JP4422677B2 - In-cylinder injection internal combustion engine and fuel injection method - Google Patents

In-cylinder injection internal combustion engine and fuel injection method Download PDF

Info

Publication number
JP4422677B2
JP4422677B2 JP2005378444A JP2005378444A JP4422677B2 JP 4422677 B2 JP4422677 B2 JP 4422677B2 JP 2005378444 A JP2005378444 A JP 2005378444A JP 2005378444 A JP2005378444 A JP 2005378444A JP 4422677 B2 JP4422677 B2 JP 4422677B2
Authority
JP
Japan
Prior art keywords
injection
fuel injection
fuel
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005378444A
Other languages
Japanese (ja)
Other versions
JP2007177731A (en
Inventor
威生 三宅
徹夫 片岡
敬士 藤井
純一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005378444A priority Critical patent/JP4422677B2/en
Publication of JP2007177731A publication Critical patent/JP2007177731A/en
Application granted granted Critical
Publication of JP4422677B2 publication Critical patent/JP4422677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関及び燃料噴射方法に係り、特に、均一燃焼のための燃料噴射を行う筒内噴射式内燃機関及び燃料噴射方法に関する。   The present invention relates to an in-cylinder injection internal combustion engine and a fuel injection method provided with a fuel injection valve that directly injects fuel into a combustion chamber, and more particularly to an in-cylinder injection internal combustion engine that performs fuel injection for uniform combustion and The present invention relates to a fuel injection method.

筒内噴射式内燃機関において、中〜高負荷運転時には、吸入空気に対して燃料を理論空燃比近傍で均質に混合させるために、燃料を吸気行程時に燃焼室内部に噴射することが知られている。しかしながら、特に、低回転、高負荷の運転領域では、吸入空気流速が小さく、燃料噴射期間の吸入空気量も少なく、燃料噴射量が多いため、燃料噴射から点火までに、吸入空気と燃料との混合が十分に行われ難い。このため、スモークや未燃ガスの増加、燃費、出力の低下が生じる。   In a direct injection internal combustion engine, during medium to high load operation, it is known that fuel is injected into the combustion chamber during the intake stroke in order to uniformly mix the fuel with the intake air in the vicinity of the theoretical air-fuel ratio. Yes. However, particularly in the low-rotation and high-load operation region, the intake air flow rate is small, the intake air amount during the fuel injection period is small, and the fuel injection amount is large. Mixing is difficult to perform sufficiently. For this reason, smoke and unburned gas increase, fuel consumption, and output decrease.

この対策として、均一燃焼を実行する機関運転状態において、吸気行程中に燃料噴射を開始し、低回転時には、必要燃料噴射量の燃料を複数回に分割して噴射し、分割された最初の燃料噴射を吸気行程前半に開始し、分割された最後の燃料噴射を吸気行程末期に開始する筒内噴射式火花点火内燃機関が提案されている(例えば、特許文献1)。   As a countermeasure, fuel injection is started during the intake stroke in the engine operation state in which uniform combustion is performed, and the required fuel injection amount of fuel is divided into a plurality of times and injected at low speeds. An in-cylinder spark ignition internal combustion engine has been proposed that starts injection in the first half of the intake stroke and starts the final divided fuel injection at the end of the intake stroke (for example, Patent Document 1).

この筒内噴射式火花点火内燃機関では、気筒内空間全体に拡散した燃料は、圧縮行程中に十分に蒸発して点火時点において良好な均一混合気となり、スモークの発生を防止することが行われている。   In this in-cylinder spark-ignition internal combustion engine, fuel diffused throughout the cylinder space is sufficiently evaporated during the compression stroke to form a good uniform mixture at the time of ignition, thereby preventing the occurrence of smoke. ing.

また、機関運転状態が低回転の運転領域にあるときに、吸気行程の前期から中期にかけての範囲内で燃料を複数回に分割して噴射するように燃料の噴射状態を制御する筒内噴射式内燃機関が提案されている(例えば、特許文献2)。
特許第3186373号公報 特開平11−101146号公報
In-cylinder injection type that controls the fuel injection state so that fuel is divided into multiple injections in the range from the first half to the middle half of the intake stroke when the engine operating state is in the low rotation operating range An internal combustion engine has been proposed (for example, Patent Document 2).
Japanese Patent No. 3186373 JP-A-11-101146

上述した従来の筒内噴射式内燃機関は、高負荷低回転の運転領域において、燃料を複数回に分割して吸気行程中に噴射することで、スモークの発生を抑える、あるいは出力を増大させることができるが、具体的な噴射時期や噴射割合について述べているのは2回までである。筒内噴射式内燃機関において3回以上の複数回噴射を行う場合、各々の噴射の最適な時期や噴射割合を決定する基準や手法が明確になっていない。   The above-described conventional direct injection internal combustion engine suppresses the generation of smoke or increases the output by dividing the fuel into a plurality of times and injecting it during the intake stroke in the high load and low rotation operation region. However, the specific injection timing and injection ratio are described only twice. When performing multiple injections of three or more times in a direct injection internal combustion engine, the criteria and method for determining the optimal timing and injection ratio of each injection are not clear.

本発明は前記解決しようとする課題に鑑みてなされたものであって、その目的とするところは、筒内噴射式内燃機関において、吸気行程中に3回以上の複数回噴射を行う場合、各々の噴射の最適な時期や噴射割合を決定する基準や手法を明確してそれらを最適設定し、排気に含まれるスモークや未燃ガスを低減し、出力と燃費の向上を図った筒内噴射式内燃機関および燃料噴射方法を提供することにある。   The present invention has been made in view of the problems to be solved, and the object of the present invention is to provide a cylinder injection type internal combustion engine, when performing multiple injections three or more times during the intake stroke, In-cylinder injection type that clearly determines the standards and methods for determining the optimal timing and injection ratio of the engine and optimizes them to reduce smoke and unburned gas contained in the exhaust to improve output and fuel consumption An object of the present invention is to provide an internal combustion engine and a fuel injection method.

前記目的を達成するために、本発明による筒内噴射式内燃機関は、燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関であって、内燃機関が高負荷の運転領域にあるとき、吸気行程の中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射する。   In order to achieve the above object, a direct injection internal combustion engine according to the present invention is a direct injection internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber, and the internal combustion engine has a high load. When in the operating range, fuel is injected at least once each in the middle and late stages of the intake stroke.

本発明による筒内噴射式内燃機関は、好ましくは、吸気行程の中期に行う燃料噴射からクランク角で40〜70度遅らせて後期の燃料噴射を行う。吸気行程の中期に行う燃料噴射を上死点後60〜140度とした場合、吸気行程の後期に行なう燃料噴射を上死点後140〜180度とする。   The in-cylinder injection internal combustion engine according to the present invention preferably performs late fuel injection with a crank angle delayed by 40 to 70 degrees from fuel injection performed in the middle of the intake stroke. When the fuel injection performed in the middle of the intake stroke is set to 60 to 140 degrees after the top dead center, the fuel injection performed in the latter stage of the intake stroke is set to 140 to 180 degrees after the top dead center.

また、前記目的を達成するために、本発明による筒内噴射式内燃機関は、燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関であって、内燃機関が高負荷の運転領域にあるとき、吸気行程の前期と中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射する。   In order to achieve the above object, a direct injection internal combustion engine according to the present invention is a direct injection internal combustion engine provided with a fuel injection valve for directly injecting fuel into a combustion chamber, and the internal combustion engine is high. When in the operating region of the load, fuel is injected at least once each in the first half, the middle, and the second half of the intake stroke.

本発明による筒内噴射式内燃機関は、好ましくは、吸気行程の中期に行う燃料噴射からクランク角で20〜50度進ませて前期の燃料噴射を行い、吸気行程の中期に行う燃料噴射からクランク角で40〜70度遅らせて後期の燃料噴射を行う。吸気行程の中期に行う燃料噴射を上死点後60〜140度とした場合、吸気行程の前期に行なう燃料噴射を上死点後0〜60度とし、吸気行程の後期に行う燃料噴射を上死点後140〜180度とする。   The cylinder injection internal combustion engine according to the present invention preferably performs fuel injection in the previous period by advancing by 20 to 50 degrees in crank angle from fuel injection performed in the middle period of the intake stroke, and performs fuel injection from the fuel injection performed in the middle period of the intake stroke. Late fuel injection is performed with a delay of 40 to 70 degrees in angle. When the fuel injection performed in the middle of the intake stroke is set to 60 to 140 degrees after the top dead center, the fuel injection performed in the first half of the intake stroke is set to 0 to 60 degrees after the top dead center, and the fuel injection performed in the latter half of the intake stroke is increased. 140 to 180 degrees after the dead point.

本発明による筒内噴射式内燃機関は、好ましくは、各噴射タイミングの燃料噴射量を各噴射タイミングにおける吸入空気量に対応させる。更に、好ましくは、各噴射タイミングの燃料噴射量と各噴射タイミングにおける吸入空気量との比を同じにする。   In the cylinder injection internal combustion engine according to the present invention, preferably, the fuel injection amount at each injection timing corresponds to the intake air amount at each injection timing. Further, preferably, the ratio of the fuel injection amount at each injection timing and the intake air amount at each injection timing is made the same.

前記目的を達成するために、本発明による筒内噴射式内燃機関の燃料噴射方法は、燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関の燃料噴射方法であって、内燃機関が高負荷の運転領域にあるとき、吸気行程の中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射する、あるいは、内燃機関が高負荷の運転領域にあるとき、吸気行程の前期と中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射する。   In order to achieve the above object, a fuel injection method for a direct injection internal combustion engine according to the present invention is a fuel injection method for a direct injection internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber. When the internal combustion engine is in the high load operation region, fuel is injected at least once each in the middle and late stages of the intake stroke, or when the internal combustion engine is in the high load operation region, the first half of the intake stroke The fuel is injected at least once each in the middle and late periods.

筒内噴射式内燃機関において、吸気行程中の前期と中期と後期の各々において燃料を分割噴射することで、排気に含まれるスモークや未燃ガスが低減し、出力と燃費が向上する。   In a direct injection internal combustion engine, fuel is divided and injected in each of the first, middle, and second half of the intake stroke, so that smoke and unburned gas contained in the exhaust gas are reduced, and output and fuel consumption are improved.

本発明による筒内噴射式内燃機関の一つの実施形態を、図を参照して説明する。
図1は、本発明に係る筒内噴射式内燃機関(エンジン)の一つの実施形態の基本構成図である。エンジン1は、ピストン2、吸気弁3、排気弁4を有し、ピストン2の上側に燃焼室21を画定している。
An embodiment of a direct injection internal combustion engine according to the present invention will be described with reference to the drawings.
FIG. 1 is a basic configuration diagram of one embodiment of a direct injection internal combustion engine (engine) according to the present invention. The engine 1 has a piston 2, an intake valve 3, and an exhaust valve 4, and defines a combustion chamber 21 above the piston 2.

吸気(吸入空気)は、空気流量計であるエアフローメータ(AFM)20から絞り弁19に入り、分岐部であるコレクタ15より吸気管10、吸気弁3を介して燃焼室21に供給される。燃料は、燃料噴射弁5から燃焼室21に直接に噴射供給され、点火コイル7より高電圧を印加されて火花放電を行う点火プラグ6によって点火される。   Intake air (intake air) enters a throttle valve 19 from an air flow meter (AFM) 20 that is an air flow meter, and is supplied to a combustion chamber 21 through an intake pipe 10 and an intake valve 3 from a collector 15 that is a branching portion. The fuel is injected and supplied directly from the fuel injection valve 5 to the combustion chamber 21, and is ignited by the spark plug 6 that applies a high voltage from the ignition coil 7 and performs spark discharge.

燃焼室21の既燃焼ガス(排気ガス)は、排気弁4より排気管11へ排出される。排気管11には、三元触媒12、排気の酸素濃度を検出する酸素センサ13が設けられている。   The burnt gas (exhaust gas) in the combustion chamber 21 is discharged from the exhaust valve 4 to the exhaust pipe 11. The exhaust pipe 11 is provided with a three-way catalyst 12 and an oxygen sensor 13 for detecting the oxygen concentration of the exhaust.

エンジン1の燃料噴射制御、点火制御は、ECU(エンジンコントロールユニット)9によって行われる。ECU9は、コンピュータ式のものであり、図示されていないクランク角センサ等よりエンジン1のクランクアングル信号θやエンジンの回転速度(回転数)Neを、AFM20より吸入空気量信号を、酸素センサ13より酸素濃度信号等を入力し、これらに基づいて、燃料噴射量、燃料噴射回数および時期、点火時期等を設定する演算処理を行い、燃料噴射弁5へ燃料噴射信号を、点火コイル7へ点火信号を出力する。   Fuel injection control and ignition control of the engine 1 are performed by an ECU (engine control unit) 9. The ECU 9 is of a computer type, and the crank angle signal θ of the engine 1 and the engine rotation speed (rotation speed) Ne from a crank angle sensor or the like (not shown), the intake air amount signal from the AFM 20, and the oxygen sensor 13 An oxygen concentration signal or the like is input, and based on these, arithmetic processing for setting the fuel injection amount, the number and timing of fuel injection, the ignition timing, etc. is performed, the fuel injection signal is sent to the fuel injection valve 5, and the ignition signal is sent to the ignition coil 7. Is output.

図2は、エンジン回転数とエンジン負荷の関係を示している。筒内噴射式内燃機関において、領域B、C、Dに示す中〜高負荷では、吸入した空気に対して燃料を均質に混合させるために燃料を吸気行程で噴射する。しかしながら、特に、Cに示す高負荷・低〜中回転領域では、吸入空気の速度が小さく、燃料噴射期間の吸入空気量も少なく、燃料噴射量が多いため、燃料噴射から点火までに十分な混合が行われにくく、スモークや未燃ガスの増加、燃費の悪化、出力の低下を招いていた。   FIG. 2 shows the relationship between the engine speed and the engine load. In a cylinder injection internal combustion engine, at medium to high loads shown in regions B, C, and D, fuel is injected in the intake stroke in order to mix the fuel homogeneously with the intake air. However, in particular, in the high load / low to medium rotation range shown in C, the intake air speed is low, the intake air amount during the fuel injection period is small, and the fuel injection amount is large. Therefore, sufficient mixing from fuel injection to ignition is possible. Is difficult to perform, resulting in an increase in smoke and unburned gas, a deterioration in fuel consumption, and a decrease in output.

図3、4は、図2に示すCの領域、つまり、エンジンの運転領域が高負荷かつ回転数が低〜中回転の場合において、燃料噴射を1回行った場合の燃料噴射タイミングと排出されるスモーク、未燃ガス(HC)の関係を示している。   FIGS. 3 and 4 show the fuel injection timing and the exhaust when one fuel injection is performed in the region C shown in FIG. 2, that is, when the engine operating region is a high load and the rotational speed is low to medium. The relationship between smoke and unburned gas (HC) is shown.

図3、4に示されているように、燃料噴射時期を吸気行程前半にすることにより、排出されるスモークと未燃ガスが少なくなることが分かる。これは、燃料噴射から点火までの時間が長いため、燃料の気化、混合時間が十分に確保されていることによる。よって、吸気行程前期の燃料噴射は、未燃率の低下につながり、燃費、出力を向上させることができる。   As shown in FIGS. 3 and 4, it can be seen that smoke and unburned gas are reduced by setting the fuel injection timing to the first half of the intake stroke. This is because the time from fuel injection to ignition is long, so that sufficient fuel vaporization and mixing time is secured. Therefore, the fuel injection in the first half of the intake stroke leads to a decrease in the unburned rate, and the fuel consumption and output can be improved.

図5は、同様に、エンジンの運転領域が高負荷かつ回転数が低〜中回転の場合において、燃料噴射を1回行った場合の噴射タイミングと充填効率の関係を示している。   Similarly, FIG. 5 shows the relationship between the injection timing and the charging efficiency when fuel is injected once when the engine operating region is a high load and the rotational speed is low to medium.

図5に示されるように、燃料噴射時期が吸気行程中期にあるほど充填効率が向上している。これは、単位時間当たりの吸入空気量が、図7に示されているように変化するため、吸気行程中期に燃料の噴射を行うことで、燃料と空気の混合が短時間に効率よく行われ、燃料の気化に伴う筒内空気の冷却によって充填効率が向上する。よって、吸気行程中期の燃料噴射は、出力を向上させることができる。   As shown in FIG. 5, the charging efficiency is improved as the fuel injection timing is in the middle of the intake stroke. This is because the amount of intake air per unit time changes as shown in FIG. 7, so that fuel and air are mixed efficiently in a short time by injecting fuel in the middle of the intake stroke. The charging efficiency is improved by cooling the in-cylinder air accompanying the vaporization of the fuel. Therefore, the fuel injection in the middle of the intake stroke can improve the output.

図6は、同様に、エンジンの運転領域が高負荷かつ回転数が低〜中回転の場合において燃料噴射を1回行った場合の噴射タイミングと燃焼時間の関係を示している。   FIG. 6 similarly shows the relationship between the injection timing and the combustion time when fuel injection is performed once when the engine operating region is a high load and the rotational speed is low to medium.

図6に示されているように、吸気行程後半の燃料噴射は、燃焼速度を速めることができる。これは、燃料噴射から点火までの時間が短いため、燃料噴霧の乱れが大きいことに起因する。よって、吸気行程後期の燃料噴射は、燃焼速度の向上、つまり時間損失の低減につながり、燃費、出力を向上させることができる。   As shown in FIG. 6, the fuel injection in the latter half of the intake stroke can increase the combustion speed. This is because the time from the fuel injection to the ignition is short, and the fuel spray is largely disturbed. Therefore, fuel injection in the latter half of the intake stroke leads to an improvement in combustion speed, that is, a reduction in time loss, and can improve fuel consumption and output.

以上の理由により、吸気行程の前期と中期と後期に燃料を分割して噴射することで、燃料の未燃率が最小になる時期と、吸気の充填効率が最大になる時期と、燃焼速度が最大になる時期を全て組み合わせることができ、それぞれの相乗効果により、排気に含まれるスモークや未燃ガスが低減し、出力と燃費が向上する。つまり、排気性能、燃費、出力の向上が可能となる。   For the above reasons, by dividing and injecting fuel in the first, middle, and second half of the intake stroke, the timing when the fuel unburnt rate is minimized, the timing when the charging efficiency of intake is maximized, and the combustion speed are All the maximum times can be combined, and the synergistic effect of each reduces the smoke and unburned gas contained in the exhaust, improving the output and fuel consumption. That is, exhaust performance, fuel consumption, and output can be improved.

ただし、燃料の未燃率が最小になる時期や吸気の充填効率が最大になる時期、燃焼速度が最大になる時期は、エンジンの特性や運転条件に依存し、必ずしもこの順番に最適な噴射時期があるとは限らないので、その場合には、同様に、各々の最適噴射時期を組み合わせて噴射を行う。   However, the timing when the fuel unburnt rate is minimized, the timing when the intake charge efficiency is maximized, and the timing when the combustion speed is maximized depends on the characteristics of the engine and the operating conditions. In such a case, the injection is similarly performed by combining the optimum injection timings.

図7は、クランクアングルと単位時間当たりの吸入空気量の関係を示している。おおよそ吸気行程の中間に吸入空気量のピークがあり、山形となっている。よって上記複数回の噴射を行う際に、各回(吸気行程の前期、中期、後期)の噴射タイミングにおける燃料噴射量を、それぞれの噴射タイミングにおける吸気量に対応させる。   FIG. 7 shows the relationship between the crank angle and the intake air amount per unit time. There is a peak of the intake air amount in the middle of the intake stroke, which is a mountain shape. Therefore, when performing the multiple injections, the fuel injection amount at each injection timing (the first, middle, and second half of the intake stroke) is made to correspond to the intake amount at each injection timing.

この場合、吸気行程の前期、中期、後期の各噴射タイミングの燃料噴射量と各噴射タイミングにおける吸入空気量との比を同じにする。   In this case, the ratio of the fuel injection amount at each injection timing in the first, middle, and latter stages of the intake stroke and the intake air amount at each injection timing is made the same.

これにより、吸入空気量に見合った燃料の噴射が可能となり、過濃あるいは希薄な不均空燃比の混合気分布を避け、良好に均一燃焼させることができるから、スモークや未燃ガスの排出を低減することができる。   This makes it possible to inject fuel according to the amount of intake air, avoiding over-rich or lean heterogeneous air-fuel ratio distribution, and achieving good uniform combustion, so smoke and unburned gas can be discharged. Can be reduced.

図8は、上記理由に基づいて燃料噴射を吸気行程の前期、中期、後期に分けて、それぞれの噴射タイミングにおける吸入空気量の比で分割噴射を行った場合の例を示している。
図8において、符号Iaは吸気行程前期の燃料噴射を、符号Imは吸気行程中期の燃料噴射を、符号Itは吸気行程の後期の燃料噴射は、各々示している。
FIG. 8 shows an example in which fuel injection is divided into the first, middle, and second half of the intake stroke based on the above reasons, and divided injection is performed at the ratio of the intake air amount at each injection timing.
In FIG. 8, symbol Ia represents fuel injection in the first half of the intake stroke, symbol Im represents fuel injection in the middle of the intake stroke, and symbol It represents fuel injection in the second half of the intake stroke.

各回の燃料噴射タイミングは、吸気行程の中期に行う燃料噴射Imからクランク角で20〜50度進ませて吸気行程前期の燃料噴射Iaを行い、吸気行程の中期に行う燃料噴射Imからクランク角で40〜70度遅らせて吸気行程後期の燃料噴射Itを行う。具体例として、吸気行程の中期に行なう燃料噴射Imを上死点後60〜140度とする。この場合、吸気行程の前期に行なう燃料噴射Iaは上死点後0〜60度、吸気行程の後期に行なう燃料噴射Itは上死点後140〜180度とする。   The fuel injection timing of each time is advanced from the fuel injection Im performed in the middle of the intake stroke by 20 to 50 degrees at the crank angle to perform the fuel injection Ia in the first half of the intake stroke, and from the fuel injection Im performed in the middle of the intake stroke from the crank angle. The fuel injection It is performed late in the intake stroke with a delay of 40 to 70 degrees. As a specific example, the fuel injection Im performed in the middle of the intake stroke is set to 60 to 140 degrees after the top dead center. In this case, the fuel injection Ia performed in the first half of the intake stroke is 0 to 60 degrees after top dead center, and the fuel injection It performed in the second half of the intake stroke is 140 to 180 degrees after top dead center.

燃料噴射回数は、3回に限定されるものではなく、燃料噴射弁5の最小パルス幅の制限以上であれば、4、5、6…回の噴射を行ってもよい。そのときの燃料噴射量の分割比も同様に吸入空気量の比とする。   The number of fuel injections is not limited to three, and may be 4, 5, 6... Injections as long as the fuel injection valve 5 has a minimum pulse width limit or more. The split ratio of the fuel injection amount at that time is also the ratio of the intake air amount.

図9は、吸気行程の前期、中期、後期の各々において2回ずつ、合計6回の分割燃料噴射を行う実施例を示している。
なお、排気ガス対策を別手段によって行い、充填効率と燃焼速度とを重要視する場合には、吸気行程前期の燃料噴射Iaを省略することができる。
FIG. 9 shows an embodiment in which split fuel injection is performed twice in each of the first, middle, and second periods of the intake stroke, for a total of six times.
In addition, when the exhaust gas countermeasure is taken by another means and importance is attached to the charging efficiency and the combustion speed, the fuel injection Ia in the first half of the intake stroke can be omitted.

図10は、本実施形態による筒内噴射式内燃機関の燃料噴射制御手順を示すフローチャートである。
制御装置であるECU9が、エンジン、車両の各種センサ入力を処理し(ステップS11)、要求負荷やエンジン回転数等に応じて均質運転を行うか否かを判定する(ステップS12)。均質運転でない判断された場合には、通常の圧縮行程噴射を行う(ステップS13)。
FIG. 10 is a flowchart showing a fuel injection control procedure of the direct injection internal combustion engine according to the present embodiment.
The ECU 9, which is a control device, processes various sensor inputs of the engine and the vehicle (step S11), and determines whether or not to perform a homogeneous operation according to the required load, the engine speed, etc. (step S12). If it is determined that the operation is not homogeneous, normal compression stroke injection is performed (step S13).

これに対し、均質運転と判断された場合には、次に、必要出力が大きいか否か、つまり、エンジン負荷が大であるか否かを判定する(ステップS14)。エンジン負荷が大でない判断された場合には、通常の吸気行程一括噴射を行う(ステップS15)。
エンジンが発生すべき出力が大きい場合、つまり、エンジン負荷が大であれば、複数回の噴射を行うことが決定し、一回あたりの噴射パルス幅が燃料噴射弁の最小パルス幅を下回らない範囲内で噴射回数を決める(ステップS16)。噴射回数が決定された後、それぞれの噴射タイミングを決定する(ステップS17)。この時の噴射タイミングは前述までに述べた未燃率の低減や充填効率の向上、燃焼速度の増大等を考慮してあらかじめ回転数に応じて定められた吸気行程中の前期、中期、後期が選択される。
On the other hand, if it is determined that the operation is homogeneous, it is next determined whether or not the required output is large, that is, whether or not the engine load is large (step S14). If it is determined that the engine load is not large, normal intake stroke batch injection is performed (step S15).
When the output to be generated by the engine is large, that is, when the engine load is large, it is decided to perform multiple injections, and the injection pulse width per time does not fall below the minimum pulse width of the fuel injection valve The number of injections is determined within (step S16). After the number of injections is determined, each injection timing is determined (step S17). The injection timing at this time is the first period, middle period, and second period during the intake stroke determined according to the number of revolutions in advance in consideration of the reduction of the unburned rate, the improvement of the filling efficiency, the increase of the combustion speed, etc. described above. Selected.

つぎに、燃焼噴射量の比率を、それぞれの噴射タイミングにおいて、あらじめ記憶しておいたエンジン回転数ごとの吸入空気量の割合に比例させ、各噴射タイミングにおける燃料の噴射割合を決定する(ステップS18)。そして、このように決定された噴射回数、噴射タイミング、燃焼噴射量をもって吸気行程複数回噴射を行う(ステップS19)。   Next, the ratio of the combustion injection amount is made proportional to the ratio of the intake air amount for each engine speed stored in advance at each injection timing, and the fuel injection ratio at each injection timing is determined ( Step S18). Then, the intake stroke is injected a plurality of times with the number of injections, the injection timing, and the combustion injection amount thus determined (step S19).

本発明による筒内噴射式内燃機関の一つの実施形態を示す基本構成図。1 is a basic configuration diagram showing one embodiment of a direct injection internal combustion engine according to the present invention. エンジン回転数と負荷による運転領域区分を示すグラフ。The graph which shows the operation area division by engine speed and load. 高負荷時の噴射タイミングと排気スモークとの関係を示すグラフ。The graph which shows the relationship between the injection timing at the time of high load, and exhaust smoke. 高負荷時の噴射タイミングと未燃ガスとの関係を示すグラフ。The graph which shows the relationship between the injection timing at the time of high load, and unburned gas. 噴射タイミングと充填効率との関係を示すグラフ。The graph which shows the relationship between injection timing and filling efficiency. 噴射タイミングと燃焼時間との関係を示すグラフ。The graph which shows the relationship between injection timing and combustion time. クランクアングルと吸入空気量との関係を示すグラフ。The graph which shows the relationship between a crank angle and intake air amount. 3回噴射における噴射時期と分割比の例を示すグラフ。The graph which shows the example of the injection timing in 3 times injection, and a division | segmentation ratio. 6回噴射における噴射時期と分割比の例を示すグラフ。The graph which shows the example of the injection timing in 6 times injection, and a division ratio. 本発明における筒内噴射式内燃機関の燃料噴射制御の一つの実施形態を示すフローチャート。The flowchart which shows one Embodiment of the fuel-injection control of the cylinder injection type internal combustion engine in this invention.

符号の説明Explanation of symbols

1 エンジン
2 ピストン
3 吸気弁
4 排気弁
5 燃料噴射弁
6 点火プラグ
7 点火コイル
9 ECU(エンジンコントロールユニット)
10 吸気管
11 排気管
12 三元触媒
13 酸素センサ
15 コレクタ
19 絞り弁
20 エアフローメータ
21 燃焼室
1 Engine 2 Piston 3 Intake valve 4 Exhaust valve 5 Fuel injection valve 6 Spark plug 7 Ignition coil 9 ECU (Engine control unit)
10 Intake pipe 11 Exhaust pipe 12 Three-way catalyst 13 Oxygen sensor 15 Collector 19 Throttle valve 20 Air flow meter 21 Combustion chamber

Claims (4)

燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関であって、
内燃機関が高負荷の運転領域にあるとき、吸気行程の前期と中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射し、
前記中期に行う燃料噴射を上死点後60〜140度とし、前記前期に行なう燃料噴射を上死点後0〜60度とし、前記後期に行う燃料噴射を上死点後140〜180度とすることを特徴とする筒内噴射式内燃機関。
A cylinder injection internal combustion engine provided with a fuel injection valve for directly injecting fuel into a combustion chamber,
When the internal combustion engine is in a high-load operation region, fuel is injected at least once each in the first, middle, and second half of the intake stroke,
The fuel injection performed in the medium-term and 60-140 degrees after top dead center, the fuel injection performed in the previous year and 0 to 60 degrees after top dead center, and the top dead center after 140-180 degrees fuel injection performed in the late An in-cylinder injection type internal combustion engine.
各噴射タイミングの燃料噴射量を各噴射タイミングにおける吸入空気量に対応させることを特徴とする請求項に記載の筒内噴射式内燃機関。 2. The direct injection internal combustion engine according to claim 1 , wherein the fuel injection amount at each injection timing is made to correspond to the intake air amount at each injection timing. 各噴射タイミングの燃料噴射量と各噴射タイミングにおける吸入空気量との比を同じにすることを特徴とする請求項1又は2に記載の筒内噴射式内燃機関。 3. The direct injection internal combustion engine according to claim 1, wherein the ratio of the fuel injection amount at each injection timing and the intake air amount at each injection timing is the same. 燃料を燃焼室内部に直接噴射する燃料噴射弁を備えた筒内噴射式内燃機関の燃料噴射方式であって、
内燃機関が高負荷の運転領域にあるとき、吸気行程の前期と中期と後期に、それぞれ少なくとも1回ずつ燃料を噴射し、
前記中期に行う燃料噴射を上死点後60〜140度とし、前記前期に行なう燃料噴射を上死点後0〜60度とし、前記後期に行う燃料噴射を上死点後140〜180度とすることを特徴とする筒内噴射式内燃機関の燃料噴射方法。
A fuel injection method for a direct injection internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber,
When the internal combustion engine is in a high-load operation region, fuel is injected at least once each in the first, middle, and second half of the intake stroke ,
The fuel injection performed in the middle period is set to 60 to 140 degrees after top dead center, the fuel injection performed in the first period is set to 0 to 60 degrees after top dead center, and the fuel injection performed in the latter period is set to 140 to 180 degrees after top dead center. A fuel injection method for a direct injection internal combustion engine.
JP2005378444A 2005-12-28 2005-12-28 In-cylinder injection internal combustion engine and fuel injection method Expired - Fee Related JP4422677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005378444A JP4422677B2 (en) 2005-12-28 2005-12-28 In-cylinder injection internal combustion engine and fuel injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005378444A JP4422677B2 (en) 2005-12-28 2005-12-28 In-cylinder injection internal combustion engine and fuel injection method

Publications (2)

Publication Number Publication Date
JP2007177731A JP2007177731A (en) 2007-07-12
JP4422677B2 true JP4422677B2 (en) 2010-02-24

Family

ID=38303154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005378444A Expired - Fee Related JP4422677B2 (en) 2005-12-28 2005-12-28 In-cylinder injection internal combustion engine and fuel injection method

Country Status (1)

Country Link
JP (1) JP4422677B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4839335B2 (en) * 2008-04-10 2011-12-21 日立オートモティブシステムズ株式会社 In-cylinder injection engine
JP2011017285A (en) * 2009-07-09 2011-01-27 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
JP5011413B2 (en) 2010-03-17 2012-08-29 日立オートモティブシステムズ株式会社 In-cylinder direct fuel injection internal combustion engine control device
JP5821367B2 (en) * 2011-07-28 2015-11-24 日産自動車株式会社 Fuel injection control device
US9447721B2 (en) 2011-10-26 2016-09-20 Toyota Jidosha Kabushiki Kaisha Fuel injection control device for internal combustion engine
JP6107040B2 (en) * 2012-10-09 2017-04-05 三菱自動車工業株式会社 Internal combustion engine
JP6339554B2 (en) 2015-12-25 2018-06-06 本田技研工業株式会社 Direct injection internal combustion engine

Also Published As

Publication number Publication date
JP2007177731A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP4483684B2 (en) Fuel injection control device for in-cylinder internal combustion engine
US7747379B2 (en) Control device of direct injection internal combustion engine
US7096853B2 (en) Direct fuel injection/spark ignition engine control device
JP4422677B2 (en) In-cylinder injection internal combustion engine and fuel injection method
JPH11159382A (en) Cylinder injection type engine
JP4253986B2 (en) In-cylinder injection engine control device
JP2009185741A (en) Fuel injection control device of internal combustion engine
JP3893909B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2006291971A (en) Fuel injection control device of cylinder injection type internal combustion engine
JP4099755B2 (en) Start control device for internal combustion engine
JP2007064187A (en) Knock suppression device for internal combustion engine
JP3845866B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP2006112329A (en) Control device of cylinder direct injection type spark ignition internal combustion engine
JPH10184418A (en) Exhaust purifying device for lean combustion engine
JP3680568B2 (en) Control device for turbocharged engine
JP2009293526A (en) Cylinder injection type spark ignition internal combustion engine
JP3962920B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JPH1136959A (en) Direct injection spark ignition type internal combustion engine
JP2005291133A (en) Fuel injection control device
JP6394628B2 (en) Control device for internal combustion engine
JPH10212986A (en) In-cylinder injection type engine
JP2007077842A (en) Control device for internal combustion engine
JPH11270387A (en) Starting control device of internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP3572372B2 (en) Fuel injection control device for direct injection spark ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4422677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees