JP5967476B2 - Apparatus and method for evaluating characteristics of latent image carrier - Google Patents

Apparatus and method for evaluating characteristics of latent image carrier Download PDF

Info

Publication number
JP5967476B2
JP5967476B2 JP2012132770A JP2012132770A JP5967476B2 JP 5967476 B2 JP5967476 B2 JP 5967476B2 JP 2012132770 A JP2012132770 A JP 2012132770A JP 2012132770 A JP2012132770 A JP 2012132770A JP 5967476 B2 JP5967476 B2 JP 5967476B2
Authority
JP
Japan
Prior art keywords
potential
latent image
image carrier
post
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012132770A
Other languages
Japanese (ja)
Other versions
JP2013257407A (en
Inventor
大輔 仁井
大輔 仁井
紀保 齋藤
紀保 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012132770A priority Critical patent/JP5967476B2/en
Publication of JP2013257407A publication Critical patent/JP2013257407A/en
Application granted granted Critical
Publication of JP5967476B2 publication Critical patent/JP5967476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プリンタ、複写機、ファクリミリ等の画像形成装置に用いられる潜像担持体の特性評価装置及び特性評価方法に関するものである。   The present invention relates to a characteristic evaluation apparatus and characteristic evaluation method for a latent image carrier used in an image forming apparatus such as a printer, a copying machine, and a facsimile system.

従来、この種の潜像担持体として電子写真用感光体(以下、単に「感光体」ともいう。)が知られている。この感光体は、複写機、プリンタなどの電子写真プロセスを応用した画像形成装置において、最も重要な構成要素の一つであり、画像形成装置の性能を引き出すために、様々な特性を満足する必要がある。そのため、感光体は出荷前に様々な特性の検査が行われている。また、新規の感光体を開発する場合には、開発過程において試作した感光体の様々な特性についての評価が行われている。そのため、感光体の特性評価装置についても種々提案されている。   Conventionally, an electrophotographic photoreceptor (hereinafter also simply referred to as “photoreceptor”) is known as this type of latent image carrier. This photoconductor is one of the most important components in an image forming apparatus using an electrophotographic process such as a copying machine or a printer. In order to bring out the performance of the image forming apparatus, it is necessary to satisfy various characteristics. There is. Therefore, the photoreceptor is inspected for various characteristics before shipment. Further, when developing a new photoreceptor, various characteristics of the prototyped photoreceptor are evaluated during the development process. For this reason, various apparatuses for evaluating the characteristics of photoreceptors have been proposed.

感光体は、帯電器で一様帯電させたときに表面が均一の電位で帯電し、さらに、帯電後の表面を一定の強さの光で露光したときに、露光後の電位が均一になる特性を有することが望ましい。感光体の特性評価装置では、一般的に、感光体表面を帯電器で均一に一様帯電させた後に露光し、露光後の表面電位を検出することにより、感光体の感光特性を評価して感光体の良否を判定している。   The surface of the photoreceptor is charged with a uniform potential when charged uniformly by a charger, and further, the potential after exposure becomes uniform when the charged surface is exposed to light of a certain intensity. It is desirable to have characteristics. In general, a photoreceptor property evaluation apparatus evaluates the photoreceptor characteristics by exposing the surface of the photoreceptor uniformly and uniformly with a charger and then detecting the surface potential after exposure. The quality of the photoreceptor is judged.

上記感光体の特性評価装置として、例えば、特許文献1には、評価対象のドラム状の感光体(以下、「感光体ドラム」という。)をチャック治具で回転可能に保持する感光特性測定装置が開示されている。この感光特性測定装置は、保持された感光体ドラム表面を軸心方向のほぼ全域にわたって帯電させる帯電装置と、帯電装置による帯電位置に対して感光体ドラムの回転方向下流側の位置で感光体ドラムの表面を軸心方向のほぼ全域にわたって露光する光源を有する露光ユニットと、感光体ドラムを所定方向に回転させる感光体ドラム回転手段とを備えている。さらに、この感光特性測定装置は、感光体ドラムの軸心方向に移動可能に配置され前記光源による露光位置よりも感光体ドラムの回転方向下流側にて感光体ドラムの表面電位を測定する電位センサと、電位センサを感光体ドラムの軸方向に沿って移動させるセンサ移動手段と、電位センサによる測定位置よりも感光体ドラムの回転方向下流側の位置にて感光体ドラムの表面を軸方向のほぼ全域にわたって除電する除電装置とを備えている。   As a photoconductor characteristic evaluation apparatus, for example, Patent Document 1 discloses a photoconductive characteristic measurement apparatus that rotatably holds a drum-shaped photoconductor to be evaluated (hereinafter referred to as “photosensitive drum”) with a chuck jig. Is disclosed. This photosensitive characteristic measuring device includes a charging device that charges the surface of the held photosensitive drum over almost the entire region in the axial direction, and a photosensitive drum at a position downstream of the charging direction of the photosensitive drum relative to a charging position by the charging device. An exposure unit having a light source that exposes the entire surface in the axial direction and a photosensitive drum rotating unit that rotates the photosensitive drum in a predetermined direction. Further, the photosensitive characteristic measuring device is arranged to be movable in the axial direction of the photosensitive drum and is a potential sensor that measures the surface potential of the photosensitive drum on the downstream side in the rotational direction of the photosensitive drum from the exposure position by the light source. And a sensor moving means for moving the potential sensor along the axial direction of the photosensitive drum, and the surface of the photosensitive drum in the axial direction at a position downstream of the measurement position by the potential sensor in the rotational direction of the photosensitive drum. And a static eliminator for neutralizing the entire area.

上記特許文献1の感光特性測定装置では、測定対象の感光体ドラムを1つのチャック治具でドラム内側から保持しており、そのチャック治具は感光体ドラムの内径公差を考慮して作られている。このため、感光体ドラムによっては、感光体ドラムの基体の内径とチャック治具との外径差が大きくなり、感光体ドラムが回転したときに偏心が生じ、感光体ドラムを実際の画像形成装置に組み込んで使用する場合よりも大きな振れが発生してしまうおそれがある。感光体ドラムの振れが大きいと、帯電装置と感光体ドラムとの距離が、感光体ドラム表面上の位置により大きく異なってしまう。このため、帯電装置と感光体ドラムとの距離の変動による帯電電位ムラが生じてしまう。帯電電位ムラは、感光体ドラムの露光後電位へも影響を与え、露光後電位から感光体ドラムの良否を判定する際の測定精度を低下させる要因となる。このため、特許文献1の感光特性測定装置では、帯電電位ムラが大きな場合、感光体ドラムの感光特性を正確に測定することができず、感光体ドラムの良否を正確に判断できないおそれがあり、感光体ドラムの良否を評価するには不十分である。   In the photosensitive characteristic measuring apparatus of Patent Document 1, the photosensitive drum to be measured is held from the inside of the drum by one chuck jig, and the chuck jig is made in consideration of the inner diameter tolerance of the photosensitive drum. Yes. For this reason, depending on the photosensitive drum, the difference between the inner diameter of the base of the photosensitive drum and the outer diameter of the chuck jig becomes large, and eccentricity occurs when the photosensitive drum rotates, and the photosensitive drum is used as an actual image forming apparatus. There is a possibility that a larger vibration than that in the case of being incorporated in the device may occur. When the shake of the photosensitive drum is large, the distance between the charging device and the photosensitive drum greatly varies depending on the position on the surface of the photosensitive drum. For this reason, charging potential unevenness occurs due to a change in the distance between the charging device and the photosensitive drum. The charged potential unevenness also affects the post-exposure potential of the photosensitive drum, and becomes a factor of reducing the measurement accuracy when determining the quality of the photosensitive drum from the post-exposure potential. For this reason, in the photosensitive characteristic measuring apparatus of Patent Document 1, when the charged potential unevenness is large, the photosensitive characteristic of the photosensitive drum cannot be accurately measured, and the quality of the photosensitive drum may not be accurately determined. This is insufficient to evaluate the quality of the photosensitive drum.

また、、特許文献2には、感光体ドラムと帯電器との間の距離を測定する手段と、測定した距離データを記憶する手段とを有する電子写真用感光体特性評価装置が開示されている。この電子写真用感光体特性評価装置では、所定の帯電電位に帯電するための帯電器の出力電圧と、感光体ドラムと帯電器との間の距離との関係を示す関係式を基に、感光体ドラムと帯電器との間の距離に応じて帯電器の出力電圧を変化させる。これにより、感光体ドラムと帯電器との間の距離の変動に起因して発生する帯電電位ムラを感光体ドラムの全領域に渡り抑制して感光体ドラムの感光特性を精度良く評価することができる。   Patent Document 2 discloses an electrophotographic photoreceptor characteristic evaluation apparatus having means for measuring the distance between the photoreceptor drum and the charger and means for storing the measured distance data. . In this electrophotographic photosensitive member property evaluation apparatus, the photosensitive member is evaluated based on the relational expression showing the relationship between the output voltage of the charger for charging to a predetermined charging potential and the distance between the photosensitive drum and the charger. The output voltage of the charger is changed according to the distance between the body drum and the charger. As a result, it is possible to accurately evaluate the photosensitive characteristics of the photosensitive drum by suppressing the charging potential unevenness caused by the variation in the distance between the photosensitive drum and the charger over the entire area of the photosensitive drum. it can.

しかしながら、上記特許文献2の電子写真用感光体特性評価装置では、感光体ドラムと帯電器との間の距離を計測する手段として変位センサやアンプユニットを搭載する必要があり、装置の大型化や高コスト化につながるという問題があった。   However, in the electrophotographic photoreceptor characteristic evaluation apparatus of Patent Document 2, it is necessary to mount a displacement sensor or an amplifier unit as a means for measuring the distance between the photoreceptor drum and the charger. There was a problem of high costs.

本発明は以上の問題点に鑑みなされたものであり、その目的は、装置の大型化や高コスト化を回避しつつ、潜像担持体の特性を精度良く評価することができる潜像担持体の特性評価装置及び特性評価方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a latent image carrier capable of accurately evaluating the characteristics of the latent image carrier while avoiding an increase in size and cost of the apparatus. It is providing the characteristic evaluation apparatus and characteristic evaluation method of this.

上記目的を達成するために、請求項1の発明は、所定電位に帯電された後に露光されることにより潜像が形成される無端移動可能な表面を有する潜像担持体の特性評価装置であって、表面が無端移動するように前記潜像担持体を駆動する駆動手段と、前記駆動手段で駆動された潜像担持体の表面を帯電させる帯電手段と、前記帯電手段によって帯電された潜像担持体の表面を露光する露光手段と、前記帯電手段による帯電後の前記潜像担持体の表面の帯電電位と前記露光手段による露光後の該潜像担持体の表面の露光後電位とを検出する表面電位検出手段と、前記表面電位検出手段で検出された帯電電位及び露光後電位の検出結果に基づいて、前記潜像担持体の表面の無端移動方向1周内における帯電電位と露光後電位との関係を示す関係式を導出し、該関係式に基づいて該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定する推定手段と、を備え、前記表面電位検出手段は、前記帯電手段の互いに異なる複数の帯電条件それぞれについて、前記潜像担持体の表面の無端移動方向1周内の複数の位置で前記帯電電位及び露光後電位を検出し、前記推定手段は、前記複数の帯電条件それぞれについて前記潜像担持体の表面の無端移動方向1周における前記帯電電位の平均値及び前記露光後電位の平均値を算出し、前記帯電電位の平均値と基準値との差分をΔVD[V]とし、前記露光後電位の平均値と基準値との差分をΔVL[V]としたとき、ΔVDとΔVLとの一次関数からなる関係式を決定し、該関係式に基づいて、該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定することを特徴とするものである。 In order to achieve the above object, the invention of claim 1 is an apparatus for evaluating the characteristics of a latent image carrier having an endlessly movable surface on which a latent image is formed by exposure after being charged to a predetermined potential. Driving means for driving the latent image carrier so that the surface moves endlessly, charging means for charging the surface of the latent image carrier driven by the driving means, and a latent image charged by the charging means An exposure means for exposing the surface of the carrier, and a charged potential of the surface of the latent image carrier after charging by the charging means and a post-exposure potential of the surface of the latent image carrier after exposure by the exposure means are detected. Surface potential detecting means, and the charging potential and the post-exposure potential within one round of the endless moving direction of the surface of the latent image carrier based on the detection result of the charging potential and the post-exposure potential detected by the surface potential detecting means. Relational expression showing the relationship between Derived, and an estimation means for estimating a potential after exposure when it is uniformly charged to a predetermined charging potential of endless moving direction one round in the surface of the latent image bearing member on the basis of the equation, said surface The potential detecting means detects the charged potential and the post-exposure potential at a plurality of positions within one turn in the endless movement direction of the surface of the latent image carrier for each of a plurality of different charging conditions of the charging means, and the estimation The means calculates an average value of the charging potential and an average value of the post-exposure potential in one end of the endless moving direction of the surface of the latent image carrier for each of the plurality of charging conditions, and calculates the average value of the charging potential and a reference When the difference between the values is ΔVD [V] and the difference between the average value of the post-exposure potential and the reference value is ΔVL [V], a relational expression consisting of a linear function of ΔVD and ΔVL is determined, and the relationship The latent image carrier based on the formula It is characterized in that to estimate the potential after exposure when it is uniformly charged to a predetermined charging potential in endless moving direction one turn in the surfaces.

本発明によれば、潜像担持体の無端移動方向1周内で帯電電位ムラが生じた場合であっても、導出した関係式から算出した補正値を用いて潜像担持体の無端移動方向1周内における、所定の帯電電位による均一帯電を行った場合の露光後電位を推定することにより、露光後電位から帯電電位ムラの影響を取り除くことができる。この帯電電位ムラの影響が取り除かれた露光後電位の推定値に基づいて、潜像担持体の特性を精度良く評価することができる。しかも、上記露光後電位から帯電電位ムラの影響を取り除くために、潜像担持体と帯電装置との間の距離を測定する変位センサやアンプ等の測定手段を設ける必要がなく、装置の大型化や高コスト化を回避することができる。よって、装置の大型化や高コスト化を回避しつつ、潜像担持体の特性を精度良く評価することができる。   According to the present invention, even if charging potential unevenness occurs within one rotation of the latent image carrier in the endless movement direction, the endless movement direction of the latent image carrier using the correction value calculated from the derived relational expression. By estimating the post-exposure potential when uniform charging is performed with a predetermined charging potential within one turn, the influence of uneven charging potential can be removed from the post-exposure potential. The characteristics of the latent image carrier can be accurately evaluated based on the estimated value of the post-exposure potential from which the influence of the charging potential unevenness is removed. In addition, in order to remove the influence of uneven charging potential from the post-exposure potential, there is no need to provide a measuring means such as a displacement sensor or an amplifier for measuring the distance between the latent image carrier and the charging device, and the size of the device is increased. And high cost can be avoided. Therefore, it is possible to accurately evaluate the characteristics of the latent image carrier while avoiding an increase in size and cost of the apparatus.

本発明の一実施形態に係る特性評価装置の一例を示す正面からみた概略構成図。The schematic block diagram seen from the front which shows an example of the characteristic evaluation apparatus which concerns on one Embodiment of this invention. 同特性評価装置を側面からみた概略構成図。The schematic block diagram which looked at the characteristic evaluation apparatus from the side. 感光体ドラムの表面のドラム端部から170[mm]だけ離れた位置におけるドラム1周内の感光体ドラムと帯電器との間の距離dとVDとの関係の一例を示すグラフ。6 is a graph showing an example of a relationship between a distance d between a photosensitive drum within a circumference of a drum and a charger at a position separated by 170 [mm] from a drum end on the surface of the photosensitive drum and VD. 感光体ドラムのドラム1周内のVD平均値とVL平均値との関係の一例を示すグラフ。3 is a graph showing an example of a relationship between a VD average value and a VL average value within one drum of a photosensitive drum. 感光体ドラムの表面のドラム端部から170[mm]だけ離れた位置における1周内のVD及びVLの測定値と、均一帯電時のVLの推定値との関係の一例を示すグラフ。6 is a graph showing an example of a relationship between measured values of VD and VL in one circumference at a position separated by 170 [mm] from the drum end on the surface of the photosensitive drum, and an estimated value of VL during uniform charging. 帯電電位の平均値と基準値との差分(ΔVD)と、露光後電位の平均値と基準値との差分(ΔVL)との関係の一例を示すグラフ。The graph which shows an example of the relationship between the difference ((DELTA) VD) of the average value of charging potential, and a reference value, and the difference ((DELTA) VL) of the average value of post-exposure potential, and a reference value. 感光体ドラムの表面のドラム端部から50[mm]だけ離れた位置における1周内のVD及びVLの測定値と、均一帯電時のVLの推定値との関係の一例を示すグラフ。7 is a graph showing an example of a relationship between measured values of VD and VL in one circumference at a position separated by 50 [mm] from the drum end portion on the surface of the photosensitive drum, and an estimated value of VL at the time of uniform charging. 感光体ドラムの表面のドラム端部から110[mm]だけ離れた位置(における1周内のVD及びVLの測定値と、均一帯電時のVLの推定値との関係の一例を示すグラフ。6 is a graph showing an example of the relationship between the measured values of VD and VL in one circumference at a position 110 mm away from the drum end on the surface of the photosensitive drum and the estimated value of VL during uniform charging. 感光体ドラムのドラム端部から230[mm]だけ離れた位置における1周内のVD及びVLの測定値と、均一帯電時のVLの推定値との関係の一例を示すグラフ。6 is a graph showing an example of a relationship between measured values of VD and VL in one circumference at a position away from the drum end of the photosensitive drum by 230 [mm] and an estimated value of VL during uniform charging. 感光体ドラムのドラム端部から290[mm]だけ離れた位置における1周内のVD及びVLの測定値と、均一帯電時のVLの推定値との関係の一例を示すグラフ。6 is a graph showing an example of a relationship between measured values of VD and VL in one circumference at a position away from the drum end of the photosensitive drum by 290 [mm] and an estimated value of VL at the time of uniform charging.

以下、本発明を潜像担持体としての電子写真用感光体の特性を評価する特性評価装置及び方法に適用した実施形態について説明する。なお、以下に示す実施形態は本発明の一例であり、本発明は本実施形態の装置及び方法に限定されるものではない。   Hereinafter, an embodiment in which the present invention is applied to a characteristic evaluation apparatus and method for evaluating characteristics of an electrophotographic photoreceptor as a latent image carrier will be described. The following embodiment is an example of the present invention, and the present invention is not limited to the apparatus and method of the present embodiment.

図1は、本発明の一実施形態に係る特性評価装置の一例を正面からみた概略構成図であり、図2は、同特性評価装置を側面からみた概略構成図である。
図1において、本実施形態の特性評価装置は、評価対象である潜像担持体としてのドラム状の電子写真用感光体(以下、「感光体ドラム」という。)1を帯電する帯電手段としてのスコロトロン帯電器6と、スコロトロン帯電器6のワイヤ電極へ電圧を供給する高圧電源7と、スコロトロン帯電器6のグリッド電極へ電圧を供給する電源12と、高圧電源7及び電源12からの電圧供給のON/OFFを切り替えれる電源スイッチ15とを有する。更に、本実施形態の特性評価装置は感光体ドラム1の帯電電位を測定する表面電位検出手段の第1の検出部としての表面電位計プローブ13と、感光体ドラム1を露光する露光手段としての露光装置2と、感光体ドラム1の露光後電位を測定する表面電位検出手段の第2の検出部としての表面電位計プローブ3と、感光体ドラム1を除電する除電装置の除電用光源8とを有している。また、本実施形態の特性評価装置は、感光体ドラム1の通過電流を検知するための信号処理回路5、表面電位計プローブ13,3の信号を処理する信号処理回路9、これらの信号処理回路5,9が接続されるA/D変換器10、制御手段としてのコントローラ17、デジタルリレー駆動制御部23等を有している。以上のようにセンサ類や信号処理回路などを構成することにより、本実施形態の特性評価装置では、感光体ドラム1の評価対象の特性として、感光体ドラムの表面を均一帯電した場合の露光後電位を評価することができる。
FIG. 1 is a schematic configuration diagram of an example of a characteristic evaluation apparatus according to an embodiment of the present invention as viewed from the front, and FIG. 2 is a schematic configuration diagram of the characteristic evaluation apparatus as viewed from the side.
In FIG. 1, the characteristic evaluation apparatus of the present embodiment is a charging means for charging a drum-shaped electrophotographic photosensitive member (hereinafter referred to as “photosensitive drum”) 1 as a latent image carrier to be evaluated. A scorotron charger 6, a high-voltage power supply 7 that supplies voltage to the wire electrode of the scorotron charger 6, a power supply 12 that supplies voltage to the grid electrode of the scorotron charger 6, and voltage supply from the high-voltage power supply 7 and the power supply 12. And a power switch 15 that can be switched ON / OFF. Further, the characteristic evaluation apparatus according to the present embodiment is a surface potential meter probe 13 as a first detection unit of a surface potential detection unit that measures the charged potential of the photosensitive drum 1 and an exposure unit that exposes the photosensitive drum 1. An exposure device 2, a surface potential meter probe 3 as a second detection unit of a surface potential detection means for measuring a post-exposure potential of the photosensitive drum 1, and a static elimination light source 8 of a static elimination device that neutralizes the photosensitive drum 1. have. Further, the characteristic evaluation apparatus of the present embodiment includes a signal processing circuit 5 for detecting a passing current of the photosensitive drum 1, a signal processing circuit 9 for processing signals of the surface electrometer probes 13 and 3, and these signal processing circuits. A / D converter 10 to which 5 and 9 are connected, a controller 17 as a control means, a digital relay drive control unit 23, and the like. By configuring sensors, signal processing circuits, and the like as described above, in the characteristic evaluation apparatus of the present embodiment, after the exposure when the surface of the photosensitive drum is uniformly charged as the characteristic to be evaluated of the photosensitive drum 1. The potential can be evaluated.

また、図2に示すように、本実施形態の特性評価装置は、表面が無端移動方向である周方向に移動するように感光体ドラム1を回転駆動する駆動手段として、モータ16、主軸18、ベルト19、一対のドラムチャック治具20、一対の面板21,22及び回転角度等を検出するロータリーエンコーダ11を有している。   As shown in FIG. 2, the characteristic evaluation apparatus of the present embodiment includes a motor 16, a main shaft 18, and a driving unit that rotationally drives the photosensitive drum 1 so that the surface moves in the circumferential direction that is the endless movement direction. A belt 19, a pair of drum chuck jigs 20, a pair of face plates 21 and 22, and a rotary encoder 11 that detects a rotation angle and the like are included.

また、本実施形態の特性評価装置で評価することができる評価対象の感光体ドラム1の材質、形状、大きさ、構造などについては、特に制限はなく、本実施形態の特性評価装置は、目的に応じて適宜選択された感光体ドラム1を評価することができる。評価対象の感光体ドラム1の材質としては、例えば、アモルファスシリコン、セレン、CdS、ZnO等の無機感光体、ポリシラン、フタロポリメチン等の有機感光体(OPC)、などが挙げられる。有機感光体(OPC)は、(1)光吸収波長域の広さ、光吸収量の大きさ等の光学特性、(2)高感度、安定な帯電特性等の電気的特性、(3)材料の選択範囲の広さ、(4)製造の容易さ、(5)低コスト、(6)無毒性、などの理由から一般に広く応用されている。このような有機感光体の層構成としては、単層構造と、積層構造とに大別される。単層構造の感光体は、支持体と、該支持体上に単層型感光層を設けてなり、更に必要に応じて、保護層、中間層、その他の層を有してなる。一方、積層構造の感光体は、支持体と、該支持体上に電荷発生層、及び電荷輸送層を少なくともこの順に有する積層型感光層を設けてなり、更に必要に応じて、保護層、中間層、その他の層を有してなる。   Further, the material, shape, size, structure and the like of the photosensitive drum 1 to be evaluated that can be evaluated by the characteristic evaluation apparatus of the present embodiment are not particularly limited, and the characteristic evaluation apparatus of the present embodiment is an object. It is possible to evaluate the photosensitive drum 1 appropriately selected according to the above. Examples of the material of the photoconductor drum 1 to be evaluated include inorganic photoconductors such as amorphous silicon, selenium, CdS, and ZnO, and organic photoconductors (OPC) such as polysilane and phthalopolymethine. Organic photoconductors (OPCs) are (1) optical characteristics such as light absorption wavelength range and light absorption, (2) electrical characteristics such as high sensitivity and stable charging characteristics, and (3) materials. Are widely applied for reasons such as (4) ease of manufacture, (5) low cost, and (6) non-toxicity. The layer structure of such an organic photoreceptor is roughly divided into a single layer structure and a laminated structure. A single-layered photoreceptor has a support and a single-layer type photosensitive layer provided on the support, and further includes a protective layer, an intermediate layer, and other layers as necessary. On the other hand, a photoreceptor having a laminated structure comprises a support, and a laminate type photosensitive layer having at least a charge generation layer and a charge transport layer in this order on the support. It has a layer and other layers.

また、評価対象の感光体ドラム1の大きさは、本実施形態の特性評価装置の大きさ、仕様などに応じて適宜選択することができる。また、感光体ドラム1の形状については、ドラム状であれば、特に制限はなく、本実施形態の特性評価装置は、目的に応じて適宜選択されたドラム形状の感光体ドラム1を評価することができる。   Further, the size of the photosensitive drum 1 to be evaluated can be appropriately selected according to the size and specifications of the characteristic evaluation apparatus of the present embodiment. Further, the shape of the photosensitive drum 1 is not particularly limited as long as it is a drum shape, and the characteristic evaluation apparatus of the present embodiment evaluates the drum-shaped photosensitive drum 1 appropriately selected according to the purpose. Can do.

スコロトロン帯電器6は、スコロトロン帯電方式のコロナ帯電方式を利用した非接触帯電器であり、感光体ドラム1の表面を帯電する。コロナ帯電方式の非接触帯電器として、コロトロン帯電方式を用いることもできるが、スコロトロン帯電方式の帯電器の方が帯電電位の制御性が高いため好ましい。   The scorotron charger 6 is a non-contact charger using a scorotron charging corona charging method and charges the surface of the photosensitive drum 1. A corotron charging system can be used as the non-contact charging system of the corona charging system, but a scorotron charging system is preferable because it has higher controllability of the charging potential.

露光装置2は、感光体ドラム1を露光することができるものであれば、特に制限はなく、目的に応じて適宜選択することができる。   The exposure apparatus 2 is not particularly limited as long as it can expose the photosensitive drum 1, and can be appropriately selected according to the purpose.

露光装置2の光源も特に制限はなく、目的に応じて適宜選択することができる。例えば、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザ(LD)、エレクトロルミネッセンス(EL)などの発光物全般などが挙げられる。また、露光装置2は、所望の波長域の光のみを感光体ドラム1に照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルター等の各種フィルターを用いることもでき、照度を下げるために、ニュートラルデンシティフィルターを用いることもできる。   The light source of the exposure apparatus 2 is also not particularly limited and can be appropriately selected according to the purpose. Examples include fluorescent materials such as fluorescent lamps, tungsten lamps, halogen lamps, mercury lamps, sodium lamps, light emitting diodes (LEDs), semiconductor lasers (LD), and electroluminescence (EL). Further, the exposure apparatus 2 irradiates the photosensitive drum 1 only with light in a desired wavelength range, so that a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, a color temperature conversion filter, etc. In order to reduce the illuminance, a neutral density filter can also be used.

表面電位検出手段は、感光体ドラム1の帯電電位及び露光後電位を検出し、モニタすることができるものであれば、特に制限はなく、目的に応じて適宜選択することができる。例えば、感光体ドラム1を、スコロトロン帯電器6により帯電した後の帯電電位及び露光装置2により露光した後に露光後電位をそれぞれ表面電位計プローブ13,3で検出し、表面電位計14,4に信号を送ることにより、感光体ドラム1の帯電電位及び露光後電位をモニタする方法などが挙げられる。   The surface potential detection means is not particularly limited as long as it can detect and monitor the charging potential and post-exposure potential of the photosensitive drum 1, and can be appropriately selected according to the purpose. For example, the photosensitive drum 1 is charged by the scorotron charger 6 and the post-exposure potential after being exposed by the exposure device 2 is detected by the surface potentiometer probes 13 and 3, respectively. For example, a method of monitoring the charging potential of the photosensitive drum 1 and the post-exposure potential by sending a signal can be used.

なお、表面電位検出装置には、検出用プローブが感光体ドラム1に対して接触する接触型と接触しない非接触型とがあるが、接触型のものであると感光体ドラム1を傷つける恐れがあるため、非接触型のものが好ましい。   The surface potential detection device includes a contact type in which the detection probe is in contact with the photosensitive drum 1 and a non-contact type in which the detection probe is not in contact with the surface potential detection device. Therefore, a non-contact type is preferable.

除電光源8としては、感光体ドラム1を除電することができれば、特に制限はなく、公知の除電手段の中から適宜選択することができ、例えば、除電ランプなどが挙げられる。   The neutralization light source 8 is not particularly limited as long as it can neutralize the photosensitive drum 1, and can be appropriately selected from known neutralization means. Examples thereof include a neutralization lamp.

電源12、高圧電源7及び電源スイッチ15としては、特に制限はなく、目的に応じて適宜選択することができ、従来公知のものをそのまま用いることができる。   There is no restriction | limiting in particular as the power supply 12, the high voltage power supply 7, and the power switch 15, According to the objective, it can select suitably, A conventionally well-known thing can be used as it is.

スコロトロン帯電器6、表面電位計プローブ13、露光装置2、表面電位計プローブ3、及び除電用光源8は、感光体ドラム1の径方向及び周方向と直交する幅方向である軸方向に進退移動可能に構成されている。感光体ドラム1の径方向に進退移動に構成されていることにより、感光体ドラム1との間の距離を調整でき、様々なドラム径の感光体ドラム1に対応することができる。また、感光体ドラム1の軸方向に進退移動可能に構成されていることにより、感光体ドラム1の軸方向の任意の位置及び表面の全面について帯電、露光、表面電位の計測、及び除電を行うことができる。軸方向の移動に関しては、スコロトロン帯電器6、表面電位計プローブ13、露光装置2、表面電位計プローブ3及び除電用光源8が一体で同時に移動し、同一の軸方向における位置に配置される。これらのスコロトロン帯電器6、表面電位計プローブ13等を一体で感光体ドラム1の軸方向に移動させる移動手段としては、特に制限はなく、公知の移動手段の中から適宜選択することができる。例えば、ステッピングモータと、ボールネジと、直動案内とを用いた移動手段などが挙げられる。   The scorotron charger 6, the surface potential meter probe 13, the exposure device 2, the surface potential meter probe 3, and the static elimination light source 8 are moved back and forth in the axial direction that is the width direction perpendicular to the radial direction and the circumferential direction of the photosensitive drum 1. It is configured to be possible. By being configured to move back and forth in the radial direction of the photosensitive drum 1, the distance to the photosensitive drum 1 can be adjusted, and the photosensitive drum 1 having various drum diameters can be handled. Further, since the photosensitive drum 1 is configured to be movable back and forth in the axial direction, charging, exposure, measurement of the surface potential, and charge removal are performed on an arbitrary position in the axial direction of the photosensitive drum 1 and the entire surface. be able to. Regarding the movement in the axial direction, the scorotron charger 6, the surface potential meter probe 13, the exposure device 2, the surface potential meter probe 3, and the static elimination light source 8 move together and are disposed at the same axial position. The moving means for moving the scorotron charger 6, the surface electrometer probe 13 and the like integrally in the axial direction of the photosensitive drum 1 is not particularly limited and can be appropriately selected from known moving means. For example, a moving means using a stepping motor, a ball screw, and a linear motion guide may be used.

上記構成の特性評価装置において、図2に示すように、感光体ドラム1は、両端にドラムチャック治具20で特性評価装置内に保持され、主軸18がチャック治具20の中心を通っている。また、特性評価装置の手前側(感光体ドラム1の一端側(図中右側))の面板21と、奥側(感光体ドラム1の他端側(図中左側))の面板22とが主軸18の軸受け機構となっており、主軸18はモータ16に繋がったベルト19によって図1の矢印の方向に回転する機構となっている。感光体ドラム1の回転角度は、図2に示す主軸18の端部に取り付けられた回転角度検知手段としてのロータリーエンコーダ11により測定され、感光体ドラム1の回転角度に関する情報が、図1に示すコントローラ17へと送られる。   In the characteristic evaluation apparatus having the above configuration, as shown in FIG. 2, the photosensitive drum 1 is held in the characteristic evaluation apparatus by the drum chuck jig 20 at both ends, and the main shaft 18 passes through the center of the chuck jig 20. . A main plate is a face plate 21 on the front side (one end side (right side in the figure)) of the characteristic evaluation apparatus and a face plate 22 on the back side (the other end side (left side in the figure)) of the photoconductor drum 1. 18, and the main shaft 18 is a mechanism that rotates in the direction of the arrow in FIG. 1 by a belt 19 connected to the motor 16. The rotation angle of the photosensitive drum 1 is measured by a rotary encoder 11 as a rotation angle detecting means attached to the end of the main shaft 18 shown in FIG. 2, and information on the rotation angle of the photosensitive drum 1 is shown in FIG. It is sent to the controller 17.

また、高圧電源7からスコロトロン帯電器6のワイヤ電極に所定の電圧が出力され、また、電源12からスコロトロン帯電器6のグリッド電極に所定のグリッド電圧が出力され、スコロトロン帯電器6によって感光体ドラム1が帯電される。   A predetermined voltage is output from the high voltage power source 7 to the wire electrode of the scorotron charger 6, and a predetermined grid voltage is output from the power source 12 to the grid electrode of the scorotron charger 6. 1 is charged.

また、図1に示すように、感光体ドラム1の帯電電位の検出信号は、表面電位計プローブ13からモニタ部である表面電位計14に送られてモニタされるとともに、信号処理回路9に送られる。その後、帯電電位の検出信号はA/D変換器10によってA/D変換され、コントローラ17へと送られ、演算処理される。   Further, as shown in FIG. 1, the detection signal of the charged potential of the photosensitive drum 1 is sent from the surface potential meter probe 13 to the surface potential meter 14 which is a monitor unit and monitored, and also sent to the signal processing circuit 9. It is done. Thereafter, the detection signal of the charged potential is A / D converted by the A / D converter 10 and sent to the controller 17 for arithmetic processing.

感光体ドラム1中の通過電流は、信号処理回路5及びA/D変換器10を通じて、コントローラ17へと送られ、通過電流を把握することも可能である。また、コントローラ17は感光体ドラム1を回転させるモータ16内の図示しないモータドライバに接続されている。モータドライバでは、回転数を出力する機能、回転数をリモート制御可能な機能も付加されているため、回転数制御と回転数の認識も可能である。   The passing current in the photosensitive drum 1 is sent to the controller 17 through the signal processing circuit 5 and the A / D converter 10, and the passing current can be grasped. The controller 17 is connected to a motor driver (not shown) in the motor 16 that rotates the photosensitive drum 1. In the motor driver, a function for outputting the number of revolutions and a function for remotely controlling the number of revolutions are added, so that the number of revolutions can be controlled and the number of revolutions can be recognized.

感光体ドラム1の周りのユニット(スコロトロン帯電器6、表面電位計プローブ13、露光装置2、表面電位計プローブ3、除電用光源8)は、デジタルリレー駆動制御部23によってON/OFF制御されている。また、露光装置2を用いて、感光体ドラム1の露光が行われ、感光体ドラム1の露光後電位は、表面電位計プローブ3及び表面電位計4を使用することによって、上記スコロトロン帯電器6によって帯電された後の帯電電位と同様にして測定できる。感光体ドラム1の露光後電位を取り除く場合は、除電用光源8を使用し除電して取り除くことが可能である。   The units around the photosensitive drum 1 (the scorotron charger 6, the surface potential meter probe 13, the exposure device 2, the surface potential meter probe 3, and the neutralization light source 8) are ON / OFF controlled by the digital relay drive control unit 23. Yes. In addition, the exposure of the photosensitive drum 1 is performed using the exposure device 2, and the post-exposure potential of the photosensitive drum 1 is obtained by using the surface potential meter probe 3 and the surface potential meter 4, whereby the scorotron charger 6. It can be measured in the same manner as the charged potential after being charged by. When the post-exposure potential of the photosensitive drum 1 is removed, it can be removed by removing electricity using the light source 8 for removing electricity.

また、コントローラ17は、集録された感光体ドラム1の帯電電位及び露光後電位の検出結果のデータから後述する関係式(1次関数)を算出して導出する算出手段としての機能を有している。また、コントローラ17は、更に所定の帯電電位を予め与えておくことで、感光体ドラム1の表面をドラム1周内や全領域内で所定の帯電電位に均一帯電させた場合のドラム1周内や全領域内の露光後電位を関係式から算出することも可能である。また、コントローラ17は、後述の関係式から感光体ドラム1の1周内又は全領域内の各位置において、均一帯電が実施された場合の露光後電位を推定する手段や、均一帯電が実施された場合の露光後電位分布を求め、露光後電位分布から1周内又は全領域内の露光後電位の最大値と最小値の差の絶対値である露光後電位偏差を算出する手段としての機能も有する。なお、上記機能を有するコントローラ17は、前記露光後電位偏差の算出が可能であれば、特に制限はなく、公知の演算手段の中から適宜選択することができる。   Further, the controller 17 has a function as a calculation means for calculating and deriving a relational expression (linear function) to be described later from data of the detected charging potential of the photosensitive drum 1 and the post-exposure potential detection result. Yes. Further, the controller 17 further applies a predetermined charging potential in advance, so that the surface of the photosensitive drum 1 is uniformly charged to a predetermined charging potential within the entire circumference of the drum 1 or within the entire area. It is also possible to calculate the post-exposure potential in the entire region from the relational expression. Further, the controller 17 estimates the post-exposure potential when uniform charging is performed at each position within one circumference or all regions of the photosensitive drum 1 from the relational expression described later, and uniform charging is performed. Function as a means for calculating a post-exposure potential distribution in the case of the exposure, and calculating a post-exposure potential deviation, which is an absolute value of the difference between the maximum value and the minimum value of the post-exposure potential within one circle or the entire region, from the post-exposure potential distribution Also have. The controller 17 having the above function is not particularly limited as long as the post-exposure potential deviation can be calculated, and can be appropriately selected from known arithmetic means.

また、コントローラ17は、上記露光後電位偏差が所定値以下であれば感光体ドラム1を良品と判断し、所定値を超えた場合に感光体ドラム1に問題がある不良品と判断する良否判定手段としての機能を有している。なお、良否判定手段は、感光体ドラム1の良否の判定が可能であれば、特に制限はなく、周知慣用のものを用いることができる。   Further, the controller 17 determines that the photosensitive drum 1 is a non-defective product if the post-exposure potential deviation is equal to or smaller than a predetermined value, and determines whether the photosensitive drum 1 is a defective product having a problem when the potential exceeds the predetermined value. It has a function as a means. The quality determination means is not particularly limited as long as the quality of the photosensitive drum 1 can be determined, and a well-known and conventional one can be used.

また、本実施形態の特性評価装置は、光を透過しない暗箱あるいは暗幕などで覆われていることが好ましい。特性評価装置が、暗箱又は暗幕で覆われていないと、試験時に風、光、温度などの外部環境の影響を受け、正確な特性評価が困難となる。ただし、コントローラ17及び信号処理回路5,9など、感光体ドラム1の評価に影響のないものに関しては、暗箱あるいは暗幕で覆う必要はない。   Moreover, it is preferable that the characteristic evaluation apparatus of this embodiment is covered with a dark box or a black curtain that does not transmit light. If the characteristic evaluation apparatus is not covered with a dark box or a black curtain, it will be affected by the external environment such as wind, light, and temperature during the test, making accurate characteristic evaluation difficult. However, the controller 17 and the signal processing circuits 5 and 9 that do not affect the evaluation of the photosensitive drum 1 do not need to be covered with a dark box or a black curtain.

以下、本発明のより具体的な実施例について、試験例及び比較例とともに説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。
以下に示す試験例、比較例及び実施例では、図1及び図2に示した特性評価装置を用いて感光体ドラムの特性評価を行った。特性評価装置において、帯電手段としてのスコロトロン帯電器6は内製し、スコロトロン帯電器6のワイヤ電極に電圧を印加する高圧電源7はTREK社製、スコロトロン帯電器6のグリッド電極に電圧を印加する電源12は松定プレシジョン株式会社製をそれぞれ用いた。除電手段としての除電用光源8はスタンレー電気社製LED(波長:660[nm])の加工品である。表面電位検出手段である表面電位計プローブ13と表面電位計14はTREK社製である。また、モータ16はオリエンタルモーター株式会社製である。コントローラ17は株式会社キーエンス製のシーケンサと株式会社日立製作所製のPCとを組み合わせて構成したものである。A/D変換器10及びデジタルリレー駆動制御部23はそれぞれ株式会社キーエンス製である。それ以外の信号処理回路5,9などは、全て内製したものを使用した。
Hereinafter, more specific examples of the present invention will be described together with test examples and comparative examples. In addition, this invention is not limited to these Examples at all.
In the following test examples, comparative examples, and examples, the characteristics of the photosensitive drum were evaluated using the characteristic evaluation apparatus shown in FIGS. In the characteristic evaluation apparatus, the scorotron charger 6 as the charging means is manufactured in-house, and the high voltage power source 7 for applying a voltage to the wire electrode of the scorotron charger 6 applies a voltage to the grid electrode of the scorotron charger 6 manufactured by TREK. The power supply 12 was manufactured by Matsusada Precision Co., Ltd. The static elimination light source 8 as the static elimination means is a processed product of an LED (wavelength: 660 [nm]) manufactured by Stanley Electric. The surface potential meter probe 13 and the surface potential meter 14 which are surface potential detection means are manufactured by TREK. The motor 16 is manufactured by Oriental Motor Co., Ltd. The controller 17 is configured by combining a sequencer manufactured by Keyence Corporation and a PC manufactured by Hitachi, Ltd. The A / D converter 10 and the digital relay drive control unit 23 are manufactured by Keyence Corporation. The other signal processing circuits 5, 9 and the like were all made in-house.

また、本実施形態の特性評価装置で評価した感光体ドラム1としては、株式会社リコー製のカラーレーザプリンタ(型番:IPSiO Color 8100)に搭載された感光体ドラム(直径30[mm]、全長340[mm])と同じ処方である感光体ドラムA、B、C、Dの4本を使用した。ここで、感光体ドラムA、Bは目視による外観検査で電荷発生層に塗膜ムラが確認されない感光体ドラムであり、感光体ドラムC、Dは目視による外観検査で電荷発生層に塗膜ムラが確認される感光体ドラムである。   Further, as the photosensitive drum 1 evaluated by the characteristic evaluation apparatus of the present embodiment, a photosensitive drum (diameter 30 [mm], total length 340) mounted on a color laser printer (model number: IPSiO Color 8100) manufactured by Ricoh Co., Ltd. Four photosensitive drums A, B, C, and D having the same formulation as [mm]) were used. Here, the photoreceptor drums A and B are photoreceptor drums in which no coating film unevenness is confirmed in the charge generation layer by visual appearance inspection, and the photoreceptor drums C and D are coating film unevenness in the charge generation layer by visual inspection. Is a photoreceptor drum in which is confirmed.

また、以下に説明する試験例1,2、比較例1及び実施例1〜3では、感光体ドラム1の線速は125[mm/s]、スコロトロン帯電器6のワイヤ印加電圧は−5220[V]、露光装置2による感光体ドラム1への露光エネルギーは0.295[μJ/cm]と設定した。 In Test Examples 1 and 2, Comparative Example 1 and Examples 1 to 3 described below, the linear velocity of the photosensitive drum 1 is 125 [mm / s], and the wire applied voltage of the scorotron charger 6 is −5220 [ V], the exposure energy to the photosensitive drum 1 by the exposure device 2 was set to 0.295 [μJ / cm 2 ].

〔試験例1〕
本試験例1は、感光体ドラムの表面とスコロトロン帯電器6との間の距離dの帯電電位(以下、「VD」という。)に対する影響を調べる試験である。本試験例1では、感光体ドラムAのドラム端部から170[mm]の位置で、ドラム1周内で360箇所の感光体ドラムAの表面とスコロトロン帯電器6との間の距離d及びVDを測定した。距離dの測定には、キーエンス社製の非接触型渦電流式変位センサとキーエンス社製のアンプユニットを使用した。スコロトロン帯電器6のグリッドに印加されるグリッド印加電圧は−800[V]に設定した。
[Test Example 1]
Test Example 1 is a test for examining the influence of the distance d between the surface of the photosensitive drum and the scorotron charger 6 on the charging potential (hereinafter referred to as “VD”). In Test Example 1, at a position 170 [mm] from the drum end of the photosensitive drum A, distances d and VD between the surface of the 360 photosensitive drums A and the scorotron charger 6 within one drum circumference. Was measured. For the measurement of the distance d, a non-contact eddy current displacement sensor manufactured by Keyence Corporation and an amplifier unit manufactured by Keyence Corporation were used. The grid applied voltage applied to the grid of the scorotron charger 6 was set to -800 [V].

図3は、本試験例1における感光体ドラムAの表面とスコロトロン帯電器6との間の距離d及びVDの測定結果を示すグラフである。図3から、感光体ドラム表面とスコロトロン帯電器6との間の距離dが増大するとVDが減少し、距離dが減少するとVDが増加することがわかる。即ち、上記距離dの変動はVDに大きく影響を与えることが確認された。   FIG. 3 is a graph showing the measurement results of the distance d and VD between the surface of the photosensitive drum A and the scorotron charger 6 in Test Example 1. FIG. 3 shows that VD decreases as the distance d between the photosensitive drum surface and the scorotron charger 6 increases, and VD increases as the distance d decreases. That is, it was confirmed that the fluctuation of the distance d greatly affects VD.

〔試験例2〕
本試験例2は、感光体ドラムの表面におけるVDの露光後電位(以下、「VL」という。)に対する影響を調べる試験である。本試験例2では、感光体ドラムAのドラム全領域内(ドラムの端部から50、110、170、230、290[mm]の位置×ドラム1周内(360箇所))の各位置で、5つのグリッド印加電圧(−790、−795、−800、−805、−810[V])それぞれで、VD及びVLを測定した。
[Test Example 2]
Test Example 2 is a test for examining the influence of VD on the surface of the photosensitive drum on the post-exposure potential (hereinafter referred to as “VL”). In this Test Example 2, at each position within the entire drum area of the photosensitive drum A (positions of 50, 110, 170, 230, 290 [mm] from the end of the drum × one circumference of the drum (360 places)) VD and VL were measured at five grid applied voltages (−790, −795, −800, −805, −810 [V]), respectively.

各グリッド印加電圧で測定された感光体ドラムAのドラム全領域内のVD及びVLから、各グリッド印加電圧でのドラム全領域内のVDの平均値(以下、適宜「帯電電位平均値」という。)及びVLの平均値(以下、適宜「露光後電位平均値」という。)を算出した。その算出結果を表1に示す。   From the VD and VL in the entire drum area of the photosensitive drum A measured at each grid applied voltage, the average value of VD in the entire drum area at each grid applied voltage (hereinafter referred to as “charged potential average value” as appropriate). ) And the average value of VL (hereinafter referred to as “post-exposure potential average value” as appropriate). The calculation results are shown in Table 1.

Figure 0005967476
Figure 0005967476

図4は、表1からVDとVLとの関係を求めた結果を示すグラフである。図4から、VDに応じてVLが変動することがわかる。この結果から、感光体ドラムのドラム1周内やドラム全領域内においてVDのムラが発生した場合に、VDのムラの影響を受けてVLにもムラが発生することがわかる。   FIG. 4 is a graph showing the results of obtaining the relationship between VD and VL from Table 1. FIG. 4 shows that VL varies according to VD. From this result, it can be seen that when VD unevenness occurs in the entire circumference of the drum of the photosensitive drum or in the entire drum region, the unevenness of VD also occurs due to the influence of the VD unevenness.

〔比較例1〕
本比較例1では、感光体ドラムAのドラム端部から170[mm]の位置で、ドラム1周内で360箇所のVD及びVLを測定した。グリッド印加電圧は−800[V]に設定した。
[Comparative Example 1]
In this comparative example 1, 360 VD and VL were measured within the circumference of the drum at a position of 170 [mm] from the drum end of the photosensitive drum A. The grid applied voltage was set to -800 [V].

図5は、感光体ドラムAのドラム1周内におけるVD及びVLの測定値の分布を示すグラフである。図5から、VLの分布はVDの分布に近い形状をしており、VL分布がVD分布の影響を受けていることがわかる。VL分布の最大値と最小値の差の絶対値である露光後電位偏差(以下、「VL偏差」という。)は14[V]である。   FIG. 5 is a graph showing the distribution of measured values of VD and VL in the circumference of the drum of the photosensitive drum A. FIG. 5 shows that the VL distribution has a shape close to the VD distribution, and the VL distribution is affected by the VD distribution. The post-exposure potential deviation (hereinafter referred to as “VL deviation”), which is the absolute value of the difference between the maximum value and the minimum value of the VL distribution, is 14 [V].

〔実施例1〕
本実施例1では、感光体ドラムAのドラム端部から170[mm]の位置で、5つのグリッド印加電圧(−790、−795、−800、−805、−810[V])それぞれで、ドラム1周内で360箇所のVD及びVLを測定した。
[Example 1]
In the first embodiment, at the position of 170 [mm] from the drum end of the photosensitive drum A, each of the five grid applied voltages (−790, −795, −800, −805, −810 [V]) 360 VD and VL were measured within one drum circumference.

表2に、各グリッド印加電圧で測定されたドラム1周内のVD及びVLから、各グリッド印加電圧でのドラム1周内のVDの平均値及びVLの平均値を算出した算出結果を示す。
また、表2に、グリッド電圧−800[V]におけるドラム1周内のVD平均値を基準とした場合の各グリッド印加電圧におけるドラム1周内のVD平均値の変動(以下、「ΔVD」という。)、グリッド印加電圧−800[V]でのドラム1周内のVL平均値を基準とした場合の各グリッド印加電圧でのドラム1周内のVL平均値の変動(以下、「ΔVL」という。)を、併せて示す。

Figure 0005967476
Table 2 shows the calculation results of calculating the average value of VD and the average value of VL in the drum circumference at each grid application voltage from the VD and VL in the circumference of the drum measured at each grid application voltage.
Further, Table 2 shows the fluctuation of the VD average value within the drum circumference at each grid applied voltage (hereinafter referred to as “ΔVD”) with the grid voltage −800 [V] as a reference. ), Fluctuation of the VL average value within the drum circumference at each grid applied voltage when the grid applied voltage is −800 [V] as a reference (hereinafter referred to as “ΔVL”). .) Is also shown.
Figure 0005967476

図6は、ΔVDとΔVLとの関係を示すグラフである。ΔVDとΔVLとの関係式(近似関数)を求めると、次の式(1)のような一次関数が得られる。
ΔVL=0.454×ΔVD−0.319・・・(1)
FIG. 6 is a graph showing the relationship between ΔVD and ΔVL. When a relational expression (approximate function) between ΔVD and ΔVL is obtained, a linear function such as the following expression (1) is obtained.
ΔVL = 0.454 × ΔVD−0.319 (1)

次に、感光体ドラム1のドラム1周内の各位置(360箇所)のVDについて、グリッド印加電圧が−800[V]である場合の帯電電位を基準値とし、その基準値に対する差をそれぞれ算出し、ドラム1周内の各位置(360箇所)のΔVDを求める。そして、前記関係式(1)を利用して、ドラム1周内の各位置(360箇所)のΔVDからドラム1周内の各位置(360箇所)のΔVLを算出する。   Next, with respect to VD at each position (360 locations) in the circumference of the drum of the photosensitive drum 1, the charged potential when the grid applied voltage is −800 [V] is used as a reference value, and the difference from the reference value is determined. And ΔVD at each position (360 locations) within one circumference of the drum is obtained. Then, by using the relational expression (1), ΔVL at each position (360 places) within the drum circumference is calculated from ΔVD at each position (360 places) within the circumference of the drum.

感光体ドラム1のドラム1周内の各位置において、測定したVLと算出したΔVLとの和により、ドラム1周内を−800[V]で均一帯電させた場合の1周内の各位置(360箇所)のVLを推定する。推定したVLから作成した均一帯電させた場合のドラム1周内のVL分布を、図5に露光後電位(VL(推定値))として示す。ドラム1周内のVL偏差は9[V]である。上記試験例2のVL偏差が14[V]であったので、14−9=5[V]が帯電プロセスに起因したVL偏差として含まれていたと言える。   At each position within the circumference of the drum of the photosensitive drum 1, each position within the circumference when the circumference of the drum is uniformly charged at −800 [V] by the sum of the measured VL and the calculated ΔVL ( 360 places) VL is estimated. FIG. 5 shows the post-exposure potential (VL (estimated value)) in FIG. 5 as the VL distribution in the circumference of the drum in the case of uniform charging created from the estimated VL. The VL deviation within the drum circumference is 9 [V]. Since the VL deviation in Test Example 2 was 14 [V], it can be said that 14−9 = 5 [V] was included as the VL deviation due to the charging process.

〔比較例2〕
本比較例2では、4種類の感光体ドラムA〜Dそれぞれについて、ドラム端部から50、110、170、230、290[mm]の位置で、前述の比較例1と同様にして、ドラム1周内で360箇所のVD及びVLを測定した。グリッド印加電圧は−800[V]に設定した。
[Comparative Example 2]
In this comparative example 2, for each of the four types of photosensitive drums A to D, the drum 1 is positioned at 50, 110, 170, 230, and 290 [mm] from the drum end in the same manner as in the comparative example 1. 360 VD and VL were measured within the circumference. The grid applied voltage was set to -800 [V].

図7、図8、図9及び図10はそれぞれ、感光体ドラムAのドラム端部から50、110、230、290[mm]の位置における、感光体ドラムAのドラム1周内におけるVD及びVLの測定値の分布を示すグラフである。前述の図5の測定結果及び図7〜図10の測定結果から、感光体ドラムAのドラム全領域内(ドラムの端部から50、110、170、230、290[mm]の位置それぞれにおけるドラム1周内の360箇所)のVL偏差は、25[V]である。   7, 8, 9, and 10 respectively show VD and VL in the circumference of the drum of the photosensitive drum A at positions 50, 110, 230, and 290 [mm] from the drum end of the photosensitive drum A. It is a graph which shows distribution of the measured value of. From the measurement results of FIG. 5 and the measurement results of FIGS. 7 to 10, the drums in the entire drum area of the photosensitive drum A (50, 110, 170, 230, and 290 [mm] positions from the end of the drum). The VL deviation at 360 places in one circle is 25 [V].

また、感光体ドラムAと同様にして、他の3種類の感光体ドラムB〜Dについても、ドラム端部から50、110、170、230、290[mm]の位置×ドラム1周内(360箇所))のVL偏差を求めた。   Similarly to the photoconductor drum A, the other three types of photoconductor drums B to D are also positioned at positions of 50, 110, 170, 230, and 290 [mm] from the end of the drum × within one circumference of the drum (360 The VL deviation of location)) was determined.

以下に記載する比較例及び実施例の中では、VL偏差が30[V]未満の場合には、感光体ドラムに問題が無いとして「良」と判定し、VL偏差が30[V]以上の場合には、感光体ドラムに問題があるとして「否」と判定を行った。   In the comparative examples and examples described below, when the VL deviation is less than 30 [V], it is determined as “good” because there is no problem with the photosensitive drum, and the VL deviation is 30 [V] or more. In this case, it was determined as “No” because there was a problem with the photosensitive drum.

表3に、感光体ドラムA〜Dについて求めたVL偏差と良否判定との関係を示す。感光体ドラムA、C、Dに対しては、塗膜ムラの有無とVL偏差による良否判定結果が一致している。しかしながら、感光体ドラムBでは塗膜ムラの有無とVL偏差による良否判定結果とが一致していない。これは、帯電電位偏差(以下、「VD偏差」という。)の影響を受けてVL偏差が大きくなってしまい、塗膜ムラの無い感光体ドラムでもVL偏差で評価すると、感光体ドラムに問題がある「否」の判定が出てしまうことを示している。   Table 3 shows the relationship between the VL deviation obtained for the photosensitive drums A to D and the quality determination. For the photosensitive drums A, C, and D, the presence / absence of coating film unevenness and the quality determination result based on the VL deviation match. However, in the photosensitive drum B, the presence / absence of coating film unevenness and the quality determination result based on the VL deviation do not match. This is because the VL deviation increases due to the influence of the charged potential deviation (hereinafter referred to as “VD deviation”), and even if the photosensitive drum has no coating film unevenness, there is a problem with the photosensitive drum. This indicates that a certain “No” determination is made.

Figure 0005967476
Figure 0005967476

〔実施例2〕
上記比較例2では、感光体ドラムAのドラム端部から50、110、170、230、290[mm]の位置で、グリッド印加電圧−800[V]に設定し、感光体ドラムAのドラム1周内で360箇所のVD及びVLを測定した。
[Example 2]
In the comparative example 2, the grid applied voltage is set to −800 [V] at positions 50, 110, 170, 230, and 290 [mm] from the drum end of the photosensitive drum A, and the drum 1 of the photosensitive drum A is set. 360 VD and VL were measured within the circumference.

本実施例2では、前述の比較例2の測定結果を利用して、感光体ドラムAのドラム端部から50[mm]の位置でのドラム1周内の各位置(360箇所)のVDについて、−800[V]に対する差をそれぞれ算出し、ドラム1周内の各位置(360箇所)のΔVDを求めた。そして、上記実施例1で求めたΔVDとΔVLとの近似関数の関係式(1)を用いて、感光体ドラムAのドラム1周内の各位置(360箇所)のΔVDからドラム1周内の各位置(360箇所)の露光後電位平均値の変動(ΔVL)を求めた。   In the second embodiment, by using the measurement result of the second comparative example described above, the VD at each position (360 locations) within the circumference of the drum at a position of 50 [mm] from the drum end of the photosensitive drum A is used. The difference with respect to −800 [V] was calculated, respectively, and ΔVD at each position (360 locations) within one circumference of the drum was obtained. Then, using the relational expression (1) of the approximate function of ΔVD and ΔVL obtained in the first embodiment, the ΔVD at each position (360 locations) in the drum circumference of the photosensitive drum A is within the drum circumference. The fluctuation (ΔVL) in the average potential value after exposure at each position (360 locations) was determined.

感光体ドラムAのドラム1周内の各位置において、測定したVLの値と上記算出して求めたΔVLとの和により、感光体ドラムAの表面を−800[V]で均一帯電させた場合の1周内の各位置(360箇所)のVLを推定した。推定したVLから作成した均一帯電させた場合のドラム1周内のVL分布を、図7にVL(推定値)として示す。同様にして、感光体ドラムAの表面のドラム端部から110、170、230、290[mm]の位置でもドラム1周内の各位置(360箇所)におけるVLを推定した。このように感光体ドラムAの表面のドラム端部から110、170、230、290[mm]の位置におけるVLの測定値から作成した、感光体ドラムAの表面を均一帯電させた場合のドラム1周内のVLの推定値の分布を、図8、図5、図9及び図10それぞれに示す。   When the surface of the photosensitive drum A is uniformly charged at −800 [V] at each position within the circumference of the drum of the photosensitive drum A by the sum of the measured VL value and ΔVL obtained by the above calculation. The VL at each position (360 locations) within one circumference of was estimated. FIG. 7 shows VL (estimated value) in the VL distribution in the circumference of the drum in the case of uniform charging created from the estimated VL. Similarly, the VL at each position (360 places) within the circumference of the drum was estimated even at positions 110, 170, 230, and 290 [mm] from the drum end on the surface of the photosensitive drum A. Thus, the drum 1 when the surface of the photosensitive drum A is uniformly charged, created from the measured values of VL at the positions of 110, 170, 230, and 290 [mm] from the drum end on the surface of the photosensitive drum A. The distribution of the estimated value of VL in the circumference is shown in FIG. 8, FIG. 5, FIG. 9, and FIG.

均一帯電させた場合の5つのVLの推定値の分布から、感光体ドラムAのドラム全領域内のVL分布の最大値と最小値の差の絶対値であるVL偏差を求めると、23[V]である。したがって、このVLの推定値から算出したVL偏差の値(=23[V])と、前述のVLの測定値から算出したVL偏差の値(=25[V])との差分の2[V](=25−23[V]が、帯電プロセスに起因したVL偏差として含まれていたと言える。   When the VL deviation, which is the absolute value of the difference between the maximum value and the minimum value of the VL distribution in the entire drum region of the photosensitive drum A, is obtained from the distribution of the estimated values of the five VLs when uniformly charged, 23 [V ]. Therefore, the difference between the value of VL deviation (= 23 [V]) calculated from the estimated value of VL and the value of VL deviation (= 25 [V]) calculated from the measured value of VL described above is 2 [V. ] (= 25-23 [V] was included as a VL deviation resulting from the charging process.

〔実施例3〕
本実施例3では、感光体ドラムA以外の3種類の感光体ドラムB〜Dについて、上記実施例2の感光体ドラムAと同様の方法で、感光体ドラムの表面を均一帯電させた場合のドラム全領域内のVLの推定値の分布を求め、そのVLの推定値からドラム全領域内のVL偏差を算出した。
Example 3
In the third embodiment, for the three types of photosensitive drums B to D other than the photosensitive drum A, the surface of the photosensitive drum is uniformly charged in the same manner as the photosensitive drum A of the second embodiment. The distribution of the estimated value of VL in the entire drum area was obtained, and the VL deviation in the entire drum area was calculated from the estimated value of VL.

表4は、4種類感光体ドラムA〜Dについて上記VLの推定値から算出したVL偏差と良否判定との関係を示す。上記比較例2では、感光体ドラムBでは塗膜ムラの有無と、VL偏差による良否判定結果とが一致していなかった。これに対して、表4では、感光体ドラムA〜Dの全てに対しては、塗膜ムラの有無とVL偏差による良否判定結果とが一致している。この表4の結果は、VL偏差におけるVD偏差の影響を取り除くことで、VL偏差から感光体ドラムの良否を精度良く評価できていることを示している。   Table 4 shows the relationship between the VL deviation calculated from the estimated value of VL for the four types of photoconductor drums A to D and the pass / fail judgment. In Comparative Example 2, the presence or absence of coating film unevenness on the photosensitive drum B did not match the quality determination result based on the VL deviation. On the other hand, in Table 4, the presence / absence of coating film unevenness and the quality determination result based on the VL deviation match for all of the photosensitive drums A to D. The results of Table 4 show that the quality of the photosensitive drum can be evaluated with high accuracy from the VL deviation by removing the influence of the VD deviation on the VL deviation.

Figure 0005967476
Figure 0005967476

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
所定電位に帯電された後に露光されることにより潜像が形成される無端移動可能な表面を有する感光体ドラム1などの潜像担持体を評価する特性評価装置であって、表面が無端移動するように潜像担持体を駆動するモータ16などの駆動手段と、駆動手段で駆動された潜像担持体の表面を帯電させるスコロトロン帯電器6などの帯電手段と、帯電手段によって帯電された潜像担持体の表面を露光する露光装置2などの露光手段と、帯電手段による帯電後の潜像担持体の表面の帯電電位と露光手段による露光後の潜像担持体の表面の露光後電位とを検出する表面電位計4,14などの表面電位検出手段と、表面電位検出手段で検出された帯電電位及び露光後電位の検出結果に基づいて、潜像担持体の表面の無端移動方向1周内における帯電電位ΔVDと露光後電位ΔVLとの関係を示す関係式を導出し、関係式に基づいて潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定する推定手段と、を備える。
これによれば、上記実施形態について説明したように、潜像担持体の無端移動方向1周内で帯電電位ムラが生じた場合であっても、導出した関係式から算出した補正値を用いて潜像担持体の無端移動方向1周内における、所定の帯電電位による均一帯電を行った場合の露光後電位を推定することにより、露光後電位から帯電電位ムラの影響を取り除くことができる。この帯電電位ムラの影響が取り除かれた露光後電位の推定値に基づいて、潜像担持体の特性を精度良く評価することができる。しかも、上記露光後電位から帯電電位ムラの影響を取り除くために、潜像担持体と帯電装置との間の距離を測定する変位センサやアンプ等の測定手段を設ける必要がなく、装置の大型化や高コスト化を回避することができる。よって、装置の大型化や高コスト化を回避しつつ、潜像担持体の特性を精度良く評価することができる。
(態様B)
上記態様Aにおいて、潜像担持体の表面の無端移動方向1周内における推定された露光後電位の最大値と最小値との差の絶対値を算出する手段を更に備えた。これによれば、上記実施形態について説明したように、推定された露光後電位の最大値と最小値との差の絶対値から潜像担持体の特性を評価することができる。すなわち、この差の絶対値が小さいほど露光後電位ムラが小さく特性の良い潜像担持体と評価することができる。
(態様C)
上記態様A又はBにおいて、表面電位検出手段における帯電電位を検出する検出部と露光後電位を検出する検出部とを潜像担持体の無端移動方向と直交する幅方向に移動させるステッピングモータなどの移動手段を更に備えた。これによれば、上記実施形態について説明したように、帯電電位を検出する検出部と露光後電位を検出する検出部とが潜像担持体の幅方向に移動するので、潜像担持体の表面の全領域について帯電電位と露光後電位とを測定することができ、潜像担持体の表面の全領域について特性を精度良く評価することが可能となる。
(態様D)
上記態様A乃至Cのいずれかにおいて、露光後電位の推定結果及び推定された露光後電位の最大値と最小値との差の絶対値の算出結果の少なくとも一つに基づいて、潜像担持体の良否を判定する良否判定手段を更に備えた。これによれば、上記実施形態について説明したように、潜像担持体の良否判断を正確に効率よく行うことができ、特性のよい潜像担持体を画像形成装置に組み込んで使用し、高品質な画像を形成することが可能となる。一方、特性の悪い潜像担持体は不良品として再製作やリサイクルに用いることができる。
(態様E)
上記態様A乃至Dのいずれかにおいて、表面電位検出手段は、帯電手段の互いに異なる複数の帯電条件それぞれについて、潜像担持体の表面の無端移動方向1周内の複数の位置で帯電電位及び露光後電位を検出し、推定手段は、複数の帯電条件それぞれについて潜像担持体の表面の無端移動方向1周における帯電電位の平均値及び露光後電位の平均値を算出し、帯電電位の平均値と基準値との差分ΔVD[V]とし、露光後電位の平均値と基準値との差分をΔVL[V]としたとき、ΔVDとΔVLとの一次関数からなる関係式を決定し、関係式に基づいて、潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定する。これによれば、上記実施形態について説明したように、上記ΔVDとΔVLとの一次関数からなる関係式に基づいて、潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を正確に推定することができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
A characteristic evaluation apparatus for evaluating a latent image carrier such as a photosensitive drum 1 having an endlessly movable surface on which a latent image is formed by being charged after being charged to a predetermined potential, and the surface moves endlessly. The driving means such as the motor 16 for driving the latent image carrier, the charging means such as the scorotron charger 6 for charging the surface of the latent image carrier driven by the driving means, and the latent image charged by the charging means. An exposure unit such as an exposure device 2 that exposes the surface of the carrier, a charging potential of the surface of the latent image carrier after charging by the charging unit, and a post-exposure potential of the surface of the latent image carrier after exposure by the exposure unit. Within one turn in the endless movement direction of the surface of the latent image carrier based on surface potential detection means such as surface potential meters 4 and 14 to be detected, and detection results of the charged potential and post-exposure potential detected by the surface potential detection means Charging potential at A relational expression showing the relationship between VD and the post-exposure potential ΔVL is derived, and the post-exposure potential when uniformly charged to a predetermined charging potential within one round of the endless movement direction of the surface of the latent image carrier based on the relational expression. Estimating means for estimating.
According to this, as described in the above embodiment, even when the charged potential unevenness occurs within one round of the endless moving direction of the latent image carrier, the correction value calculated from the derived relational expression is used. By estimating the post-exposure potential when uniform charging is performed with a predetermined charging potential within one turn in the endless movement direction of the latent image carrier, the influence of uneven charging potential can be removed from the post-exposure potential. The characteristics of the latent image carrier can be accurately evaluated based on the estimated value of the post-exposure potential from which the influence of the charging potential unevenness is removed. In addition, in order to remove the influence of uneven charging potential from the post-exposure potential, there is no need to provide a measuring means such as a displacement sensor or an amplifier for measuring the distance between the latent image carrier and the charging device, and the size of the device is increased. And high cost can be avoided. Therefore, it is possible to accurately evaluate the characteristics of the latent image carrier while avoiding an increase in size and cost of the apparatus.
(Aspect B)
In the aspect A, there is further provided means for calculating the absolute value of the difference between the estimated maximum value and the minimum value of the post-exposure potential within one round of the endless moving direction of the surface of the latent image carrier. According to this, as described in the above embodiment, the characteristics of the latent image carrier can be evaluated from the absolute value of the difference between the estimated maximum value and minimum value of the post-exposure potential. That is, the smaller the absolute value of this difference, the smaller the potential unevenness after exposure, and the better the latent image carrier can be evaluated.
(Aspect C)
In the above aspect A or B, a stepping motor or the like that moves the detection unit for detecting the charging potential and the detection unit for detecting the post-exposure potential in the surface potential detection unit in the width direction orthogonal to the endless movement direction of the latent image carrier. A moving means is further provided. According to this, as described in the above embodiment, since the detection unit for detecting the charging potential and the detection unit for detecting the post-exposure potential move in the width direction of the latent image carrier, the surface of the latent image carrier Thus, the charged potential and the post-exposure potential can be measured for the entire area, and the characteristics can be accurately evaluated for the entire area on the surface of the latent image carrier.
(Aspect D)
In any one of the above embodiments A to C, based on at least one of the estimation result of the post-exposure potential and the calculation result of the absolute value of the difference between the estimated maximum value and minimum value of the post-exposure potential, the latent image carrier And a pass / fail judgment means for judging pass / fail. According to this, as described in the above embodiment, the quality determination of the latent image carrier can be performed accurately and efficiently, and the latent image carrier having good characteristics is incorporated into the image forming apparatus and used for high quality. It is possible to form a clear image. On the other hand, a latent image carrier having poor characteristics can be used as a defective product for remanufacturing or recycling.
(Aspect E)
In any of the above-described aspects A to D, the surface potential detection means may detect the charging potential and exposure at a plurality of positions within one endless movement direction of the surface of the latent image carrier for each of a plurality of different charging conditions of the charging means. The post-potential is detected, and the estimating means calculates an average value of the charging potential and an average value of the post-exposure potential in one endless moving direction of the surface of the latent image carrier for each of the plurality of charging conditions, and calculates the average value of the charging potential. And ΔVD [V] between the average value of the post-exposure potential and the reference value is ΔVL [V], a relational expression consisting of a linear function of ΔVD and ΔVL is determined. Based on the above, the post-exposure potential when the surface of the latent image carrier is uniformly charged to a predetermined charging potential within one turn in the endless moving direction is estimated. According to this, as described in the above embodiment, based on the relational expression consisting of a linear function of ΔVD and ΔVL, the surface of the latent image carrier is uniformly set to a predetermined charging potential within one endless movement direction. It is possible to accurately estimate the post-exposure potential when charged.

1 感光体ドラム
2 露光装置
3 表面電位計プローブ
4 表面電位計
5 信号処理回路
6 帯電器
7 高圧電源
8 除電用光源
9 信号処理回路
10 AD変換器
11 ロータリーエンコーダ
12 電源
13 表面電位計プローブ
14 表面電位計
15 電源スイッチ
16 モータ
17 コントローラ
18 主軸
19 ベルト
20 ドラムチャック治具
21 面板(手前側)
22 面板(奥側)
23 デジタルリレー駆動制御部
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Exposure apparatus 3 Surface potential meter probe 4 Surface potential meter 5 Signal processing circuit 6 Charger 7 High voltage power supply 8 Light source for static elimination 9 Signal processing circuit 10 AD converter 11 Rotary encoder 12 Power supply 13 Surface potential meter probe 14 Surface Electrometer 15 Power switch 16 Motor 17 Controller 18 Spindle 19 Belt 20 Drum chuck jig 21 Face plate (front side)
22 Face plate (back side)
23 Digital relay drive controller

特開平4−26852号公報Japanese Patent Laid-Open No. 4-26852 特開2010−286612号公報JP 2010-286612 A

Claims (8)

所定電位に帯電された後に露光されることにより潜像が形成される無端移動可能な表面を有する潜像担持体の特性評価装置であって、
表面が無端移動するように前記潜像担持体を駆動する駆動手段と、
前記駆動手段で駆動された潜像担持体の表面を帯電させる帯電手段と、
前記帯電手段によって帯電された潜像担持体の表面を露光する露光手段と、
前記帯電手段による帯電後の前記潜像担持体の表面の帯電電位と前記露光手段による露光後の該潜像担持体の表面の露光後電位とを検出する表面電位検出手段と、
前記表面電位検出手段で検出された帯電電位及び露光後電位の検出結果に基づいて、前記潜像担持体の表面の無端移動方向1周内における帯電電位と露光後電位との関係を示す関係式を導出し、該関係式に基づいて該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定する推定手段と、
を備え
前記表面電位検出手段は、前記帯電手段の互いに異なる複数の帯電条件それぞれについて、前記潜像担持体の表面の無端移動方向1周内の複数の位置で前記帯電電位及び露光後電位を検出し、
前記推定手段は、前記複数の帯電条件それぞれについて前記潜像担持体の表面の無端移動方向1周における前記帯電電位の平均値及び前記露光後電位の平均値を算出し、前記帯電電位の平均値と基準値との差分をΔVD[V]とし、前記露光後電位の平均値と基準値との差分をΔVL[V]としたとき、ΔVDとΔVLとの一次関数からなる関係式を決定し、該関係式に基づいて、該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定することを特徴とする潜像担持体の特性評価装置。
A device for evaluating characteristics of a latent image carrier having an endlessly movable surface on which a latent image is formed by exposure after being charged to a predetermined potential,
Driving means for driving the latent image carrier so that the surface moves endlessly;
Charging means for charging the surface of the latent image carrier driven by the driving means;
Exposure means for exposing the surface of the latent image carrier charged by the charging means;
A surface potential detecting means for detecting a charged potential of the surface of the latent image carrier after charging by the charging means and a post-exposure potential of the surface of the latent image carrier after exposure by the exposing means;
Based on the detection result of the charged potential and the post-exposure potential detected by the surface potential detecting means, a relational expression showing the relationship between the charged potential and the post-exposure potential within one round of the endless moving direction of the surface of the latent image carrier. An estimation means for estimating the post-exposure potential when uniformly charged to a predetermined charging potential within one circumference in the endless movement direction of the surface of the latent image carrier based on the relational expression;
Equipped with a,
The surface potential detection means detects the charging potential and the post-exposure potential at a plurality of positions within one endless movement direction of the surface of the latent image carrier for each of a plurality of different charging conditions of the charging means,
The estimation means calculates an average value of the charging potential and an average value of the post-exposure potential in one endless movement direction of the surface of the latent image carrier for each of the plurality of charging conditions, and calculates the average value of the charging potential. And ΔVD [V], and the difference between the average value of the post-exposure potential and the reference value is ΔVL [V], a relational expression consisting of a linear function of ΔVD and ΔVL is determined. Based on the relational expression, the latent image carrier is characterized by estimating a post-exposure potential when the surface of the latent image carrier is uniformly charged to a predetermined charging potential within one round of the endless movement direction of the surface. Evaluation device.
請求項1の潜像担持体の特性評価装置において、
前記潜像担持体の表面の無端移動方向1周内における前記推定された露光後電位の最大値と最小値との差の絶対値を算出する手段を更に備えたことを特徴とする潜像担持体の特性評価装置。
In the apparatus for evaluating characteristics of a latent image carrier according to claim 1,
The latent image carrier further comprising means for calculating an absolute value of a difference between the estimated maximum value and minimum value of the post-exposure potential within one round of the endless movement direction of the surface of the latent image carrier. Body characterization device.
請求項1又は2の潜像担持体の特性評価装置において、
前記表面電位検出手段における前記帯電電位を検出する検出部と前記露光後電位を検出する検出部とを前記潜像担持体の無端移動方向と直交する幅方向に移動させる移動手段を更に備えたことを特徴とする潜像担持体の特性評価装置。
In the apparatus for evaluating characteristics of a latent image carrier according to claim 1 or 2,
The apparatus further comprises moving means for moving the detection portion for detecting the charging potential and the detection portion for detecting the post-exposure potential in the surface potential detection means in a width direction orthogonal to the endless movement direction of the latent image carrier. An apparatus for evaluating characteristics of a latent image carrier.
請求項1乃至3のいずれかの潜像担持体の特性評価装置において、
前記露光後電位の推定結果及び前記推定された露光後電位の最大値と最小値との差の絶対値の算出結果の少なくとも一つに基づいて、前記潜像担持体の良否を判定する良否判定手段を更に備えたことを特徴とする潜像担持体の特性評価装置
In the latent image carrier property evaluation apparatus according to any one of claims 1 to 3,
Pass / fail determination for determining pass / fail of the latent image carrier based on at least one of an estimation result of the post-exposure potential and a calculation result of an absolute value of a difference between the estimated maximum value and minimum value of the post-exposure potential An apparatus for evaluating characteristics of a latent image carrier, further comprising means .
定電位に帯電された後に露光されることにより潜像が形成される無端移動可能な表面を有する潜像担持体の特性評価方法であって、
表面が無端移動するように駆動された潜像担持体の表面を帯電させるステップと、
前記帯電された潜像担持体の表面を露光するステップと、
前記帯電後の潜像担持体の表面の帯電電位と前記露光後の潜像担持体の表面の露光後電位とを検出するステップと、
前記帯電電位及び露光後電位の検出結果に基づいて、前記潜像担持体の表面の無端移動方向1周内における帯電電位と露光後電位との関係を示す関係式を決定するステップと、
前記関係式に基づいて該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定するステップと、
を有し、
互いに異なる複数の帯電条件それぞれについて、前記潜像担持体の表面の無端移動方向1周内の複数の位置で前記帯電電位及び露光後電位を検出し、
前記複数の帯電条件それぞれについて前記潜像担持体の表面の無端移動方向1周における前記帯電電位の平均値及び前記露光後電位の平均値を算出し、前記帯電電位の平均値と基準値との差分をΔVD[V]とし、前記露光後電位の平均値と基準値との差分をΔVL[V]としたとき、ΔVDとΔVLとの一次関数からなる関係式を決定し、該関係式に基づいて、該潜像担持体の表面の無端移動方向1周内における所定の帯電電位に均一帯電された場合の露光後電位を推定することを特徴とする潜像担持体の特性評価方法。
A method of evaluating the characteristic of the latent image bearing member having an endless movable surface on which a latent image is formed by being exposed after being charged to a Jo Tokoro potential,
Charging the surface of the latent image carrier driven so that the surface moves endlessly;
Exposing the surface of the charged latent image carrier;
Detecting a charged potential of the surface of the latent image carrier after charging and a post-exposure potential of the surface of the latent image carrier after exposure;
Determining a relational expression indicating the relationship between the charging potential and the post-exposure potential in one endless moving direction of the surface of the latent image carrier based on the detection result of the charging potential and the post-exposure potential;
Estimating a post-exposure potential when the surface of the latent image carrier is uniformly charged to a predetermined charging potential within one round of the endless movement direction based on the relational expression;
I have a,
For each of a plurality of different charging conditions, the charging potential and the post-exposure potential are detected at a plurality of positions within one turn in the endless movement direction of the surface of the latent image carrier,
For each of the plurality of charging conditions, an average value of the charging potential and an average value of the post-exposure potential in one endless moving direction of the surface of the latent image carrier are calculated, and the average value of the charging potential and a reference value are calculated. When the difference is ΔVD [V] and the difference between the average value of the post-exposure potential and the reference value is ΔVL [V], a relational expression consisting of a linear function of ΔVD and ΔVL is determined, and based on the relational expression A method for evaluating characteristics of a latent image carrier, comprising: estimating a post-exposure potential when the surface of the latent image carrier is uniformly charged to a predetermined charging potential within one round of the endless movement direction of the surface .
請求項の潜像担持体の特性評価方法において、
前記潜像担持体の表面の無端移動方向1周内における前記推定された露光後電位の最大値と最小値との差の絶対値を算出するステップを更に有することを特徴とする潜像担持体の特性評価方法。
In the method for evaluating characteristics of a latent image carrier according to claim 5 ,
The latent image carrier further comprises a step of calculating an absolute value of a difference between the estimated maximum value and the minimum value of the post-exposure potential within one round of the endless movement direction of the surface of the latent image carrier. Characterization method.
請求項5又は6の潜像担持体の特性評価方法において、
前記帯電電位を検出する検出部と前記露光後電位を検出する検出部とを前記潜像担持体の無端移動方向と直交する幅方向に移動させるステップを更に有することを特徴とする潜像担持体の特性評価方法。
In the method for evaluating characteristics of a latent image carrier according to claim 5 or 6 ,
The latent image carrier further comprising a step of moving the detection unit for detecting the charging potential and the detection unit for detecting the post-exposure potential in a width direction orthogonal to the endless movement direction of the latent image carrier. Characterization method.
請求項乃至のいずれかの潜像担持体の特性評価方法において、
前記露光後電位の推定結果及び前記推定された露光後電位の最大値と最小値との差の絶対値の算出結果の少なくとも一つに基づいて、前記潜像担持体の良否を判定するステップを更に備えたことを特徴とする潜像担持体の特性評価方法
In the method for evaluating characteristics of a latent image carrier according to any one of claims 5 to 7 ,
Determining the quality of the latent image carrier based on at least one of an estimation result of the post-exposure potential and a calculation result of an absolute value of a difference between the estimated maximum value and the minimum value of the post-exposure potential; further characterization method of the latent image carrier, characterized in that it includes.
JP2012132770A 2012-06-12 2012-06-12 Apparatus and method for evaluating characteristics of latent image carrier Active JP5967476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012132770A JP5967476B2 (en) 2012-06-12 2012-06-12 Apparatus and method for evaluating characteristics of latent image carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012132770A JP5967476B2 (en) 2012-06-12 2012-06-12 Apparatus and method for evaluating characteristics of latent image carrier

Publications (2)

Publication Number Publication Date
JP2013257407A JP2013257407A (en) 2013-12-26
JP5967476B2 true JP5967476B2 (en) 2016-08-10

Family

ID=49953896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012132770A Active JP5967476B2 (en) 2012-06-12 2012-06-12 Apparatus and method for evaluating characteristics of latent image carrier

Country Status (1)

Country Link
JP (1) JP5967476B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545235B2 (en) 2009-12-01 2017-01-17 General Electric Company Mobile base and X-ray machine mounted on such a mobile base

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131520A (en) * 2001-10-26 2003-05-09 Canon Inc Photoreceptor drum inspection method and device therefor
JP4708231B2 (en) * 2006-03-15 2011-06-22 株式会社リコー Image forming apparatus
JP5471177B2 (en) * 2009-08-28 2014-04-16 株式会社リコー Potential control device and photosensitive member characteristic evaluation device for electrophotography
JP5333994B2 (en) * 2009-12-09 2013-11-06 株式会社リコー Device for evaluating characteristics of electrophotographic photosensitive member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9545235B2 (en) 2009-12-01 2017-01-17 General Electric Company Mobile base and X-ray machine mounted on such a mobile base

Also Published As

Publication number Publication date
JP2013257407A (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP4898478B2 (en) Image forming apparatus
JP5967476B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
JP5471177B2 (en) Potential control device and photosensitive member characteristic evaluation device for electrophotography
US9915889B2 (en) Image forming apparatus
JP6020966B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP5857587B2 (en) Image forming apparatus
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP2012098659A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP2003029572A (en) Method for evaluating characteristics of photoreceptor
JP5447838B2 (en) Electrophotographic photoconductor characteristic evaluation device
JP4914250B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photoreceptor
JP5333994B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
US9733608B2 (en) Determining light quantity of pre-charging exposure device in an image forming apparatus and cartridge
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor
JP5459093B2 (en) Photoconductor deterioration acceleration test apparatus and photoconductor deterioration acceleration test method
JP4753793B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP6025672B2 (en) Image forming apparatus
JP2019028270A (en) Image forming apparatus
JP2014026160A (en) Evaluation device for photoreceptor and evaluation method for photoreceptor
JP2013064909A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP2008046378A (en) Characteristic evaluation device for electrophotographic photoreceptor
JP2007304185A (en) Image forming apparatus, method for applying electrifying voltage and method for applying developing bias voltage
JP2022021788A (en) Electrification and exposure device and photoreceptor electrification and exposure testing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R151 Written notification of patent or utility model registration

Ref document number: 5967476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151