JP5333994B2 - Device for evaluating characteristics of electrophotographic photosensitive member - Google Patents

Device for evaluating characteristics of electrophotographic photosensitive member Download PDF

Info

Publication number
JP5333994B2
JP5333994B2 JP2009279265A JP2009279265A JP5333994B2 JP 5333994 B2 JP5333994 B2 JP 5333994B2 JP 2009279265 A JP2009279265 A JP 2009279265A JP 2009279265 A JP2009279265 A JP 2009279265A JP 5333994 B2 JP5333994 B2 JP 5333994B2
Authority
JP
Japan
Prior art keywords
photoconductor
temperature
photoreceptor
photosensitive member
characteristic evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009279265A
Other languages
Japanese (ja)
Other versions
JP2011123158A (en
Inventor
紀保 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009279265A priority Critical patent/JP5333994B2/en
Publication of JP2011123158A publication Critical patent/JP2011123158A/en
Application granted granted Critical
Publication of JP5333994B2 publication Critical patent/JP5333994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Cleaning In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a characteristic evaluation device for evaluating the temperature characteristics of a photoreceptor at low cost with high accuracy, while keeping versatility, concerning a photoreceptor characteristic evaluation device. <P>SOLUTION: In the photoreceptor characteristic evaluation device, a charging device, an exposure device, a surface potential detecting device and a destaticizer are arranged around the photoreceptor. The photoreceptor characteristic evaluation device includes a heating device heating the photoreceptor, a controller controlling the output of the heating device, and a temperature sensor measuring the surface temperature of the photoreceptor and is configured so that the heating device and the temperature sensor can be moved in the axial direction of the photoreceptor and the centers in the axial direction of the photoreceptor of the charging device, the exposure device, the surface potential detecting device and the destaticizer coincide with each other. An area occupied by each of the charging device, the exposure device, the surface potential detecting device and the destaticizer in the axial direction of the photoreceptor is within an area occupied by the heating device in the axial direction of the photoreceptor. The relation of the length L1 in the axial direction of the heating area of the heating device, the total length L of the photoreceptor, and the length L2 in the axial direction of the charging area of the charging device is L2&le;L1&lt;L. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、レーザープリンタ、複写機等の画像形成装置に使用される電子写真感光体の特性評価装置に関するものである。   The present invention relates to an apparatus for evaluating characteristics of an electrophotographic photosensitive member used in an image forming apparatus such as a laser printer or a copying machine.

電子写真感光体(以下、「感光体」、「静電潜像担持体」と称することもある)は、複写機、レーザープリンタなどの電子写真プロセスを応用した画像形成装置において、最も重要な構成要素の一つであり、画像形成装置本体の性能を引出すために、様々な特性を満足する必要がある。そのため、感光体は出荷前に電子写真に関る様々な特性の検査が行われている。また、新規の電子写真装置用として、新規の感光体を開発する場合には、開発過程において試作した感光体の電子写真に関る様々な特性についての評価が行われており、電子写真用感光体の特性評価装置についても種々提案されている。   An electrophotographic photosensitive member (hereinafter, also referred to as “photosensitive member” or “electrostatic latent image carrier”) is the most important component in an image forming apparatus using an electrophotographic process such as a copying machine or a laser printer. One of the elements, it is necessary to satisfy various characteristics in order to bring out the performance of the image forming apparatus main body. Therefore, the photoreceptor is inspected for various characteristics relating to electrophotography before shipment. In addition, when developing a new photoreceptor for use in a new electrophotographic apparatus, various characteristics relating to electrophotography of the prototyped photoreceptor have been evaluated in the development process. Various body characteristic evaluation apparatuses have been proposed.

電子写真用感光体の特性評価装置においては、帯電特性(暗中における電荷保持性能)、光減衰特性(光照射で速やかに帯電電荷を放出する性能)があり、これを評価する事が必要である。特に、画像形成装置内においては感光体の温度は上昇する為、感光体の表面温度を変化させた時の諸特性を測定する事によって、それらの特性の温度に対する依存性を測定する必要があること事が分かっている。   An electrophotographic photoreceptor characteristic evaluation apparatus has charging characteristics (charge retention performance in the dark) and light attenuation characteristics (performance of quickly releasing charged charges by light irradiation), and it is necessary to evaluate them. . In particular, since the temperature of the photoreceptor rises in the image forming apparatus, it is necessary to measure the dependence of these characteristics on the temperature by measuring various characteristics when the surface temperature of the photoreceptor is changed. I know that.

例えば、特許文献1では、感光体表面を加熱する加熱手段と感光体表面の温度を検知する温度検知手段を設けており、温度検知手段の結果に基づいて加熱手段を制御して感光体表面温度を制御する画像形成装置が記載されている。特許文献1では、使用する加熱手段にはヒーターを用いたと記載されているが、それ以上の記載は見られない。更に、画像形成装置で使用している為、ヒーターの長さは感光体長全てをカバーするヒーター長さである事が予測されるが、電子写真用感光体の特性評価装置で使用するヒーターは、使用する各デバイスの方式・形状が異なる為、そのままの条件で使用する事は困難である。   For example, in Patent Document 1, a heating unit that heats the surface of the photoconductor and a temperature detection unit that detects the temperature of the surface of the photoconductor are provided, and the surface temperature of the photoconductor is controlled by controlling the heating unit based on the result of the temperature detection unit. An image forming apparatus for controlling the image is described. In Patent Document 1, it is described that a heater is used as the heating means to be used, but no further description is seen. Furthermore, since it is used in the image forming apparatus, the length of the heater is predicted to be a heater length that covers the entire length of the photoconductor, but the heater used in the electrophotographic photoconductor characteristic evaluation apparatus is Since the method and shape of each device used is different, it is difficult to use it as it is.

また、特許文献2には、感光体を加熱または/冷却する加熱・冷却器を使って感光体の表面温度を変化させながら、感光体の諸特性を測定する感光体の評価装置が記載されている。特許文献2では、感光体の評価装置において、感光体の加熱する手段/装置を設けているが、加熱手段はヒーターである事を記載しているだけで、ヒーターの詳細については、一切記載されていない。   Patent Document 2 describes a photoconductor evaluation apparatus that measures various characteristics of a photoconductor while changing the surface temperature of the photoconductor using a heating / cooling device that heats or cools the photoconductor. Yes. In Patent Document 2, the photoconductor evaluation device is provided with a means / device for heating the photoconductor, but only describes that the heating means is a heater, and details of the heater are not described at all. Not.

特性評価装置では、多種多様な感光体に対応する為、感光体を保持する為の保持部材は同形状の感光体に対して1つの保持部材で対応する等、コスト低減と汎用性を高める事を考慮された装置となっている事が多い。また、ドラム内径が同じ感光体の場合は、同じ保持部材で対応できるような装置にする等、更なるコスト低減をはかった装置にする事が考慮がされる。この様に、加熱装置に関しても、コスト低減・汎用性を高めた装置が要望されている。   In the characteristic evaluation apparatus, in order to deal with a wide variety of photoconductors, the holding member for holding the photoconductor can correspond to a photoconductor of the same shape with a single holding member, so that cost reduction and versatility can be improved. It is often a device that takes into account. Further, in the case of photoconductors having the same drum inner diameter, consideration is given to making the device further cost-saving, such as a device that can be handled by the same holding member. As described above, there is also a demand for a heating device that has reduced cost and improved versatility.

評価装置では、複数のポイントを測定し評価する事がある為、帯電と露光を繰り返す事で生じる感光体劣化を防ぐ必要が有る。その為、感光体周りのユニットは必要な領域だけ帯電と露光をさせるよう、ユニット長はそれを考慮したユニット長にしている。一方、加熱装置に関しては、感光体の全領域をカバーする加熱装置でも構わないが、長くした場合、短い感光体を測定する為に、新たに短い加熱装置を製作する必要が生じる為、コスト低減のためには汎用性を持たせた長さの加熱装置が必要で有る。但し、加熱装置の両端の温度は、放射熱の影響によって、中心の温度よりも低温になる為、加熱装置を短くしすぎる事は軸方向・周方向の温度ムラを生じさせる事になる。   Since the evaluation apparatus sometimes measures and evaluates a plurality of points, it is necessary to prevent photoconductor deterioration caused by repeated charging and exposure. For this reason, the unit length in consideration of the unit length is set so that the unit around the photosensitive member is charged and exposed only in a necessary area. On the other hand, the heating device may be a heating device that covers the entire area of the photoconductor, but if it is made longer, it will be necessary to manufacture a new short heating device in order to measure a short photoconductor, thus reducing costs. For this purpose, a heating device having a general purpose length is necessary. However, because the temperature at both ends of the heating device is lower than the center temperature due to the influence of radiant heat, making the heating device too short will cause temperature unevenness in the axial direction and circumferential direction.

更に、評価装置の内部には、帯電装置から排出されるオゾン・NOxといった放電ガスを充満させない為に、装置外に排気するための空気の流れを作っている。しかし、その空気の流れは、感光体1周内の表面温度に違いを生じさせる原因になっている。この温度ムラが発生している状態で、感光体ドラムを回転させ、即、帯電し感光体の諸特性を評価すると、特性の温度依存性の強い場合は1周内で特性にムラが生じる事になる。その為、上記問題を解決可能な特性評価装置が要望されていた。   Further, in order to prevent the discharge device such as ozone and NOx discharged from the charging device from being filled inside the evaluation device, an air flow for exhausting out of the device is created. However, the air flow causes a difference in surface temperature within the circumference of the photoreceptor. When the photosensitive drum is rotated in the state where the temperature unevenness is generated and immediately charged and the various characteristics of the photosensitive member are evaluated, if the temperature dependence of the characteristic is strong, the characteristic is uneven within one round. become. Therefore, there has been a demand for a characteristic evaluation apparatus that can solve the above problems.

本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、感光体特性評価装置において、汎用性を持たせたまま低コストで感光体の温度特性を精度良く評価する為の特性評価装置を提供することを目的とする。   An object of the present invention is to solve various problems in the prior art and achieve the following objects. That is, an object of the present invention is to provide a characteristic evaluation apparatus for accurately evaluating the temperature characteristic of a photosensitive member at low cost while maintaining versatility in the photosensitive member characteristic evaluation apparatus.

上記課題を解決する為に、本発明に係る特性評価装置は、下記(1)〜(7)に記載の技術的特徴を有する。
(1)ドラム状支持体に感光層を設けた感光体の周囲に、
帯電装置、露光装置、表面電位検出装置及び除電装置を配置した感光体特性評価装置であって、
感光体をドラム内部から加熱する加熱装置、該加熱装置の出力を制御する制御装置、感光体の感光層側の表面温度を計測する温度センサを有しており、
該加熱装置と温度センサは感光体軸方向に移動可能であり、
帯電装置、露光装置、表面電位検出装置及び除電装置のそれぞれの感光体軸方向と平行方向の中心が一致するように構成されており、
且つ帯電装置、露光装置、表面電位検出装置及び徐電装置のそれぞれが感光体軸方向と平行方向に占める領域が、加熱装置が感光体軸方向と平行方向に占める領域の内にあり、
該加熱装置の加熱領域の軸方向長さL1、感光体全長L、帯電装置の帯電領域の軸方向長さL2の関係は
L2 ≦ L1 < L
である感光体特性評価装置である。
尚、帯電装置の帯電領域とは、コロトロン帯電器の開口領域、スコロトロン帯電器のグリッド開口領域、帯電ローラの場合はローラ幅の事を指す。
(2)前記感光体の表面温度を計測する温度センサは、非接触式の放射温度計であることを特徴とする上記(1)に記載の感光体特性評価装置である。
(3)感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、予め定めた時間を回転させてから表面電位の測定を開始するよう構成されたことを特徴とする上記(1)又は(2)に記載の感光体特性評価装置である。
(4)感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後感光体を回転させ、感光体1周内の温度幅が予め定めた範囲に到達してから表面電位の測定を開始するよう構成された事を特徴とする上記(1)又は(2)に記載の感光体特性評価装置である。
なお感光体1周内の温度幅とは感光体を1周回転させた時に、温度センサで計測する1周分の温度幅である。
(5)感光体を回転させた状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、表面電位の測定を開始するように構成された事を特徴とする上記(1)又は(2)に記載の感光体特性評価装置である。
(6)露光後電位を測定する事で感光体の温度特性を評価する事を特徴とする上記(1)〜(5)のいずれかに記載の感光体特性評価装置である。
(7)帯電電位を測定する事で感光体の温度特性を評価する事を特徴とする上記(1)〜(5)のいずれかに記載の感光体特性評価装置である。
In order to solve the above problems, a characteristic evaluation apparatus according to the present invention has technical features described in the following (1) to (7).
(1) Around a photosensitive member provided with a photosensitive layer on a drum-shaped support,
A photoconductor characteristic evaluation device in which a charging device, an exposure device, a surface potential detection device, and a charge removal device are arranged,
A heating device that heats the photosensitive member from the inside of the drum, a control device that controls the output of the heating device, and a temperature sensor that measures the surface temperature of the photosensitive member on the photosensitive layer side;
The heating device and the temperature sensor are movable in the axial direction of the photoreceptor,
Each of the charging device, the exposure device, the surface potential detection device, and the static elimination device is configured so that the respective centers of the photosensitive member axial direction and the parallel direction coincide with each other.
In addition, the region that each of the charging device, the exposure device, the surface potential detection device, and the slow current device occupies in the direction parallel to the photosensitive member axial direction is within the region that the heating device occupies in the direction parallel to the photosensitive member axial direction.
The relationship between the axial length L1 of the heating region of the heating device, the overall length L of the photosensitive member, and the axial length L2 of the charging region of the charging device is L2 ≦ L1 <L
Is a photoreceptor characteristic evaluation apparatus.
The charging area of the charging device means the opening area of the corotron charger, the grid opening area of the scorotron charger, and the roller width in the case of the charging roller.
(2) The photoconductor characteristic evaluation apparatus according to (1), wherein the temperature sensor for measuring the surface temperature of the photoconductor is a non-contact type radiation thermometer.
(3) The photoconductor is heated in a stopped state, measured by a temperature sensor that a predetermined temperature has been reached, and then rotated for a predetermined time before measuring the surface potential. The photoconductor characteristic evaluation apparatus according to (1) or (2), wherein the photoconductor characteristic evaluation apparatus is characterized.
(4) The photoconductor is heated in a stopped state, measured by a temperature sensor to reach a predetermined temperature, the photoconductor is rotated, and the temperature width within the circumference of the photoconductor reaches a predetermined range. The photoconductor characteristic evaluation apparatus according to (1) or (2) above, wherein measurement of the surface potential is started from the above.
Note that the temperature width within the circumference of the photoreceptor is a temperature width for one circumference measured by the temperature sensor when the photoreceptor is rotated once.
(5) The above-described (1), wherein the photoconductor is heated in a rotated state, and after measuring by a temperature sensor that a predetermined temperature has been reached, measurement of the surface potential is started. ) Or (2).
(6) The photoconductor characteristic evaluation apparatus according to any one of (1) to (5), wherein the temperature characteristic of the photoconductor is evaluated by measuring a post-exposure potential.
(7) The photoconductor characteristic evaluation apparatus according to any one of (1) to (5), wherein the temperature characteristic of the photoconductor is evaluated by measuring a charged potential.

本発明によると従来における諸問題を解決する事が出来、感光体特性評価装置において、汎用性を持たせたまま低コストで評価する事が可能となる。更に、評価装置内の気流の影響で発生する感光体の1周内温度ムラも改善した状態で、精度良い温度特性の測定が可能となる。   According to the present invention, various problems in the prior art can be solved, and it is possible to perform evaluation at a low cost while maintaining versatility in the photoreceptor characteristic evaluation apparatus. Furthermore, it is possible to measure temperature characteristics with high accuracy in a state in which the temperature irregularity within the circumference of the photoconductor caused by the airflow in the evaluation apparatus is also improved.

詳しくは、本発明によれば、第1に、ドラム状支持体に感光層を設けた感光体の周囲に、帯電装置、露光装置、表面電位検出装置及び除電装置を配置した感光体特性評価装置であって、感光体をドラム内部から加熱する加熱装置、該加熱装置の出力を制御する制御装置、感光体の感光層側の表面温度を計測する温度センサを有しており、該加熱装置と温度センサは感光体軸方向に移動可能であり、帯電装置、露光装置、表面電位検出装置及び除電装置のそれぞれの感光体軸方向と平行方向の中心が一致するように構成されており、且つ帯電装置、露光装置、表面電位検出装置及び徐電装置のそれぞれが感光体軸方向と平行方向に占める領域が、加熱装置が感光体軸方向と平行方向に占める領域の内にあり、該加熱装置の加熱領域の軸方向長さL1、感光体全長L、帯電装置の帯電領域の軸方向長さL2の関係を規定する事で、汎用性を持たせたまま、低コストで感光体の温度特性を精度良く評価する事が出来る。
第2に、感光体の表面温度を計測する温度センサは、非接触式の放射温度計である事により、感光体に傷・劣化等によるダメージを与えずに感光体の温度特性を評価する事が出来る。
第3に、上記(1)又は(2)に記載の感光体特性評価装置において、感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、予め定めた時間を回転させてから測定を開始するよう構成される事により、感光体の円周方向の温度ムラを少なくした状態で、感光体の温度特性を評価する事が出来る。
第4に、上記(1)又は(2)に記載の感光体特性評価装置において、感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後感光体を回転させ、感光体1周内の温度幅が予め定めた範囲に到達してから測定を開始するよう構成される事により、感光体の円周方向の温度ムラを少なくした状態で、感光体の温度特性を評価する事が出来る。
第5に、上記(1)又は(2)に記載の感光体特性評価装置において、感光体を回転させた状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、測定を開始するように構成される事により、感光体の円周方向の温度ムラを少なくし、且つ測定までの時間を短縮させて感光体の温度特性を評価する事が出来る。
第6に、上記(1)〜(5)のいずれかに記載の感光体評価装置において、露光後電位を測定する事で感光体の温度特性を評価する事により、感光体の露光後電位の温度特性を評価する事が出来る。
第7に、上記(1)〜(5)のいずれかに記載の感光体評価装置において、帯電電位を測定する事で感光体の温度特性を評価する事により、感光体の帯電電位の温度特性を評価する事が出来る。
Specifically, according to the present invention, firstly, a photosensitive member characteristic evaluation apparatus in which a charging device, an exposure device, a surface potential detection device, and a static elimination device are arranged around a photosensitive member provided with a photosensitive layer on a drum-like support. A heating device for heating the photosensitive member from the inside of the drum, a control device for controlling the output of the heating device, and a temperature sensor for measuring the surface temperature of the photosensitive member on the photosensitive layer side. The temperature sensor is movable in the photosensitive member axial direction, and is configured such that the center of the charging device, the exposure device, the surface potential detection device, and the neutralization device is aligned with the center of the photosensitive member axial direction. The region that each of the apparatus, the exposure device, the surface potential detection device, and the grading device occupies in the direction parallel to the photosensitive member axial direction is within the region that the heating device occupies in the direction parallel to the photosensitive member axial direction. Axial length of heating zone 1. By defining the relationship between the overall length L of the photoconductor and the axial length L2 of the charging area of the charging device, it is possible to accurately evaluate the temperature characteristics of the photoconductor at low cost while maintaining versatility. .
Second, the temperature sensor for measuring the surface temperature of the photoconductor is a non-contact type radiation thermometer, so that the temperature characteristics of the photoconductor can be evaluated without damaging the photoconductor due to scratches or deterioration. I can do it.
Thirdly, in the photoconductor characteristic evaluation apparatus described in (1) or (2) above, the photoconductor is heated in a stopped state, and a temperature sensor is used to measure that the photoconductor has reached a predetermined temperature. By being configured to start the measurement after rotating the time, it is possible to evaluate the temperature characteristics of the photoconductor in a state where the temperature unevenness in the circumferential direction of the photoconductor is reduced.
Fourth, in the photoconductor characteristic evaluation apparatus described in (1) or (2) above, the photoconductor is heated in a stopped state, and after having reached a predetermined temperature, the photoconductor is rotated. The temperature of the photoconductor is reduced in a state in which the temperature unevenness in the circumferential direction of the photoconductor is reduced by being configured to start the measurement after the temperature width in the circumference of the photoconductor reaches a predetermined range. The characteristics can be evaluated.
Fifth, in the photoconductor characteristic evaluation apparatus described in (1) or (2) above, the photoconductor is heated in a rotated state, and after reaching a predetermined temperature with a temperature sensor, measurement is performed. Thus, the temperature characteristics of the photoconductor can be evaluated by reducing the temperature unevenness in the circumferential direction of the photoconductor and shortening the time until measurement.
Sixth, in the photoconductor evaluation apparatus according to any one of (1) to (5) above, the post-exposure potential of the photoconductor is evaluated by evaluating the temperature characteristics of the photoconductor by measuring the post-exposure potential. Temperature characteristics can be evaluated.
Seventh, in the photosensitive member evaluation apparatus according to any one of (1) to (5), the temperature characteristic of the charging potential of the photosensitive member is evaluated by measuring the temperature characteristic of the photosensitive member by measuring the charging potential. Can be evaluated.

本発明に係る特性評価装置の概略図の一例(正面図)である。It is an example (front view) of the schematic of the characteristic evaluation apparatus which concerns on this invention. 本発明に係る特性評価装置の概略図の一例(側面図)である。It is an example (side view) of the schematic of the characteristic evaluation apparatus which concerns on this invention. 実施例2aでの感光体停止状態から回転状態に切り替わった時の温度推移グラフである。It is a temperature transition graph when it switches from the photoconductor stop state in Example 2a to a rotation state.

以下に、本発明に係る電子写真感光体特性評価装置の実施の形態を図面に基づいて説明する。図1は、本発明にかかる感光体の特性評価装置の概略図(正面図)、図2は、本発明にかかる感光体の特性評価装置の概略図(側面図)である。図1と図2を参照しながら特性評価装置を説明する。   Embodiments of an electrophotographic photosensitive member property evaluation apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view (front view) of a photoconductor characteristic evaluation apparatus according to the present invention, and FIG. 2 is a schematic view (side view) of the photoconductor characteristic evaluation apparatus according to the present invention. The characteristic evaluation apparatus will be described with reference to FIGS.

図1に示すように、本実施形態の感光体評価装置は、感光体1を帯電する帯電器6、潜像形成の露光装置3、及び除電器5がドラム感光体の周囲に配置され、且つ帯電器6と露光装置3の間、露光装置3と除電器5の間に、感光体上の表面電位を計測する電位計プローブ2、4がそれぞれ配置され、帯電器へ電圧を供給するための電源12と、帯電器のグリッドへ電圧を供給するための電源13を備えた装置である。また、図2に示すように感光体ドラムは両端にドラムチャック治具18でドラムを保持され、モーター23によって、図1の矢印の方向に回転する。モーター内のモータードライバでは、回転数の制御が可能であり、任意の線速で回転させる事が可能である。更に、感光体内部にドラムを加熱するための加熱装置(ヒーター)17、感光体の表面温度を計測するための温度センサ24が配置されている。温度センサ24は図2に示すコントローラ25に接続されており、温度センサ24の結果でコントローラ25はヒーターのON/OFFを制御しており、設定した温度に出力を制御する仕組みとなっている。ここでのコントローラの制御方法に関しては、フィードバッグ制御・PID制御等公知の制御方法によって所定の設定温度に設定される仕組みとなっている。   As shown in FIG. 1, in the photoconductor evaluation apparatus of this embodiment, a charger 6 for charging the photoconductor 1, an exposure device 3 for forming a latent image, and a static eliminator 5 are arranged around the drum photoconductor, and Between the charger 6 and the exposure device 3 and between the exposure device 3 and the charge eliminator 5, electrometer probes 2 and 4 for measuring the surface potential on the photosensitive member are respectively arranged for supplying a voltage to the charger. It is a device comprising a power source 12 and a power source 13 for supplying a voltage to the grid of the charger. As shown in FIG. 2, the photosensitive drum is held at both ends by drum chuck jigs 18 and is rotated in the direction of the arrow in FIG. The motor driver in the motor can control the number of rotations and can be rotated at an arbitrary linear speed. Further, a heating device (heater) 17 for heating the drum and a temperature sensor 24 for measuring the surface temperature of the photoconductor are arranged inside the photoconductor. The temperature sensor 24 is connected to the controller 25 shown in FIG. 2, and the controller 25 controls the ON / OFF of the heater based on the result of the temperature sensor 24, and the output is controlled to the set temperature. The controller control method here is set to a predetermined set temperature by a known control method such as feedback control or PID control.

電位計プローブ2と4の軸方向位置の設置数は複数個でも構わない、帯電領域内に複数設置することで、短時間で領域内の帯電分布を取ることが可能となる。
電位計プローブ2と4、帯電器6、除電器5、露光装置3は、感光体1の表面と一定の間隔をもって配置できるように、感光体1表面の法線方向に進退可能な構造となっており、様々な感光体1の外径に対応可能である。また、電位計プローブ4に関しては、感光体との距離を一定に保ったまま周方向に移動可能であり、露光からの時間を変えた電位が計測可能である。更に、法線方向、周方向だけでなく、感光体の軸方向に対しても移動可能な構造となっており、感光体軸方向の任意の位置での計測が可能である。また、加熱装置17・温度センサ24についても、感光体の軸方向に対して移動可能な構造となっており、感光体軸方向の任意の位置での計測が可能となっており、帯電器6の中心と加熱装置17の中心を合わせた形での計測が可能となっており、温度センサ24は、任意の測定位置での温度計測が可能となっている。
A plurality of electrometer probes 2 and 4 may be installed in the axial direction position. By installing a plurality of electrometer probes 2 and 4 in the charging region, it is possible to obtain a charge distribution in the region in a short time.
The electrometer probes 2 and 4, the charger 6, the static eliminator 5, and the exposure device 3 have a structure that can advance and retreat in the normal direction of the surface of the photoconductor 1 so that the electrometer probes 2 and 4, the static eliminator 5, and the exposure device 3 can be arranged at a certain distance from the surface of the photoconductor 1. Therefore, it can cope with various outer diameters of the photoreceptor 1. Further, the electrometer probe 4 can be moved in the circumferential direction while keeping the distance from the photoconductor constant, and the potential can be measured by changing the time from exposure. Further, the structure is movable not only in the normal direction and the circumferential direction, but also in the axial direction of the photosensitive member, and measurement at an arbitrary position in the photosensitive member axial direction is possible. Further, the heating device 17 and the temperature sensor 24 are also structured to be movable with respect to the axial direction of the photosensitive member, and can be measured at arbitrary positions in the photosensitive member axial direction. And the center of the heating device 17 can be measured, and the temperature sensor 24 can measure the temperature at an arbitrary measurement position.

このため本実施形態の感光体評価装置は、帯電器6、露光装置3、電位計プローブ2、4及び除電器5のそれぞれの感光体軸方向と平行方向の中心を一致させることができる。これらの中心を一致させる、具体的にはそれぞれの中心位置のずれが2mm未満、より好ましくは1mm未満とすることによって、安定した精度の高い特性評価が可能となる。
また、加熱装置17を感光体の軸方向に対して移動可能とすることにより、帯電器6、露光装置3、電位計プローブ2、4及び徐電器5のそれぞれが感光体軸方向と平行方向に占める領域が、加熱装置17が感光体軸方向と平行方向に占める領域内にあるようにして電位を測定することができる。これにより、感光体の帯電領域をムラなく加熱することができ、精度の高い温度特性評価が可能となる。したがって、感光体軸方向における加熱装置17の長さは、帯電器6の長さ以上とする必要がある。
For this reason, the photoreceptor evaluation apparatus according to the present embodiment can align the centers of the charger 6, exposure apparatus 3, electrometer probes 2, 4, and static eliminator 5 in the direction parallel to the photoreceptor axis direction. By making these centers coincide with each other, specifically, by making each center position shift less than 2 mm, more preferably less than 1 mm, stable and highly accurate characteristic evaluation becomes possible.
Further, by making the heating device 17 movable with respect to the axial direction of the photoreceptor, each of the charger 6, the exposure device 3, the electrometer probes 2, 4 and the slow charger 5 is parallel to the axial direction of the photoreceptor. The potential can be measured in such a way that the area occupied is within the area occupied by the heating device 17 in the direction parallel to the axial direction of the photoreceptor. Thereby, the charged region of the photoconductor can be heated without unevenness, and temperature characteristics can be evaluated with high accuracy. Therefore, the length of the heating device 17 in the photosensitive member axial direction needs to be equal to or longer than the length of the charger 6.

また、帯電器6、露光装置3、電位計プローブ2、4及び徐電器5と、加熱装置17の感光体軸方向と平行方向の中心位置が一致するように構成されていることがより好ましい。この場合において、帯電器6、露光装置3等のそれぞれの感光体軸方向と平行方向の中心と、加熱装置の感光体軸方向と平行方向の中心とが一致するように構成されているとは、感光体の軸方向に対してそれぞれの中心位置が揃っていることを意味し、当該中心位置のずれが2mm未満であることが好ましく、より好ましくは1mm未満である。特に、感光体軸方向における帯電器6と加熱装置17の長さが同じ場合には、中心位置のずれ幅は小さければ小さいほど好ましい。
また、該加熱装置17の加熱領域の軸方向長さL1と、感光体1の全長Lと、帯電器6の帯電領域の軸方向長さL2との関係は L2 ≦ L1 < L となっている。
It is more preferable that the charger 6, the exposure device 3, the electrometer probes 2, 4 and the grading device 5 are configured such that the center position of the heating device 17 in the direction parallel to the photosensitive member axial direction coincides. In this case, it is configured that the center of the charger 6 and the exposure device 3 and the like in the direction parallel to the photosensitive member axial direction and the center of the heating device in the direction parallel to the photosensitive member axial direction coincide with each other. It means that the respective center positions are aligned with respect to the axial direction of the photoreceptor, and the shift of the center position is preferably less than 2 mm, more preferably less than 1 mm. In particular, when the lengths of the charger 6 and the heating device 17 in the photosensitive member axial direction are the same, it is preferable that the deviation width of the center position is as small as possible.
The relationship between the axial length L1 of the heating region of the heating device 17, the total length L of the photosensitive member 1, and the axial length L2 of the charging region of the charger 6 is L2 ≦ L1 <L. .

この特性評価装置では、感光体ドラム1は、両端にドラムチャック治具18でドラムを保持され、主軸21がチャック治具18の中心を通っている(図2)。主軸21は、手前側の面板19と奥側の面板20が主軸21の軸受け機能となっており、主軸21はモーター23に繋がったベルト22によって回転する機構となっており、図1の矢印の方向に回転する。   In this characteristic evaluation apparatus, the photosensitive drum 1 is held at both ends by the drum chuck jig 18 and the main shaft 21 passes through the center of the chuck jig 18 (FIG. 2). In the main shaft 21, the front face plate 19 and the rear face plate 20 serve as a bearing function of the main shaft 21, and the main shaft 21 is a mechanism that is rotated by a belt 22 connected to a motor 23. Rotate in the direction.

電源12と13から高電圧が出力され、帯電器6によって感光体ドラム1が帯電される。その後、感光体ドラム1中の通過電流は、信号処理回路10に送られる。その後、A/D変換器15によってデジタル信号に変換されコントローラ16に送られデジタル信号が演算処理される。   A high voltage is output from the power supplies 12 and 13, and the photosensitive drum 1 is charged by the charger 6. Thereafter, the passing current in the photosensitive drum 1 is sent to the signal processing circuit 10. Thereafter, it is converted into a digital signal by the A / D converter 15 and sent to the controller 16 where the digital signal is processed.

また、感光体ドラム1の帯電後の表面電位は、表面電位計プローブ2からモニター部である表面電位計8に送られモニターされ、信号処理回路9に送られる。その後A/D変換器15によって変換され、次にコントローラ16に送られ演算処理される。同様に、感光体ドラム1の露光後の表面電位は、表面電位計プローブ4からモニター部である表面電位計7に送られモニターされ、信号処理回路9に送られる。その後A/D変換器15によって変換され、次にコントローラ16に送られ演算処理される。コントローラ16は、感光体ドラム1を回転させるモーター23内のモータードライバに接続されている。モータードライバでは、回転数を出力する機能、位置検出機能、回転数をリモート制御可能な機能も付加されており、回転数制御と回転数の認識や、設定した角度でドラムを停止する事も可能である。   Further, the surface potential after charging of the photosensitive drum 1 is sent from the surface potential meter probe 2 to the surface potential meter 8 which is a monitor unit, monitored, and sent to the signal processing circuit 9. Thereafter, the data is converted by the A / D converter 15 and then sent to the controller 16 for arithmetic processing. Similarly, the surface potential after exposure of the photosensitive drum 1 is sent from the surface potential meter probe 4 to the surface potential meter 7 as a monitor unit, monitored, and sent to the signal processing circuit 9. Thereafter, the data is converted by the A / D converter 15 and then sent to the controller 16 for arithmetic processing. The controller 16 is connected to a motor driver in the motor 23 that rotates the photosensitive drum 1. The motor driver is also equipped with functions to output the rotation speed, position detection function, and remote control of the rotation speed. It is also possible to control the rotation speed, recognize the rotation speed, and stop the drum at the set angle. It is.

感光体ドラム1周りのユニットは、デジタルリレー出力によってON/OFF制御されており、帯電器の電源12と13は、スイッチ14をリレーの出力によってON/OFF制御されている。また、感光体の露光後電位は、露光装置3を使用することによって、測定ができ、感光体の表面電位を取り除く場合は、除電器5を使用し取り除くことが可能であり、感光体ドラム1の帯電特性、光減衰特性等の特性評価が可能である。   The units around the photosensitive drum 1 are ON / OFF controlled by digital relay output, and the power supplies 12 and 13 of the charger are ON / OFF controlled by the relay output of the switch 14. Further, the post-exposure potential of the photosensitive member can be measured by using the exposure device 3, and when removing the surface potential of the photosensitive member, it can be removed by using the static eliminator 5. It is possible to evaluate characteristics such as charging characteristics and light attenuation characteristics.

露光装置3には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザ(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもでき、照度を下げるために、ニュートラルデンシティフィルターを用いることもできる。   For the exposure apparatus 3, general light emitting materials such as a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD), and electroluminescence (EL) can be used. In order to irradiate only light in a desired wavelength range, various filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used. A neutral density filter can also be used to lower the value.

また、本評価装置では、感光体を帯電させた後、帯電開始位置が露光位置に来た時に露光するように、帯電と露光のON/OFFのタイミングをとって静電潜像を形成させる事が出来る。   Further, in this evaluation apparatus, after charging the photosensitive member, an electrostatic latent image is formed at the timing of charging and exposure ON / OFF so that exposure is performed when the charging start position comes to the exposure position. I can do it.

本評価装置では、帯電器6による帯電、露光装置3による露光のプロセスを所定回数繰り返し、感光体を劣化させることが可能であり、劣化前の露光後電位V1と劣化後の露光後電位V2を比較して評価する事も出来る。   In this evaluation apparatus, the charging process by the charger 6 and the exposure process by the exposure apparatus 3 can be repeated a predetermined number of times to degrade the photoconductor, and the post-exposure potential V1 before degradation and the post-exposure potential V2 after degradation are obtained. You can also compare and evaluate.

本発明に用いられる帯電器6には、コロナ帯電器であるコロトロン帯電器やスコロトロン帯電器を使用することができるが、均一且つ所定の電位に到達させる事が容易であるスコロトロン帯電器が好ましい。また、本発明の実施に用いる感光体は、導電性支持体の上に電荷発生層、電荷輸送層が形成されたもの、更に電荷輸送層の上に保護層が形成されたもの等が使用される。導電性支持体および電荷発生層、電荷輸送層としては、公知のものを使用することができる。   As the charger 6 used in the present invention, a corotron charger or a scorotron charger which is a corona charger can be used, but a scorotron charger which is uniform and can easily reach a predetermined potential is preferable. The photoconductor used in the practice of the present invention may be one in which a charge generation layer and a charge transport layer are formed on a conductive support, and further in which a protective layer is formed on the charge transport layer. The As the conductive support, the charge generation layer, and the charge transport layer, known ones can be used.

被試験試料の表面を帯電処理するための帯電装置用電源回路の制御手段、該被試験試料を光照射するための光源用電源回路の制御手段は、図示されてないが、これらとしては、従来公知のものをそのまま用いることができる。   The control means of the power supply circuit for the charging device for charging the surface of the sample to be tested and the control means of the power supply circuit for the light source for irradiating the test sample with light are not shown in the figure. A well-known thing can be used as it is.

温度センサ24は、接触式温度計や非接触式温度計を使用する事が出来るが、回転中での温度計測が容易である事と、感光体に傷をつける危険性のない事から、非接触式温度計(非接触式赤外放射温度計)が好ましい。   As the temperature sensor 24, a contact-type thermometer or a non-contact-type thermometer can be used. However, since the temperature measurement during rotation is easy and there is no risk of scratching the photoconductor, the temperature sensor 24 is not used. A contact type thermometer (non-contact type infrared radiation thermometer) is preferable.

本発明の特性評価装置は、感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、予め定められた時間を回転させてから電位の測定を開始するように構成することが好ましい。これにより感光体の円周方向の温度ムラを少なくした状態で、感光体の温度特性を評価する事が可能となる。
また、感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後に感光体を回転させ、感光体の1周内の温度幅が予め定めた範囲に到達してから電位の測定を開始することによっても、感光体の円周方向の温度ムラを少なくした状態で、感光体の温度特性を評価する事が可能となる。
更に、感光体を回転させた状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、電位を測定することにより、感光体の円周方向の温度ムラを少なくし、且つ測定までの時間を短縮させて感光体の温度特性を評価する事が可能となる。
The characteristic evaluation apparatus of the present invention heats the photosensitive member in a stopped state, measures the arrival at a predetermined temperature with a temperature sensor, and then starts measuring the potential after rotating a predetermined time. It is preferable to configure. As a result, it is possible to evaluate the temperature characteristics of the photoconductor in a state where the temperature unevenness in the circumferential direction of the photoconductor is reduced.
In addition, the photoconductor is heated in a stopped state, and the photoconductor is rotated after measuring a predetermined temperature, and the temperature width within one circumference of the photoconductor reaches a predetermined range. By starting the measurement of the potential from the above, it is possible to evaluate the temperature characteristics of the photoconductor in a state where the temperature unevenness in the circumferential direction of the photoconductor is reduced.
Further, after heating the photoconductor in a rotating state, measuring the potential at a predetermined temperature with a temperature sensor, and measuring the potential, the temperature unevenness in the circumferential direction of the photoconductor is reduced, and It is possible to evaluate the temperature characteristics of the photoreceptor by shortening the time until measurement.

特性評価装置は、光を透過しない暗箱、あるいは暗幕等で覆われている。暗箱あるいは暗幕で覆われていないと、試験時に外部環境(風・光・温度)の影響を受け、正確な特性評価が困難となる。但し、コントローラ・信号処理回路等、感光体ドラムの評価に影響の無いものに関しては、暗箱あるいは暗幕で覆う必要はない。   The characteristic evaluation apparatus is covered with a dark box that does not transmit light, or a black curtain. If it is not covered with a dark box or a black curtain, it will be affected by the external environment (wind, light, temperature) during testing, making accurate characterization difficult. However, a controller, a signal processing circuit, or the like that does not affect the evaluation of the photosensitive drum does not need to be covered with a dark box or a black curtain.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により、何等限定されるものではない。
<各実施例・比較例で共通している機器と構成>
図1・図2の様な特性評価装置で、リコー imagio MF7070に搭載された感光体ドラム(ドラム直径100mm、ドラム全長360mm)を使用して、特性評価を行った。
特性評価装置として、露光装置はLD(レーザーダイオード)で波長は655nmを使用しており、LDの光をポリゴンミラーで感光体の軸方向側へ露光させる仕組みとなっており、ビーム径は像面70×85μm、書き込み解像度(副走査方向)400dpi、LD書き込みは連続点灯である。高圧電源・表面電位計・表面電位計プローブはTREK社製、帯電器は内製したスコロトロン帯電器(グリッド開口部サイズ:60mm×15mm)、除電用光源には特注ラインLED(波長660nm)、モーターはオリエンタル社製、コントローラは、デル製のPC、A/D変換・デジタル出力には、ナショナルインスツルメンツ製、非接触式放射温度計は、キーエンス(株)製の放射温度センサヘッド+同社製センサアンプ+オムロン(株)製の温度調節器(ヒーターへの通電をON/OFF制御)、ヒーターはクレイボンテープヒーター 坂口電熱(株)製を使用した内製した加熱装置を使用(対象の感光体の内径より小さい径の円筒にテープヒーターを巻き、加熱装置の外径は93mm)、それ以外の信号処理回路等は全て内製して製作した特性評価装置を使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
<Devices and configurations common to each example and comparative example>
The characteristic evaluation was performed using the photosensitive drum (drum diameter 100 mm, drum total length 360 mm) mounted on the Ricoh imagio MF7070 with the characteristic evaluation apparatus as shown in FIGS.
As a characteristic evaluation device, the exposure device is an LD (laser diode) with a wavelength of 655 nm, and the light of the LD is exposed to the axial direction side of the photosensitive member with a polygon mirror, and the beam diameter is the image plane. 70 × 85 μm, writing resolution (sub-scanning direction) 400 dpi, LD writing is continuously lit. High voltage power supply, surface potential meter, surface potential meter probe is made by TREK, charger is in-house manufactured scorotron charger (grid opening size: 60mm x 15mm), custom line LED (wavelength 660nm), motor for static elimination Is manufactured by Oriental, controller is a PC manufactured by Dell, A / D converter and digital output are manufactured by National Instruments, and a non-contact type radiation thermometer is a radiation temperature sensor head manufactured by Keyence Corporation + sensor amplifier manufactured by the company + Omron's temperature controller (ON / OFF control of the power supply to the heater), the heater uses an in-house heating device made by Crabon Tape Heater Sakaguchi Electric Heat Co., Ltd. A tape heater is wound around a cylinder with a diameter smaller than the inner diameter, and the outer diameter of the heating device is 93 mm. All other signal processing circuits are manufactured in-house. Using the work was characteristic evaluation apparatus.

尚、感光体周りの各ユニットの軸方向中心位置は感光体の軸方向中心位置に合わせ、且つ加熱装置(ヒーター)の軸方向中心位置も感光体の軸方向中心位置に合わせた。温度計は、測定位置を計測するように構成した。また、内製した加熱装置は、加熱領域(加熱装置のヒーターが巻いてある領域)内の温度差が2℃以内に設定されるように製作した加熱装置を使用した。また、加熱装置のヒーターが巻いてある領域は加熱装置全長と同じとした。   Incidentally, the axial center position of each unit around the photosensitive member was aligned with the axial center position of the photosensitive member, and the axial center position of the heating device (heater) was also aligned with the axial center position of the photosensitive member. The thermometer was configured to measure the measurement position. Moreover, the heating apparatus produced internally was used so that the temperature difference in a heating area | region (area | region where the heater of the heating apparatus was wound) was set within 2 degreeC. Moreover, the area | region where the heater of the heating apparatus was wound was made the same with the heating apparatus full length.

[実施例1a]〜[実施例1d]
軸方向長さの違う4つ(長さ:60mm、100mm、200mm、300mm)の加熱装置を製作し、帯電器のグリッド開口部領域内の軸方向位置3点(開口部中心位置から30mm手前、開口部中心位置、開口部中心位置から30mm奥側)の温度を測定した時の温度差(最大値−最小値)の結果を表1に記載する。設定温度は、感光体軸方向中心位置が40℃になるように設定した。温度計測に関しては、中心位置のみ装置で使用している温度計を使用し、中心から30mmずれた位置での温度計測は、同種類の温度計を別途2つ取り付けて計測した。
[Example 1a] to [Example 1d]
Four heating devices with different axial lengths (length: 60 mm, 100 mm, 200 mm, 300 mm) were manufactured, and three axial positions in the grid opening area of the charger (30 mm before the opening center position, Table 1 shows the results of the temperature difference (maximum value−minimum value) when the temperature at the opening center position and the temperature at the 30 mm depth side from the opening center position was measured. The set temperature was set so that the center position in the photoconductor axis direction was 40 ° C. Regarding the temperature measurement, the thermometer used in the device only at the center position was used, and the temperature measurement at a position shifted by 30 mm from the center was performed by separately attaching two thermometers of the same type.

[比較例1a]
軸方向長さが30mmの加熱装置を製作し、帯電器のグリッド開口部領域内の軸方向位置3点(開口部中心位置から30mm手前、開口部中心位置、開口部中心位置から30mm奥側)の温度を測定した時の温度差(最大値−最小値)の結果を表1に記載する。設定温度は、感光体軸方向中心位置が40℃になるよう設定し、温度計測に関しては、中心位置のみ装置で使用している温度計を使用し、中心から30mmずれた位置での温度計測は、同種類の温度計を別途2つ取り付けて計測した。
[Comparative Example 1a]
A heating device with an axial length of 30 mm was manufactured, and three axial positions within the grid opening area of the charger (30 mm before the opening center position, the opening center position, and 30 mm from the opening center position) Table 1 shows the results of the temperature difference (maximum value-minimum value) when the temperature of each was measured. The set temperature is set so that the center position in the photoconductor axis direction is 40 ° C. For temperature measurement, a thermometer used in the apparatus is used only at the center position, and the temperature measurement at a position shifted by 30 mm from the center is performed. In addition, two thermometers of the same type were attached and measured.

[比較例1b]
実施例1と同じ軸方向長さが60mmの加熱装置を使用し、帯電器のグリッド開口部領域内の軸方向位置3点(開口部中心位置から30mm手前、開口部中心位置、開口部中心位置から30mm奥側)の温度を測定した時の温度差(最大値−最小値)の結果を表1に記載する。但し、加熱装置の軸方向中心位置は、帯電ユニットの軸方向中心位置から10mmずらした位置(装置奥側に10[mm]ずらす)に設定して測定を行った。また、設定温度は、感光体軸方向中心位置が40℃になるよう設定し、温度計測に関しては、中心位置のみ装置で使用している温度計を使用し、中心から30mmずれた位置での温度計測は、同種類の温度計を別途2つ取り付けて計測した。
[Comparative Example 1b]
Using the same heating device having an axial length of 60 mm as in Example 1, three axial positions in the grid opening area of the charger (30 mm before the opening center position, the opening center position, and the opening center position) Table 1 shows the result of the temperature difference (maximum value−minimum value) when the temperature of 30 mm from the back is measured. However, the measurement was performed by setting the axial center position of the heating device to a position shifted by 10 mm from the axial center position of the charging unit (shifted by 10 [mm] toward the back of the apparatus). The set temperature is set so that the center position in the photoconductor axis direction is 40 ° C. For temperature measurement, a thermometer used in the apparatus only at the center position is used, and the temperature at a position shifted by 30 mm from the center is used. The measurement was performed by separately attaching two thermometers of the same type.

Figure 0005333994
Figure 0005333994

精度良く帯電領域内の感光体の温度特性を計測する為の必要条件として、温度差2℃以下が必要条件であるが、加熱装置の長さが帯電器の帯電領域の軸方向長さ(スコロトロン帯電器のグリッド開口幅)より小さい場合は、温度幅が2℃を超えてしまい精度良く温度特性を計測する事が出来ない事が表1の結果から分かる(比較例1a)。また、今回の加熱装置の長さは最大300mmまでしか製作が出来なかったが、ドラム保持治具の長さが各30mmあり、両端で合計60mmの為、300mmが最大値となった。その為、ドラム保持治具の長さを無視した場合は、加熱装置の加熱領域の軸方向長さL1、感光体全長L、帯電装置の帯電領域の軸方向長さL2の関係はL2 ≦ L1 < Lが最適条件である事が分かる。すなわち加熱装置が全長より長くなると、感光体の保持をチャック治具で行う事が困難になる為
L1 < L
が最適条件となる。
As a necessary condition for accurately measuring the temperature characteristics of the photoconductor in the charging area, a temperature difference of 2 ° C. or less is necessary. However, the length of the heating device is the axial length of the charging area of the charger (Scorotron). If it is smaller than the grid opening width of the charger, the temperature width exceeds 2 ° C., and it can be seen from the results in Table 1 that the temperature characteristics cannot be measured with high accuracy (Comparative Example 1a). Moreover, although the length of the heating device of this time could only be manufactured up to 300 mm, the length of the drum holding jig was 30 mm each, and the total value was 60 mm at both ends, so 300 mm was the maximum value. Therefore, when the length of the drum holding jig is ignored, the relationship between the axial length L1 of the heating area of the heating device, the overall length L of the photosensitive member L, and the axial length L2 of the charging area of the charging device is L2 ≦ L1. <It can be seen that L is the optimum condition. That is, if the heating device becomes longer than the entire length, it becomes difficult to hold the photosensitive member with the chuck jig. L1 <L
Is the optimal condition.

次に、帯電装置の帯電領域の軸方向長さL2と加熱装置の加熱領域の軸方向長さL1とのの関係は、L2よりもL1が短い(L1 < L2)場合は、
表1記載のように、温度差が大きくなっている為、L2 < L1である必要がある。
また、L2 = L1の場合も、温度差が小さく問題ないため、
L2 ≦ L1
が最適条件となる。以上から、最適条件は
L2 ≦ L1 <L
となる。
Next, the relationship between the axial length L2 of the charging area of the charging device and the axial length L1 of the heating area of the heating device is such that L1 is shorter than L2 (L1 <L2).
As shown in Table 1, since the temperature difference is large, it is necessary that L2 <L1.
Also, when L2 = L1, there is no problem because the temperature difference is small.
L2 ≦ L1
Is the optimal condition. From the above, the optimum condition is L2 ≦ L1 <L
It becomes.

また、今回使用した温度計は非接触の赤外放射温度計を使用したが、非接触である為、感光体を傷つけずに測定が可能であった事から、非接触の赤外放射温度計が好ましい事も分かる。更に、表1には各条件での測定可能なドラム長が記載されているが、加熱装置の長さが短い物ほど短いドラム長の測定が可能になる事が分かる。この事から、加熱装置の長さを短くする事が、汎用性を高め、且つ低コスト(製作する加熱装置の台数を減らせる。)に繋がる事が分かる。   In addition, the thermometer used this time was a non-contact infrared radiation thermometer, but because it was non-contact, it was possible to measure without damaging the photoreceptor, so a non-contact infrared radiation thermometer It is understood that is preferable. Furthermore, although the drum length which can be measured on each condition is described in Table 1, it can be understood that the shorter the length of the heating device, the shorter the drum length can be measured. From this fact, it can be seen that shortening the length of the heating device increases versatility and reduces the cost (the number of heating devices to be manufactured can be reduced).

すなわち、加熱装置が短い場合には、感光体ドラムの長さに対する自由度が高く、1つの加熱装置で短い全長のドラムから長い全長のドラムまで対応することが可能である。一方、加熱装置が長い場合には、感光体ドラムの長さに対する自由度が低く、短い全長のドラムには対応が出来ない為、長さの異なる加熱装置を複数用意する必要がある。   That is, when the heating device is short, the degree of freedom with respect to the length of the photosensitive drum is high, and a single heating device can cope with a short full length drum to a long full length drum. On the other hand, when the heating device is long, the degree of freedom with respect to the length of the photosensitive drum is low, and it is impossible to cope with a short full-length drum. Therefore, it is necessary to prepare a plurality of heating devices having different lengths.

但し、加熱装置の長さを短くする場合、帯電装置の軸方向に占める領域が、加熱装置の軸方向に占める領域内に無い場合は、温度幅が2℃を超えてしまい精度良く温度特性を計測する事が出来ない事も表1(比較例1b)の結果から分かる。
以上より、帯電ユニットの軸方向長さは、加熱装置の軸方向長さと同じであるか、これよりも短いことが好ましく、かつ、帯電ユニットが軸方向に占める領域は、加熱装置の軸方向に占める領域の内にあることが好ましいことが分かる。
However, when shortening the length of the heating device, if the region occupied in the axial direction of the charging device is not within the region occupied in the axial direction of the heating device, the temperature range exceeds 2 ° C., and the temperature characteristics are accurate. It can also be seen from the results in Table 1 (Comparative Example 1b) that measurement cannot be performed.
From the above, the axial length of the charging unit is preferably the same as or shorter than the axial length of the heating device, and the area occupied by the charging unit in the axial direction is in the axial direction of the heating device. It can be seen that it is preferably within the occupied area.

[実施例2a]
前記の特性評価装置により測定を行った。加熱装置の軸方向長さは60mmとした。感光体を停止状態で加熱し、温度計の表示が40℃に到達した後、30sec回転させてから露光後電位及び帯電電位の測定を開始した。
[実施例2b]
前記の特性評価装置により測定を行った。加熱装置の軸方向長さは60mmとした。感光体を停止状態で加熱し、温度計の表示が40℃に到達した後、感光体を回転させ感光体1周内での温度幅が1℃以内に到達してから露光後電位及び帯電電位の測定を開始した。
[実施例2c]
前記の特性評価装置により測定を行った。加熱装置の軸方向長さは60mmとした。感光体を回転させた状態で加熱し、温度計の表示が40℃に到達した後、露光後電位及び帯電電位の測定を開始した。
[Example 2a]
Measurement was performed with the above-described characteristic evaluation apparatus. The axial length of the heating device was 60 mm. The photoconductor was heated in a stopped state, and after the thermometer display reached 40 ° C., the photoconductor was rotated for 30 seconds and then measurement of the post-exposure potential and the charged potential was started.
[Example 2b]
Measurement was performed with the above-described characteristic evaluation apparatus. The axial length of the heating device was 60 mm. The photoconductor is heated in a stopped state, and after the thermometer display reaches 40 ° C., the photoconductor is rotated, and the temperature range within the circumference of the photoconductor reaches within 1 ° C. After the exposure and the charging potential Measurement was started.
[Example 2c]
Measurement was performed with the above-described characteristic evaluation apparatus. The axial length of the heating device was 60 mm. The photoconductor was heated while being rotated, and after the thermometer display reached 40 ° C., measurement of the post-exposure potential and the charged potential was started.

測定前に確認した感光体の1周内温度幅結果、加熱開始から測定開始までに経過した時間の結果を表2に示す。また、その時の露光後電位と帯電電位の幅を表2に記載する。(帯電条件:帯電電位が−800V近傍になるような高圧出力電圧とグリッド電圧を調整した条件、露光条件:0.2[μJ/cm2]、線速:200[mm/s]、用紙長:314[mm]、露光現像時間100[ms])。更に、図3に実施例2aの停止状態から回転状態に切り替えた時の温度推移グラフを示す。 Table 2 shows the results of the temperature range within the circumference of the photoreceptor confirmed before the measurement and the results of the time elapsed from the start of heating to the start of measurement. Table 2 shows the width of the post-exposure potential and the charging potential at that time. (Charging conditions: conditions in which the high voltage output voltage and grid voltage are adjusted so that the charging potential is in the vicinity of −800 V, exposure conditions: 0.2 [μJ / cm 2 ], linear velocity: 200 [mm / s], paper length : 314 [mm], exposure development time 100 [ms]). Furthermore, FIG. 3 shows a temperature transition graph when switching from the stopped state of Example 2a to the rotating state.

Figure 0005333994
※測定前の1周内温度幅の判断基準は、○は温度幅が1[℃]以内であり、×は温度幅が1[℃]を超えるものである。また露光後電位幅、帯電電位幅とは、感光体1周内の露光後電位幅、帯電電位幅である。
Figure 0005333994
* Judgment criteria for the temperature range in one circle before measurement are: ○ is a temperature range within 1 [° C], and x is a temperature range exceeding 1 [° C]. Further, the post-exposure potential width and the charge potential width are the post-exposure potential width and the charge potential width within the circumference of the photoreceptor.

図3の結果から、感光体を停止状態で加熱した直後に回転させる事で温度ムラが確認されており、装置内の気流の流れなどにより、停止状態では感光体1周内の温度ムラが生じてしまう事が分かる。その為、表2の様に停止状態で加熱した直後に測定すると、測定前の1周内温度幅は1℃を超える。   From the results shown in FIG. 3, the temperature unevenness is confirmed by rotating the photoconductor immediately after being heated in the stopped state. Due to the flow of the air current in the apparatus, the temperature unevenness in the circumference of the photoconductor is generated in the stopped state. I understand that. Therefore, when measured immediately after heating in the stopped state as shown in Table 2, the temperature width in one circumference before the measurement exceeds 1 ° C.

しかし、停止状態で加熱した場合は、温度到達後予め定めた時間回転させるか、あるいは感光体1周内の温度幅が範囲内におさまるまで回転させる方法によって測定前に感光体の1周内温度ムラを抑制する事が出来る。それ以外にも、加熱時から回転させることによっても、感光体の1周内温度ムラを抑制する事が出来る。また、加熱時から回転させる事で、測定開始までの時間短縮化を実現出来る事も分かる。   However, when heating is performed in a stopped state, the temperature within the circumference of the photoconductor is measured before the measurement by rotating the temperature for a predetermined time after reaching the temperature or rotating the temperature until the temperature width within the circumference of the photoconductor is within the range. Unevenness can be suppressed. In addition, it is possible to suppress uneven temperature within the circumference of the photoreceptor by rotating from the time of heating. It can also be seen that by rotating from the time of heating, it is possible to shorten the time until measurement starts.

なお、実施例2a〜2cと同様の特性評価装置により、感光体が停止した状態で加熱し、温度計の表示が40℃に到達した直後に露光後電位及び帯電電位の測定を行った場合には、露光後電位幅、帯電後電位幅ともに実施例2a〜2cの場合よりも大きくなった。これは、1℃を超えた温度ムラが生じた条件下で、露光後電位または帯電電位を計測した場合は、温度ムラが帯電電位と露光後電位に影響し、露光後電位幅・帯電電位幅とも大きくなることを示している。   When the post-exposure potential and the charged potential were measured immediately after the photoconductor stopped and heated with the thermometer display reaching 40 ° C. using the same characteristic evaluation apparatus as in Examples 2a to 2c. Both the potential width after exposure and the potential width after charging were larger than those in Examples 2a to 2c. This is because when the post-exposure potential or charging potential is measured under conditions where temperature non-uniformity exceeds 1 ° C., the temperature non-uniformity affects the charge potential and post-exposure potential. Both show that it will grow.

1 感光体ドラム
2 表面電位計プローブ
3 露光装置
4 表面電位計プローブ
5 除電器
6 帯電器
7 表面電位計
8 表面電位計
9 信号処理回路
10 信号処理回路
12 電源
13 電源
14 電源スイッチ
15 A/D変換器
16 コントローラ
17 加熱装置
18 ドラムチャック治具
19 面板(手前側)
20 面板(奥側)
21 主軸
22 ベルト
23 モーター
24 温度センサ
25 コントローラ
DESCRIPTION OF SYMBOLS 1 Photosensitive drum 2 Surface potential meter probe 3 Exposure apparatus 4 Surface potential meter probe 5 Charger 6 Charger 7 Surface potential meter 8 Surface potential meter 9 Signal processing circuit 10 Signal processing circuit 12 Power supply 13 Power supply 14 Power switch 15 A / D Converter 16 Controller 17 Heating device 18 Drum chuck jig 19 Face plate (front side)
20 face plate (back side)
21 Spindle 22 Belt 23 Motor 24 Temperature sensor 25 Controller

特開2006−119308号公報JP 2006-119308 A 特開2003−029572号公報JP 2003-029572 A

Claims (7)

ドラム状支持体に感光層を設けた感光体の周囲に、
帯電装置、露光装置、表面電位検出装置及び除電装置を配置した感光体特性評価装置であって、
感光体をドラム内部から加熱する加熱装置、該加熱装置の出力を制御する制御装置、感光体の感光層側の表面温度を計測する温度センサを有しており、
該加熱装置と温度センサは感光体軸方向に移動可能であり、
帯電装置、露光装置、表面電位検出装置及び除電装置のそれぞれの感光体軸方向と平行方向の中心が一致するように構成されており、
且つ帯電装置、露光装置、表面電位検出装置及び徐電装置のそれぞれが感光体軸方向と平行方向に占める領域が、加熱装置が感光体軸方向と平行方向に占める領域の内にあり、
該加熱装置の加熱領域の軸方向長さL1、感光体全長L、帯電装置の帯電領域の軸方向長さL2の関係は
L2 ≦ L1 < L
である感光体特性評価装置。
Around the photosensitive member provided with a photosensitive layer on a drum-shaped support,
A photoconductor characteristic evaluation device in which a charging device, an exposure device, a surface potential detection device, and a charge removal device are arranged,
A heating device that heats the photosensitive member from the inside of the drum, a control device that controls the output of the heating device, and a temperature sensor that measures the surface temperature of the photosensitive member on the photosensitive layer side;
The heating device and the temperature sensor are movable in the axial direction of the photoreceptor,
Each of the charging device, the exposure device, the surface potential detection device, and the static elimination device is configured so that the respective centers of the photosensitive member axial direction and the parallel direction coincide with each other.
In addition, the region that each of the charging device, the exposure device, the surface potential detection device, and the slow current device occupies in the direction parallel to the photosensitive member axial direction is within the region that the heating device occupies in the direction parallel to the photosensitive member axial direction.
The relationship between the axial length L1 of the heating region of the heating device, the overall length L of the photosensitive member, and the axial length L2 of the charging region of the charging device is L2 ≦ L1 <L
Is a photoreceptor characteristic evaluation apparatus.
前記感光体の表面温度を計測する温度センサは、非接触式の赤外放射温度計であることを特徴とする請求項1に記載の感光体特性評価装置。   The photoconductor characteristic evaluation apparatus according to claim 1, wherein the temperature sensor for measuring the surface temperature of the photoconductor is a non-contact infrared radiation thermometer. 感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、予め定めた時間を回転させてから表面電位の測定を開始するように構成されたことを特徴とする請求項1又は2に記載の感光体特性評価装置。   The photoconductor is heated in a stopped state, measured by a temperature sensor that it has reached a predetermined temperature, and then measured for a surface potential after rotating a predetermined time. The photoreceptor characteristic evaluation apparatus according to claim 1 or 2. 感光体を停止状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後感光体を回転させ、感光体1周内の温度幅が予め定めた範囲に到達してから表面電位の測定を開始するように構成されたことを特徴とする請求項1又は2に記載の感光体特性評価装置。   The photoconductor is heated in a stopped state, measured by a temperature sensor to reach a predetermined temperature, the photoconductor is rotated, and the surface potential is reached after the temperature width within the circumference of the photoconductor reaches a predetermined range. The photoconductor characteristic evaluation apparatus according to claim 1, wherein the measurement of the photoconductor is started. 感光体を回転させた状態で加熱し、予め定めた温度に到達した事を温度センサで計測した後、表面電位の測定を開始するように構成されたことを特徴とする請求項1又は2に記載の感光体特性評価装置。   3. The structure according to claim 1, wherein the photoconductor is heated in a rotating state, and the measurement of the surface potential is started after the temperature sensor has measured that a predetermined temperature has been reached. The photoreceptor characteristic evaluation apparatus described. 露光後電位を測定する事で感光体の温度特性を評価することを特徴とする請求項1〜5のいずれかに記載の感光体特性評価装置。   6. The photoconductor characteristic evaluation apparatus according to claim 1, wherein the temperature characteristic of the photoconductor is evaluated by measuring a post-exposure potential. 帯電電位を測定する事で感光体の温度特性を評価することを特徴とする請求項1〜5のいずれかに記載の感光体特性評価装置。   6. The photoconductor characteristic evaluation apparatus according to claim 1, wherein the temperature characteristic of the photoconductor is evaluated by measuring a charging potential.
JP2009279265A 2009-12-09 2009-12-09 Device for evaluating characteristics of electrophotographic photosensitive member Active JP5333994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279265A JP5333994B2 (en) 2009-12-09 2009-12-09 Device for evaluating characteristics of electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279265A JP5333994B2 (en) 2009-12-09 2009-12-09 Device for evaluating characteristics of electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2011123158A JP2011123158A (en) 2011-06-23
JP5333994B2 true JP5333994B2 (en) 2013-11-06

Family

ID=44287122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279265A Active JP5333994B2 (en) 2009-12-09 2009-12-09 Device for evaluating characteristics of electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP5333994B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967476B2 (en) * 2012-06-12 2016-08-10 株式会社リコー Apparatus and method for evaluating characteristics of latent image carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333750A (en) * 1992-06-03 1993-12-17 Fuji Xerox Co Ltd Heater mounting device for photosensitive drum
JP2003005389A (en) * 2001-06-21 2003-01-08 Canon Inc Method and apparatus for evaluating characteristic of photoreceptor
JP2003029572A (en) * 2001-07-12 2003-01-31 Canon Inc Method for evaluating characteristics of photoreceptor
JP2006189489A (en) * 2004-12-28 2006-07-20 Canon Inc Image forming apparatus
JP4686417B2 (en) * 2006-08-07 2011-05-25 株式会社リコー Photoconductor durability characteristic evaluation apparatus and photoconductor durability characteristic evaluation method

Also Published As

Publication number Publication date
JP2011123158A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5333994B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
JP2008191515A (en) Image forming apparatus
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP5487706B2 (en) Photoreceptor characteristic evaluation device
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP5471177B2 (en) Potential control device and photosensitive member characteristic evaluation device for electrophotography
JP2002082572A (en) Method for evaluating characteristic of photoreceptor
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor
JP5967476B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP5459093B2 (en) Photoconductor deterioration acceleration test apparatus and photoconductor deterioration acceleration test method
JP2012098659A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP7505308B2 (en) Photoconductor charging exposure test device
JP4753793B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP6020966B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP2008216704A (en) Method and device for evaluating characteristic of electrophotographic photoreceptor
JP2014026160A (en) Evaluation device for photoreceptor and evaluation method for photoreceptor
JP2008046378A (en) Characteristic evaluation device for electrophotographic photoreceptor
US10663879B2 (en) Image forming apparatus with plural corona chargers
JP5447838B2 (en) Electrophotographic photoconductor characteristic evaluation device
JP2014174414A (en) Image forming apparatus
JP2017133963A (en) Testing device and testing method
JP2013064909A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP2010186095A (en) Charge removing device
JP2005024710A (en) Image forming method and image forming apparatus used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

R151 Written notification of patent or utility model registration

Ref document number: 5333994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130721