実現する電子写真用感光体の特性評価装置を提供することが可能となる。
すなわち請求項1の発明によれば、被帯電体試料に対し帯電装置の設定放電電流Iの条件を規定して試料の帯電電位及び試料に流れる電荷量を測定し、静電容量を算出することにより、静電容量を精度良く算出する事が可能となる。
請求項2の発明によれば、静電容量算出時に使用する充電電荷量と表面電位の対応グラフで、ドラム回転周期以上の時間間隔で結果をプロットし、静電容量を算出する事により、プロットするポイントのバラツキが無くなり、容易に静電容量算出のための直線を引く事が可能となり精度良く静電容量算出が可能となる。
請求項3の発明によれば、静電容量算出時に使用する充電電荷量と表面電位の対応グラフで、ドラム回転周期の整数倍間隔で結果をプロットし、静電容量を算出する事により、低速回転時においてもプロットするポイントのバラツキが無くなり、容易に静電容量算出のための直線を引く事が可能となり精度良く静電容量算出が可能となる。
請求項4の発明によれば、感光体に与えた充電電荷量を、流れ込む電流を測定し、時間で積分する事で測定される方法であって、充電電荷量を算出する際、感光体の通過電流を時間で積分した値に、電流測定系の信号応答性を考慮した補正を加えた値として、静電容量を算出する事により、信号処理回路によって生じた信号の遅れを補正して静電容量を精度良く算出する事が可能となる。
請求項5の発明によれば、充電電荷量算出時の補正値が、算出時における通過電流に係数を乗じる事によって算出する方法である事により、信号処理等によって生じた信号遅れの補正を容易に実施可能な方法を提供する事が可能となる。
請求項6の発明によれば、充電電荷量算出時の補正値が正の値である事により、信号処理等によって生じた信号遅れを補正して静電容量を精度良く算出する事が可能となる。
請求項7の発明によれば、高速回転から低速回転まで、回転数に影響されず精度良く電子写真用感光体(試料)の静電容量を算出することが可能な電子写真用感光体の特性評価装置を提供することができる。
According to the method for calculating the capacitance of the electrophotographic photoreceptor of the present invention, it is possible to calculate the capacitance of the electrophotographic photoreceptor (sample) with high accuracy from the high speed rotation to the low speed rotation without being influenced by the rotational speed. It becomes possible. In particular, conventionally, it has been difficult to accurately calculate the capacitance when the rotational speed is low, but according to the present invention, the capacitance can be calculated with high accuracy. In addition, it is possible to provide an electrophotographic photoreceptor characteristic evaluation apparatus that realizes the electrophotographic photoreceptor electrostatic capacity calculation method of the present invention.
That is, according to the first aspect of the present invention, the condition of the set discharge current I of the charging device is defined for the sample to be charged, the charge potential of the sample and the amount of charge flowing through the sample are measured, and the capacitance is calculated. Thus, the capacitance can be calculated with high accuracy.
According to the second aspect of the present invention, the graph is obtained by plotting the result at a time interval equal to or greater than the drum rotation period and calculating the capacitance by using a graph of the charge amount and the surface potential used for calculating the capacitance. The variation of the points to be eliminated is eliminated, and a straight line for calculating the capacitance can be easily drawn, and the capacitance can be calculated with high accuracy.
According to the third aspect of the present invention, by plotting the result at intervals of integer multiples of the drum rotation period on the correspondence graph between the charge amount used and the surface potential used when calculating the capacitance, and calculating the capacitance, Even during rotation, there is no variation in points to be plotted, and it is possible to easily draw a straight line for calculating the capacitance, and the capacitance can be calculated with high accuracy.
According to the fourth aspect of the present invention, the charge amount applied to the photosensitive member is measured by measuring the flowing current and integrating the charge amount over time. By calculating the capacitance as a value obtained by integrating the passing current with time and taking into account the signal response of the current measurement system, the signal delay caused by the signal processing circuit is corrected and static It is possible to accurately calculate the electric capacity.
According to the fifth aspect of the present invention, since the correction value at the time of calculating the charge amount is calculated by multiplying the passing current at the time of calculation by a coefficient, it is easy to correct a signal delay caused by signal processing or the like. It is possible to provide a feasible method.
According to the invention of claim 6, since the correction value at the time of calculating the charge amount is a positive value, it is possible to correct the signal delay caused by signal processing or the like and calculate the capacitance with high accuracy. Become.
According to the invention of claim 7, the characteristics of the electrophotographic photoreceptor capable of accurately calculating the electrostatic capacity of the electrophotographic photoreceptor (sample) from high speed rotation to low speed rotation without being influenced by the rotational speed. An evaluation device can be provided.

以下に、本発明の実施の形態を図面に基づいて説明する。また、本発明では、「放電電流」という用語を用いるが、これは、帯電装置の放電条件を決めるための値であり、測定する感光体(試料)と同形状(直径・全長・肉厚が同じ)の素管(感光層を塗布していない)を放電させ、アルミ素管側に流れる電流の事を意味している。この放電電流によって帯電装置の出力を設定する。   Embodiments of the present invention will be described below with reference to the drawings. In the present invention, the term “discharge current” is used. This is a value for determining the discharge conditions of the charging device, and has the same shape (diameter, total length, and thickness) as the photoconductor (sample) to be measured. It means the current that flows to the aluminum tube side by discharging the same tube (no photosensitive layer applied). The output of the charging device is set by this discharge current.

本発明では、感光体試料に対する帯電装置の設定放電電流Iの条件を下記の式(1)を満足するようにして放電を行い、試料の帯電電位・及び試料に流れる電荷量を測定し、静電容量を算出する電子写真用感光体の静電容量算出方法に特徴がある。
|I| ≧ 148.5/r[nA/cm] ・・・ (1)
(r:感光体試料のドラム半径(単位:cm))
以下、本発明に係る電子写真用感光体の静電容量算出方法及びこの方法を適用した電子写真用感光体の特性評価装置について説明する。
In the present invention, discharge is performed so that the condition of the set discharge current I of the charging device for the photoreceptor sample satisfies the following formula (1), the charge potential of the sample and the amount of charge flowing through the sample are measured, There is a feature in the electrostatic capacity calculation method of the electrophotographic photoreceptor for calculating the electrical capacity.
| I | ≧ 148.5 / r [nA / cm 2 ] (1)
(R: drum radius of photoconductor sample (unit: cm))
Hereinafter, a method for calculating the capacitance of an electrophotographic photoreceptor according to the present invention and an apparatus for evaluating characteristics of an electrophotographic photoreceptor to which this method is applied will be described.

図1は、本発明にかかる電子写真用感光体の特性評価装置(以下、特性評価装置)の概略図である。図1を参照しながら特性評価装置を説明する。
特性評価装置は、感光体ドラム1を露光する露光ランプ11、感光体ドラム1の電位を計測する表面電位計プローブ3、感光体ドラム1を帯電するコロナ帯電器6、コロナ帯電器6へ電圧を供給する為の電源7、電源7のスイッチ13、感光体ドラム1を除電する除電用光源8、露光ランプ11を覆うランプボックス10、露光した光を電子写真用感光体の照射面までガイドする露光ガイドボックス2、照度を調節する絞り12を有している。
FIG. 1 is a schematic view of an electrophotographic photoreceptor characteristic evaluation apparatus (hereinafter, characteristic evaluation apparatus) according to the present invention. The characteristic evaluation apparatus will be described with reference to FIG.
The characteristic evaluation apparatus includes an exposure lamp 11 that exposes the photosensitive drum 1, a surface potential meter probe 3 that measures the potential of the photosensitive drum 1, a corona charger 6 that charges the photosensitive drum 1, and a voltage applied to the corona charger 6. A power supply 7 for supplying, a switch 13 for the power supply 7, a light source 8 for neutralizing the photosensitive drum 1, a lamp box 10 for covering the exposure lamp 11, and an exposure for guiding the exposed light to the irradiation surface of the electrophotographic photosensitive member. It has a guide box 2 and a diaphragm 12 for adjusting the illuminance.

この特性評価装置では、感光体ドラム1はモーター14によって回転する機構となっており、図1の矢印の方向に回転する。このとき、電源7から高電圧が出力され、コロナ帯電器6によって感光体ドラム1が帯電される。この帯電時に感光体ドラム1中を通過する電流(通過電流)は計測され、5の信号処理回路に送られる。なお、信号処理回路の中には図示されていない平滑化回路が組み込まれており、平滑化回路によって通過電流の平滑化が行われる。その後、A/D変換器16によってデジタル信号に変換されコントローラ15に送られデジタル信号が演算処理される。   In this characteristic evaluation apparatus, the photosensitive drum 1 has a mechanism that is rotated by a motor 14, and rotates in the direction of the arrow in FIG. At this time, a high voltage is output from the power source 7 and the photosensitive drum 1 is charged by the corona charger 6. The current (passing current) passing through the photosensitive drum 1 at the time of charging is measured and sent to a signal processing circuit 5. Note that a smoothing circuit (not shown) is incorporated in the signal processing circuit, and the smoothing circuit smoothes the passing current. Thereafter, it is converted into a digital signal by the A / D converter 16 and sent to the controller 15 where the digital signal is processed.

また、感光体ドラム1の表面電位は、表面電位計プローブ3からモニター部である表面電位計4に送られモニターされ、信号処理回路9に送られる。その後A/D変換器16によって変換され、次にコントローラ15に送られ演算処理される。コントローラ15は、感光体ドラム1を回転させるモーター14内のモータードライバに接続されている。モータードライバでは、回転数を出力する機能、回転数をリモート制御可能な機能も付加されているため、回転数制御と回転数の認識も可能である。   Further, the surface potential of the photosensitive drum 1 is sent from the surface potential meter probe 3 to the surface potential meter 4 as a monitor unit, monitored, and sent to the signal processing circuit 9. Thereafter, the data is converted by the A / D converter 16 and then sent to the controller 15 for arithmetic processing. The controller 15 is connected to a motor driver in the motor 14 that rotates the photosensitive drum 1. In the motor driver, a function for outputting the rotation speed and a function for remotely controlling the rotation speed are added, so that the rotation speed control and the rotation speed recognition are possible.

感光体ドラム1周りのユニットは、デジタルリレー出力によってON/OFF制御されている。また、感光体ドラム1の露光後電位は、露光ランプ11を使用する事によって、測定が出来、感光体ドラム1の表面電位を取り除く場合は、除電用光源8を使用し取り除く事が可能であり、感光体ドラム1の帯電特性、光減衰特性等の特性評価が可能である。   The units around the photosensitive drum 1 are ON / OFF controlled by a digital relay output. Further, the post-exposure potential of the photosensitive drum 1 can be measured by using the exposure lamp 11, and when the surface potential of the photosensitive drum 1 is removed, it can be removed by using the light source 8 for static elimination. It is possible to evaluate characteristics such as charging characteristics and light attenuation characteristics of the photosensitive drum 1.

露光装置(露光ランプ11)には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザ(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いる事も出来、照度を下げる為に、ニュートラルデンシティフィルターを用いる事も出来る。また照度を調節する為の絞り12には、絞りを使わず照度調整可能なニュートラルデンシティフィルターを用いる事も出来る。   For the exposure apparatus (exposure lamp 11), it is possible to use a general luminescent material such as a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD), and an electroluminescence (EL). it can. And to irradiate only light in the desired wavelength range, various filters such as sharp cut filter, band pass filter, near infrared cut filter, dichroic filter, interference filter, color temperature conversion filter can be used, A neutral density filter can be used to lower the value. The diaphragm 12 for adjusting the illuminance can be a neutral density filter capable of adjusting the illuminance without using the diaphragm.

被試験試料(感光体ドラム1)の表面を帯電処理するための帯電装置用電源回路の制御手段、該被試験試料を光照射するための光源用電源回路の制御手段は、図示されてないが、これらとしては、従来公知のものをそのまま用いることができる。   The charging device power supply circuit control means for charging the surface of the sample to be tested (photosensitive drum 1) and the light source power supply circuit control means for irradiating the sample to be tested are not shown. As these, conventionally known ones can be used as they are.

図3に、感光体ドラム1の静電容量を算出する方法の原理を示す。これは、電子写真感光体をコンデンサと考えるモデルで静電容量を算出する方法であり、コロナ帯電により感光体試料(感光体ドラム1)に流れる電流と、この時の表面電位を同時計測し、通過電流は時間で積算され、図3(c)のグラフで示されるように、Q=C・V(Qは充電電荷量、Vは感光体の帯電電位、Cは感光体の静電容量)の関係より静電容量(C)を求める。感光体ドラム1にコロナ放電を施すとその表面電位(V)は、通常図3(a)のグラフで示されるように立ち上がっていく。この間、感光体ドラム1の充電電荷量は、図3(b)のグラフで示されるように推移する。つまり、充電電荷量(Q)は、各時間(Δt)あたりの各充電電荷量(q1)、(q2)、(q3)、・・・(qn)の積算値で表され、増大していく。各充電電荷量(q1)、(q2)(q3)、・・・(qn)は、それぞれ、時間(Δt)と電流(I)との積で表される積分値であり、電流(I)は実測の試料充電電流値/S(Sは帯電される試料の面積)で定まるが、電流の遅れを補正するために、それぞれのポイントで充電電荷量算出する際、電流値に補正係数Nを乗じた物を足し合わせ、充電電荷量(Q)を算出する。これらによって求まった充電電荷量(Q)とこれに対応する表面電位(V)(図3(a))をプロットして直線を引き、この傾きから静電容量(C)を算出する(図3(c))。この静電容量算出自体は、コントローラ15の記憶領域に記憶された、表面電位と電流のデータを使用して、コントローラ15で処理が実施され、静電容量(C)が算出される仕組みとなっている。また、静電容量(C)を算出する際に、充電電荷量(Q)と表面電位(V)をプロットするポイントの時間間隔やポイント数などは自由に変更が可能である。   FIG. 3 shows the principle of a method for calculating the electrostatic capacity of the photosensitive drum 1. This is a method of calculating the electrostatic capacity with a model in which the electrophotographic photosensitive member is regarded as a capacitor, and simultaneously measures the current flowing through the photosensitive member sample (photosensitive drum 1) by corona charging and the surface potential at this time, The passing current is integrated over time, and as shown in the graph of FIG. 3C, Q = C · V (Q is the charge amount, V is the charge potential of the photoconductor, and C is the electrostatic capacitance of the photoconductor). The capacitance (C) is obtained from the relationship. When corona discharge is applied to the photosensitive drum 1, its surface potential (V) usually rises as shown in the graph of FIG. During this time, the charge amount of the photosensitive drum 1 changes as shown in the graph of FIG. That is, the charge amount (Q) is represented by an integrated value of each charge amount (q1), (q2), (q3),... (Qn) per each time (Δt) and increases. . Each charge amount (q1), (q2) (q3),... (Qn) is an integral value represented by the product of time (Δt) and current (I), and current (I) Is determined by the measured sample charging current value / S (S is the area of the charged sample), but in order to correct the current delay, when calculating the charge amount at each point, a correction coefficient N is added to the current value. The charged items (Q) are calculated by adding the multiplied items. The charge amount (Q) obtained from these and the surface potential (V) (FIG. 3 (a)) corresponding thereto are plotted, a straight line is drawn, and the capacitance (C) is calculated from this slope (FIG. 3). (C)). This capacitance calculation itself is a mechanism in which processing is performed by the controller 15 using the surface potential and current data stored in the storage area of the controller 15 to calculate the capacitance (C). ing. Further, when calculating the capacitance (C), the time interval and the number of points for plotting the charge amount (Q) and the surface potential (V) can be freely changed.

特性評価装置は、光を透過しない暗箱あるいは、暗幕等で覆われている、暗箱あるいは暗幕で覆われていないと、試験時に外部環境(風・光・温度)の影響を受け、正確な特性評価が困難となる。但し、コントローラ・信号処理回路等、感光体ドラムの評価に影響の無い物に関しては、暗箱あるいは暗幕で覆う必要はない。   The characteristic evaluation device is affected by the external environment (wind, light, temperature) during the test if it is covered with a dark box that does not transmit light, or with a dark curtain, etc. It becomes difficult. However, objects that do not affect the evaluation of the photosensitive drum, such as a controller / signal processing circuit, do not need to be covered with a dark box or a black curtain.

本発明の実施に用いる評価試料としての感光体ドラム1は、導電性支持体の上に電荷発生層、電荷輸送層が形成されたもの、更に電荷輸送層の上に保護層が形成されたもの等が使用される。導電性支持体および電荷発生層、電荷輸送層としては、公知のものならば如何なるものでも使用することができる。   The photosensitive drum 1 as an evaluation sample used in the practice of the present invention has a charge generating layer and a charge transport layer formed on a conductive support, and further has a protective layer formed on the charge transport layer. Etc. are used. As the conductive support, the charge generation layer, and the charge transport layer, any known ones can be used.

(実験例)
図1の特性評価装置を使用し、ドラム直径30mm、ドラム全長340mm、ドラムの肉厚0.75mmのドラムに、リコーIPSIO CX8000用感光体と同じ材料・処方構成の感光層を塗った感光体ドラム1を使用して特性評価を行った。ここでは、帯電装置(コロナ帯電器6)の設定放電電流Iは−127.3[nA/cm]とし、感光体ドラム1の回転数は1800rpmと200rpmの2水準で測定した。また、表面電位・通過電流サンプリング間隔を0.01secとし、静電容量算出方法は図2に示す方法で実施した。
(Experimental example)
Photosensitive drum with the same material and prescription structure as the Ricoh IPSIO CX8000 photoconductor on a drum with a drum diameter of 30 mm, a drum total length of 340 mm, and a drum thickness of 0.75 mm, using the characteristic evaluation apparatus shown in FIG. 1 was used to evaluate the characteristics. Here, the set discharge current I of the charging device (corona charger 6) was set to −127.3 [nA / cm 2 ], and the rotational speed of the photosensitive drum 1 was measured at two levels of 1800 rpm and 200 rpm. The surface potential / passing current sampling interval was set to 0.01 sec, and the capacitance calculation method was performed by the method shown in FIG.

感光体ドラム1の表面電位の推移結果を図4、通過電流の推移結果を図5に示す。
図4と図5の結果から、1800rpmという高速回転で測定した場合には表面電位・通過電流が徐々に変化する状況を確認できるが、200rpmという低速回転で測定した場合には表面電位・通過電流とも1回転するまで放電状況は変化しないため、階段状に変化した結果でしか確認出来ない事が分かる。また、200rpmでの測定結果は表面電位・通過電流とも応答性の問題から信号に遅れが生じている事も分かる。
図6は、200rpmでの通過電流の拡大グラフ(概略グラフ)であるが、斜線で引かれている領域が電流遅れに相当する部分である。
A transition result of the surface potential of the photosensitive drum 1 is shown in FIG. 4, and a transition result of the passing current is shown in FIG.
From the results shown in FIGS. 4 and 5, it can be confirmed that the surface potential / passing current gradually changes when measured at a high speed of 1800 rpm, but the surface potential / passing current is measured when measured at a low speed of 200 rpm. In both cases, the discharge state does not change until one revolution, so that it can be confirmed only by the result of the step change. It can also be seen that the measurement results at 200 rpm are delayed in the signal due to the problem of responsiveness in both the surface potential and the passing current.
FIG. 6 is an enlarged graph (schematic graph) of the passing current at 200 rpm, and a region drawn with diagonal lines corresponds to a current delay.

また、静電容量を算出するためにプロットした充電電荷量と表面電位の対応関係の結果のグラフとして、回転数1800rpmの場合を図7、回転数200rpmの場合を図8に示す。ここでは、プロットしたポイントは全測定データの充電電荷量と表面電位対応関係をプロットしている。ここで、図7の結果からは、1800rpmという高速回転で静電容量を算出する場合は、充電電荷量と表面電位の結果グラフのどのポイントで回帰線を引いても同じような静電容量結果を算出する事が可能である。一方、図8の結果からは、200rpmという低速回転で静電容量を算出する場合には、回帰線を引くためのポイント選定が困難である事が分かる。また、図4と図5の結果からも分かるが、帯電装置と表面電位プローブは同じ位置に無い為に、表面電位と通過電流が同時期に変化しない。その為、静電容量算出時の表面電位と通過電流の対応関係を間違えると、正しい静電容量を算出できない事が分かる。   Further, as a graph of the result of the correspondence relationship between the charged charge amount and the surface potential plotted for calculating the capacitance, FIG. 7 shows the case of 1800 rpm and FIG. 8 shows the case of 200 rpm. Here, the plotted points plot the charge charge amount and surface potential correspondence relationship of all measurement data. Here, from the result of FIG. 7, when calculating the electrostatic capacity at a high speed of 1800 rpm, the same electrostatic capacity result can be obtained by drawing a regression line at any point of the result graph of the charge amount and the surface potential. Can be calculated. On the other hand, the results shown in FIG. 8 show that it is difficult to select points for drawing a regression line when calculating the capacitance at a low speed of 200 rpm. As can be seen from the results of FIGS. 4 and 5, since the charging device and the surface potential probe are not at the same position, the surface potential and the passing current do not change at the same time. Therefore, it can be seen that if the correspondence between the surface potential and the passing current at the time of calculating the capacitance is wrong, the correct capacitance cannot be calculated.

次に、前記表面電位・通過電流サンプリングデータのうち、Y軸の表面電位を26分割(−1200Vを26分割)した値に最も近い値のみをグラフにプロットすることを行った。図9に、回転数1800rpmで静電容量を算出した場合の充電電荷量と表面電位の結果グラフを、図10に回転数200rpmで静電容量を算出した場合の充電電荷量と表面電位の結果グラフを示す。   Next, among the surface potential / passing current sampling data, only the value closest to the value obtained by dividing the surface potential of the Y axis by 26 (-1200 V divided by 26) was plotted on the graph. FIG. 9 shows a result graph of the charge amount and surface potential when the electrostatic capacity is calculated at 1800 rpm, and FIG. 10 shows the result of charge amount and surface potential when the electrostatic capacity is calculated at 200 rpm. A graph is shown.

図9の結果から、1800rpmという高速回転で静電容量を算出した場合には、Y軸の表面電位を26分割した値に最も近い値のみをプロットしても、問題なく充電電荷量と表面電位の結果グラフから直線を引くことが出来、静電容量を算出できたが、図10に示すように200rpmという低速回転で従来のようにY軸の表面電位を26分割した値に最も近い値のみをプロットし静電容量を算出する方法では、直線を引くことが困難であり、精度の良い静電容量算出は困難である事が分かる。   From the results shown in FIG. 9, when the capacitance is calculated at a high speed of 1800 rpm, even if only the value closest to the value obtained by dividing the surface potential of the Y axis by 26 is plotted, the charge amount and the surface potential can be obtained without any problem. As a result, a straight line could be drawn from the graph and the capacitance could be calculated. However, as shown in FIG. 10, only the value closest to the value obtained by dividing the surface potential of the Y axis by 26 at a low speed of 200 rpm as in the prior art. It can be seen that it is difficult to draw a straight line by the method of plotting and calculating the capacitance, and it is difficult to calculate the capacitance with high accuracy.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により、何等限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.

(実施例1)
図1の特性評価装置(自社で設計製作した評価装置を使用)を使用し、ドラム直径30mm、ドラム全長340mm、ドラムの肉厚0.75mmのドラムに、リコーIPSIO CX8000用感光体と同じ材料・処方構成の感光層を塗った感光体ドラムを使用して特性評価を行った。なお、ドラム回転数:1800rpm、表面電位・通過電流サンプリング間隔:0.01secとし、設定放電電流を以下のように変化させて特性評価(静電容量の算出)を行った。また、静電容量算出方法は図2に示す方法を用いた。
(Example 1)
Using the characteristic evaluation device shown in Fig. 1 (using an evaluation device designed and manufactured in-house), a drum with a drum diameter of 30 mm, a drum total length of 340 mm, and a drum wall thickness of 0.75 mm, the same materials and materials as the Ricoh IPSIO CX8000 photoconductor Characteristic evaluation was performed using a photosensitive drum coated with a photosensitive layer having a prescribed composition. The drum rotation speed was 1800 rpm, the surface potential / passing current sampling interval was 0.01 sec, and the set discharge current was changed as follows to evaluate the characteristics (calculation of capacitance). Moreover, the method shown in FIG. 2 was used for the capacitance calculation method.

(実施例1a)設定放電電流:−127.3[nA/cm](−191.0/r[nA/cm])
(実施例1b)設定放電電流:−99.0[nA/cm](−148.5/r[nA/cm])
(比較例1a)設定放電電流:−70.7[nA/cm](−106.1/r[nA/cm])
(比較例1b)設定放電電流:−42.4[nA/cm](−63.7/r[nA/cm])
(r:感光体ドラムの半径)
(Example 1a) Set discharge current: -127.3 [nA / cm 2 ] (−191.0 / r [nA / cm 2 ])
(Example 1b) Set discharge current: -99.0 [nA / cm 2 ] (-148.5 / r [nA / cm 2 ])
(Comparative Example 1a) Set discharge current: −70.7 [nA / cm 2 ] (−106.1 / r [nA / cm 2 ])
(Comparative Example 1b) Set discharge current: −42.4 [nA / cm 2 ] (−63.7 / r [nA / cm 2 ])
(R: Radius of photosensitive drum)

特性評価結果を表1に示す。ここでは、それぞれの設定放電電流条件で実施した場合の静電容量算出結果を静電容量結果(1)で示し、設定放電電流−127.3[nA/cm]で測定した場合の静電容量算出結果を静電容量結果(2)で示している。また、今回使用した特性評価装置では、設定放電電流−127.3[nA/cm]・回転数1800[rpm]の条件で、あらかじめ静電容量が分かっているPETフィルムを、アルミ素管に巻き付けて静電容量を算出したところ、同レベルの静電容量が得られている為、この条件(設定放電電流−127.3[nA/cm]・回転数1800[rpm])で測定し算出した静電容量の値を基準にし、それぞれの設定放電電流条件で算出された結果との差を求め、表1右端の列の結果として示した。 The characteristic evaluation results are shown in Table 1. Here, the electrostatic capacity calculation result when implemented under each set discharge current condition is shown by the electrostatic capacity result (1), and the electrostatic capacity when measured at the set discharge current-127.3 [nA / cm 2 ]. The capacitance calculation result is indicated by a capacitance result (2). Moreover, in the characteristic evaluation apparatus used this time, a PET film whose capacitance is known in advance under the condition of a set discharge current of 127.3 [nA / cm 2 ] and a rotation speed of 1800 [rpm] is applied to the aluminum base tube. When the electrostatic capacity was calculated by winding, since the same level of electrostatic capacity was obtained, measurement was performed under this condition (set discharge current-127.3 [nA / cm 2 ] · rotation speed 1800 [rpm]). Using the calculated capacitance value as a reference, the difference from the result calculated under each set discharge current condition was obtained and shown as the result in the rightmost column of Table 1.

Figure 2008216704
Figure 2008216704

表1の結果から、設定放電電流が変化する事で、基準となる値から差が生じる事が分かる。また、静電容量の差として±3%が許容範囲であるが、設定放電電流が−99.0[nA/cm](ドラムの半径をrとした場合、−148.5/r[nA/cm])以上(いずれも絶対値で)でなければ、許容範囲を満たさない事が分かる。 From the results in Table 1, it can be seen that a difference occurs from the reference value when the set discharge current changes. Further, the allowable difference is ± 3% as the difference in capacitance, but the set discharge current is −99.0 [nA / cm 2 ] (when the drum radius is r, −148.5 / r [nA / Cm 2 ]) or more (both absolute values), it can be seen that the allowable range is not satisfied.

(実施例2〜4)
次に、図1の特性評価装置を使用して、ドラム直径30mm、ドラム全長340mm、ドラムの肉厚0.75mmのドラムに、リコーIPSIO CX8000用感光体と同じ材料・処方構成の感光層を塗った感光体ドラム1を使用して特性評価を行った。なお、設定放電電流は−127.3[nA/cm]、ドラム回転数は1800rpm(回転周期1/30sec)とし、感光体ドラム1の回転が安定した所で放電を開始させ、表面電位・通過電流サンプリング間隔:0.01secで表面電位と通過電流を計測し、計測された通過電流から、図2に示す方法を用いて充電電荷量を算出した。また、充電電荷量と表面電位の値をグラフ上でプロットする際、プロットするポイントの時間間隔を振り、充電電荷量と表面電位の結果グラフで直線を引く事が可能であるかを判断した(実施例2)。また、ドラム回転数を400rpm(回転周期3/20sec)とし、それ以外の条件を実施例2と同じとして同様の評価を行い実施例3とした。さらに、ドラム回転数を200rpm(回転周期3/10sec)とし、それ以外の条件を実施例2と同じとして同様の評価を行い実施例4とした。
その判断結果を表2に示す。
(Examples 2 to 4)
Next, using the characteristic evaluation apparatus shown in FIG. 1, a photosensitive layer having the same material and formulation as the Ricoh IPSIO CX8000 photoreceptor is applied to a drum having a drum diameter of 30 mm, a drum total length of 340 mm, and a drum wall thickness of 0.75 mm. The photosensitive drum 1 was used for property evaluation. The set discharge current is -127.3 [nA / cm 2 ], the drum rotation speed is 1800 rpm (rotation cycle 1/30 sec), and the discharge is started when the rotation of the photosensitive drum 1 is stabilized. Passing current sampling interval: The surface potential and the passing current were measured at 0.01 sec, and the charge amount was calculated from the measured passing current using the method shown in FIG. In addition, when plotting the charge charge amount and the surface potential value on the graph, it was determined whether it was possible to draw a straight line in the result graph of the charge charge amount and the surface potential by shifting the time interval of the points to be plotted ( Example 2). In addition, the drum rotation speed was set to 400 rpm (rotation cycle 3/20 sec), and the same evaluation was performed under the same conditions as in Example 2 except for the other conditions. Furthermore, the drum rotation speed was set to 200 rpm (rotation cycle 3/10 sec), and the same evaluation was performed with the other conditions being the same as in Example 2, and Example 4 was obtained.
The determination results are shown in Table 2.

Figure 2008216704
Figure 2008216704

表2の結果から、静電容量算出時に使用する充電電荷量と表面電位の結果グラフにおいて、測定時のドラム回転周期より長い間隔でプロットする事が、充電電荷量と表面電位の結果グラフから直線を引く為の必要条件である事が分かる。また、回転速度が低い場合(実施例4;200rpm)には回転周期より長い間隔でプロットした場合でも精度良く直線を引く事が困難になってしまうが、ドラム回転周期の整数倍間隔でプロットとする事で精度良く直線を引く事が可能になる事が分かる。   From the results in Table 2, in the result graph of charge amount and surface potential used when calculating the capacitance, plotting at intervals longer than the drum rotation period at the time of measurement is a straight line from the result graph of charge charge and surface potential. It can be seen that it is a necessary condition for drawing. Further, when the rotational speed is low (Example 4; 200 rpm), it becomes difficult to draw a straight line with high accuracy even when plotted at an interval longer than the rotational cycle. It can be seen that it becomes possible to draw a straight line with high accuracy.

(実施例5)
図1の特性評価装置を使用して、ドラム直径30mm、ドラム全長340mm、ドラムの肉厚0.75mmのドラムに、リコーIPSIO CX8000用感光体と同じ材料・処方構成の感光層を塗った感光体ドラム1を使用して特性評価を行った。なお、設定放電電流は−127.3[nA/cm]、ドラム回転数は200rpmとし、表面電位・通過電流サンプリング間隔:0.01secで表面電位と通過電流を計測し、計測された通過電流から、図3に示すように算出の際、通過電流に補正係数Nを乗じた値を加える方法によって充電電荷量を算出した。また、充電電荷量と表面電位の結果グラフでプロットするポイントは、0.3sec間隔でプロットして直線を引く事で静電容量を算出した。
(Example 5)
Using the characteristic evaluation apparatus shown in FIG. 1, a photoconductor in which a drum having a drum diameter of 30 mm, a total drum length of 340 mm, and a drum thickness of 0.75 mm is coated with a photoconductive layer having the same material and composition as the photoconductor for Ricoh IPSIO CX8000. The drum 1 was used for property evaluation. The set discharge current was -127.3 [nA / cm 2 ], the drum rotation speed was 200 rpm, the surface potential and the passing current were measured at a sampling interval of 0.01 sec, and the passing potential was measured. Thus, as shown in FIG. 3, the charge charge amount was calculated by a method of adding a value obtained by multiplying the passing current by the correction coefficient N as shown in FIG. The points plotted in the result graph of the charge amount and the surface potential were plotted at 0.3 sec intervals, and the capacitance was calculated by drawing a straight line.

なお、前述のとおり、ドラム回転数200rpmでは信号遅れが発生する(図6)。信号の遅れが無い場合、0.3secで通過電流は一気に下がるはずだが、電流測定系の信号応答性に遅れが生じている為、徐々に通過電流が下がっている。その為、0.3sec間隔でプロットした場合には、図6の斜線で引かれている領域分の電荷量も加える必要がある。しかし、その遅れは直線的に変化していない為、その電荷量分を近似的に補正する方法として、算出時における通過電流に補正係数Nを乗じた値を加える方法で実施している。   As described above, a signal delay occurs at a drum rotation speed of 200 rpm (FIG. 6). When there is no signal delay, the passing current should drop at 0.3 sec. However, since the signal response of the current measurement system is delayed, the passing current gradually decreases. Therefore, when plotting at intervals of 0.3 sec, it is also necessary to add the amount of charge corresponding to the region drawn with diagonal lines in FIG. However, since the delay does not change linearly, as a method of approximately correcting the charge amount, a method of adding a value obtained by multiplying the passing current at the time of calculation by the correction coefficient N is performed.

表3に、補正係数Nの水準を振った時の静電容量算出結果aと、設定放電電流−127.3[nA/cm]・回転数1800[rpm]の条件で測定し算出した静電容量b(表中に基準サンプルとして記載)を基準にして、差(|a−b|÷b×100(%))を求めた結果を表3に示す。ここでは、実施例1で使用した特性評価装置である為、実施例1と同じ条件(設定放電電流−127.3[nA/cm]・回転数1800[rpm])で測定し算出した静電容量の値を基準にし、差を求めた。また、静電容量算出に使用した直線の、帯電開始電位における充電電荷のずれ量(充電電荷量のずれ量)の結果と、基準としている設定放電電流−127.3[nA/cm]・回転数1800[rpm]で静電容量算出に使用した直線の、帯電開始電位における充電電荷のずれ量の差(充電電荷量のずれ量の基準値との差)の結果も併せて表3に示す。 Table 3 shows the electrostatic capacity calculation result a when the level of the correction coefficient N is changed, and the static electricity measured and calculated under the conditions of the set discharge current-127.3 [nA / cm 2 ] and the rotation speed 1800 [rpm]. Table 3 shows the results of obtaining the difference (| ab− ÷ b × 100 (%)) based on the electric capacity b (described as a reference sample in the table). Here, since it is the characteristic evaluation apparatus used in Example 1, it was measured and calculated under the same conditions as Example 1 (set discharge current-127.3 [nA / cm 2 ] · rotation speed 1800 [rpm]). The difference was calculated based on the capacitance value. Further, the result of the amount of charge charge deviation (charge amount deviation amount) at the charging start potential in the straight line used for the capacitance calculation and the set discharge current of 127.3 [nA / cm 2 ]. Table 3 also shows the results of the difference in the amount of charge charge deviation (difference from the reference value of the amount of charge charge amount deviation) at the charging start potential of the straight line used for calculating the capacitance at a rotation speed of 1800 [rpm]. Show.

Figure 2008216704
Figure 2008216704

表3の結果から、応答性の問題から生じている信号の遅れによる影響が、通過電流に影響を及ぼしている為、充電電荷量算出の際、補正項を入れて算出しないと、静電容量算出結果が本来の結果(基準サンプル)と比較して違いが生じる事が分かった。また、静電容量算出時に使用する直線の、帯電開始電位における充電電荷量のずれ量も基準値との差が発生する為、補正項を入れなければ正確な算出が出来なくなる事も分かる。更に、補正係数N=0.1の場合の結果が基準サンプルの値に近い値となっている事から、算出時の充電電流に係数を乗じる事によって遅れの影響を補正して算出可能である事がわかる。補正項に関しては、信号の遅れを補正する為、表3の結果からも正の値でなければ意味を持たない事も分かる。   From the results in Table 3, since the influence of the signal delay caused by the problem of responsiveness affects the passing current, the electrostatic capacity must be calculated without adding a correction term when calculating the charge amount. It was found that the calculated results differed from the original results (reference sample). It can also be seen that the amount of deviation of the charge charge amount at the charging start potential of the straight line used for calculating the capacitance differs from the reference value, and therefore accurate calculation cannot be made unless a correction term is entered. Furthermore, since the result in the case of the correction coefficient N = 0.1 is a value close to the value of the reference sample, it can be calculated by correcting the influence of the delay by multiplying the charging current at the time of calculation by the coefficient. I understand that. As for the correction term, in order to correct the delay of the signal, it can also be understood from the results of Table 3 that it has no meaning unless it is a positive value.

(実施例6)
次に、図1の特性評価装置(自社で設計製作した評価装置を使用)を使用し、ドラム直径30mm、ドラム全長340mm、ドラムの肉厚0.75mmのドラムに、リコーIPSIO CX8000用感光体と同じ材料・処方構成の感光層を塗った感光体ドラムを使用して特性評価を行った。なお、ドラム回転数は200rpm、設定放電電流を以下の条件で変化させて表面電位・通過電流サンプリング間隔:0.01secで表面電位と通過電流を計測し、充電電荷量と表面電位の結果グラフでプロットするポイントは0.3sec間隔としてプロットし、図3に示す方法で充電電荷量算出の際には補正係数Nを0.1として補正を実施し、静電容量を算出した。
(Example 6)
Next, using the characteristic evaluation device shown in FIG. 1 (using an evaluation device designed and manufactured in-house), a drum having a drum diameter of 30 mm, a drum total length of 340 mm, and a drum wall thickness of 0.75 mm, a Ricoh IPSIO CX8000 photoconductor and The characteristics were evaluated using a photosensitive drum coated with a photosensitive layer of the same material and composition. The drum rotation speed is 200 rpm, the set discharge current is changed under the following conditions, the surface potential / passing current sampling interval: 0.01 sec, the surface potential and the passing current are measured, and the result graph of the charge amount and the surface potential is shown in the graph. The points to be plotted were plotted at intervals of 0.3 sec. When the charge amount was calculated by the method shown in FIG. 3, the correction coefficient N was corrected to 0.1, and the capacitance was calculated.

(実施例6a)設定放電電流:−127.3[nA/cm](−191.0/r[nA/cm])
(実施例6b)設定放電電流:−99.0[nA/cm](−148.5/r[nA/cm])
(比較例6a)設定放電電流:−70.7[nA/cm](−106.1/r[nA/cm])
(比較例6b)設定放電電流:−42.4[nA/cm](−63.7/r[nA/cm])
(r:感光体ドラムの半径)
(Example 6a) Set discharge current: -127.3 [nA / cm 2 ] (−191.0 / r [nA / cm 2 ])
(Example 6b) Set discharge current: -99.0 [nA / cm 2 ] (-148.5 / r [nA / cm 2 ])
(Comparative Example 6a) Set discharge current: −70.7 [nA / cm 2 ] (−106.1 / r [nA / cm 2 ])
(Comparative Example 6b) Set discharge current: −42.4 [nA / cm 2 ] (−63.7 / r [nA / cm 2 ])
(R: Radius of photosensitive drum)

特性評価結果を表4に示す。ここでは、それぞれの設定放電電流条件で実施した場合の静電容量算出結果を静電容量結果(1)で示し、同じ感光体を回転数1800rpm・設定放電電流−127.3[nA/cm]で測定した場合の静電容量算出結果を静電容量結果(2)で示している。また、今回使用した特性評価装置では、実施例1と同じ特性評価装置を使用している為、設定放電電流−127.3[nA/cm]・回転数1800[rpm]の条件で測定し算出した静電容量の値を基準にし、それぞれの設定放電電流条件で算出された結果との差を求め、表4右端の列の結果として示した。 The characteristic evaluation results are shown in Table 4. Here, the electrostatic capacity calculation result when implemented under each set discharge current condition is shown by an electrostatic capacity result (1), and the same photoconductor is rotated at 1800 rpm and set discharge current-127.3 [nA / cm 2. ] Shows the capacitance calculation result when measured in [Capacitance Result (2)]. In addition, since the characteristic evaluation apparatus used this time uses the same characteristic evaluation apparatus as in Example 1, the measurement was performed under the conditions of the set discharge current of 127.3 [nA / cm 2 ] and the rotation speed of 1800 [rpm]. Using the calculated capacitance value as a reference, the difference from the result calculated under each set discharge current condition was obtained and shown as the result in the rightmost column of Table 4.

Figure 2008216704
Figure 2008216704

表4の結果から、回転数1800rpmで計測した実施例1の結果と同様に200rpmでの結果も設定放電電流が変化する事で、基準となる値から違いが生じることが分かる。静電容量の差として±3%が許容範囲であるが、表4の結果から設定放電電流が−99.0[nA/cm](ドラムの半径をrとした場合、−148.5/r[nA/cm])以上(いずれも絶対値で)でなければ、許容範囲を満たさない事が分かる。また、表1の高速回転結果と比較し、低速回転の方が静電容量の違いが大きい事も分かる。 From the results in Table 4, it can be seen that the result at 200 rpm is different from the reference value by changing the set discharge current in the same manner as the result of Example 1 measured at the rotation speed of 1800 rpm. Although the allowable range is ± 3% as the difference in capacitance, the set discharge current is -99.0 [nA / cm 2 ] from the results shown in Table 4 (when the drum radius is r, -148.5 / r [nA / cm 2 ]) or more (both absolute values), it can be seen that the allowable range is not satisfied. It can also be seen that the difference in electrostatic capacity is larger in the low-speed rotation than in the high-speed rotation results in Table 1.

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. Can be changed within the range that can be conceived, and any embodiment is included in the scope of the present invention as long as the effects and advantages of the present invention are exhibited.

本発明に係る電子写真用感光体の特性評価装置の構成例を示す概略図である。It is the schematic which shows the structural example of the characteristic evaluation apparatus of the electrophotographic photoreceptor based on this invention. 静電容量算出方法の説明図である。It is explanatory drawing of an electrostatic capacitance calculation method. 静電容量算出時に補正係数を入れた場合の静電容量算出方法の説明図である。It is explanatory drawing of the electrostatic capacitance calculation method at the time of putting a correction coefficient at the time of electrostatic capacitance calculation. 高速回転時(1800rpm)と低速回転時(200rpm)の表面電位推移比較グラフである。It is a surface potential transition comparison graph at the time of high speed rotation (1800 rpm) and low speed rotation (200 rpm). 高速回転時(1800rpm)と低速回転時(200rpm)の通過電流推移比較グラフである。It is a passage current transition comparison graph at the time of high speed rotation (1800rpm) and low speed rotation (200rpm). 低速回転時(200rpm)の通過電流推移拡大グラフ(概略グラフ)である。It is a passage current transition enlarged graph (schematic graph) at the time of low speed rotation (200 rpm). 1800rpmで測定した全測定データを利用して充電電荷量と表面電位の結果をプロットしたグラフである。It is the graph which plotted the result of charge amount and surface potential using all the measurement data measured at 1800rpm. 200rpmで測定した全測定データを利用して充電電荷量と表面電位の結果をプロットしたグラフである。It is the graph which plotted the charge amount of charge and the result of surface potential using all the measurement data measured at 200 rpm. 1800rpmで測定した結果から充電電荷量と表面電位の結果グラフ(Y軸を26分割してプロット)である。It is a result graph (a plot which divides the Y-axis into 26) from the result of measurement at 1800 rpm and the charge amount and surface potential. 200rpmで測定した結果から充電電荷量と表面電位の結果グラフ(Y軸を26分割してプロット)である。It is a result graph (plotted by dividing the Y-axis into 26) from the result of measurement at 200 rpm and the charge amount and surface potential.

符号の説明Explanation of symbols

1 感光体ドラム
2 露光ガイドボックス
3 表面電位計プローブ
4 表面電位計
5 信号処理回路
6 コロナ帯電器
7 電源
8 除電用光源
9 信号処理回路
10 ランプボックス
11 露光ランプ
12 絞り
13 電源スイッチ
14 モーター
15 コントローラ
16 A/D変換器
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Exposure guide box 3 Surface potential meter probe 4 Surface potential meter 5 Signal processing circuit 6 Corona charger 7 Power supply 8 Light source for static elimination 9 Signal processing circuit 10 Lamp box 11 Exposure lamp 12 Aperture 13 Power switch 14 Motor 15 Controller 16 A / D converter

Claims (7)

ドラム状の電子写真用感光体である試料を回転させる工程と、
帯電装置からの放電により前記試料の感光面を帯電させる静電気帯電工程と、
帯電後の前記試料の感光面を露光により光放電させる光放電工程と、
前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求める静電容量算出工程とを有する電子写真用感光体の静電容量算出方法であって、
前記帯電装置の放電電流Iを以下の式を満足するものとすることを特徴とする電子写真用感光体の静電容量算出方法。
|I| ≧ 148.5/r[nA/cm
(r:前記試料のドラム半径(単位:cm))
A step of rotating a sample which is a drum-shaped electrophotographic photoreceptor;
An electrostatic charging step of charging the photosensitive surface of the sample by discharging from a charging device;
A photo-discharge step of photo-discharge the photosensitive surface of the sample after charging by exposure;
A method for calculating the capacitance of an electrophotographic photoreceptor, comprising: a capacitance calculating step for obtaining a capacitance of the sample based on a detection result of a surface potential and a charge amount of the sample;
A method for calculating the capacitance of an electrophotographic photoreceptor, wherein the discharge current I of the charging device satisfies the following formula:
| I | ≧ 148.5 / r [nA / cm 2 ]
(R: drum radius of the sample (unit: cm))
請求項1記載の電子写真用感光体の静電容量算出方法において、
前記静電容量算出工程では、前記試料の回転周期以上の時間間隔で採取された前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求めることを特徴とする電子写真用感光体の静電容量算出方法。
In the method for calculating the capacitance of the electrophotographic photoreceptor according to claim 1,
In the capacitance calculating step, the capacitance of the sample is obtained based on the detection result of the surface potential and charge amount of the sample collected at a time interval equal to or greater than the rotation period of the sample. A method for calculating the capacitance of an electrophotographic photoreceptor.
請求項2記載の電子写真用感光体の静電容量算出方法において、
前記静電容量算出工程では、前記試料の回転周期の整数倍間隔で採取された前記試料の表面電位及び充電電荷量の検出結果に基づいて、該試料の静電容量を求めることを特徴とする電子写真用感光体の静電容量算出方法。
In the method for calculating the capacitance of the electrophotographic photoreceptor according to claim 2,
In the capacitance calculating step, the capacitance of the sample is obtained based on the detection result of the surface potential and charge amount of the sample collected at an integer multiple of the rotation period of the sample. A method for calculating the capacitance of an electrophotographic photoreceptor.
請求項3記載の電子写真用感光体の静電容量算出方法において、
前記試料の充電電荷量は、該試料の通過電流値を帯電経過時間で積分した値に、電流測定系の信号応答性に基づく補正を加えた値であることを特徴とする電子写真用感光体の静電容量算出方法。
In the method for calculating the electrostatic capacity of the electrophotographic photoreceptor according to claim 3,
The charged amount of charge of the sample is a value obtained by adding the correction based on the signal response of the current measurement system to the value obtained by integrating the passing current value of the sample with the elapsed charging time. Capacitance calculation method.
請求項4記載の電子写真用感光体の静電容量算出方法において、
前記試料の充電電荷量は、該試料の通過電流値に係数を乗じる方法によって算出されることを特徴とする電子写真用感光体の静電容量算出方法。
In the method for calculating the electrostatic capacity of the electrophotographic photoreceptor according to claim 4,
The method for calculating the capacitance of an electrophotographic photoreceptor, wherein the charge amount of the sample is calculated by a method of multiplying a passing current value of the sample by a coefficient.
請求項5記載の電子写真用感光体の静電容量算出方法において、
前記係数は、正の値であることを特徴とする電子写真用感光体の静電容量算出方法。
In the method for calculating the capacitance of the electrophotographic photoreceptor according to claim 5,
The coefficient is a positive value, and the electrostatic capacity of the electrophotographic photoreceptor is calculated.
ドラム状の電子写真用感光体である試料の回転装置と、該試料の感光面を放電により帯電させる帯電装置と、前記試料の感光面を露光する露光装置と、前記試料表面の帯電電位を検出する帯電電位検出装置と、前記試料の充電電荷量を検出する電荷量検出装置と、請求項1〜6のいずれかに記載の電子写真用感光体の静電容量算出方法により前記試料の静電容量を求める静電容量算出手段とを備えることを特徴とする電子写真用感光体の特性評価装置。   A sample rotating device that is a drum-shaped electrophotographic photosensitive member, a charging device that charges the photosensitive surface of the sample by discharging, an exposure device that exposes the photosensitive surface of the sample, and a charged potential on the sample surface is detected. An electrostatic charge detection device for detecting the charge amount of the sample, a charge amount detection device for detecting a charge amount of the sample, and a method for calculating the electrostatic capacity of the electrophotographic photoreceptor according to claim 1. An apparatus for evaluating characteristics of an electrophotographic photoreceptor, comprising: an electrostatic capacity calculating means for obtaining a capacity.
JP2007055041A 2007-03-06 2007-03-06 Method and apparatus for evaluating characteristics of electrophotographic photoreceptor Active JP4914250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055041A JP4914250B2 (en) 2007-03-06 2007-03-06 Method and apparatus for evaluating characteristics of electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055041A JP4914250B2 (en) 2007-03-06 2007-03-06 Method and apparatus for evaluating characteristics of electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JP2008216704A true JP2008216704A (en) 2008-09-18
JP4914250B2 JP4914250B2 (en) 2012-04-11

Family

ID=39836810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055041A Active JP4914250B2 (en) 2007-03-06 2007-03-06 Method and apparatus for evaluating characteristics of electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP4914250B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028102A (en) * 2009-07-28 2011-02-10 Canon Inc Image forming apparatus and method for controlling the same
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113745A (en) * 1981-12-26 1983-07-06 Fuji Electric Co Ltd Method for measuring influent current of electrophotographic receptor
JPH11304857A (en) * 1998-04-24 1999-11-05 Ricoh Co Ltd Method and device for measuring electrostatic capacitance of cylindrical dielectric sample
JP2003005578A (en) * 2001-06-21 2003-01-08 Ricoh Co Ltd Characteristic evaluation device and characteristic evaluation method for photoreceptor
JP2003279608A (en) * 2002-03-22 2003-10-02 Ricoh Co Ltd Capacitance calculation method and characteristic evaluation device for electrophotography photosensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113745A (en) * 1981-12-26 1983-07-06 Fuji Electric Co Ltd Method for measuring influent current of electrophotographic receptor
JPH11304857A (en) * 1998-04-24 1999-11-05 Ricoh Co Ltd Method and device for measuring electrostatic capacitance of cylindrical dielectric sample
JP2003005578A (en) * 2001-06-21 2003-01-08 Ricoh Co Ltd Characteristic evaluation device and characteristic evaluation method for photoreceptor
JP2003279608A (en) * 2002-03-22 2003-10-02 Ricoh Co Ltd Capacitance calculation method and characteristic evaluation device for electrophotography photosensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011028102A (en) * 2009-07-28 2011-02-10 Canon Inc Image forming apparatus and method for controlling the same
JP2014052524A (en) * 2012-09-07 2014-03-20 Ricoh Co Ltd Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Also Published As

Publication number Publication date
JP4914250B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP2010128012A (en) Photoreceptor life determination device and image forming apparatus using the same
JP4914250B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photoreceptor
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
JP2003029572A (en) Method for evaluating characteristics of photoreceptor
US10409209B2 (en) Image forming apparatus, photoconductor film thickness estimation method, and estimation program
JP2002082572A (en) Method for evaluating characteristic of photoreceptor
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP4726738B2 (en) Device for evaluating characteristics of electrophotographic photoreceptors
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP6681030B2 (en) Image forming device
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor
JP2003005389A (en) Method and apparatus for evaluating characteristic of photoreceptor
JP5967476B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP2013064909A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP2008070789A (en) Instrument for evaluating characteristics of electrophotographic photoreceptor
JP4922067B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP6025672B2 (en) Image forming apparatus
JP6948573B2 (en) Toner charge measuring device, toner charge measuring method, and image forming device
JP2007108444A (en) Image forming apparatus
JP2009271364A (en) Characteristic evaluation device for electrophotographic photoreceptor
JPH0777853A (en) Process controller
JP2012098659A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP6020966B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP5447838B2 (en) Electrophotographic photoconductor characteristic evaluation device
JP2014052524A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Ref document number: 4914250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3