JP5447838B2 - Electrophotographic photoconductor characteristic evaluation device - Google Patents

Electrophotographic photoconductor characteristic evaluation device Download PDF

Info

Publication number
JP5447838B2
JP5447838B2 JP2010008666A JP2010008666A JP5447838B2 JP 5447838 B2 JP5447838 B2 JP 5447838B2 JP 2010008666 A JP2010008666 A JP 2010008666A JP 2010008666 A JP2010008666 A JP 2010008666A JP 5447838 B2 JP5447838 B2 JP 5447838B2
Authority
JP
Japan
Prior art keywords
surface potential
measurement
charging
range
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010008666A
Other languages
Japanese (ja)
Other versions
JP2011149972A (en
Inventor
大輔 仁井
紀保 齋藤
潔 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010008666A priority Critical patent/JP5447838B2/en
Publication of JP2011149972A publication Critical patent/JP2011149972A/en
Application granted granted Critical
Publication of JP5447838B2 publication Critical patent/JP5447838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)

Description

本発明は、レーザプリンタ、複写機等の画像形成装置に用いられる電子写真用感光体の特性評価装置及び特性評価方法に関するものである。   The present invention relates to a characteristic evaluation apparatus and a characteristic evaluation method for an electrophotographic photoreceptor used in an image forming apparatus such as a laser printer or a copying machine.

レーザプリンタ、複写機等の画像形成装置における電子写真用感光体は、その表面が一様に帯電された後に所定の画像が露光されることにより、感光体表面に静電潜像が形成され、この静電潜像がトナーによって現像される。感光体表面に鮮明な画像を形成するには、まず感光体表面を均一に帯電する必要があり、ドラム全体で均一な帯電特性を有しているかどうかを検査する必要がある。   An electrophotographic photosensitive member in an image forming apparatus such as a laser printer or a copying machine is exposed to a predetermined image after its surface is uniformly charged, thereby forming an electrostatic latent image on the surface of the photosensitive member. This electrostatic latent image is developed with toner. In order to form a clear image on the surface of the photoreceptor, it is necessary to charge the surface of the photoreceptor uniformly, and it is necessary to inspect whether or not the entire drum has uniform charging characteristics.

特許文献1には、着脱可能な感光体ドラムを回転可能に保持するとともに、保持された感光体ドラム表面を軸心方向のほぼ全域にわたって帯電させる帯電装置と、該帯電装置による帯電位置から感光体ドラムの回転方向下流側位置にて、該感光体ドラムの表面を軸心方向のほぼ全域にわたって露光する光源を有する露光ユニットと、感光体ドラムを所定方向に回転させる感光体ドラム回転手段と、該感光体ドラムの軸心方向に移動可能に配置されており、前記光源による露光位置よりも感光体ドラムの回転方向下流側にて該感光体ドラムの表面の電位を測定する電位センサと、該電位センサを感光体ドラムの軸方向へ移動させるセンサ移動手段と、該電位センサによる測定位置よりも感光体ドラムの回転方向下流側位置にて該感光体ドラムの表面を軸方向のほぼ全域にわたって除電する除電装置とを具備する感光体ドラムの感光体特性測定装置が記載されている。   In Patent Document 1, a detachable photosensitive drum is rotatably held, a charging device that charges the held surface of the photosensitive drum over almost the entire region in the axial direction, and a photosensitive member from a charging position by the charging device. An exposure unit having a light source that exposes the surface of the photosensitive drum over substantially the entire axial direction at a position downstream of the rotation direction of the drum, photosensitive drum rotating means for rotating the photosensitive drum in a predetermined direction, A potential sensor which is arranged so as to be movable in the axial direction of the photosensitive drum, and which measures the potential of the surface of the photosensitive drum downstream of the exposure position by the light source in the rotational direction of the photosensitive drum; Sensor moving means for moving the sensor in the axial direction of the photosensitive drum, and the position of the photosensitive drum at a position downstream of the measurement position by the potential sensor in the rotational direction of the photosensitive drum. Photoreceptor characteristic measurement apparatus of a photosensitive drum having a charge removing device which neutralizes the surface over substantially the entire region in the axial direction is described.

しかしながら、特許文献1記載の技術には次のような問題点があった。ドラム軸方向の初期位置の帯電電位を計測した後、軸方向の次の位置まで前記帯電装置、前記電位センサ、前記除電装置を移動させて、次の位置の帯電電位を計測していたため、初期位置での電位計測の影響を受けた形で次の位置の帯電電位計測を行っており、感光体の軸方向の電位分布を評価する際には測定精度を低下させる要因となっている可能性があるが、その点に関する記載や示唆はなく、問題として認識されていなかった。   However, the technique described in Patent Document 1 has the following problems. After measuring the charging potential at the initial position in the drum axis direction, the charging device, the potential sensor, and the neutralization device were moved to the next position in the axial direction, and the charging potential at the next position was measured. The measurement of the charged potential at the next position is affected by the potential measurement at the position, which may be a factor that reduces the measurement accuracy when evaluating the axial potential distribution of the photoreceptor. However, there was no description or suggestion regarding this point, and it was not recognized as a problem.

本発明の目的は、上記問題点を解消し、電子写真用感光体のドラム軸方向における帯電電位を高精度に計測することが可能な電子写真用感光体の特性評価装置を提供することである。   An object of the present invention is to provide an apparatus for evaluating characteristics of an electrophotographic photoreceptor capable of solving the above-described problems and measuring the charged potential in the drum axis direction of the electrophotographic photoreceptor with high accuracy. .

上記課題は、以下のような発明によって解決される。
(1)帯電手段、除電手段及び電子写真用感光体ドラムの軸方向に表面電位検出手段がn個(nは整数、n≧2)並んだ表面電位検出ユニットを有し、前記電子写真用感光体ドラムの軸方向の帯電電位分布を計測する際に、軸方向の任意のn箇所の帯電電位を同時計測した後、前記電子写真用感光体ドラムの一方の端部Aからもう一方の端部Bに向かって、前記帯電手段、前記除電手段、前記表面電位検出ユニットを2つの表面電位検出手段の間隔のn−1倍の距離だけ移動させ、n箇所の帯電電位を同時計測し、移動後の端部Aに近い方の表面電位検出手段と移動前の端部Bに近い方の表面電位検出手段の検出結果の違いを算出し、予め定めた範囲内か否かを判別するようにした電子写真用感光体の特性評価装置であって
前記移動後の端部Aに近い方の表面電位検出手段と移動前の端部Bに近い方の表面電位検出手段の検出結果の違いが、予め定めた範囲内であった場合は、さらに軸方向の端部Bに向かって表面電位検出手段の2つの間隔のn−1倍の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを移動させて、n箇所の帯電電位を同時計測し、同様の判別方法で検出結果に対する判別を行い、また、検出結果の違いが予め定めた範囲外であった場合は、前記電子写真用感光体ドラムの一方の端部Aからもう一方の端部Bに向かって、2つの表面電位検出手段の間隔のn+m倍(mは整数、m≧1)の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを再移動させ、n箇所の帯電電位を同時計測し、前記移動前の表面電位検出手段の検出結果と再移動後の表面電位検出手段の検出結果から、軸方向の未計測領域の帯電電位の値を算出して補間し、さらに軸方向の端部Bに向かって表面電位検出手段の2つの間隔のn−1倍の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを移動させ、n箇所の帯電電位を同時計測し、同様の判別方法で検出結果に対する判別を行うようにしたことを特徴とする電子写真用感光体の特性評価装置
)前記軸方向の未計測領域の帯電電位の値の補間を、前記移動前の端部Bに近い方の表面電位検出手段の検出結果と、前記再移動後の端部Aに近い方の表面電位検出手段の検出結果から軸方向の位置と帯電電位の関係を表す1次関数を求め、求めた1次関数から軸方向の未計測領域の帯電電位の値を算出することによって行うようにしたことを特徴とする()に記載の電子写真用感光体の特性評価装置。
)前記検出結果に対する判別を行う操作を電子写真用感光体の端部Aから端部Bに向かって繰り返し行い、前記電子写真用感光体の軸方向の所定の領域内の特性評価を行うようにしたことを特徴とする()または()に記載の電子写真用感光体の特性評価装置。
)(1)〜()のいずれかに記載の特性評価装置を用いて電子写真用感光体の特性を評価することを特徴とする電子写真用感光体の特性評価方法。
The above problem is solved by the following invention.
(1) The electrophotographic photosensitive member includes a surface potential detecting unit in which n (n is an integer, n ≧ 2) surface potential detecting units are arranged in the axial direction of the charging unit, the neutralizing unit, and the electrophotographic photosensitive drum. When measuring the charging potential distribution in the axial direction of the body drum, after simultaneously measuring the charging potential at any n locations in the axial direction, the one end A to the other end of the electrophotographic photosensitive drum Move the charging means, the static eliminating means, and the surface potential detection unit toward B by a distance n-1 times the interval between the two surface potential detection means, and simultaneously measure the charged potentials at n locations. The difference between the detection results of the surface potential detection means closer to the end portion A and the surface potential detection means closer to the end portion B before the movement is calculated, and it is determined whether or not it is within a predetermined range. An apparatus for evaluating characteristics of an electrophotographic photoreceptor,
When the difference between the detection results of the surface potential detection means closer to the end A after the movement and the surface potential detection means closer to the end B before the movement is within a predetermined range, The charging means, the charge eliminating means, and the surface potential detecting unit are moved toward the end B in the direction by a distance that is n-1 times the two intervals of the surface potential detecting means, so that n charged potentials are simultaneously measured. Then, the detection result is discriminated by the same discrimination method, and if the difference in the detection result is out of the predetermined range, the one end A of the electrophotographic photosensitive drum is connected to the other end. Moving toward the portion B, the charging means, the static elimination means, and the surface potential detection unit are moved again by a distance of n + m times (m is an integer, m ≧ 1) the interval between the two surface potential detection means, Simultaneously measure the charging potential, the surface potential before the movement From the detection result of the output means and the detection result of the surface potential detection means after re-moving, the charge potential value of the unmeasured area in the axial direction is calculated and interpolated, and further the surface potential is detected toward the end B in the axial direction The charging means, the static elimination means, and the surface potential detection unit are moved by a distance n-1 times the two intervals of the means, and the n charged potentials are simultaneously measured, and the detection results are discriminated by the same discrimination method. An apparatus for evaluating characteristics of an electrophotographic photoreceptor, characterized in that it is provided .
( 2 ) Interpolation of the value of the charged potential in the unmeasured area in the axial direction is performed by detecting the surface potential detection means closer to the end B before the movement and the one closer to the end A after the re-movement. A linear function representing the relationship between the position in the axial direction and the charging potential is obtained from the detection result of the surface potential detection means, and the charging potential value of the unmeasured region in the axial direction is calculated from the obtained linear function. ( 1 ) The electrophotographic photosensitive member property evaluation apparatus according to ( 1 ).
( 3 ) The operation for discriminating the detection result is repeatedly performed from the end A to the end B of the electrophotographic photoreceptor, and the characteristics in a predetermined region in the axial direction of the electrophotographic photoreceptor are evaluated. The apparatus for evaluating characteristics of an electrophotographic photoreceptor according to ( 1 ) or ( 2 ), characterized in that it is configured as described above.
( 4 ) A method for evaluating the characteristics of an electrophotographic photoreceptor, comprising evaluating the characteristics of the electrophotographic photoreceptor using the characteristic evaluation apparatus according to any one of (1) to ( 3 ).

帯電手段、除電手段、電子写真用感光体ドラムの軸方向に表面電位検出手段がn個(nは整数、n≧2)並んだ表面電位検出ユニットを備えた本発明の電子写真用感光体特性評価装置では、2つの表面電位検出手段の間隔のn−1倍だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを移動した後の端部Aに近い方の表面電位検出手段と移動前の端部Bに近い方の表面電位検出手段の検出結果の違いが所定の値以上であった場合は、移動前の計測影響(帯電および除電の影響)を受けない位置まで表面電位検出手段を再移動し、移動前の表面電位検出手段の検出結果と再移動後の表面電位検出手段の検出結果から、軸方向の未計測領域の帯電電位の値を算出して補間する事で、ドラム軸方向の帯電電位分布を計測する際に、移動前の計測の影響(帯電および除電の影響)を受けない形での計測が可能となる。
したがって、本評価装置を用いれば、従来の評価装置で問題とされていた軸方向の移動前の計測の影響が原因となり発生する移動後の計測誤差を解消することができ、ドラム軸方向の帯電電位分布特性を精度良く評価することが可能となる。
また、ドラム軸方向の所定の領域内でこのような特性評価を前記電子写真用感光体の端部Aから端部Bに向かって繰り返し行うことで、ドラム軸方向の所定の領域内の特性評価について、移動前の計測の影響(帯電および除電の影響)を受けない形で行うことができる。
The electrophotographic photosensitive member characteristics of the present invention comprising a surface potential detecting unit in which n (n is an integer, n ≧ 2) surface potential detecting means are arranged in the axial direction of the charging means, the static eliminating means, and the electrophotographic photosensitive drum. In the evaluation apparatus, the surface potential detection means closer to the end A after moving the charging means, the charge removal means, and the surface potential detection unit by n−1 times the interval between the two surface potential detection means and the pre-movement If the difference in the detection results of the surface potential detection means closer to the end B of the surface is greater than or equal to a predetermined value, the surface potential detection means is moved to a position where it is not affected by the measurement effect before the movement (the effects of charging and static elimination). The drum axis is re-moved, and the charge potential value of the unmeasured area in the axial direction is calculated and interpolated from the detection result of the surface potential detection means before the movement and the detection result of the surface potential detection means after the movement. Before moving when measuring the charged potential distribution in the direction Effect of the measurement it is possible to measure in the form free from the (influence of charging and charge elimination).
Therefore, if this evaluation device is used, it is possible to eliminate the measurement error after the movement caused by the influence of the measurement before the movement in the axial direction, which has been a problem in the conventional evaluation device, and the charging in the drum axis direction can be eliminated. It becomes possible to evaluate the potential distribution characteristics with high accuracy.
Further, by repeatedly performing such characteristic evaluation from the end A to the end B of the electrophotographic photoreceptor in a predetermined region in the drum axis direction, the characteristic evaluation in the predetermined region in the drum axis direction is performed. Can be carried out in a manner that is not affected by the measurement prior to movement (effects of charging and static elimination).

本発明の電子写真用感光体特性評価装置の正面の概略図の一例である。It is an example of the schematic of the front of the electrophotographic photoreceptor characteristic evaluation apparatus of this invention. 本発明の電子写真用感光体特性評価装置の側面の概略図の一例である。It is an example of the schematic of the side surface of the photoreceptor characteristic evaluation apparatus for electrophotography of this invention. 範囲a〜gを表す図である。It is a figure showing the range ag. 比較例1、実施例1での測定結果を元に作成した電子写真用感光体2の軸方向の帯電電位分布である。縦軸は、基準VDに対するVD差を表す。横軸は、電子写真用感光体の軸方向の計測位置(端部Aからの距離)を表す。It is the charging potential distribution in the axial direction of the electrophotographic photoreceptor 2 created based on the measurement results in Comparative Example 1 and Example 1. The vertical axis represents the VD difference with respect to the reference VD. The horizontal axis represents the measurement position (distance from the end A) of the electrophotographic photoreceptor in the axial direction. 範囲h〜mを表す図である。It is a figure showing the range hm. 電子写真用感光体1の軸方向の計測位置(端部Aからの距離)と帯電電位との関係の一例を表すグラフ及び該グラフより算出した1次関数である。縦軸は、電子写真用感光体ドラムの基準VDに対するVD差を表す。横軸は、軸方向の計測位置(端部Aからの距離)を表す。3 is a graph showing an example of the relationship between the measurement position (distance from the end A) in the axial direction of the electrophotographic photoreceptor 1 and the charging potential, and a linear function calculated from the graph. The vertical axis represents the VD difference with respect to the reference VD of the electrophotographic photosensitive drum. The horizontal axis represents the measurement position (distance from the end A) in the axial direction. 比較例2、実施例2での測定および補間結果を元に作成した電子写真用感光体1の軸方向の帯電電位分布である。縦軸は、基準VDに対するVD差を表す。横軸は、電子写真用感光体の軸方向の位置を表す。3 is a charge potential distribution in the axial direction of the electrophotographic photoreceptor 1 created based on the measurement and interpolation results in Comparative Example 2 and Example 2. FIG. The vertical axis represents the VD difference with respect to the reference VD. The horizontal axis represents the position in the axial direction of the electrophotographic photoreceptor.

(電子写真用感光体特性評価装置)
本発明の電子写真用感光体特性評価装置は、少なくとも帯電手段、表面電位検出手段ユニット、除電手段を有し、必要に応じて、更にその他の構成を有してなる。
(Electrophotographic photoconductor characteristic evaluation device)
The electrophotographic photoreceptor characteristic evaluation apparatus of the present invention has at least a charging means, a surface potential detection means unit, and a static elimination means, and further has other configurations as necessary.

<帯電手段>
前記帯電手段は、前記電子写真用感光体の表面を帯電する手段である。
前記帯電手段としては、例えば、コロトロン帯電方式、スコロトロン帯電方式等のコロナ帯電方式を利用した非接触帯電手段などが挙げられる。これらの中でも、スコロトロン帯電方式の帯電器が、帯電電位の制御性が高いため好ましい。
前記帯電手段は、前記電子写真用感光体の軸方向に移動可能に設けられている。また、前記帯電手段は、電子写真用感光体の径方向にも単独で進退可能な構造であることが、前記電子写真用感光体との距離を調節でき、様々なドラム径の電子写真用感光体に対応できる点で好ましい。
<Charging means>
The charging means is means for charging the surface of the electrophotographic photoreceptor.
Examples of the charging means include non-contact charging means using a corona charging method such as a corotron charging method and a scorotron charging method. Among these, the scorotron charging type charger is preferable because of high controllability of the charging potential.
The charging means is provided so as to be movable in the axial direction of the electrophotographic photoreceptor. Further, the charging means has a structure capable of moving forward and backward independently in the radial direction of the electrophotographic photosensitive member. The distance from the electrophotographic photosensitive member can be adjusted, and the electrophotographic photosensitive members having various drum diameters can be adjusted. It is preferable in that it can correspond to the body.

<表面電位検出手段>
前記表面電位検出手段ユニットは、露光前の前記電子写真用感光体の帯電電位、及び露光後の前記電子写真用感光体の露光後電位の少なくともいずれかを検出する手段のユニットである。露光前の前記電子写真用感光体の帯電電位を検出する手段のユニットは必ず設ける必要があるが、露光後の前記電子写真用感光体の露光後電位を検出する手段のユニットは、露光手段により露光を行い、露光後電位を計測する場合のみ設ける必要がある。
<Surface potential detection means>
The surface potential detecting means unit is a unit for detecting at least one of a charging potential of the electrophotographic photoreceptor before exposure and a post-exposure potential of the electrophotographic photoreceptor after exposure. A unit for detecting the charged potential of the electrophotographic photoreceptor before exposure must be provided, but a unit for detecting the post-exposure potential of the electrophotographic photoreceptor after exposure is determined by the exposing means. It is only necessary to perform exposure and measure the post-exposure potential.

前記表面電位検出手段ユニットとしては、前記電子写真用感光体の帯電電位及び露光後電位の少なくともいずれかをモニタすることができるものであれば、特に制限はなく、目的に応じて適宜選択することができる。また、前記表面電位検出手段には、接触型と非接触型があるが、接触型のものであると電子写真用感光体を傷つける恐れがあるため、非接触型のものが好ましい。   The surface potential detection unit is not particularly limited as long as it can monitor at least one of the charged potential and the post-exposure potential of the electrophotographic photoreceptor, and is appropriately selected according to the purpose. Can do. Further, the surface potential detecting means includes a contact type and a non-contact type, but a contact type is preferable because it may damage the electrophotographic photoreceptor.

前記電子写真用感光体の帯電電位及び露光後電位の少なくともいずれかをモニタする方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記電子写真用感光体を、前記帯電手段により帯電した後、若しくは後述する露光手段により露光した後、前記電子写真用感光体の帯電電位及び露光後電位の少なくともいずれかを前記表面電位計プローブユニットで測定し、前記表面電位計ユニットに信号を送ることにより前記電子写真用感光体の帯電電位及び露光後電位の少なくともいずれかをモニタする方法などが挙げられる。   The method for monitoring at least one of the charged potential and the post-exposure potential of the electrophotographic photoreceptor is not particularly limited and can be appropriately selected according to the purpose. For example, the electrophotographic photoreceptor After being charged by the charging means or exposed by an exposure means to be described later, at least one of a charging potential and a post-exposure potential of the electrophotographic photoreceptor is measured by the surface potential meter probe unit, and the surface potential meter Examples include a method of monitoring at least one of a charging potential and a post-exposure potential of the electrophotographic photoreceptor by sending a signal to the unit.

前記表面電位検出手段ユニットは、前記電子写真用感光体の軸方向に移動可能に設けられている。また、前記表面電位検出手段ユニットは、電子写真用感光体の径方向にも単独で進退可能な構造であることが、前記電子写真用感光体との距離を調節でき、様々なドラム径の電子写真用感光体に対応できる点で好ましい。   The surface potential detecting means unit is provided so as to be movable in the axial direction of the electrophotographic photoreceptor. Further, the surface potential detecting means unit has a structure capable of being independently advanced and retracted in the radial direction of the electrophotographic photosensitive member, and the distance from the electrophotographic photosensitive member can be adjusted. This is preferable in that it can be applied to a photographic photoreceptor.

前記表面電位検出手段の数は多いほど、電子写真用感光体の軸方向の特性計測を行う場合、1回で計測できる範囲が大きくなり計測時間の短縮化に繋がるが、コストや装置の大型化の問題が懸念される。したがって、前記表面電位検出手段の数は少なくとも2個以上で、電子写真用感光体の軸方向に並んで配置されていればよい。露光装置により露光を行う場合は、前記露光後の表面電位検出手段の数は帯電後の表面電位検出手段の数と等しい必要がある。また、前記表面電位検出手段の数が3個以上の場合は、各表面電位検出手段の配置間隔が等間隔であることが好ましい。   The greater the number of surface potential detection means, the greater the range that can be measured at one time when measuring the axial characteristics of the electrophotographic photoreceptor, leading to a reduction in measurement time. Is concerned about the problem. Therefore, the number of the surface potential detecting means is at least two, and it is sufficient that they are arranged side by side in the axial direction of the electrophotographic photoreceptor. When exposure is performed by an exposure apparatus, the number of surface potential detection means after exposure needs to be equal to the number of surface potential detection means after charging. When the number of the surface potential detecting means is three or more, it is preferable that the arrangement intervals of the surface potential detecting means are equal.

<除電手段>
前記除電手段は、前記電子写真用感光体の帯電電位を除電する手段である。前記除電手段としては、前記電子写真用感光体を除電することができれば、特に制限はなく、公知の除電手段の中から適宜選択することができ、例えば、除電ランプなどが挙げられる。
前記除電手段は、前記電子写真用感光体の軸方向に移動可能に設けられている。また、前記除電手段は、電子写真用感光体の径方向にも単独で進退可能な構造であることが、前記電子写真用感光体との距離を調節でき、様々なドラム径の電子写真用感光体に対応できる点で好ましい。
<Static removal means>
The charge eliminating means is a means for eliminating the charge potential of the electrophotographic photoreceptor. The neutralization means is not particularly limited as long as the electrophotographic photoreceptor can be neutralized, and can be appropriately selected from known neutralization means. Examples thereof include a neutralization lamp.
The neutralizing means is provided so as to be movable in the axial direction of the electrophotographic photoreceptor. Further, it is possible for the static eliminating means to have a structure capable of moving forward and backward independently in the radial direction of the electrophotographic photosensitive member, so that the distance from the electrophotographic photosensitive member can be adjusted, and the electrophotographic photosensitive members having various drum diameters can be adjusted. It is preferable in that it can correspond to the body.

<その他の構成>
前記その他の構成としては、例えば、露光手段、前記帯電手段に電圧を供給するワイヤ電極及びグリッド電極、前記ワイヤの高圧電源、前記グリッドの電源、前記高圧電源及び前記電源の電源スイッチなどが挙げられる。
<Other configurations>
Examples of the other configuration include an exposure unit, a wire electrode and a grid electrode for supplying a voltage to the charging unit, a high voltage power source for the wire, a power source for the grid, a power switch for the high voltage power source, and a power switch for the power source. .

−露光手段−
前記露光手段は、前記電子写真用感光体を露光する手段である。前記露光手段は、前記電子写真用感光体を露光することができるものであれば、特に制限はなく、目的に応じて適宜選択することができる。
前記露光手段の光源としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザ(LD)、エレクトロルミネッセンス(EL)などの発光物全般などが挙げられる。また、前記露光手段は、所望の波長域の光のみを前記電子写真用感光体ドラムに照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルター等の各種フィルターを用いることもでき、照度を下げるために、ニュートラルデンシティフィルターを用いることもできる。
前記露光手段は、前記電子写真用感光体の軸方向に移動可能に設けられている。また、前記露光手段は、電子写真用感光体の径方向にも単独で進退可能な構造であることが、前記電子写真用感光体との距離を調節でき、様々なドラム径の電子写真用感光体に対応できる点で好ましい。
-Exposure means-
The exposure means is means for exposing the electrophotographic photoreceptor. The exposure means is not particularly limited as long as it can expose the electrophotographic photoreceptor, and can be appropriately selected according to the purpose.
The light source of the exposure means is not particularly limited and may be appropriately selected according to the purpose. For example, a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD) ), And general luminescent materials such as electroluminescence (EL). In addition, the exposure means irradiates the electrophotographic photosensitive drum only with light in a desired wavelength range, so that a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, a color temperature, Various filters such as a conversion filter can be used, and a neutral density filter can also be used to reduce the illuminance.
The exposure means is provided so as to be movable in the axial direction of the electrophotographic photoreceptor. Further, the exposure means has a structure capable of moving forward and backward independently in the radial direction of the electrophotographic photosensitive member, and the distance from the electrophotographic photosensitive member can be adjusted, so that the electrophotographic photosensitive members having various drum diameters can be adjusted. It is preferable in that it can correspond to the body.

−高圧電源、電源、及び電源スイッチ−
前記高圧電源、電源、及び電源スイッチとしては、特に制限はなく、目的に応じて適宜選択することができる。
前記高圧電源、電源、及び電源スイッチの制御手段としては、特に制限はなく、従来公知のものをそのまま用いることができる。
-High voltage power supply, power supply, and power switch-
There is no restriction | limiting in particular as said high voltage | pressure power supply, a power supply, and a power switch, According to the objective, it can select suitably.
The control means for the high-voltage power supply, power supply, and power switch is not particularly limited, and conventionally known ones can be used as they are.

−電子写真用感光体−
前記電子写真用感光体としては、その材質、形状、大きさ、構造などについては、特に制限はなく、目的に応じて適宜選択することができる。
前記形状としては、例えば、ドラム状、シート状、エンドレスベルト状などが挙げられる。これらの中でも、ドラム状が好ましい。
前記材質としては、例えば、アモルファスシリコン、セレン、CdS、ZnO等の無機感光体;ポリシラン、フタロポリメチン等の有機感光体(OPC)、などが挙げられる。
前記大きさとしては、前記電子写真用感光体特性評価装置の大きさ、仕様などに応じて適宜選択することができる。
-Photoconductor for electrophotography-
The material, shape, size, structure and the like of the electrophotographic photoreceptor are not particularly limited and can be appropriately selected depending on the purpose.
Examples of the shape include a drum shape, a sheet shape, and an endless belt shape. Among these, a drum shape is preferable.
Examples of the material include inorganic photoreceptors such as amorphous silicon, selenium, CdS, and ZnO; organic photoreceptors (OPC) such as polysilane and phthalopolymethine, and the like.
The size can be appropriately selected according to the size, specifications, etc. of the electrophotographic photoreceptor characteristic evaluation apparatus.

前記有機感光体(OPC)は、(1)光吸収波長域の広さ、光吸収量の大きさ等の光学特性、(2)高感度、安定な帯電特性等の電気的特性、(3)材料の選択範囲の広さ、(4)製造の容易さ、(5)低コスト、(6)無毒性、などの理由から一般に広く応用されている。このような有機感光体の層構成としては、単層構造と、積層構造とに大別される。
前記単層構造の感光体は、支持体と、該支持体上に単層型感光層を設けてなり、更に必要に応じて、保護層、中間層、その他の層を有してなる。
前記積層構造の感光体は、支持体と、該支持体上に電荷発生層、及び電荷輸送層を少なくともこの順に有する積層型感光層を設けてなり、更に必要に応じて、保護層、中間層、の他の層を有してなる。
The organic photoreceptor (OPC) has (1) optical characteristics such as a wide light absorption wavelength range and a large amount of light absorption, (2) electrical characteristics such as high sensitivity and stable charging characteristics, (3) In general, it is widely applied because of the wide selection range of materials, (4) ease of production, (5) low cost, and (6) non-toxicity. The layer structure of such an organic photoreceptor is roughly divided into a single layer structure and a laminated structure.
The single-layered photoreceptor has a support and a single-layer type photosensitive layer provided on the support, and further includes a protective layer, an intermediate layer, and other layers as necessary.
The laminated structure of the photoreceptor comprises a support, and a laminate type photosensitive layer having at least a charge generation layer and a charge transport layer in this order on the support, and further includes a protective layer and an intermediate layer as necessary. And other layers.

−移動手段−
前記移動手段は、前記帯電手段を前記電子写真用感光体の軸方向に移動させる手段である。前記移動手段は、前記帯電手段の前記電子写真用感光体の軸方向への移動と対応して、前記表面電位検出手段、前記露光手段、及び前記除電手段を、同一軸方向位置に同時に移動させる設計であることが好ましい。これにより、軸方向の所望の位置の特性について計測することができる。
前記移動手段としては、特に制限はなく、公知の移動手段の中から適宜選択することができ、例えば、ステッピングモータなどが挙げられる。
-Moving means-
The moving means is means for moving the charging means in the axial direction of the electrophotographic photoreceptor. The moving means simultaneously moves the surface potential detecting means, the exposing means, and the charge eliminating means to the same axial position corresponding to the movement of the charging means in the axial direction of the electrophotographic photoreceptor. A design is preferred. Thereby, it is possible to measure the characteristics of a desired position in the axial direction.
There is no restriction | limiting in particular as said moving means, It can select suitably from well-known moving means, For example, a stepping motor etc. are mentioned.

ここで、本発明における電子写真用感光体特性評価装置について、図面を参照しながら以下に詳しく説明する。図1は、本発明の電子写真用感光体特性評価装置の正面の概略図であり、図2は、本発明の電子写真用感光体特性評価装置の側面の概略図である。なお、これらの概略図は一例であってこれに限定されるものではない。   Here, the electrophotographic photoreceptor characteristic evaluation apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram of the front of the electrophotographic photoreceptor characteristic evaluation apparatus of the present invention, and FIG. 2 is a schematic side view of the electrophotographic photoreceptor characteristic evaluation apparatus of the present invention. In addition, these schematic diagrams are examples and are not limited thereto.

図1の電子写真用感光体特性評価装置は、電子写真用感光体ドラム1を帯電する帯電手段6であるスコロトロン帯電器、スコロトロン帯電器のワイヤ電極へ電圧を供給する為の高圧電源7、スコロトロン帯電器のグリッド電極へ電圧を供給する為の電源12、高圧電源7及び電源12の電源スイッチ15、電子写真用感光体ドラム1の帯電電位を測定する表面電位検出手段である表面電位計プローブが軸方向にn個並んだ表面電位計プローブユニット13、電子写真用感光体ドラム1を露光する露光手段2、電子写真用感光体ドラム1の露光後電位を測定する表面電位検出手段である表面電位計プローブが軸方向にn個並んだ表面電位計プローブユニット3、及び電子写真用感光体ドラム1を除電する除電手段8である除電用光源を有している。   1 includes a scorotron charger as a charging means 6 for charging the electrophotographic photosensitive drum 1, a high voltage power source 7 for supplying a voltage to the wire electrode of the scorotron charger, and a scorotron. A power source 12 for supplying a voltage to the grid electrode of the charger, a high-voltage power source 7 and a power switch 15 of the power source 12, and a surface potential meter probe which is a surface potential detecting means for measuring the charged potential of the electrophotographic photosensitive drum 1 N surface potential meter probe units 13 arranged in the axial direction, exposure means 2 for exposing the electrophotographic photosensitive drum 1, and surface potential as surface potential detecting means for measuring the post-exposure potential of the electrophotographic photosensitive drum 1. It has a surface light meter probe unit 3 in which n meter probes are arranged in the axial direction, and a static elimination light source which is a static elimination means 8 for neutralizing the electrophotographic photosensitive drum 1. .

前記帯電手段6(スコロトロン帯電器)、表面電位計プローブユニット13、露光手段2、表面電位計プローブユニット3、前記除電手段8(除電用光源)は、電子写真用感光体ドラム1の径方向及び軸方向に進退可能な構造となっており、径方向に関してはそれぞれを個別に移動することができ、個別の位置に配置できる。ただし、軸方向に関しては、これらの全てが同時に移動し、同一軸方向位置に配置される。   The charging means 6 (scorotron charger), the surface potential meter probe unit 13, the exposure means 2, the surface potential meter probe unit 3, and the charge removal means 8 (charge removal light source) are arranged in the radial direction of the electrophotographic photosensitive drum 1. It has a structure that can advance and retreat in the axial direction, and each can be moved individually in the radial direction and can be arranged at individual positions. However, with respect to the axial direction, all of these move simultaneously and are arranged at the same axial position.

この電子写真用感光体特性評価装置において、図2に示す電子写真用感光体ドラム1は、両端にドラムチャック治具20で前記電子写真用感光体特性評価装置内に保持され、主軸18がチャック治具20の中心を通っている。前記電子写真用感光体特性評価装置の手前側(電子写真用感光体ドラム1の一端側)の面板21と、奥側(電子写真用感光体ドラム1の他端側)の面板22とが主軸18の軸受け機構となっており、主軸18はモータ16に繋がったベルト19によって図1の矢印の方向に回転する機構となっている。電子写真用感光体ドラム1の回転角度は、図2に示す主軸18の端部に取り付けられたロータリーエンコーダ11により測定され、電子写真用感光体ドラム1の回転角度に関する情報は、図1に示すコントローラ17へと送られる。高圧電源7から前記スコロトロン帯電器のワイヤ電極に、また、電源12から前記スコロトロン帯電器のグリッド電極にそれぞれ電圧が出力され、前記スコロトロン帯電器によって電子写真用感光体ドラム1が帯電される。   In this electrophotographic photoreceptor characteristic evaluation apparatus, the electrophotographic photoreceptor drum 1 shown in FIG. 2 is held in the electrophotographic photoreceptor characteristic evaluation apparatus by drum chuck jigs 20 at both ends, and the spindle 18 is chucked. It passes through the center of the jig 20. A main plate is a face plate 21 on the front side (one end side of the electrophotographic photosensitive drum 1) and a face plate 22 on the back side (the other end side of the electrophotographic photosensitive drum 1) of the electrophotographic photoconductor characteristic evaluation apparatus. 18, and the main shaft 18 is a mechanism that rotates in the direction of the arrow in FIG. 1 by a belt 19 connected to the motor 16. The rotation angle of the electrophotographic photosensitive drum 1 is measured by a rotary encoder 11 attached to the end of the main shaft 18 shown in FIG. 2, and information on the rotation angle of the electrophotographic photosensitive drum 1 is shown in FIG. It is sent to the controller 17. Voltage is output from the high-voltage power supply 7 to the wire electrode of the scorotron charger, and from the power supply 12 to the grid electrode of the scorotron charger, and the electrophotographic photosensitive drum 1 is charged by the scorotron charger.

また、図1に示すように、電子写真用感光体ドラム1の帯電電位は、表面電位計プローブユニット13からモニタ部である表面電位計ユニット14に送られモニタされ、信号処理回路9に送られる。その後A/D変換器10によってA/D変換され、コントローラ17へと送られ、演算処理される。   Further, as shown in FIG. 1, the charged potential of the electrophotographic photosensitive drum 1 is sent from the surface potential meter probe unit 13 to the surface potential meter unit 14 which is a monitor unit, monitored, and sent to the signal processing circuit 9. . After that, A / D conversion is performed by the A / D converter 10 and sent to the controller 17 for arithmetic processing.

電子写真用感光体ドラム1中の通過電流は、信号処理回路5、A/D変換器10を通じて、コントローラへと送られ、通過電流を把握することも可能である。また、コントローラ17は電子写真用感光体ドラム1を回転させるモータ16内の図示しないモータドライバに接続されている。モータドライバでは、回転数を出力する機能、回転数をリモート制御可能な機能も付加されているため、回転数制御と回転数の認識も可能である。   The passing current in the electrophotographic photosensitive drum 1 is sent to the controller through the signal processing circuit 5 and the A / D converter 10, and the passing current can be grasped. The controller 17 is connected to a motor driver (not shown) in the motor 16 that rotates the electrophotographic photosensitive drum 1. In the motor driver, a function for outputting the number of revolutions and a function for remotely controlling the number of revolutions are added, so that the number of revolutions can be controlled and the number of revolutions can be recognized.

電子写真用感光体ドラム1の周りのユニット(前記スコロトロン帯電器、表面電位計プローブユニット13、露光手段2、表面電位計プローブユニット3、前記除電用光源)は、デジタルリレー出力23によってON/OFF制御されている。また、露光手段2を用いて、電子写真用感光体ドラム1の露光が行われ、電子写真用感光体ドラム1の露光後電位は、表面電位計プローブユニット3及び表面電位計ユニット4を使用することによって、帯電手段6によって帯電された後の帯電電位と同様にして測定できる。電子写真用感光体ドラム1の露光後電位を取り除く場合は、除電手段8(除光用光源)を使用し取り除くことが可能であり、電子写真用感光体ドラム1の帯電特性、光減衰特性などの評価が可能である。   Units around the electrophotographic photosensitive drum 1 (the scorotron charger, the surface potential meter probe unit 13, the exposure means 2, the surface potential meter probe unit 3, and the light source for charge removal) are turned ON / OFF by a digital relay output 23. It is controlled. Further, the exposure means 2 is used to expose the electrophotographic photosensitive drum 1, and the post-exposure potential of the electrophotographic photosensitive drum 1 uses the surface potential meter probe unit 3 and the surface potential meter unit 4. Thus, the charge potential after being charged by the charging means 6 can be measured in the same manner. When the post-exposure potential of the electrophotographic photosensitive drum 1 is removed, it can be removed by using a static elimination means 8 (light removal light source), such as charging characteristics and light attenuation characteristics of the electrophotographic photosensitive drum 1. Can be evaluated.

前記電子写真用感光体特性評価装置は、光を透過しない暗箱あるいは暗幕などで覆われていることが好ましい。前記電子写真用感光体特性評価装置が、暗箱又は暗幕で覆われていないと、試験時に風、光、温度などの外部環境の影響を受け、正確な特性評価が困難となる。ただし、コントローラ及び信号処理回路など、前記電子写真用感光体ドラムの評価に影響のないものに関しては、暗箱あるいは暗幕で覆う必要はない。   The electrophotographic photosensitive member property evaluation apparatus is preferably covered with a dark box or black screen that does not transmit light. If the electrophotographic photosensitive member characteristic evaluation apparatus is not covered with a dark box or a black curtain, accurate characteristic evaluation becomes difficult due to the influence of the external environment such as wind, light, and temperature during the test. However, those that do not affect the evaluation of the electrophotographic photosensitive drum, such as a controller and a signal processing circuit, do not need to be covered with a dark box or a black curtain.

本発明の電子写真用感光体の特性評価装置を用いて電子写真用感光体の特性評価を行う手順を表面電位検出手段の数(n)が3個である場合を例にとり、後述する実施例2について示した図5に基づいて説明する。
まず、帯電手段、除電手段及び電子写真用感光体ドラムの軸方向に表面電位検出手段がn(=3)個並んだ表面電位検出ユニット(検出手段間隔d=8mm)を用いて、最初の計測範囲である[範囲h]の3位置(電子写真用感光体1の端部Aからの距離が162、170、178mm)のドラム1周分の帯電電位(VD)を計測し、この計測の直後に、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって表面電位検出手段の2つの間隔(8mm)のn−1倍の距離[d×(n−1)=8×2=16mm]移動させ、[範囲h]の3位置の計測から10秒後に、範囲kの3位置(178、186、194mm)のドラム1周分のVD計測を行う。
その後、範囲hの178mmの位置と範囲kの178mmの位置の計測結果の違いが±5V未満かどうか判別する。
The procedure for evaluating the characteristics of an electrophotographic photosensitive member using the electrophotographic photosensitive member characteristic evaluation apparatus of the present invention will be described below, taking the case where the number (n) of surface potential detecting means is three as an example. 2 will be described with reference to FIG.
First, a first measurement is performed using a surface potential detection unit (detection unit interval d = 8 mm) in which n (= 3) surface potential detection units are arranged in the axial direction of the charging unit, the neutralization unit, and the electrophotographic photosensitive drum. Immediately after this measurement, the charging potential (VD) for one rotation of the drum at three positions (range h) of the range (distances from the end A of the electrophotographic photosensitive member 1 are 162, 170, and 178 mm) is measured. In addition, the charging means, the static elimination means, and the surface potential detection means unit are moved toward the end B by a distance n-1 times the distance (8 mm) between the surface potential detection means [d × (n−1) = 8 × 2]. = 16 mm], and 10 seconds after the measurement at the 3 positions in [Range h], VD measurement is performed for one revolution of the drum at 3 positions (178, 186, 194 mm) in the range k.
Thereafter, it is determined whether or not the difference between the measurement results at the position 178 mm in the range h and the position 178 mm in the range k is less than ± 5V.

判別結果が±5V未満の場合は、さらに、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって16mm再移動させ、範囲lの3位置(電子写真用感光体2の端部Aからの距離が194、202、210mm)のVD計測を行い、同様に範囲lの194mmの位置と範囲kの194mmの位置の計測結果の違いについて判別する。   If the determination result is less than ± 5 V, the charging means, the static elimination means, and the surface potential detection means unit are further moved 16 mm toward the end B, and 3 positions in the range l (the end of the electrophotographic photoreceptor 2) VD measurement is performed at a distance of 194, 202, and 210 mm from A), and similarly, a difference in measurement results between the position of 194 mm in the range l and the position of 194 mm in the range k is determined.

±5V以上の場合は、これは、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって2つの表面電位検出手段の間隔のn+m倍[d×(n+m)=8×(3+1)=32mm]再移動させ、範囲jの3位置(電子写真用感光体2の端部Aからの距離が210、218、226mm)のVD計測を行い、範囲hの178mmの位置と範囲jの210mmの位置の計測結果から、軸方向の位置と帯電電位の関係を表す1次関数を求める。
求めた1次関数から範囲iの3位置(電子写真用感光体2の端部Aからの距離が186、194、202mm)のVDを算出して補間する。
In the case of ± 5 V or more, this means that the charging means, the static elimination means, and the surface potential detection means unit are moved toward the end B by n + m times the distance between the two surface potential detection means [d × (n + m) = 8 × (3 + 1 ) = 32 mm] again, VD measurement is performed at 3 positions in the range j (the distances from the end A of the electrophotographic photoreceptor 2 are 210, 218, 226 mm), and the position 178 mm in the range h and the position j in the range j A linear function representing the relationship between the axial position and the charging potential is obtained from the measurement result at the position of 210 mm.
From the obtained linear function, VD at three positions in the range i (distances from the end A of the electrophotographic photoreceptor 2 are 186, 194, 202 mm) is calculated and interpolated.

さらに、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって表面電位検出手段の2つの間隔のn−1倍の距離[[d×(n−1)=8×2=16mm]移動させ、範囲mの3位置(電子写真用感光体2の端部Aからの距離が226、234,242mm)のVD計測を行い、範囲jの226mmの位置と範囲mの226mmの位置の計測結果の違いについて判別する。
このような操作を行って特性評価を行い、これを電子写真用感光体の端部Aから端部Bに向かって繰り返し行い、前記電子写真用感光体の軸方向の所定の領域内の特性評価を行う。
Further, the charging unit, the neutralizing unit, and the surface potential detecting unit are moved toward the end portion B by a distance n−1 times as large as two intervals of the surface potential detecting unit [[d × (n−1) = 8 × 2 = 16 mm. The VD measurement is performed at three positions in the range m (distances from the end A of the electrophotographic photosensitive member 2 are 226, 234 and 242 mm), and the position 226 mm in the range j and the position 226 mm in the range m are measured. Determine the difference in measurement results.
Characteristic evaluation is performed by performing such an operation, and this is repeated from the end A to the end B of the electrophotographic photoreceptor to evaluate the characteristics in a predetermined region in the axial direction of the electrophotographic photoreceptor. I do.

以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples of the present invention, but the present invention is not limited to these examples.

以下に示す比較例及び実施例では、図1及び図2のような電子写真用感光体特性評価装置を用いて電子写真用感光体の特性評価を行った。前記電子写真用感光体特性評価装置において、帯電手段6としては、グリッド開口幅が軸方向に60mm、周方向に15mmである内製したスコロトロン帯電器を、前記スコロトロン帯電器のワイヤ電極に電圧を印加する高圧電源7はTREK社製を、前記スコロトロン帯電器のグリッド電極に電圧を印加する電源12は松定プレシジョン株式会社製をそれぞれ用いた。除電手段8としての除電用光源はスタンレー電気社製LED(波長:660nm)の加工品であり、軸方向のサイズが70mmである。表面電位検出手段ユニットである表面電位計ユニット14は、TREK社製の3つの表面電位計で構成され、表面電位検出手段ユニットである表面電位計プローブユニット13は、軸方向に8mmピッチの等間隔に配置されたTREK社製の3つの表面電位計プローブから構成される。   In the comparative examples and examples shown below, the characteristics of the electrophotographic photosensitive member were evaluated using an electrophotographic photosensitive member characteristic evaluation apparatus as shown in FIGS. In the electrophotographic photoreceptor characteristic evaluation apparatus, the charging means 6 is an in-house manufactured scorotron charger having a grid opening width of 60 mm in the axial direction and 15 mm in the circumferential direction, and a voltage is applied to the wire electrode of the scorotron charger. The high voltage power supply 7 to be applied was manufactured by TREK, and the power supply 12 for applying a voltage to the grid electrode of the scorotron charger was manufactured by Matsusada Precision Co., Ltd. The static elimination light source as the static elimination means 8 is a processed product of LED (wavelength: 660 nm) manufactured by Stanley Electric Co., Ltd., and the size in the axial direction is 70 mm. The surface potential meter unit 14 which is a surface potential detection means unit is composed of three surface potential meters manufactured by TREK, and the surface potential meter probe unit 13 which is a surface potential detection means unit has an equal interval of 8 mm pitch in the axial direction. Are composed of three surface potentiometer probes manufactured by TREK.

前記表面電位検出手段ユニットにより、電子写真用感光体における軸方向の3つの位置の帯電電位を同時に計測することができる。モータ16はオリエンタルモーター株式会社製、コントローラ17は株式会社キーエンス製のシーケンサ及び日立社製のPC、A/D変換器10は株式会社キーエンス製A/D変換器、デジタルリレー出力23は株式会社キーエンス製である。それ以外の信号処理回路などは、全て内製した電子写真用感光体特性評価装置を使用した。   The surface potential detecting means unit can simultaneously measure charging potentials at three positions in the axial direction of the electrophotographic photoreceptor. The motor 16 is manufactured by Oriental Motor Co., Ltd., the controller 17 is a sequencer manufactured by Keyence Corporation and a PC manufactured by Hitachi, the A / D converter 10 is an A / D converter manufactured by Keyence Corporation, and the digital relay output 23 is Keyence Corporation. It is made. For the other signal processing circuits, etc., an in-house electrophotographic photoreceptor characteristic evaluation apparatus was used.

また、使用した電子写真用感光体1、2(ドラム直径30mm、ドラム全長340mm)は、株式会社リコー製のimagioMF7070に搭載された感光体と同一処方であるが、電子写真用感光体1は長期に使用して前回の計測の影響が次の計測へと残りやすいものとした。試験例1、比較例2、実施例2、実施例3では、繰り返し計測を行った場合に前回の計測の影響が次の計測へと残りやすい電子写真用感光体1を、比較例1、実施例1では、繰り返し計測を行った場合に前回の計測の影響が次の計測に残らない電子写真用感光体2を利用した。   The used electrophotographic photoreceptors 1 and 2 (drum diameter 30 mm, drum total length 340 mm) have the same prescription as the photoreceptor mounted on Rigoh Co., Ltd. imgioMF7070. The effect of the previous measurement is likely to remain in the next measurement. In Test Example 1, Comparative Example 2, Example 2, and Example 3, the electrophotographic photoreceptor 1 in which the influence of the previous measurement is likely to remain in the next measurement when repeated measurement is performed is shown in Comparative Example 1. In Example 1, the electrophotographic photoreceptor 2 is used in which the influence of the previous measurement does not remain in the next measurement when repeated measurement is performed.

前記感光体の評価装置手前側の端部を端部A、評価装置奥側の端部を端部Bとした。また、前記3つの表面電位計プローブの内、中央の表面電位計プローブが電子写真用感光体軸方向において配置される位置は、前記帯電手段、前期除電手段の中央位置が電子写真用感光体の軸方向に配置される位置と等しい。   The end on the front side of the evaluation device of the photoconductor is referred to as end A, and the end on the back side of the evaluation device is referred to as end B. Of the three surface electrometer probes, the central surface electrometer probe is disposed in the axial direction of the electrophotographic photosensitive member. The central position of the charging unit and the previous neutralizing unit is the position of the electrophotographic photosensitive member. Equal to the position arranged in the axial direction.

<試験例1>
電子写真用感光体1の端部Aからの距離が178mmの位置のドラム1周分の帯電電位(VD)計測後、5分間装置内に放置し、計測の影響を軽減させた後に、再度同位置のドラム1周分のVD計測を行った。178mmの位置における初期のドラム1周分のVD、再計測のドラム1周分のVDからそれぞれの平均値を算出し、初期のVDと再計測のVDとの差を求めた。その結果を表1に示す。
<Test Example 1>
After measuring the electrification potential (VD) for one rotation of the drum at a distance of 178 mm from the end A of the electrophotographic photoreceptor 1, leave it in the apparatus for 5 minutes to reduce the influence of the measurement, and then repeat the same. VD measurement for one rotation of the drum at the position was performed. The respective average values were calculated from the VD for one initial revolution of the drum at the position of 178 mm and the VD for one revolution of the drum, and the difference between the initial VD and the remeasurement VD was obtained. The results are shown in Table 1.

次に、電子写真用感光体の端部Aからの距離が178mmの位置のドラム1周分の帯電電位(VD)計測10秒後に、再度同位置のドラム1周分のVD計測を行った。178mmの位置における初期計測のドラム1周分のVD、再計測のドラム1周分のVDからそれぞれの平均値を算出し、初期計測のVDと再計測のVDとの差を求めた。その結果を表1に示す。   Next, 10 seconds after measuring the charged potential (VD) for one revolution of the drum at a position where the distance from the end A of the electrophotographic photosensitive member is 178 mm, VD measurement for one revolution of the drum at the same position was performed again. The average values were calculated from the VD for one revolution of the drum at the initial measurement and the VD for one revolution of the drum at the position of 178 mm, and the difference between the initial measurement VD and the remeasurement VD was obtained. The results are shown in Table 1.

Figure 0005447838
Figure 0005447838

表1からわかるように、計測時間間隔が5分の場合は、初期計測のVDと再計測のVDがほぼ等しいのに対し、計測時間間隔が10秒の場合は、初期計測のVDと再計測のVDに大きな違いがあった。この結果から、同位置の計測において、計測時間間隔が長い場合は、前回の計測が次の計測に与える影響は極めて小さく、計測時間間隔が短い場合は、前回の計測が次の計測に大きな影響を与えることがわかる。   As can be seen from Table 1, when the measurement time interval is 5 minutes, the initial measurement VD and the remeasurement VD are substantially equal, whereas when the measurement time interval is 10 seconds, the initial measurement VD and the remeasurement. There was a big difference in VD. From this result, when the measurement time interval is long in the measurement at the same position, the influence of the previous measurement on the next measurement is extremely small, and when the measurement time interval is short, the previous measurement has a large influence on the next measurement. You can see that

<比較例1>
範囲aの3位置(電子写真用感光体2の端部Aからの距離が114,122、130mm)のドラム1周分の帯電電位(VD)計測を同時に行い、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって24mm移動させ、5分後に、範囲bの2位置(電子写真用感光体2の端部Aからの距離が138、146mm)のドラム1周分のVD計測を同時に行った。計測時間間隔を5分と十分に設けることで、移動前の計測が移動後の計測に影響を与えないようにした。影響範囲a、bとは図3に図示するような以下の範囲のことを指す。
範囲a:電子写真用感光体2の端部Aからの距離が114〜130mmの範囲。
範囲b:電子写真用感光体2の端部Aからの距離が138〜146mmの範囲。
計測結果から、各位置でのドラム1周分のVDデータの平均値を算出した。130mmの位置のVDを基準VDとし、各位置でのVDと基準VDとの差を算出した結果を表2、図4に示す。
−計測時間間隔:10秒−
続いて、前期計測時間間隔:5分と同様の計測を計測時間間隔:10秒で行った。これは、移動後の計測範囲が移動前の計測範囲と重ならない形で、計測時間間隔10秒で移動しながら計測を行う従来の軸方向の電位分布計測方法である。
計測結果から、各位置でのドラム1周分のVDデータの平均値を算出し、130mmの位置のVDを基準VDとし、各位置でのVDと基準VDとの差を算出した結果を表2に示す。また、計測時間間隔5分の結果との差を算出した結果と合わせて表2、図4に示す。
<Comparative Example 1>
The charging potential (VD) measurement for one rotation of the drum at three positions in the range a (distances from the end A of the electrophotographic photoreceptor 2 of 114, 122, and 130 mm) is simultaneously performed, and charging means, static elimination means, and surface potential are measured. The detection unit is moved 24 mm toward the end B, and after 5 minutes, VD measurement for one rotation of the drum at two positions in the range b (the distance from the end A of the electrophotographic photoreceptor 2 is 138, 146 mm). At the same time. By providing a sufficient measurement time interval of 5 minutes, the measurement before movement does not affect the measurement after movement. The influence ranges a and b indicate the following ranges as shown in FIG.
Range a: a range in which the distance from the end A of the electrophotographic photoreceptor 2 is 114 to 130 mm.
Range b: A range in which the distance from the end A of the electrophotographic photoreceptor 2 is 138 to 146 mm.
From the measurement results, the average value of the VD data for one rotation of the drum at each position was calculated. Table 2 and FIG. 4 show the results of calculating the difference between the VD at each position and the reference VD with the VD at the position of 130 mm as the reference VD.
-Measurement time interval: 10 seconds-
Subsequently, the same measurement as that in the previous measurement time interval: 5 minutes was performed at the measurement time interval: 10 seconds. This is a conventional potential distribution measurement method in the axial direction in which measurement is performed while moving at a measurement time interval of 10 seconds so that the measurement range after movement does not overlap the measurement range before movement.
From the measurement results, the average value of the VD data for one rotation of the drum at each position is calculated, and the result of calculating the difference between the VD at each position and the reference VD with the VD at the position of 130 mm as the reference VD is shown in Table 2. Shown in Moreover, it shows in Table 2, FIG. 4 together with the result of having calculated the difference with the result of measurement time interval 5 minutes.

Figure 0005447838
Figure 0005447838

表2から、範囲bの2位置(138、146mm)の「基準VDに対するVD差(計測時間間隔:5分)−基準VDに対するVD差(計測時間間隔:10秒)」の値は小さく、図4を見ても、比較例1の計測時間間隔:10秒(従来の計測方法)のVD分布は比較例1の計測時間間隔:5分(移動後の計測が移動前の計測の影響を受けていない場合)のVD分布と似通った分布特性を示しており、比較例1の計測時間間隔:10秒(従来の計測方法)では、移動後の計測(範囲bの計測)が移動前の計測(範囲aの計測)の影響を受けていないことがわかる。   From Table 2, the value of “VD difference with respect to reference VD (measurement time interval: 5 minutes) −VD difference with respect to reference VD (measurement time interval: 10 seconds)” at two positions (138, 146 mm) in range b is small. 4, the measurement time interval of Comparative Example 1: 10 seconds (conventional measurement method) VD distribution is the measurement time interval of Comparative Example 1: 5 minutes (the measurement after movement is affected by the measurement before movement) Distribution characteristics similar to those of the VD distribution in the case where the measurement is not performed) and the measurement time interval of Comparative Example 1 is 10 seconds (conventional measurement method), the measurement after the movement (measurement of the range b) is the measurement before the movement. It can be seen that there is no influence of (measurement of range a).

<実施例1>
範囲aの3位置のドラム1周分の帯電電位(VD)計測の直後に、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって16mm移動させ、範囲aの計測から10秒後に、範囲cのドラム1周分のVD計測を行った。
その後、範囲aの130mmの位置と範囲cの130mmの位置の計測結果の違いが±5V未満かどうか判別した。±5.0V未満という値は、画像形成装置での出力画像の濃度に大きな違いが発生しないような小さな値であり、移動前のVD計測により発生する移動後VD計測における計測誤差は極めて小さいと判断できる。逆に、±5.0V以上という値は、画像形成装置での出力画像の濃度に明らかな違いが発生する程大きな値であり、移動前のVD計測により発生する移動後VD計測の計測誤差が大きいことを意味している。
<Example 1>
Immediately after measuring the charging potential (VD) for one rotation of the drum at three positions in the range a, the charging unit, the discharging unit, and the surface potential detecting unit are moved 16 mm toward the end B, and 10 seconds from the measurement of the range a. Later, VD measurement for one revolution of the drum in the range c was performed.
Thereafter, it was determined whether or not the difference in the measurement result between the position 130 mm in the range a and the position 130 mm in the range c was less than ± 5V. The value of less than ± 5.0 V is a small value that does not cause a large difference in the density of the output image in the image forming apparatus, and the measurement error in the post-movement VD measurement that occurs due to the VD measurement before the movement is extremely small. I can judge. On the contrary, the value of ± 5.0 V or more is such a large value that an obvious difference is generated in the density of the output image in the image forming apparatus, and the measurement error of the post-movement VD measurement generated by the VD measurement before the movement is large. It means big.

判別結果が±5V未満の場合は、さらに、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって16mm再移動させ、範囲dの3位置(電子写真用感光体2の端部Aからの距離が146、154、162mm)のVD計測を行い、同様に範囲cの146mmの位置と範囲dの146mmの位置の計測結果の違いについて判別する。±5V以上の場合は、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって32mm再移動させ、範囲eの3位置(電子写真用感光体2の端部Aからの距離が162、170、178mm)のVD計測を行い、範囲aの130mmの位置と範囲eの162mmの位置の計測結果から、軸方向の位置と帯電電位の関係を表す1次関数を求め、求めた1次関数から範囲fの3位置(電子写真用感光体2の端部Aからの距離が138、146、154mm)のVDを算出して補間し、さらに、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって16mm移動させ、範囲gの3位置(電子写真用感光体2の端部Aからの距離が178、186、194mm)のVD計測を行い、範囲eの178mmの位置と範囲gの178mmの位置の計測結果の違いについて判別する。このような方法で特性評価を行った。   If the determination result is less than ± 5 V, the charging unit, the neutralizing unit, and the surface potential detecting unit are moved again by 16 mm toward the end B, and the three positions in the range d (the end of the electrophotographic photoreceptor 2) VD measurement is performed at distances from A of 146, 154, and 162 mm), and similarly, a difference in measurement results between the position of 146 mm in the range c and the position of 146 mm in the range d is determined. In the case of ± 5 V or more, the charging means, the charge eliminating means, and the surface potential detecting means unit are moved again 32 mm toward the end B, and the three positions in the range e (the distance from the end A of the electrophotographic photoreceptor 2 is 162, 170, 178 mm), and a linear function representing the relationship between the position in the axial direction and the charged potential is obtained from the measurement result of the position 130 mm in the range a and the position 162 mm in the range e. From the next function, VD at three positions in the range f (the distances from the end A of the electrophotographic photosensitive member 2 are 138, 146, 154 mm) is calculated and interpolated, and further, charging means, static elimination means, surface potential detection means The unit is moved 16 mm toward the end B, and VD measurement is performed at 3 positions in the range g (distances from the end A of the electrophotographic photoreceptor 2 are 178, 186, 194 mm), and the position 178 mm in the range e And 1 in range g Determine the difference between the measurement results of the position of 8 mm. Characteristic evaluation was performed by such a method.

範囲c、d、e、f、gとは図3に図示するような以下の範囲のことを指す。
・ 範囲c:電子写真用感光体2の端部Aからの距離が130〜146mmの範囲。
・ 範囲d:電子写真用感光体2の端部Aからの距離が146〜162mmの範囲。
・ 範囲e:電子写真用感光体2の端部Aからの距離が162〜178mmの範囲。
・ 範囲f:電子写真用感光体2の端部Aからの距離が138〜154mmの範囲。
・ 範囲g:電子写真用感光体2の端部Aからの距離が178〜194mmの範囲。
The ranges c, d, e, f, and g refer to the following ranges as illustrated in FIG.
-Range c: A range in which the distance from the end A of the electrophotographic photoreceptor 2 is 130 to 146 mm.
Range d: A range in which the distance from the end A of the electrophotographic photoreceptor 2 is 146 to 162 mm.
Range e: a range in which the distance from the end A of the electrophotographic photoreceptor 2 is 162 to 178 mm.
Range f: a range in which the distance from the end A of the electrophotographic photoreceptor 2 is 138 to 154 mm.
-Range g: A range in which the distance from the end A of the electrophotographic photoreceptor 2 is 178 to 194 mm.

計測結果から、範囲aの3位置、範囲cの3位置、各位置でのドラム1周分のVDデータの平均値を算出し、範囲aの130mmの位置のVDを基準VDとし、範囲aの3位置の各VDと基準VDとの差を算出した結果を表3に、範囲cの3位置の各VDと基準VDとの差を算出した結果を表4に示す。   From the measurement results, the average value of the VD data for the three positions in the range a, the three positions in the range c, and one revolution of the drum at each position is calculated, and the VD at the 130 mm position in the range a is set as the reference VD. Table 3 shows the result of calculating the difference between each VD at the three positions and the reference VD, and Table 4 shows the result of calculating the difference between each VD at the three positions in the range c and the reference VD.

Figure 0005447838
Figure 0005447838

Figure 0005447838
Figure 0005447838

表4のように、範囲cの130mmの位置のVDと基準VDとの差は、2.4Vであり、範囲aの130mmの位置と範囲cの130mmの位置のVDの違いは±5.0V未満と小さかった。この結果から、範囲aの計測直後に、範囲cの計測を行った場合には、範囲aの計測が範囲cの計測に影響を与えないことがわかる。   As shown in Table 4, the difference between the VD at the position 130 mm in the range c and the reference VD is 2.4 V, and the difference in VD between the position 130 mm in the range a and the position 130 mm in the range c is ± 5.0 V. Less than and small. From this result, it is understood that when the measurement of the range c is performed immediately after the measurement of the range a, the measurement of the range a does not affect the measurement of the range c.

したがって、移動前の範囲aのVD計測により発生する移動後の範囲cのVD計測における計測誤差はないと判断し、測定結果を用いて、電子写真用感光体2の軸方向のVD分布を作成した。電位分布を作成する際、同一位置のVD値には、移動前の計測結果(範囲aの結果)を利用した。作成したVD分布を図4に示す。実施例1(本発明の計測方法)のVD分布は、比較例1の計測時間間隔:5分(移動後の計測が移動前の計測の影響を受けていない場合)のVD分布と近い分布特性が得られており、比較例1の計測時間間隔:10秒(従来の計測方法)と同様、移動前の計測の影響を受けない形で移動後の計測を行うことができていることがわかる。   Accordingly, it is determined that there is no measurement error in the VD measurement in the range c after the movement that occurs due to the VD measurement in the range a before the movement, and the axial VD distribution of the electrophotographic photoreceptor 2 is created using the measurement result. did. When creating the potential distribution, the measurement result before movement (result of range a) was used as the VD value at the same position. The created VD distribution is shown in FIG. The VD distribution of Example 1 (measurement method of the present invention) is a distribution characteristic close to the VD distribution of the measurement time interval of Comparative Example 1: 5 minutes (when measurement after movement is not affected by measurement before movement). The measurement time interval of Comparative Example 1 is 10 seconds (conventional measurement method), and it can be seen that the measurement after the movement can be performed without being affected by the measurement before the movement. .

±5.0V未満であった場合、続いて範囲dの3位置のVD計測を行い、同様に範囲cの146mmの位置と範囲dの146mmの位置の計測結果の違いについて判別する。実施方法は、範囲aの130mmの位置と範囲cの130mmの計測結果の違いの判別と同様である。判別結果は、±5.0V未満であり、移動前の計測の影響を受けない形で移動後の計測を行うことができていた。   When the voltage is less than ± 5.0 V, VD measurement is performed at three positions in the range d, and the difference between the measurement results at the position 146 mm in the range c and the position 146 mm in the range d is similarly determined. The implementation method is the same as the determination of the difference between the measurement results of 130 mm in the range a and 130 mm in the range c. The determination result is less than ± 5.0 V, and the measurement after the movement can be performed without being affected by the measurement before the movement.

<比較例2>
−計測時間間隔:5分−
範囲hの3位置(電子写真用感光体1の端部Aからの距離が162,170、178mm)のドラム1周分の帯電電位(VD)計測を同時に行い、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって24mm移動させ、その5分後に、範囲iの3位置(電子写真用感光体1の端部Aからの距離が186、194、202mm)のドラム1周分のVD計測を同時に行い、さらに、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって24mm移動させ、5分後、範囲jの3位置(電子写真用感光体1の端部Aからの距離が210、218、226mm)のドラム1周分のVD計測を同時に行った。計測時間間隔を5分と十分に設けることで、移動前の計測が移動後の計測に影響を与えないようにした。
<Comparative example 2>
-Measurement time interval: 5 minutes-
The charging potential (VD) measurement for one rotation of the drum at three positions in the range h (distance from the end A of the electrophotographic photosensitive member 1 is 162, 170, 178 mm) is simultaneously performed, and charging means, static elimination means, and surface potential are measured. The detection means unit is moved 24 mm toward the end B, and 5 minutes later, one round of the drum at three positions in the range i (distances from the end A of the electrophotographic photoreceptor 1 are 186, 194, 202 mm) VD measurement at the same time, and further, the charging means, the static elimination means, and the surface potential detection means unit are moved 24 mm toward the end B, and after 5 minutes, three positions in the range j (the end of the electrophotographic photoreceptor 1) VD measurement was performed simultaneously for one revolution of the drum whose distance from A was 210, 218, 226 mm. By providing a sufficient measurement time interval of 5 minutes, the measurement before movement does not affect the measurement after movement.

範囲h、i、jとは図5に図示するような以下の範囲のことを指す。
・ 範囲h:電子写真用感光体1の端部Aからの距離が162〜178mmの範囲。
・ 範囲i:電子写真用感光体1の端部Aからの距離が186〜202mmの範囲。
・ 範囲j:電子写真用感光体1の端部Aからの距離が210〜226mmの範囲。
計測結果から、各位置でのドラム1周分のVDデータの平均値を算出した。178mmの位置のVDを基準VDとし、各位置でのVDと基準VDとの差を算出した結果を表5、図6に示す。
The ranges h, i, and j refer to the following ranges as illustrated in FIG.
Range h: A range in which the distance from the end A of the electrophotographic photoreceptor 1 is 162 to 178 mm.
Range i: A range in which the distance from the end A of the electrophotographic photoreceptor 1 is 186 to 202 mm.
Range j: A range in which the distance from the end A of the electrophotographic photoreceptor 1 is 210 to 226 mm.
From the measurement results, the average value of the VD data for one rotation of the drum at each position was calculated. Table 5 and FIG. 6 show the results of calculating the difference between the VD at each position and the reference VD with the VD at the position of 178 mm as the reference VD.

−計測時間間隔:10秒−
続いて、前期計測時間間隔:5分と同様の計測を計測間隔:10秒で行った。これは、移動後の計測範囲が移動前の計測範囲と重ならない形で、計測時間間隔10秒で移動しながら計測を行う従来の軸方向の電位分布計測方法である。
計測結果から、各位置でのドラム1周分のVDデータの平均値を算出し、178mmの位置のVDを基準VDとし、各位置でのVDと基準VDとの差を算出した結果を表1に示す。また、計測時間間隔5分の結果との差を算出した結果と合わせて表5、図6に示す。
-Measurement time interval: 10 seconds-
Subsequently, the same measurement as the measurement time interval of the previous period: 5 minutes was performed at the measurement interval: 10 seconds. This is a conventional potential distribution measurement method in the axial direction in which measurement is performed while moving at a measurement time interval of 10 seconds so that the measurement range after movement does not overlap the measurement range before movement.
From the measurement results, the average value of the VD data for one rotation of the drum at each position was calculated, and the result of calculating the difference between the VD at each position and the reference VD with the VD at the position of 178 mm as the reference VD is shown in Table 1. Shown in Moreover, it shows in Table 5, FIG. 6 together with the result of having calculated the difference with the result of measurement time interval 5 minutes.

Figure 0005447838
Figure 0005447838

表5から、端部Aからの距離が186mmの位置および210mmの位置の「基準VDに対するVD差(計測時間間隔:5分)−基準VDに対するVD差(計測時間間隔:10秒)」の値が大きく、図6を見ても、比較例2の計測時間間隔:10秒(従来の計測方法)のVD分布は比較例2の計測時間間隔:5分(移動後の計測が移動前の計測の影響を受けていない場合)のVD分布と異なった分布特性を示しており、比較例2の計測時間間隔:10秒(従来の計測方法)では、移動後の計測が移動前の計測の影響を受けていることがわかる。   From Table 5, the value of “VD difference with respect to reference VD (measurement time interval: 5 minutes) −VD difference with respect to reference VD (measurement time interval: 10 seconds)” at a position of 186 mm and a position of 210 mm from end A 6, the measurement time interval of Comparative Example 2 is 10 seconds (conventional measurement method), and the VD distribution is 5 minutes (Comparison example 2 is the measurement time before the measurement) The distribution characteristics differ from the VD distribution in the case of not being influenced by the measurement), and the measurement time interval of Comparative Example 2 is 10 seconds (conventional measurement method). You can see that

<実施例2>
範囲hの3位置(電子写真用感光体1の端部Aからの距離が162、170、178mm)のドラム1周分の帯電電位(VD)計測の直後に、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって16mm移動させ、範囲hの3位置の計測から10秒後に、範囲kの3位置(電子写真用感光体1の端部Aからの距離が178、186、194mm)のドラム1周分のVD計測を行った。
<Example 2>
Immediately after the charge potential (VD) measurement for one circumference of the drum at three positions in the range h (distances from the end A of the electrophotographic photoreceptor 1 of 162, 170, 178 mm), the charging means, the static elimination means, and the surface potential The detection unit is moved 16 mm toward the end B, and after 10 seconds from the measurement of the three positions in the range h, the three positions in the range k (the distance from the end A of the electrophotographic photoreceptor 1 is 178, 186, 194 mm) VD was measured for one round of the drum.

その後、範囲hの178mmの位置と範囲kの178mmの位置の計測結果の違いが±5V未満かどうか判別した。
範囲hの178mmの位置のVDを基準VDとし、範囲hの各VDと基準VDとの差を算出した結果を表6に、範囲kの各VDと基準VDとの差を算出した結果を表7に示す。
Thereafter, it was determined whether or not the difference between the measurement results at the position 178 mm in the range h and the position 178 mm in the range k was less than ± 5V.
The result of calculating the difference between each VD in the range h and the reference VD is shown in Table 6, and the result of calculating the difference between each VD in the range k and the reference VD is shown as VD at the position 178 mm in the range h as the reference VD. 7 shows.

Figure 0005447838
Figure 0005447838

Figure 0005447838
Figure 0005447838

表7に示すように、範囲hの帯電電位(VD)計測の直後に、範囲kのVD計測を行った場合は、範囲kの178mmの位置のVDと基準VDとの差は、−9.7Vであり、範囲hの178mmの位置と範囲kの178mmの位置のVDに±5.0V以上の大きな違いが発生した。この結果から、範囲hの計測直後に、範囲kの計測を行った場合には、範囲kの計測は範囲hの計測の影響を大きく受けていることがわかる。   As shown in Table 7, when the VD measurement in the range k is performed immediately after the charging potential (VD) measurement in the range h, the difference between the VD at the position of 178 mm in the range k and the reference VD is −9. 7 V, and a large difference of ± 5.0 V or more occurred in VD at the position 178 mm in the range h and the position 178 mm in the range k. From this result, it is understood that when the measurement of the range k is performed immediately after the measurement of the range h, the measurement of the range k is greatly affected by the measurement of the range h.

そこで、帯電手段、除電手段、表面電位検出手段ユニットを端部Bに向かって、32mmの距離だけ範囲kから移動させ、範囲h、kの計測の影響を受けていない範囲(範囲j)の3つの位置(電子写真用感光体1の端部Aからの距離が210、218、226mm)のドラム1周分のVD計測を行った。範囲hの178mmの位置のVDを基準VDとし、範囲jの各VDと基準VDとの差を算出した結果を表8に示す。再計測した範囲hの端部Bに最も近い位置(178mmの位置)のVDと範囲jの端部Aに最も近い位置(210mmの位置)のVDの計測結果から、範囲iの3位置(電子写真用感光体1の端部Aからの距離が186、194、202mm)のVDを補間する。補間方法は、再計測した範囲hの端部Bに最も近い位置のVDと範囲jの端部Aに最も近い位置のVDの値から、計測位置(端部Aからの距離)とVDとの関係を表す1次関数を求め、求めた1次関数から範囲iの3つの位置186、194、202mmのVDを算出する。求めた1次関数を図7に、1次関数から算出した186、194、202mmの3つの位置のVDを表9に示す。   Therefore, the charging unit, the neutralizing unit, and the surface potential detecting unit are moved from the range k by a distance of 32 mm toward the end B, and the range 3 (range j) that is not affected by the measurement of the ranges h and k. VD measurement was performed for one rotation of the drum at two positions (distances from the end A of the electrophotographic photoreceptor 1 are 210, 218, and 226 mm). Table 8 shows the result of calculating the difference between each VD in the range j and the reference VD, with the VD at the position of 178 mm in the range h as the reference VD. From the remeasured VD at the position closest to the end B of the range h (position of 178 mm) and the VD at the position closest to the end A of the range j (position of 210 mm), three positions in the range i (electronic The VD having a distance from the end A of the photographic photoreceptor 1 of 186, 194, 202 mm) is interpolated. The interpolation method is based on the value of VD at the position closest to the end B of the range h and the value of VD at the position closest to the end A of the range j, and the measured position (distance from the end A) and VD. A linear function representing the relationship is obtained, and VDs at three positions 186, 194, and 202 mm in the range i are calculated from the obtained linear function. FIG. 7 shows the obtained linear function, and Table 9 shows VDs at three positions of 186, 194, and 202 mm calculated from the linear function.

範囲hおよび範囲jの計測結果、範囲iの補間結果から作成した電子写真用感光体1の軸方向のVD分布を図6に示す。比較例2の計測時間間隔:10秒(従来の計測方法)のVD分布では、移動後の計測が移動前の計測の影響を受けており、比較例2の計測時間間隔:5分のVD分布(移動後の計測が移動前の計測の影響を受けていない場合)とは異なる分布特性となっていた。それに対し、実施例2(本発明の計測方法)のVD分布では比較例2の計測時間間隔:5分(移動後の計測が移動前の計測の影響を受けていない場合)のVD分布と似通った分布特性が得られており、移動前の計測の影響を受けない形で移動後の計測を行うことができていることがわかる。   FIG. 6 shows the axial VD distribution of the electrophotographic photoreceptor 1 created from the measurement results of the range h and the range j and the interpolation result of the range i. In the measurement time interval of Comparative Example 2: 10 seconds (conventional measurement method), the measurement after the movement is affected by the measurement before the movement, and the measurement time interval of the Comparative Example 2 is a VD distribution of 5 minutes. The distribution characteristics are different from those in the case where the measurement after the movement is not affected by the measurement before the movement. On the other hand, the VD distribution of Example 2 (the measurement method of the present invention) is similar to the VD distribution of the measurement time interval of Comparative Example 2: 5 minutes (when the measurement after movement is not affected by the measurement before movement). Thus, it can be seen that the measurement after the movement can be performed without being affected by the measurement before the movement.

範囲iの3位置のVDを補間後、続いて範囲mの3位置のVD計測を行い、範囲jの226mmの位置と範囲mの226mmの位置の計測結果の違いについて判別するが、実施方法は、範囲hの178mmの位置と範囲kの178mmの計測結果の違いの判別と同様である。判別結果は、±5.0V未満であり、移動前の計測の影響を受けない形で移動後の計測を行うことができていた。
範囲k、l、mとは図5に図示するような以下の範囲のことを指す。
・ 範囲k:電子写真用感光体1の端部Aからの距離が178〜194mmの範囲。
・ 範囲l:電子写真用感光体1の端部Aからの距離が194〜210mmの範囲。
・ 範囲m:電子写真用感光体1の端部Aからの距離が226〜242mmの範囲。
After interpolating the VD at the three positions in the range i, the VD measurement at the three positions in the range m is performed to determine the difference in the measurement results between the position 226 mm in the range j and the position 226 mm in the range m. This is the same as the determination of the difference between the measurement result of 178 mm in the range h and the measurement result of 178 mm in the range k. The determination result is less than ± 5.0 V, and the measurement after the movement can be performed without being affected by the measurement before the movement.
The ranges k, l, and m refer to the following ranges as illustrated in FIG.
Range k: a range in which the distance from the end A of the electrophotographic photoreceptor 1 is 178 to 194 mm.
Range l: A range in which the distance from the end A of the electrophotographic photoreceptor 1 is 194 to 210 mm.
Range m: a range in which the distance from the end A of the electrophotographic photoreceptor 1 is 226 to 242 mm.

Figure 0005447838
Figure 0005447838

Figure 0005447838
Figure 0005447838

<実施例3>
電子写真用感光体1の端部Aから90mm〜250mmの領域内について、実施例2と同様の方法で特性評価を行った。実施例3では、比較例2の計測時間間隔:10秒と同様の方法(従来の計測方法)で特性評価を行った場合よりも、比較例2の計測時間間隔:5分と同様の方法(移動後の計測が移動前の計測の影響を受けていない場合)で特性評価を行った場合と似通った分布特性が得られていた。したがって、電子写真用感光体1の端部Aから90mm〜250mmの領域内でも、実施例1および実施例2と同様、移動前の計測の影響を受けない形で移動後の計測が可能であることが確認できた。
<Example 3>
In the region of 90 mm to 250 mm from the end A of the electrophotographic photoreceptor 1, the characteristics were evaluated in the same manner as in Example 2. In Example 3, the measurement time interval of Comparative Example 2 is the same as the measurement time interval of 10 minutes (the conventional measurement method), and the measurement time interval of Comparative Example 2 is 5 minutes. A distribution characteristic similar to that obtained by the characteristic evaluation in the case where the measurement after the movement is not affected by the measurement before the movement) was obtained. Therefore, even in the region of 90 mm to 250 mm from the end A of the electrophotographic photoreceptor 1, the measurement after the movement can be performed without being affected by the measurement before the movement, as in the first and second embodiments. I was able to confirm.

1 電子写真用感光体ドラム
2 露光手段
3 表面電位計プローブユニット
4 表面電位計ユニット
5 信号処理回路
6 帯電手段
7 高圧電源
8 除電手段
9 信号処理回路
10 AD変換器
11 ロータリーエンコーダ
12 電源
13 表面電位計プローブユニット
14 表面電位計ユニット
15 電源スイッチ
16 モータ
17 コントローラ
18 主軸
19 ベルト
20 ドラムチャック治具
21 手前側(電子写真用感光体ドラムの一端側)の面板
22 奥側(電子写真用感光体ドラムの他端側)の面板
23 デジタル(リレー)出力
DESCRIPTION OF SYMBOLS 1 Electrophotographic photosensitive drum 2 Exposure means 3 Surface potential meter probe unit 4 Surface potential meter unit 5 Signal processing circuit 6 Charging means 7 High voltage power supply 8 Static elimination means 9 Signal processing circuit 10 AD converter 11 Rotary encoder 12 Power supply 13 Surface potential Meter probe unit 14 Surface potential meter unit 15 Power switch 16 Motor 17 Controller 18 Spindle 19 Belt 20 Drum chuck jig 21 Face plate 22 on the front side (one end side of the electrophotographic photosensitive drum) Back side (electrophotographic photosensitive drum) The other side of the face plate 23 Digital (relay) output

特開平4−26852号公報Japanese Patent Laid-Open No. 4-26852

Claims (4)

帯電手段、除電手段及び電子写真用感光体ドラムの軸方向に表面電位検出手段がn個(nは整数、n≧2)並んだ表面電位検出ユニットを有し、前記電子写真用感光体ドラムの軸方向の帯電電位分布を計測する際に、軸方向の任意のn箇所の帯電電位を同時計測した後、前記電子写真用感光体ドラムの一方の端部Aからもう一方の端部Bに向かって、前記帯電手段、前記除電手段、前記表面電位検出ユニットを2つの表面電位検出手段の間隔のn−1倍の距離だけ移動させ、n箇所の帯電電位を同時計測し、移動後の端部Aに近い方の表面電位検出手段と移動前の端部Bに近い方の表面電位検出手段の検出結果の違いを算出し、予め定めた範囲内か否かを判別するようにした電子写真用感光体の特性評価装置であって
前記移動後の端部Aに近い方の表面電位検出手段と移動前の端部Bに近い方の表面電位検出手段の検出結果の違いが、予め定めた範囲内であった場合は、さらに軸方向の端部Bに向かって表面電位検出手段の2つの間隔のn−1倍の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを移動させて、n箇所の帯電電位を同時計測し、同様の判別方法で検出結果に対する判別を行い、また、検出結果の違いが予め定めた範囲外であった場合は、前記電子写真用感光体ドラムの一方の端部Aからもう一方の端部Bに向かって、2つの表面電位検出手段の間隔のn+m倍(mは整数、m≧1)の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを再移動させ、n箇所の帯電電位を同時計測し、前記移動前の表面電位検出手段の検出結果と再移動後の表面電位検出手段の検出結果から、軸方向の未計測領域の帯電電位の値を算出して補間し、さらに軸方向の端部Bに向かって表面電位検出手段の2つの間隔のn−1倍の距離だけ前記帯電手段、前記除電手段、前記表面電位検出ユニットを移動させ、n箇所の帯電電位を同時計測し、同様の判別方法で検出結果に対する判別を行うようにしたことを特徴とする電子写真用感光体の特性評価装置
A charging means, a discharging means, and a surface potential detecting unit in which n surface potential detecting means are arranged in the axial direction of the electrophotographic photosensitive drum (n is an integer, n ≧ 2); When measuring the charging potential distribution in the axial direction, the charging potentials at any n locations in the axial direction are simultaneously measured, and then from one end A of the electrophotographic photosensitive drum to the other end B. Then, the charging means, the charge eliminating means, and the surface potential detection unit are moved by a distance n-1 times the interval between the two surface potential detection means, and the n charged potentials are simultaneously measured, and the end after the movement The difference between the detection results of the surface potential detection means closer to A and the surface potential detection means closer to the end B before the movement is calculated, and it is determined whether or not it is within a predetermined range. A device for evaluating characteristics of a photoreceptor,
When the difference between the detection results of the surface potential detection means closer to the end A after the movement and the surface potential detection means closer to the end B before the movement is within a predetermined range, The charging means, the charge eliminating means, and the surface potential detecting unit are moved toward the end B in the direction by a distance that is n-1 times the two intervals of the surface potential detecting means, so that n charged potentials are simultaneously measured. Then, the detection result is discriminated by the same discrimination method, and if the difference in the detection result is out of the predetermined range, the one end A of the electrophotographic photosensitive drum is connected to the other end. Moving toward the portion B, the charging means, the static elimination means, and the surface potential detection unit are moved again by a distance of n + m times (m is an integer, m ≧ 1) the interval between the two surface potential detection means, Simultaneously measure the charging potential, the surface potential before the movement From the detection result of the output means and the detection result of the surface potential detection means after re-moving, the charge potential value of the unmeasured area in the axial direction is calculated and interpolated, and further the surface potential is detected toward the end B in the axial direction The charging means, the static elimination means, and the surface potential detection unit are moved by a distance n-1 times the two intervals of the means, and the n charged potentials are simultaneously measured, and the detection results are discriminated by the same discrimination method. An apparatus for evaluating characteristics of an electrophotographic photoreceptor, characterized in that it is provided .
前記軸方向の未計測領域の帯電電位の値の補間を、前記移動前の端部Bに近い方の表面電位検出手段の検出結果と、前記再移動後の端部Aに近い方の表面電位検出手段の検出結果から軸方向の位置と帯電電位の関係を表す1次関数を求め、求めた1次関数から軸方向の未計測領域の帯電電位の値を算出することによって行うようにしたことを特徴とする請求項に記載の電子写真用感光体の特性評価装置。 Interpolation of the value of the charged potential in the unmeasured area in the axial direction is performed by detecting the surface potential detection means closer to the end B before the movement and the surface potential closer to the end A after the re-movement. A linear function representing the relationship between the axial position and the charging potential is obtained from the detection result of the detecting means, and the charging potential value of the unmeasured area in the axial direction is calculated from the obtained linear function. The apparatus for evaluating characteristics of an electrophotographic photosensitive member according to claim 1 . 前記検出結果に対する判別を行う操作を電子写真用感光体の端部Aから端部Bに向かって繰り返し行い、前記電子写真用感光体の軸方向の所定の領域内の特性評価を行うようにしたことを特徴とする請求項またはに記載の電子写真用感光体の特性評価装置。 The operation for discriminating the detection result is repeatedly performed from the end A to the end B of the electrophotographic photoreceptor, and the characteristic evaluation in a predetermined region in the axial direction of the electrophotographic photoreceptor is performed. The apparatus for evaluating characteristics of an electrophotographic photoreceptor according to claim 1 or 2 . 請求項1〜のいずれかに記載の特性評価装置を用いて電子写真用感光体の特性を評価することを特徴とする電子写真用感光体の特性評価方法。 Characterization methods of the electrophotographic photoreceptor and evaluating the characteristics of the electrophotographic photosensitive member using the characteristic evaluation apparatus according to any one of claims 1-3.
JP2010008666A 2010-01-19 2010-01-19 Electrophotographic photoconductor characteristic evaluation device Expired - Fee Related JP5447838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008666A JP5447838B2 (en) 2010-01-19 2010-01-19 Electrophotographic photoconductor characteristic evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008666A JP5447838B2 (en) 2010-01-19 2010-01-19 Electrophotographic photoconductor characteristic evaluation device

Publications (2)

Publication Number Publication Date
JP2011149972A JP2011149972A (en) 2011-08-04
JP5447838B2 true JP5447838B2 (en) 2014-03-19

Family

ID=44537041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008666A Expired - Fee Related JP5447838B2 (en) 2010-01-19 2010-01-19 Electrophotographic photoconductor characteristic evaluation device

Country Status (1)

Country Link
JP (1) JP5447838B2 (en)

Also Published As

Publication number Publication date
JP2011149972A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5447838B2 (en) Electrophotographic photoconductor characteristic evaluation device
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
JP5471177B2 (en) Potential control device and photosensitive member characteristic evaluation device for electrophotography
JP2003029572A (en) Method for evaluating characteristics of photoreceptor
JP5967476B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP4964702B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP5857587B2 (en) Image forming apparatus
JP2002082572A (en) Method for evaluating characteristic of photoreceptor
JP5459093B2 (en) Photoconductor deterioration acceleration test apparatus and photoconductor deterioration acceleration test method
JP2012098659A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor
JP6020966B2 (en) Apparatus and method for evaluating characteristics of latent image carrier
JP4914250B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photoreceptor
JP4340506B2 (en) Image forming apparatus
JP7505308B2 (en) Photoconductor charging exposure test device
JP4726738B2 (en) Device for evaluating characteristics of electrophotographic photoreceptors
JP2003005389A (en) Method and apparatus for evaluating characteristic of photoreceptor
JP2010286612A (en) Device for evaluating characteristic of electrophotographic photoreceptor
JPH05119569A (en) Image forming device
JP4753793B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP2003066081A (en) Charge distribution measuring device and image forming device
JP2014026160A (en) Evaluation device for photoreceptor and evaluation method for photoreceptor
JP4922067B2 (en) Device for evaluating characteristics of electrophotographic photosensitive member
JP2006171323A (en) Image forming apparatus and method of determining deterioration of electrostatic latent image carrier
JP2014052524A (en) Characteristic evaluation method and characteristic evaluation device for electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R151 Written notification of patent or utility model registration

Ref document number: 5447838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees