JP4422365B2 - Programmable controller - Google Patents

Programmable controller Download PDF

Info

Publication number
JP4422365B2
JP4422365B2 JP2001168211A JP2001168211A JP4422365B2 JP 4422365 B2 JP4422365 B2 JP 4422365B2 JP 2001168211 A JP2001168211 A JP 2001168211A JP 2001168211 A JP2001168211 A JP 2001168211A JP 4422365 B2 JP4422365 B2 JP 4422365B2
Authority
JP
Japan
Prior art keywords
resistance
temperature
value
voltage drop
temperature detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001168211A
Other languages
Japanese (ja)
Other versions
JP2002357484A (en
Inventor
栄一 須藤
勝敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2001168211A priority Critical patent/JP4422365B2/en
Publication of JP2002357484A publication Critical patent/JP2002357484A/en
Application granted granted Critical
Publication of JP4422365B2 publication Critical patent/JP4422365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Programmable Controllers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プログラマブルコントローラに係り、特に、接続される測温抵抗素子の抵抗に基づき測温対象物の温度に対応した測温信号を形成する技術に関する。
【0002】
【従来の技術】
測温抵抗素子についてはJISのC1604−1989に規定があり(「測温抵抗体」)、測温抵抗素子は導線形式や規定電流や使用温度範囲などによって複数種類に分けられる。抵抗値は一般に0゜Cのときの抵抗値が基準とされ、例えば、測温抵抗素子Pt100は、白金から成り、0゜Cのときの抵抗値が100Ω、Pt1000は、白金から成り、0゜Cのときの抵抗値が1000Ω、Pt50は、材質が白金で0゜Cのときの抵抗値が50Ω、Ni5000は、材質がニッケルで、0゜Cのときの抵抗値が5000Ωである。いずれも、周囲温度の上昇につれ抵抗値も増加する。従来のプログラマブルコントローラでは、図5に示すように、測温抵抗体入力モジュール(ユニット)の入力チャンネルが、これら複数種類の測温抵抗素子のうち予め設定された(または接続された)いずれか1つの種類の測温抵抗素子2に対し固定的に対応する構成となっている。図5において、1'は定電流回路、3、3'は、測温抵抗素子2の電圧降下を検出する検出端子である。
【0003】
【発明が解決しようとする課題】
上記従来技術では、プログラマブルコントローラに接続されている測温抵抗素子を、入力チャンネルにおいて異なる種類のものに切替えようとする場合、測温抵抗体入力モジュール(ユニット)を、該新たに接続される測温抵抗素子に対応したものに交換するかまたは切替えスイッチ等により切替える必要がある。例えば、図5において、測温抵抗素子2がPt100の場合、温度0゜Cのときの該測温抵抗素子の抵抗値は100Ωである。該条件下で、2mAの定電流を該測温抵抗素子に流すと、測温抵抗素子の両端の電圧降下は200mVとなる。温度が上昇すると抵抗値も増えて電圧降下も増える。アナログ信号として検出される電圧降下をデジタル信号としての電圧降下に変換し、該電圧降下と定電流値から抵抗値を求め、Pt100用の温度値−抵抗値のデータテーブル内の抵抗値と比較することにより温度を読み取る。しかし、測温抵抗素子をPt100からPt1000に変更した場合は、上記Pt100の場合と同様の定電流2mAを温度0゜C下で測温抵抗素子に流すと、測温抵抗素子の両端には2000mVの電圧降下が発生し、温度が上昇すると抵抗値も増えるため電圧降下もさらに増える。このように、同じ温度、同じ電流値の条件下でも同じ電圧降下は発生しない。このため、プログラマブルコントローラの測温抵抗体入力モジュールがPt100用に設計されている場合には、Pt1000の測温抵抗素子では間違った温度データを取り込むこととなるし、測温抵抗体入力モジュールに使用している電子部品の絶対定格を超えた電圧を取り込んだ場合には、該モジュールの故障を誘発することもある。
本発明の課題点は、上記従来技術に鑑み、測温抵抗素子が異なる種類のものに交換されたり、切替えられたりした場合も、測温抵抗体入力モジュール側で該異なる種類の測温抵抗素子に対応して正しい測温信号を形成できるようにすることである。
本発明の目的は、かかる課題点を解決できる技術の提供にある。
【0004】
【課題を解決するための手段】
上記課題点を解決するために本発明では、
プログラマブルコントローラの測温抵抗体入力モジュール側で自動的に測温抵抗素子の種類を識別して正しい温度値を取込めるようにする。具体的には、
(1)接続される測温抵抗素子の抵抗に基づき測温対象物の温度に対応した信号を出力可能なプログラマブルコントローラとして、上記測温抵抗素子の両端の電圧降下を検出する検出端子と、第1の電流値の定電流を上記測温抵抗素子に流したときに検出される該測温抵抗素子の両端の電圧降下のデジタル値と第2の電流値の定電流を該測温抵抗素子に流したときに検出される該測温抵抗素子の両端の電圧降下のデジタル値との差から、該測温抵抗素子の温度値−抵抗値の傾きを求め、該求めた温度値−抵抗値の傾きを、予め記憶していた各種の測温抵抗素子の温度値−抵抗値の傾きのデータテーブルと照合し、該照合結果から該測温抵抗素子の種類を識別する手段と、上記測温抵抗素子において発生した信号の増幅率を上記識別結果に基づき切替える手段と、を備え、異なる特性の測温抵抗素子に対応可能な構成とする。
(2)上記(1)において、上記測温抵抗素子の種類を識別する手段を、複数の入力チャンネルに設ける構成とする。
【0005】
【発明の実施の形態】
以下、本発明の実施例につき図面を用いて説明する。
図1は、本発明の第1の実施例を示す図である。
図1において、1は、2パターンの定電流回路、2は測温抵抗素子、3、3'は、測温抵抗素子2の両端の電圧降下を検出する検出端子、4は、検出端子3、3'の出力をアナログ値として取込むA/D変換器、5は、測温抵抗素子2の抵抗値を温度値に変換するCPU、6はコントロール信号線である。測温抵抗素子2をPt100とし、周囲温度0℃のときの抵抗を100Ωと仮定し、図1の構成における動作を、図2を参照しながら説明すると以下のようになる。すなわち、(1)測温抵抗素子2の接続状態等のチェックを行う。(2)定電流回路1からテスト電流Aとして、例えば第1の電流値である2mAの定電流を流し、検出端子3、3'間に発生する測温抵抗素子2の電圧降下を測定する。この場合、検出端子3、3'間に発生する測温抵抗素子2の電圧降下は200mVである。(3)該電圧降下をA/D変換器4に入力しデジタル値Aを求める。(4)該デジタル値AをCPU5に記憶させる。(5)次に、CPU5からコントロール信号を、コントロール信号線6により定電流回路1に出力し、定電流回路1の定電流を、テスト電流Bとしての例えば第2の電流値である2.5mAに変更する。この場合、該変更により、検出端子3、3'間には250mVの電圧降下が発生する。(6)検出端子3、3'間の電圧降下をA/D変換器4に入力しデジタル値Bを求める。(7)求めたデジタル値BをCPU5に記憶させる。(8)デジタル値Aとデジタル値Bの差から測温抵抗素子2の温度値−抵抗値の傾きを求める。(9)該測定結果としての温度値−抵抗値の傾きをCPU5により、予めCPU5に記憶させておいた各種の測温抵抗素子の温度値−抵抗値の傾きのデータテーブルと照合し、該照合結果から、測温抵抗素子2の種類を識別する。
上記(1)〜(9)または(2)〜(9)の手順は、プログラムに従いCPUに実行させる。
上記第1の実施例によれば、測温抵抗素子が異なる種類のものに切替えられた場合も、測温抵抗体入力モジュールでは、該切替えられた測温抵抗素子を自動的に識別できる。
【0006】
図3は本発明の第2の実施例を示す。
本第2の実施例は、上記図1、図2示す方法で識別した測温抵抗素子に対応するようにオペアンプ等の増幅器の増幅率を自動変更する構成を備える場合の例である。例えば、測温抵抗体入力モジュールの測温信号形成部が測温抵抗素子Pt100の電圧範囲を基準に設定されているとしたとき、測温抵抗素子を、例えばPt1000に切替えた場合は10倍の電圧が測温抵抗体入力モジュールの測温信号形成部に入力されるため、該入力部の許容電圧範囲(ダイナミックレンジ)を大きく超え、測温信号の形成が不可能になる。本第2の実施例は、かかる場合にも対応できるようにしたものであり、異なる種類の測温抵抗素子に切替えられた場合は、該切替えられた測温抵抗素子を上記第1の実施例の場合と同様にして識別し、該識別した測温抵抗素子に対応した電圧処理を行って、測温抵抗体入力モジュールの測温信号形成部に入力される電圧を、該測温信号形成部の許容電圧範囲(ダイナミックレンジ)内の値にし、測温信号の形成を可能にする。
【0007】
図3において、1は2パターンの定電流を出力可能な定電流回路、2は測温抵抗素子、8はアナログ入力内蔵のマイコン、9はデコードIC、10は測温抵抗素子2により発生したアナログ電圧信号を増幅するアナログ入力増幅器、11は該アナログ入力増幅器10の増幅率を切替える増幅率切替え器、12は定電流伝送ラインである。かかる構成において、測温抵抗素子2が異なる種類のものに切替えられたとき、マイコン8の制御により、定電流回路1からの2種類の電流を測温抵抗素子2に流し、これによるそれぞれの電圧降下をアナログ入力増幅器10で読込み、マイコン8内でA/D変換しデジタル信号として記憶する。これに基づき、上記第1の実施例の場合と同様にして、該マイコン8で該切替えられた測温抵抗素子2を識別する。増幅率切替え器11は、該識別結果に基づく該マイコン8からの増幅率切替え信号をデコード化した切替え制御信号により制御され、アナログ入力増幅器10の増幅率を、該測温抵抗素子2に対応した増幅率となるように切替える。該切替え制御信号は切替えバス信号線7により伝送される。該アナログ入力増幅器10の増幅率は、切替えられた測温抵抗素子の抵抗が高く電圧降下が大きい場合は低増幅率とされ、反対に、切替えられた測温抵抗素子の抵抗が低く電圧降下が小さい場合は高増幅率とされて、測温抵抗体入力モジュールの測温信号形成部に入力される電圧が、該測温信号形成部の許容電圧範囲(ダイナミックレンジ)内となるようにされる。例えば、測温抵抗素子Pt100からPt1000に切替えられた場合は、増幅率は1/10とされ、反対に、Pt1000からPt100に切替えられた場合は、増幅率は10倍とされる。このようにして測温抵抗素子2が切替わっても、マイコン制御により自動的にアナログ入力増幅器10の増幅率を変更することで、アナログポートに入力される電圧は、該アナログポートの許容範囲の電圧に変えられる。本第2の実施例では、上記のように、上記測温抵抗素子2の抵抗に基づく電圧降下を検知(検出)する手順と、該電圧降下信号に基づき自動的に該測温抵抗素子2を識別する手順と、該識別結果に基づき上記アナログ入力増幅器10の信号増幅率を制御する手順は全て、プログラムに従い上記マイコン8に実行させる。
上記第2の実施例によれば、測温抵抗素子が異なる種類のものに交換されたり、切替えられたりした場合も、測温抵抗体入力モジュールでは自動的に、該切替えられた測温抵抗素子を識別でき、測温信号形成部に入力される電圧を許容電圧範囲(ダイナミックレンジ)内にできるため、プログラマブルコントローラの測温信号形成が可能となる。
【0008】
図4は本発明の第3の実施例を示す。
本第3の実施例は、測温抵抗体入力モジュールの複数の入力チャンネルにおいて個別に測温抵抗素子の切替えに対し対応可能なようにした場合の構成例である。図4では3つの入力チャンネルの場合を示す。
図4において、1は定電流回路、2a、2b、2cはそれぞれのチャンネルに対応した測温抵抗素子、7は切替えバス信号線、8はアナログ入力内蔵のマイコン、9はデコードIC、20、21、22はそれぞれのチャンネルに対応したアナログ入力回路部、15、23は動作させる入力チャンネルを選択するマルチプレクサである。各アナログ入力回路部20、21、22は、上記図3に示したと同様のアナログ入力増幅器及び増幅率切替え器を備えて構成されている。かかる構成において、上記測温抵抗素子2a、2b、2cそれぞれにつき、上記図2及び図3で説明したと同様の方法で、識別及びその結果に基づくアナログ入力増幅器の増幅率の切替えを行う。測温抵抗素子2aについての識別及び増幅率の切替えを行う場合には、マルチプレクサ15を測温抵抗素子2aに定電流が流れるように選択し、かつ、マルチプレクサ23を、アナログ入力回路部20に取り込んだアナログ値が該アナログ入力回路部20からマイコン8のアナログポートに取り込めるように選択する。同様に、測温抵抗素子2b、2cついての識別及び増幅率の切替えを行う場合には、マルチプレクサ15を測温抵抗素子2b、2cに定電流が流れるように選択し、かつ、マルチプレクサ23を、アナログ入力回路部20に取り込んだアナログ値が該アナログ入力回路部20からマイコン8のアナログポートに取り込めるように選択する。テスト電流としての定電流の選択は切替えバス信号線7にて行う。本第3の実施例でも、上記のように、上記測温抵抗素子2a、2b、2cの抵抗に基づく電圧降下を検知(検出)する手順と、該電圧降下信号に基づき自動的に該測温抵抗素子2a、2b、2cを識別する手順と、該識別結果に基づき上記アナログ入力回路部20内のアナログ入力増幅器の信号増幅率等を制御する手順は全て、プログラムに従い上記マイコン8に実行させるようになっている。
上記第3の実施例によれば、各入力チャンネルにおいて測温抵抗素子が異なる種類のものに交換されたり、切替えられたりした場合も、測温抵抗体入力モジュールでは自動的に、該切替えられた測温抵抗素子を識別でき、測温抵抗体入力モジュールの測温信号形成部に入力される電圧を、許容電圧範囲(ダイナミックレンジ)内にできるため、プログラマブルコントローラの測温信号形成が可能となる。
【0009】
【発明の効果】
本発明によれば、プログラマブルコントローラ側で自動的に、測温抵抗素子の種類を識別し、該識別結果に基づき増幅率等の切替えを行って正しい測温信号を形成できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す図である。
【図2】本発明の動作フローの説明図である。
【図3】本発明の第2の実施例を示す図である。
【図4】本発明の第3の実施例を示す図である。
【図5】従来例の説明図である。
【符号の説明】
1、1'…定電流回路、 3,3'…検出端子、 2、2a、2b、2c…測温抵抗素子、 4…A/D変換器、 5…CPU、 7…切替えバス信号線、 8…マイコン、 9…デコードIC、 10…アナログ入力増幅器、 11…増幅率切替え器、 15、23…マルチプレクサ、 20、21、22…アナログ入力回路部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a programmable controller, and more particularly to a technique for forming a temperature measurement signal corresponding to the temperature of a temperature measurement object based on the resistance of a connected resistance temperature detector.
[0002]
[Prior art]
The temperature measuring resistance element is specified in JIS C1604-1989 ("resistance temperature measuring element"), and the temperature measuring resistance element is classified into a plurality of types depending on the lead wire type, the specified current, the operating temperature range, and the like. The resistance value is generally based on the resistance value at 0 ° C. For example, the resistance temperature detector Pt100 is made of platinum, the resistance value at 0 ° C. is 100Ω, and the Pt 1000 is made of platinum, 0 ° The resistance value at C is 1000Ω, Pt50 is platinum and the resistance value is 0Ω when the temperature is 0 ° C., and Ni5000 is nickel, and the resistance value when the temperature is 0 ° C. is 5000Ω. In either case, the resistance value increases as the ambient temperature increases. In the conventional programmable controller, as shown in FIG. 5, the input channel of the resistance temperature detector input module (unit) is any one of the plurality of types of resistance temperature detectors set (or connected) in advance. It is the structure which respond | corresponds fixedly with respect to the one type of resistance temperature sensor 2. In FIG. 5, 1 ′ is a constant current circuit, and 3, 3 ′ is a detection terminal that detects a voltage drop of the resistance temperature detector 2.
[0003]
[Problems to be solved by the invention]
In the above-described prior art, when the resistance temperature sensor connected to the programmable controller is to be switched to a different type in the input channel, the resistance temperature detector input module (unit) is connected to the newly connected measurement sensor. It is necessary to replace it with one corresponding to the temperature resistance element or to switch it by a changeover switch or the like. For example, in FIG. 5, when the resistance temperature detector 2 is Pt100, the resistance value of the resistance temperature detector at a temperature of 0 ° C. is 100Ω. Under this condition, when a constant current of 2 mA is passed through the resistance temperature detector, the voltage drop across the resistance temperature detector becomes 200 mV. As the temperature rises, the resistance value increases and the voltage drop also increases. A voltage drop detected as an analog signal is converted into a voltage drop as a digital signal, a resistance value is obtained from the voltage drop and a constant current value, and compared with a resistance value in a temperature-resistance value data table for Pt100. Read the temperature. However, when the resistance temperature detector is changed from Pt100 to Pt1000, when a constant current of 2 mA is applied to the resistance temperature detector at a temperature of 0 ° C. as in the case of Pt100, 2000 mV is applied to both ends of the resistance temperature detector. When the temperature rises, the resistance value increases and the voltage drop further increases. Thus, the same voltage drop does not occur even under the same temperature and current conditions. For this reason, if the resistance temperature detector input module of the programmable controller is designed for Pt100, the temperature measurement resistance element of Pt1000 will take in the wrong temperature data and will be used for the resistance temperature detector input module. If a voltage exceeding the absolute rating of the electronic component being used is taken in, a failure of the module may be induced.
In view of the prior art, the problem of the present invention is that even when the resistance thermometer is replaced or switched to a different type, the different types of the RTD on the RTD input module side It is to be able to form a correct temperature measurement signal corresponding to the above.
An object of the present invention is to provide a technique capable of solving such problems.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention,
The temperature measuring resistor input module side of the programmable controller automatically identifies the type of the temperature measuring resistance element so that the correct temperature value can be taken. In particular,
(1) As a programmable controller capable of outputting a signal corresponding to the temperature of the temperature measuring object based on the resistance of the temperature measuring resistance element to be connected, a detection terminal for detecting a voltage drop across the temperature measuring resistance element, A digital value of a voltage drop across the temperature measuring resistance element and a constant current of a second current value detected when a constant current having a current value of 1 is passed through the resistance temperature sensing element are supplied to the resistance temperature sensing element. from the difference between the digital value of the voltage drop across the surveying temperature resistance element is detected when the flow temperature value of the surveying resistance temperature element - determine the resistive slope value, the calculated temperature value - the resistance inclination, temperature value of the temperature detecting resistance elements for various which has been stored in advance - against the inclination of the data table of the resistance values, means for identifying the type of surveying resistance temperature element from the collating result, the resistance thermometer The amplification factor of the signal generated in the element is based on the identification result. And means for switching, a, and capable of coping with temperature measuring resistance element having different characteristics configurations.
(2) In the above (1), the means for identifying the type of the resistance temperature sensor is provided in a plurality of input channels.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a first embodiment of the present invention.
In FIG. 1, 1 is a constant current circuit of two patterns, 2 is a resistance temperature sensor element, 3, 3 ′ is a detection terminal for detecting a voltage drop across the resistance temperature sensor element 2, 4 is a detection terminal 3, An A / D converter that takes in the output of 3 ′ as an analog value, 5 is a CPU that converts the resistance value of the resistance temperature detector 2 into a temperature value, and 6 is a control signal line. Assuming that the resistance temperature detector 2 is Pt100 and the resistance at the ambient temperature of 0 ° C. is 100Ω, the operation in the configuration of FIG. 1 will be described with reference to FIG. That is, (1) The connection state of the resistance temperature detector 2 is checked. (2) As the test current A from the constant current circuit 1, for example, a constant current of 2 mA which is the first current value is passed, and the voltage drop of the resistance temperature detector 2 generated between the detection terminals 3 and 3 ′ is measured. In this case, the voltage drop of the resistance temperature detector 2 generated between the detection terminals 3 and 3 ′ is 200 mV. (3) The voltage drop is input to the A / D converter 4 to obtain the digital value A. (4) The digital value A is stored in the CPU 5. (5) Next, a control signal is output from the CPU 5 to the constant current circuit 1 through the control signal line 6, and the constant current of the constant current circuit 1 is set to, for example, a second current value of 2.5 mA as the test current B. Change to In this case, the change causes a voltage drop of 250 mV between the detection terminals 3 and 3 ′. (6) A voltage drop between the detection terminals 3 and 3 ′ is input to the A / D converter 4 to obtain a digital value B. (7) The obtained digital value B is stored in the CPU 5. (8) From the difference between the digital value A and the digital value B, the slope of the temperature value- resistance value of the resistance temperature detector 2 is obtained. (9) The temperature value- resistance value gradient as the measurement result is collated by the CPU 5 with a temperature value- resistance gradient gradient data table stored in the CPU 5 in advance. From the result, the type of the resistance temperature detector 2 is identified.
The above procedures (1) to (9) or (2) to (9) are executed by the CPU according to the program.
According to the first embodiment, even when the resistance temperature detector is switched to a different type, the resistance temperature detector input module can automatically identify the switched resistance temperature detector.
[0006]
FIG. 3 shows a second embodiment of the present invention.
The second embodiment is an example in which a configuration for automatically changing the amplification factor of an amplifier such as an operational amplifier so as to correspond to the resistance temperature detector identified by the method shown in FIGS. 1 and 2 is provided. For example, assuming that the temperature measurement signal forming unit of the resistance temperature detector input module is set based on the voltage range of the resistance temperature detector Pt100, when the resistance temperature detector is switched to Pt1000, for example, 10 times Since the voltage is input to the temperature measurement signal forming unit of the resistance temperature detector input module, the allowable voltage range (dynamic range) of the input unit is greatly exceeded, and the temperature measurement signal cannot be formed. The second embodiment is adapted to cope with such a case, and when switched to a different type of RTD, the switched RTD is used as the first embodiment. In the same manner as in the above, the voltage processing corresponding to the identified resistance temperature detector element is performed, and the voltage inputted to the temperature measurement signal forming portion of the resistance temperature detector input module is converted into the temperature measurement signal forming portion. A value within the allowable voltage range (dynamic range) of the temperature measurement signal can be formed.
[0007]
In FIG. 3, 1 is a constant current circuit capable of outputting two patterns of constant current, 2 is a resistance temperature sensor, 8 is a microcomputer with built-in analog input, 9 is a decoding IC, and 10 is an analog generated by the resistance temperature sensor 2. An analog input amplifier that amplifies the voltage signal, 11 is an amplification factor switch that switches the amplification factor of the analog input amplifier 10, and 12 is a constant current transmission line. In such a configuration, when the resistance thermometer element 2 is switched to a different type, two types of current from the constant current circuit 1 are passed through the resistance thermometer element 2 under the control of the microcomputer 8, and the respective voltages generated thereby. The drop is read by the analog input amplifier 10, A / D converted in the microcomputer 8, and stored as a digital signal. Based on this, similarly to the case of the first embodiment, the microcomputer 8 identifies the switched resistance thermometer element 2. The amplification factor switch 11 is controlled by a switching control signal obtained by decoding the amplification factor switching signal from the microcomputer 8 based on the identification result, and the amplification factor of the analog input amplifier 10 corresponds to the resistance temperature detector 2. Switch to gain. The switching control signal is transmitted through the switching bus signal line 7. The amplification factor of the analog input amplifier 10 is low when the resistance of the switched resistance thermometer element is high and the voltage drop is large. On the contrary, the resistance of the switched resistance thermometer element is low and the voltage drop is low. If it is small, the amplification factor is set so that the voltage input to the temperature measurement signal forming unit of the resistance temperature detector input module is within the allowable voltage range (dynamic range) of the temperature measurement signal forming unit. . For example, when the resistance temperature detector Pt100 is switched from Pt100 to Pt1000, the amplification factor is 1/10, and conversely, when the switching is performed from Pt1000 to Pt100, the amplification factor is ten times. Even when the resistance temperature detector 2 is switched in this way, the voltage input to the analog port can be set within the allowable range of the analog port by automatically changing the amplification factor of the analog input amplifier 10 by microcomputer control. It can be changed to voltage. In the second embodiment, as described above, a procedure for detecting (detecting) a voltage drop based on the resistance of the temperature measuring resistance element 2 and automatically detecting the temperature measuring resistance element 2 based on the voltage drop signal. The procedure for identifying and the procedure for controlling the signal amplification factor of the analog input amplifier 10 based on the identification result are all executed by the microcomputer 8 according to a program.
According to the second embodiment, even when the resistance temperature detector is replaced or switched to a different type, the resistance temperature detector input module automatically changes the temperature resistance resistance element. Since the voltage input to the temperature measurement signal forming unit can be within the allowable voltage range (dynamic range), the temperature measurement signal can be formed by the programmable controller.
[0008]
FIG. 4 shows a third embodiment of the present invention.
The third embodiment is a configuration example in the case where the plurality of input channels of the resistance temperature detector input module can individually cope with the switching of the resistance temperature detector elements. FIG. 4 shows the case of three input channels.
In FIG. 4, 1 is a constant current circuit, 2a, 2b and 2c are resistance temperature measuring elements corresponding to the respective channels, 7 is a switching bus signal line, 8 is a microcomputer with built-in analog input, 9 is a decode IC, 20, 21 , 22 are analog input circuit units corresponding to the respective channels, and 15 and 23 are multiplexers for selecting input channels to be operated. Each of the analog input circuit units 20, 21, and 22 is configured to include an analog input amplifier and an amplification factor switch similar to those shown in FIG. In such a configuration, for each of the resistance temperature detectors 2a, 2b, and 2c, identification and switching of the amplification factor of the analog input amplifier based on the result are performed in the same manner as described in FIGS. When identifying the resistance temperature detector 2a and switching the amplification factor, the multiplexer 15 is selected so that a constant current flows through the resistance temperature detector 2a, and the multiplexer 23 is taken into the analog input circuit section 20. The analog value is selected so as to be taken into the analog port of the microcomputer 8 from the analog input circuit unit 20. Similarly, when identifying the resistance thermometer elements 2b and 2c and switching the amplification factor, the multiplexer 15 is selected so that a constant current flows through the resistance thermometer elements 2b and 2c, and the multiplexer 23 is The analog value taken into the analog input circuit unit 20 is selected so as to be taken into the analog port of the microcomputer 8 from the analog input circuit unit 20. Selection of a constant current as a test current is performed by the switching bus signal line 7. Also in the third embodiment, as described above, a procedure for detecting (detecting) a voltage drop based on the resistances of the resistance temperature measuring elements 2a, 2b, and 2c, and the temperature measurement automatically based on the voltage drop signal. All the procedures for identifying the resistance elements 2a, 2b, 2c and the procedure for controlling the signal amplification factor of the analog input amplifier in the analog input circuit unit 20 based on the identification result are all executed by the microcomputer 8 according to the program. It has become.
According to the third embodiment, even when the resistance thermometer element is replaced or switched to a different type in each input channel, the resistance thermometer input module automatically switches the thermometer resistance element. The temperature measuring resistor element can be identified, and the voltage input to the temperature measuring signal forming unit of the temperature measuring resistor input module can be within the allowable voltage range (dynamic range), so that the temperature measuring signal of the programmable controller can be formed. .
[0009]
【The invention's effect】
According to the present invention, it is possible to automatically identify the type of the resistance temperature detector on the programmable controller side and switch the amplification factor based on the identification result to form a correct temperature measurement signal.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is an explanatory diagram of an operation flow of the present invention.
FIG. 3 is a diagram showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
FIG. 5 is an explanatory diagram of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1 '... Constant current circuit 3, 3' ... Detection terminal 2, 2a, 2b, 2c ... Resistance temperature sensor 4 ... A / D converter 5 ... CPU, 7 ... Switching bus signal line, 8 DESCRIPTION OF SYMBOLS ... Microcomputer, 9 ... Decode IC, 10 ... Analog input amplifier, 11 ... Amplification rate switch, 15, 23 ... Multiplexer, 20, 21, 22 ... Analog input circuit part.

Claims (2)

接続される測温抵抗素子の抵抗に基づき測温対象物の温度に対応した信号を出力可能なプログラマブルコントローラであって、
上記測温抵抗素子の両端の電圧降下を検出する検出端子と、
第1の電流値の定電流を上記測温抵抗素子に流したときに検出される該測温抵抗素子の両端の電圧降下のデジタル値と第2の電流値の定電流を該測温抵抗素子に流したときに検出される該測温抵抗素子の両端の電圧降下のデジタル値との差から、該測温抵抗素子の温度値−抵抗値の傾きを求め、該求めた温度値−抵抗値の傾きを、予め記憶していた各種の測温抵抗素子の温度値−抵抗値の傾きのデータテーブルと照合し、該照合結果から該測温抵抗素子の種類を識別する手段と、
上記測温抵抗素子において発生した信号の増幅率を上記識別結果に基づき切替える手段と、
を備え、
異なる特性の測温抵抗素子に対応可能な構成としたことを特徴とするプログラマブルコントローラ。
A programmable controller capable of outputting a signal corresponding to the temperature of the temperature measurement object based on the resistance of the connected resistance temperature element,
A detection terminal for detecting a voltage drop across the temperature measuring resistance element;
A digital value of a voltage drop across the temperature measuring resistance element detected when a constant current having a first current value is passed through the temperature measuring resistance element and a constant current having a second current value are detected. From the difference from the digital value of the voltage drop at both ends of the resistance temperature detector detected when flowing through the temperature sensor, the temperature value of the resistance temperature element- the slope of the resistance value is obtained, and the obtained temperature value- resistance value The temperature value of each of the resistance thermometer elements stored in advance-the data table of the slope of the resistance value, a means for identifying the type of the RTD element from the comparison result,
Means for switching the amplification factor of the signal generated in the resistance temperature detector based on the identification result;
With
A programmable controller characterized in that it is configured to be compatible with resistance temperature detectors having different characteristics.
上記測温抵抗素子の種類を識別する手段は、複数の入力チャンネルに設けられる請求項1に記載のプログラマブルコントローラ。  The programmable controller according to claim 1, wherein the means for identifying the type of the resistance temperature detector is provided in a plurality of input channels.
JP2001168211A 2001-06-04 2001-06-04 Programmable controller Expired - Fee Related JP4422365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168211A JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168211A JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Publications (2)

Publication Number Publication Date
JP2002357484A JP2002357484A (en) 2002-12-13
JP4422365B2 true JP4422365B2 (en) 2010-02-24

Family

ID=19010472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168211A Expired - Fee Related JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Country Status (1)

Country Link
JP (1) JP4422365B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010107A1 (en) * 2006-03-01 2007-09-06 E.G.O. Elektro-Gerätebau GmbH Method and device for detecting a temperature sensor connected to a control
CN102032953A (en) * 2009-09-29 2011-04-27 西门子公司 Temperature measuring device and method
KR101247810B1 (en) 2010-11-19 2013-04-03 엘에스산전 주식회사 Temperature controlling module
CN103968969B (en) * 2013-01-29 2017-04-26 西门子公司 Temperature measuring device and chip of system on programmable chip
CN104422537A (en) * 2013-08-19 2015-03-18 苏州能健电气有限公司 Temperature signal acquisition circuit of PLC control system
DE102016200334A1 (en) * 2016-01-14 2017-07-20 BSH Hausgeräte GmbH Temperature measuring circuit for a household appliance
JP6416831B2 (en) * 2016-08-12 2018-10-31 ファナック株式会社 Motor control device, control method, and control program for specifying type of temperature sensor
DK180457B1 (en) * 2019-03-01 2021-05-06 Kamstrup As SUPPLY METER WITH A TEMPERATURE MEASUREMENT ALGORM
EP3760956B1 (en) * 2019-07-04 2023-08-30 Ivoclar Vivadent AG Dental oven

Also Published As

Publication number Publication date
JP2002357484A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP5667192B2 (en) Multiplexer for detecting and correcting leakage current
US7367712B2 (en) RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode
EP2302344A2 (en) An apparatus for measuring temperature and method thereof
US20050028588A1 (en) Method and device for measuring humidity
JP4422365B2 (en) Programmable controller
WO2014080723A1 (en) Intake air temperature sensor and flow measurement device
US20090295413A1 (en) Sensor System
US20220291055A1 (en) Sensor interface with temperature signal processing
JP4350458B2 (en) Signal input device
US5874790A (en) Method and apparatus for a plurality of modules to independently read a single sensor
JP3075072B2 (en) Temperature converter
KR102371718B1 (en) Temperature sensing circuit
JP2007327809A (en) Multi-channel temperature measuring circuit
JP3256658B2 (en) Flow velocity detector
JP2007085798A (en) Temperature measuring device
EP0846955A1 (en) Sensor test arrangement and method
US20180275701A1 (en) Voltage supply apparatus
JP2007093592A (en) Temperature sensor control device
JP3161311B2 (en) RTD circuit
KR101622435B1 (en) An apparatus for measuring temperature with rtd and a method for measuring temperature using it
JP2002084151A (en) Physical quantity detector
JP5457152B2 (en) Inverter device
JP3937951B2 (en) Sensor circuit
JP2000214030A (en) Pressure sensor circuit
JP3158862B2 (en) RTD circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees