JP2002357484A - Programmable controller, resistance thermometer element input module for it, and method and program for forming temperature measurement signal - Google Patents

Programmable controller, resistance thermometer element input module for it, and method and program for forming temperature measurement signal

Info

Publication number
JP2002357484A
JP2002357484A JP2001168211A JP2001168211A JP2002357484A JP 2002357484 A JP2002357484 A JP 2002357484A JP 2001168211 A JP2001168211 A JP 2001168211A JP 2001168211 A JP2001168211 A JP 2001168211A JP 2002357484 A JP2002357484 A JP 2002357484A
Authority
JP
Japan
Prior art keywords
resistance
temperature
programmable controller
voltage drop
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001168211A
Other languages
Japanese (ja)
Other versions
JP4422365B2 (en
Inventor
Eiichi Sudo
栄一 須藤
Katsutoshi Ito
勝敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001168211A priority Critical patent/JP4422365B2/en
Publication of JP2002357484A publication Critical patent/JP2002357484A/en
Application granted granted Critical
Publication of JP4422365B2 publication Critical patent/JP4422365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Programmable Controllers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make formable an accurate temperature measurement signal in a programmable controller even when a different kind of resistance thermometer element is connected. SOLUTION: This programmable controller is provided with a detection means detecting a voltage drop level of the resistance thermometer element in application of a constant current, an identification means identifying the resistance thermometer element on the basis of the voltage drop level, and a controlling means controlling a signal amplification factor on the basis of the identification result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プログラマブルコ
ントローラに係り、特に、接続される測温抵抗素子の抵
抗に基づき測温対象物の温度に対応した測温信号を形成
する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a programmable controller, and more particularly to a technique for forming a temperature measurement signal corresponding to the temperature of an object to be measured based on the resistance of a connected resistance temperature sensor.

【0002】[0002]

【従来の技術】測温抵抗素子についてはJISのC16
04−1989に規定があり(「測温抵抗体」)、測温
抵抗素子は導線形式や規定電流や使用温度範囲などによ
って複数種類に分けられる。抵抗値は一般に0゜Cのと
きの抵抗値が基準とされ、例えば、測温抵抗素子Pt1
00は、白金から成り、0゜Cのときの抵抗値が100
Ω、Pt1000は、白金から成り、0゜Cのときの抵
抗値が1000Ω、Pt50は、材質が白金で0゜Cの
ときの抵抗値が50Ω、Ni5000は、材質がニッケ
ルで、0゜Cのときの抵抗値が5000Ωである。いず
れも、周囲温度の上昇につれ抵抗値も増加する。従来の
プログラマブルコントローラでは、図5に示すように、
測温抵抗体入力モジュール(ユニット)の入力チャンネ
ルが、これら複数種類の測温抵抗素子のうち予め設定さ
れた(または接続された)いずれか1つの種類の測温抵
抗素子2に対し固定的に対応する構成となっている。図
5において、1'は定電流回路、3、3'は、測温抵抗素
子2の電圧降下を検出する検出端子である。
2. Description of the Related Art Regarding resistance temperature detectors, JIS C16
04-1989 ("resistance temperature detector"), and the resistance temperature elements are classified into a plurality of types according to the conductor type, the specified current, the operating temperature range, and the like. The resistance value is generally based on the resistance value at 0 ° C.
00 is made of platinum and has a resistance of 100 at 0 ° C.
Ω and Pt1000 are made of platinum and have a resistance of 1000Ω at 0 ° C., Pt50 has a material of platinum at 50 ° C. at 0 ° C., and Ni5000 has a material of nickel and 0 ° C. The resistance value at this time is 5000Ω. In any case, the resistance value increases as the ambient temperature increases. In a conventional programmable controller, as shown in FIG.
The input channel of the resistance thermometer input module (unit) is fixedly connected to any one of the predetermined types (or connected) of the plurality of types of resistance temperature elements. It has a corresponding configuration. In FIG. 5, reference numeral 1 'denotes a constant current circuit, and reference numerals 3 and 3' denote detection terminals for detecting a voltage drop of the resistance temperature sensor 2.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、プ
ログラマブルコントローラに接続されている測温抵抗素
子を、入力チャンネルにおいて異なる種類のものに切替
えようとする場合、測温抵抗体入力モジュール(ユニッ
ト)を、該新たに接続される測温抵抗素子に対応したも
のに交換するかまたは切替えスイッチ等により切替える
必要がある。例えば、図5において、測温抵抗素子2が
Pt100の場合、温度0゜Cのときの該測温抵抗素子
の抵抗値は100Ωである。該条件下で、2mAの定電
流を該測温抵抗素子に流すと、測温抵抗素子の両端の電
圧降下は200mVとなる。温度が上昇すると抵抗値も
増えて電圧降下も増える。アナログ信号として検出され
る電圧降下をデジタル信号としての電圧降下に変換し、
該電圧降下と定電流値から抵抗値を求め、Pt100用
の温度値−抵抗値のデータテーブル内の抵抗値と比較す
ることにより温度を読み取る。しかし、測温抵抗素子を
Pt100からPt1000に変更した場合は、上記P
t100の場合と同様の定電流2mAを温度0゜C下で
測温抵抗素子に流すと、測温抵抗素子の両端には200
0mVの電圧降下が発生し、温度が上昇すると抵抗値も
増えるため電圧降下もさらに増える。このように、同じ
温度、同じ電流値の条件下でも同じ電圧降下は発生しな
い。このため、プログラマブルコントローラの測温抵抗
体入力モジュールがPt100用に設計されている場合
には、Pt1000の測温抵抗素子では間違った温度デ
ータを取り込むこととなるし、測温抵抗体入力モジュー
ルに使用している電子部品の絶対定格を超えた電圧を取
り込んだ場合には、該モジュールの故障を誘発すること
もある。本発明の課題点は、上記従来技術に鑑み、測温
抵抗素子が異なる種類のものに交換されたり、切替えら
れたりした場合も、測温抵抗体入力モジュール側で該異
なる種類の測温抵抗素子に対応して正しい測温信号を形
成できるようにすることである。本発明の目的は、かか
る課題点を解決できる技術の提供にある。
According to the above prior art, when it is desired to switch a resistance temperature sensor connected to a programmable controller to a different type in an input channel, a resistance temperature detector input module (unit) is used. Must be replaced with a device corresponding to the newly connected resistance temperature measuring element or switched by a changeover switch or the like. For example, in FIG. 5, when the resistance temperature element 2 is Pt100, the resistance value of the resistance temperature element at a temperature of 0 ° C. is 100Ω. When a constant current of 2 mA flows through the resistance temperature element under the above conditions, the voltage drop across the resistance temperature element is 200 mV. As the temperature increases, the resistance value increases and the voltage drop increases. Convert the voltage drop detected as an analog signal into a voltage drop as a digital signal,
A resistance value is obtained from the voltage drop and the constant current value, and the temperature is read by comparing the resistance value in a temperature-resistance value data table for Pt100. However, when the temperature measuring resistance element is changed from Pt100 to Pt1000, the above P
When a constant current of 2 mA similar to the case of t100 is applied to the resistance temperature element at a temperature of 0 ° C., 200 mm is applied to both ends of the resistance temperature element.
A voltage drop of 0 mV occurs, and when the temperature rises, the resistance value also increases, so that the voltage drop further increases. As described above, the same voltage drop does not occur even under the condition of the same temperature and the same current value. For this reason, if the RTD input module of the programmable controller is designed for Pt100, the Pt1000 RTD will capture incorrect temperature data, and will not be used for the RTD input module. If a voltage exceeding the absolute rating of the electronic component is taken in, the module may fail. In view of the above prior art, the problem of the present invention is that even when the temperature measuring resistor element is replaced or switched to a different type, the temperature measuring resistor input module side also uses the different type temperature measuring resistor element. In order to form a correct temperature measurement signal. An object of the present invention is to provide a technique capable of solving such a problem.

【0004】[0004]

【課題を解決するための手段】上記課題点を解決するた
めに本発明では、プログラマブルコントローラの測温抵
抗体入力モジュール側で自動的に測温抵抗素子の種類を
識別して正しい温度値を取込めるようにする。具体的に
は、 (1)接続される測温抵抗素子の抵抗に基づき測温対象
物の温度に対応した信号を出力可能なプログラマブルコ
ントローラとして、定電流を流したときの上記測温抵抗
素子の電圧降下レベルを検知する検知手段と、該電圧降
下レベルに基づき該測温抵抗素子を識別する識別手段
と、該識別結果に基づき信号増幅率を制御する制御手段
と、を備え、異なる特性の測温抵抗素子に対応可能な構
成を備える。 (2)上記(1)において、上記識別手段を、異なる値
の定電流を流したときの上記測温抵抗素子の電圧降下レ
ベルの差分に基づき該測温抵抗素子を識別する構成とす
る。 (3)上記(1)において、上記識別手段を、複数の入
力チャンネルに設ける。 (4)接続される測温抵抗素子の抵抗に基づき測温対象
物の温度に対応した測温信号を形成するプログラマブル
コントローラの測温信号形成方法として、定電流を流し
上記測温抵抗素子の電圧降下レベルを検知するステップ
と、該電圧降下レベルに基づき該測温抵抗素子を識別す
るステップと、該識別結果に基づき信号増幅率を制御す
るステップと、を経て、測温信号を形成し、異なる特性
の測温抵抗素子に対応可能にする。 (5)接続される測温抵抗素子の抵抗に基づき測温対象
物の温度に対応した測温信号を形成するプログラマブル
コントローラの測温信号形成用のプログラムとして、コ
ンピュータに、定電流を流し上記測温抵抗素子の電圧降
下レベルを検知する手順と、該電圧降下レベルに基づき
該測温抵抗素子を識別する手順と、該識別結果に基づき
信号増幅率を制御する手順と、を実行させて、上記プロ
グラマブルコントローラを異なる特性の測温抵抗素子に
対応可能なようにする。 (6)接続される測温抵抗素子の抵抗に基づき測温対象
物の温度に対応した信号を形成可能なプログラマブルコ
ントローラの測温モジュールとして、定電流を流したと
きの上記測温抵抗素子の電圧降下レベルにより該測温抵
抗素子を識別する識別回路を備え、異なる特性の測温抵
抗素子に対応可能な構成とする。
According to the present invention, in order to solve the above-mentioned problems, the temperature sensor input module of the programmable controller automatically identifies the type of the temperature sensor and obtains a correct temperature value. So that you can put it in. Specifically, (1) a programmable controller capable of outputting a signal corresponding to the temperature of the temperature measuring object based on the resistance of the connected temperature measuring resistance element, Detecting means for detecting the voltage drop level; identifying means for identifying the resistance temperature element based on the voltage drop level; and control means for controlling a signal amplification factor based on the identification result. A structure capable of supporting a temperature resistance element is provided. (2) In the above (1), the identification means is configured to identify the resistance temperature element based on a difference in voltage drop level of the resistance element when a constant current of a different value is applied. (3) In the above (1), the identification means is provided for a plurality of input channels. (4) As a method of forming a temperature measurement signal of a programmable controller that forms a temperature measurement signal corresponding to the temperature of a temperature measurement target based on the resistance of a connected temperature measurement resistance element, a constant current is applied to the voltage of the temperature measurement resistance element. Forming a temperature measurement signal through a step of detecting a drop level, a step of identifying the resistance temperature element based on the voltage drop level, and a step of controlling a signal amplification factor based on the identification result; It is possible to correspond to a temperature measuring resistance element with characteristics. (5) As a program for forming a temperature measurement signal of a programmable controller that forms a temperature measurement signal corresponding to the temperature of the temperature measurement target based on the resistance of the connected temperature measurement resistance element, a constant current is passed to a computer to perform the measurement. Detecting the voltage drop level of the temperature resistance element, identifying the temperature measurement resistance element based on the voltage drop level, and controlling the signal amplification factor based on the identification result. A programmable controller is made to be compatible with resistance measuring elements having different characteristics. (6) As a temperature measuring module of a programmable controller capable of forming a signal corresponding to the temperature of the temperature measuring object based on the resistance of the connected temperature measuring resistor, the voltage of the temperature measuring resistor when a constant current is applied. An identification circuit for identifying the resistance temperature element based on the drop level is provided, so that the resistance element having different characteristics can be used.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施例につき図面
を用いて説明する。図1は本発明の第1の実施例を示
す。図1において、1は2パターンの定電流回路、2は
測温抵抗素子、3、3'は測温抵抗素子3の両端の電圧
降下を検出する検出端子、4は、検出端子2の出力をア
ナログ値として取り込むA/D変換器、5は測温抵抗素
子の抵抗値を温度値に変換するCPU、6はコントロー
ル信号線である。測温抵抗素子2をPt100とし、周
囲温度0゜Cの時の抵抗を100Ωと仮定し、図1の構
成における動作を、図2を参照しながら説明すると以下
のようになる。すなわち、(1)測温抵抗素子2の接続
状態等のチェックを行う。(2)定電流回路1からテス
ト電流Aとして、例えば2mAの定電流を流し、検出端
子2に発生する測温抵抗素子2の電圧降下を測定する。
この場合、検出端子3、3'間に発生する測温抵抗素子
2の電圧降下は200mVである。(3)該電圧降下を
A/D変換器4に入力しデジタル値Aを求める。(4)
該デジタル値AをCPU5に記憶させる。(5)次に、
CPU5からコントロール信号を、コントロール信号線
6により定電流回路1に出力し、定電流回路1の定電流
を、テスト電流Bとしての例えば2.5mAに変更す
る。この場合、該変更により、検出端子3、3'には2
50mVの電圧降下が発生する。(6)検出端子3、
3'の電圧降下をA/D変換器4に入力しデジタル値B
を求める。(7)求めたデジタル値BをCPU5に記憶
させる。(8)デジタル値Aとデジタル値Bの差から測
温抵抗素子2の温度値−抵抗値の傾きを求める。(9)
該測定結果としての温度値−抵抗値の傾きをCPU5に
より、予めCPU5に記憶させておいた各種の測温抵抗
素子の温度値−抵抗値の傾きのデータテーブルと照合
し、該照合結果から、測温抵抗素子2の種類を識別す
る。上記(1)〜(9)または(2)〜(9)の手順
は、プログラムに従いCPUに実行させる。上記第1の
実施例によれば、測温抵抗素子が異なる種類のものに切
替えられた場合も、測温抵抗体入力モジュールでは、該
切替えられた測温抵抗素子を自動的に識別できる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a constant current circuit having two patterns, reference numeral 2 denotes a resistance thermometer, and reference numerals 3 and 3 'denote detection terminals for detecting a voltage drop across the resistance resistance element 3, and reference numeral 4 denotes an output of the detection terminal 2. An A / D converter for taking in an analog value, a CPU 5 for converting the resistance value of the resistance temperature element to a temperature value, and a control signal line 6. The operation in the configuration of FIG. 1 will be described below with reference to FIG. 2, assuming that the temperature measuring resistance element 2 is Pt100 and the resistance at an ambient temperature of 0 ° C. is 100Ω. That is, (1) the connection state of the temperature measuring resistance element 2 is checked. (2) A constant current of, for example, 2 mA is passed from the constant current circuit 1 as the test current A, and the voltage drop of the resistance temperature element 2 generated at the detection terminal 2 is measured.
In this case, the voltage drop of the resistance temperature sensor 2 generated between the detection terminals 3 and 3 'is 200 mV. (3) The voltage drop is input to the A / D converter 4 to obtain a digital value A. (4)
The digital value A is stored in the CPU 5. (5) Next,
A control signal is output from the CPU 5 to the constant current circuit 1 through the control signal line 6, and the constant current of the constant current circuit 1 is changed to, for example, 2.5 mA as the test current B. In this case, the change causes the detection terminals 3, 3 'to
A voltage drop of 50 mV occurs. (6) Detection terminal 3,
The voltage drop of 3 'is input to the A / D converter 4 and the digital value B
Ask for. (7) The obtained digital value B is stored in the CPU 5. (8) From the difference between the digital value A and the digital value B, the slope of “temperature value−resistance value” of the RTD 2 is obtained. (9)
The temperature value-resistance slope as the measurement result is collated by the CPU 5 with the data table of temperature value-resistance slope of various temperature measuring resistance elements stored in the CPU 5 in advance, and from the collation result, The type of the temperature measuring resistance element 2 is identified. The above steps (1) to (9) or (2) to (9) are executed by the CPU according to a program. According to the first embodiment, even when the resistance thermometer is switched to a different type, the resistance thermometer input module can automatically identify the switched resistance thermometer.

【0006】図3は本発明の第2の実施例を示す。本第
2の実施例は、上記図1、図2示す方法で識別した測温
抵抗素子に対応するようにオペアンプ等の増幅器の増幅
率を自動変更する構成を備える場合の例である。例え
ば、測温抵抗体入力モジュールの測温信号形成部が測温
抵抗素子Pt100の電圧範囲を基準に設定されている
としたとき、測温抵抗素子を、例えばPt1000に切
替えた場合は10倍の電圧が測温抵抗体入力モジュール
の測温信号形成部に入力されるため、該入力部の許容電
圧範囲(ダイナミックレンジ)を大きく超え、測温信号
の形成が不可能になる。本第2の実施例は、かかる場合
にも対応できるようにしたものであり、異なる種類の測
温抵抗素子に切替えられた場合は、該切替えられた測温
抵抗素子を上記第1の実施例の場合と同様にして識別
し、該識別した測温抵抗素子に対応した電圧処理を行っ
て、測温抵抗体入力モジュールの測温信号形成部に入力
される電圧を、該測温信号形成部の許容電圧範囲(ダイ
ナミックレンジ)内の値にし、測温信号の形成を可能に
する。
FIG. 3 shows a second embodiment of the present invention. The second embodiment is an example in which a configuration is provided in which the amplification factor of an amplifier such as an operational amplifier is automatically changed so as to correspond to the resistance temperature element identified by the method shown in FIGS. For example, when it is assumed that the temperature measurement signal forming unit of the temperature measurement resistor input module is set based on the voltage range of the temperature measurement resistance element Pt100, when the temperature measurement resistance element is switched to, for example, Pt1000, ten times as large. Since the voltage is input to the temperature measuring signal forming section of the temperature measuring resistor input module, the voltage greatly exceeds the allowable voltage range (dynamic range) of the input section, and it is impossible to form a temperature measuring signal. The second embodiment is adapted to cope with such a case. When the temperature sensor is switched to a different type of resistance thermometer, the switched temperature sensor is replaced by the first embodiment. And performs voltage processing corresponding to the identified resistance temperature sensor element, and converts the voltage input to the temperature measurement signal forming unit of the temperature sensor input module into the temperature measurement signal forming unit. To a value within the allowable voltage range (dynamic range), thereby enabling the formation of a temperature measurement signal.

【0007】図3において、1は2パターンの定電流を
出力可能な定電流回路、2は測温抵抗素子、8はアナロ
グ入力内蔵のマイコン、9はデコードIC、10は測温
抵抗素子2により発生したアナログ電圧信号を増幅する
アナログ入力増幅器、11は該アナログ入力増幅器10
の増幅率を切替える増幅率切替え器、12は定電流伝送
ラインである。かかる構成において、測温抵抗素子2が
異なる種類のものに切替えられたとき、マイコン8の制
御により、定電流回路1からの2種類の電流を測温抵抗
素子2に流し、これによるそれぞれの電圧降下をアナロ
グ入力増幅器10で読込み、マイコン8内でA/D変換
しデジタル信号として記憶する。これに基づき、上記第
1の実施例の場合と同様にして、該マイコン8で該切替
えられた測温抵抗素子2を識別する。増幅率切替え器1
1は、該識別結果に基づく該マイコン8からの増幅率切
替え信号をデコード化した切替え制御信号により制御さ
れ、アナログ入力増幅器10の増幅率を、該測温抵抗素
子2に対応した増幅率となるように切替える。該切替え
制御信号は切替えバス信号線7により伝送される。該ア
ナログ入力増幅器10の増幅率は、切替えられた測温抵
抗素子の抵抗が高く電圧降下が大きい場合は低増幅率と
され、反対に、切替えられた測温抵抗素子の抵抗が低く
電圧降下が小さい場合は高増幅率とされて、測温抵抗体
入力モジュールの測温信号形成部に入力される電圧が、
該測温信号形成部の許容電圧範囲(ダイナミックレン
ジ)内となるようにされる。例えば、測温抵抗素子Pt
100からPt1000に切替えられた場合は、増幅率
は1/10とされ、反対に、Pt1000からPt10
0に切替えられた場合は、増幅率は10倍とされる。こ
のようにして測温抵抗素子2が切替わっても、マイコン
制御により自動的にアナログ入力増幅器10の増幅率を
変更することで、アナログポートに入力される電圧は、
該アナログポートの許容範囲の電圧に変えられる。本第
2の実施例では、上記のように、上記測温抵抗素子2の
抵抗に基づく電圧降下を検知(検出)する手順と、該電
圧降下信号に基づき自動的に該測温抵抗素子2を識別す
る手順と、該識別結果に基づき上記アナログ入力増幅器
10の信号増幅率を制御する手順は全て、プログラムに
従い上記マイコン8に実行させる。上記第2の実施例に
よれば、測温抵抗素子が異なる種類のものに交換された
り、切替えられたりした場合も、測温抵抗体入力モジュ
ールでは自動的に、該切替えられた測温抵抗素子を識別
でき、測温信号形成部に入力される電圧を許容電圧範囲
(ダイナミックレンジ)内にできるため、プログラマブ
ルコントローラの測温信号形成が可能となる。
In FIG. 3, 1 is a constant current circuit capable of outputting two patterns of constant currents, 2 is a resistance temperature sensor, 8 is a microcomputer having a built-in analog input, 9 is a decode IC, and 10 is a resistance thermometer 2. An analog input amplifier for amplifying the generated analog voltage signal;
Is a constant-current transmission line. In this configuration, when the temperature measuring resistance element 2 is switched to a different type, two kinds of currents from the constant current circuit 1 are caused to flow through the temperature measuring resistance element 2 under the control of the microcomputer 8, and the respective voltages are set accordingly. The drop is read by the analog input amplifier 10, A / D converted in the microcomputer 8, and stored as a digital signal. Based on this, the microcomputer 8 identifies the switched resistance temperature element 2 in the same manner as in the first embodiment. Gain switch 1
1 is controlled by a switching control signal obtained by decoding an amplification factor switching signal from the microcomputer 8 based on the identification result, so that the amplification factor of the analog input amplifier 10 becomes an amplification factor corresponding to the resistance thermometer element 2. Switch as follows. The switching control signal is transmitted by the switching bus signal line 7. The amplification factor of the analog input amplifier 10 is set to a low amplification factor when the resistance of the switched resistance temperature sensor is high and the voltage drop is large, and conversely, the resistance of the switched resistance temperature sensor is low and the voltage drop is low. If it is small, it is considered as a high amplification factor, and the voltage input to the temperature measurement signal forming unit of the resistance temperature detector input module is
The temperature is set within the allowable voltage range (dynamic range) of the temperature measurement signal forming unit. For example, a resistance temperature measuring element Pt
When switching from 100 to Pt1000, the amplification factor is reduced to 1/10, and conversely, from Pt1000 to Pt10
When switched to zero, the amplification factor is set to 10 times. Even if the temperature-measuring resistance element 2 is switched in this way, the voltage input to the analog port can be changed by automatically changing the gain of the analog input amplifier 10 under the control of the microcomputer.
The voltage can be changed to an allowable range of the analog port. In the second embodiment, as described above, a procedure for detecting (detecting) a voltage drop based on the resistance of the temperature measuring resistor element 2 and automatically detecting the temperature measuring resistor element 2 based on the voltage drop signal. The microcomputer 8 causes the microcomputer 8 to execute all of the identification procedure and the procedure of controlling the signal amplification factor of the analog input amplifier 10 based on the identification result. According to the second embodiment, even when the resistance temperature sensor element is replaced with a different type or switched, the resistance temperature sensor input module automatically switches the switched resistance temperature element. Can be identified and the voltage input to the temperature measurement signal forming unit can be within the allowable voltage range (dynamic range), so that the temperature measurement signal can be formed by the programmable controller.

【0008】図4は本発明の第3の実施例を示す。本第
3の実施例は、測温抵抗体入力モジュールの複数の入力
チャンネルにおいて個別に測温抵抗素子の切替えに対し
対応可能なようにした場合の構成例である。図4では3
つの入力チャンネルの場合を示す。図4において、1は
定電流回路、2a、2b、2cはそれぞれのチャンネル
に対応した測温抵抗素子、7は切替えバス信号線、8は
アナログ入力内蔵のマイコン、9はデコードIC、2
0、21、22はそれぞれのチャンネルに対応したアナ
ログ入力回路部、15、23は動作させる入力チャンネ
ルを選択するマルチプレクサである。各アナログ入力回
路部20、21、22は、上記図3に示したと同様のア
ナログ入力増幅器及び増幅率切替え器を備えて構成され
ている。かかる構成において、上記測温抵抗素子2a、
2b、2cそれぞれにつき、上記図2及び図3で説明し
たと同様の方法で、識別及びその結果に基づくアナログ
入力増幅器の増幅率の切替えを行う。測温抵抗素子2a
についての識別及び増幅率の切替えを行う場合には、マ
ルチプレクサ15を測温抵抗素子2aに定電流が流れる
ように選択し、かつ、マルチプレクサ23を、アナログ
入力回路部20に取り込んだアナログ値が該アナログ入
力回路部20からマイコン8のアナログポートに取り込
めるように選択する。同様に、測温抵抗素子2b、2c
ついての識別及び増幅率の切替えを行う場合には、マル
チプレクサ15を測温抵抗素子2b、2cに定電流が流
れるように選択し、かつ、マルチプレクサ23を、アナ
ログ入力回路部20に取り込んだアナログ値が該アナロ
グ入力回路部20からマイコン8のアナログポートに取
り込めるように選択する。テスト電流としての定電流の
選択は切替えバス信号線7にて行う。本第3の実施例で
も、上記のように、上記測温抵抗素子2a、2b、2c
の抵抗に基づく電圧降下を検知(検出)する手順と、該
電圧降下信号に基づき自動的に該測温抵抗素子2a、2
b、2cを識別する手順と、該識別結果に基づき上記ア
ナログ入力回路部20内のアナログ入力増幅器の信号増
幅率等を制御する手順は全て、プログラムに従い上記マ
イコン8に実行させるようになっている。上記第3の実
施例によれば、各入力チャンネルにおいて測温抵抗素子
が異なる種類のものに交換されたり、切替えられたりし
た場合も、測温抵抗体入力モジュールでは自動的に、該
切替えられた測温抵抗素子を識別でき、測温抵抗体入力
モジュールの測温信号形成部に入力される電圧を、許容
電圧範囲(ダイナミックレンジ)内にできるため、プロ
グラマブルコントローラの測温信号形成が可能となる。
FIG. 4 shows a third embodiment of the present invention. The third embodiment is an example of a configuration in which a plurality of input channels of a resistance temperature detector input module can individually respond to switching of resistance temperature elements. In FIG. 4, 3
This shows the case of one input channel. In FIG. 4, 1 is a constant current circuit, 2a, 2b, and 2c are resistance temperature sensors corresponding to respective channels, 7 is a switching bus signal line, 8 is a microcomputer with a built-in analog input, 9 is a decode IC,
Reference numerals 0, 21 and 22 denote analog input circuit sections corresponding to the respective channels, and reference numerals 15 and 23 denote multiplexers for selecting input channels to be operated. Each of the analog input circuit units 20, 21, and 22 is provided with an analog input amplifier and an amplification factor switch similar to those shown in FIG. In such a configuration, the temperature measuring resistance element 2a,
For each of 2b and 2c, identification and switching of the amplification factor of the analog input amplifier based on the result are performed in the same manner as described with reference to FIGS. Resistance thermometer element 2a
When the identification and switching of the amplification factor are performed, the multiplexer 15 is selected so that a constant current flows through the resistance temperature measuring element 2a, and the multiplexer 23 outputs the analog value taken into the analog input circuit unit 20. It is selected so that it can be taken from the analog input circuit section 20 to the analog port of the microcomputer 8. Similarly, the resistance temperature measuring elements 2b, 2c
When the identification and switching of the amplification factor are performed, the multiplexer 15 is selected so that a constant current flows through the resistance temperature measuring elements 2b and 2c, and the multiplexer 23 is set to the analog value input to the analog input circuit unit 20. From the analog input circuit section 20 to be taken into the analog port of the microcomputer 8. Selection of a constant current as a test current is performed by the switching bus signal line 7. Also in the third embodiment, as described above, the temperature-measuring resistance elements 2a, 2b, 2c
For detecting (detecting) a voltage drop based on the resistance of the temperature-measuring resistance elements 2a, 2a and 2b based on the voltage drop signal.
The procedure for identifying b and 2c and the procedure for controlling the signal amplification factor of the analog input amplifier in the analog input circuit section 20 based on the identification result are all executed by the microcomputer 8 according to a program. . According to the third embodiment, even when the resistance temperature sensor element is replaced with a different type or switched in each input channel, the resistance temperature sensor input module automatically performs the switching. Since the temperature measuring resistance element can be identified and the voltage input to the temperature measuring signal forming section of the temperature measuring resistor input module can be within the allowable voltage range (dynamic range), it is possible to form the temperature measuring signal of the programmable controller. .

【0009】[0009]

【発明の効果】本発明によれば、プログラマブルコント
ローラ側で自動的に、測温抵抗素子の種類を識別し、該
識別結果に基づき増幅率等の切替えを行って正しい測温
信号を形成できる。
According to the present invention, the type of the temperature measuring resistance element can be automatically identified on the programmable controller side, and the amplification factor and the like can be switched based on the identification result to form a correct temperature measurement signal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の動作フローの説明図である。FIG. 2 is an explanatory diagram of an operation flow of the present invention.

【図3】本発明の第2の実施例を示す図である。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す図である。FIG. 4 is a diagram showing a third embodiment of the present invention.

【図5】従来例の説明図である。FIG. 5 is an explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1、1'…定電流回路、 3,3'…検出端子、 2、2
a、2b、2c…測温抵抗素子、 4…A/D変換器、
5…CPU、 7…切替えバス信号線、 8…マイコ
ン、 9…デコードIC、 10…アナログ入力増幅
器、 11…増幅率切替え器、 15、23…マルチプ
レクサ、 20、21、22…アナログ入力回路部。
1, 1 ': constant current circuit, 3, 3': detection terminal, 2, 2
a, 2b, 2c: resistance temperature detector, 4: A / D converter,
Reference numeral 5: CPU, 7: switching bus signal line, 8: microcomputer, 9: decode IC, 10: analog input amplifier, 11: amplification rate switch, 15, 23: multiplexer, 20, 21, 22: analog input circuit section.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H220 BB05 BB11 CC03 CX05 EE09 FF09 JJ07 JJ17 JJ28 KK03 LL04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H220 BB05 BB11 CC03 CX05 EE09 FF09 JJ07 JJ17 JJ28 KK03 LL04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】接続される測温抵抗素子の抵抗に基づき測
温対象物の温度に対応した信号を出力可能なプログラマ
ブルコントローラであって、 定電流を流したときの上記測温抵抗素子の電圧降下レベ
ルを検知する検知手段と、 該電圧降下レベルに基づき該測温抵抗素子を識別する識
別手段と、 該識別結果に基づき信号増幅率を制御する制御手段と、 を備え、異なる特性の測温抵抗素子に対応可能な構成を
備えたことを特徴とするプログラマブルコントローラ。
1. A programmable controller capable of outputting a signal corresponding to the temperature of a temperature measuring object based on the resistance of a connected temperature measuring resistance element, wherein the voltage of the temperature measuring resistance element when a constant current is passed. Detecting means for detecting a drop level; identifying means for identifying the resistance temperature element based on the voltage drop level; and control means for controlling a signal amplification factor based on the identification result. A programmable controller characterized by having a configuration capable of supporting a resistance element.
【請求項2】上記識別手段は、異なる値の定電流を流し
たときの上記測温抵抗素子の電圧降下レベルの差分に基
づき該測温抵抗素子を識別する構成である請求項1に記
載のプログラマブルコントローラ。
2. The resistance measuring element according to claim 1, wherein said identification means identifies said resistance temperature element based on a difference in voltage drop level of said resistance element when a constant current of a different value is passed. Programmable controller.
【請求項3】上記識別手段は、複数の入力チャンネルに
設けられる請求項1に記載のプログラマブルコントロー
ラ。
3. The programmable controller according to claim 1, wherein said identification means is provided for a plurality of input channels.
【請求項4】接続される測温抵抗素子の抵抗に基づき測
温対象物の温度に対応した測温信号を形成するプログラ
マブルコントローラの測温信号形成方法であって、 定電流を流し上記測温抵抗素子の電圧降下レベルを検知
するステップと、 該電圧降下レベルに基づき該測温抵抗素子を識別するス
テップと、 該識別結果に基づき信号増幅率を制御するステップと、 を経て、測温信号を形成し、異なる特性の測温抵抗素子
に対応可能にするプログラマブルコントローラの測温信
号形成方法。
4. A method for forming a temperature measurement signal of a programmable controller for forming a temperature measurement signal corresponding to a temperature of an object to be measured based on a resistance of a connected temperature measurement resistance element. Detecting a voltage drop level of the resistance element, identifying the temperature measurement resistance element based on the voltage drop level, and controlling a signal amplification factor based on the identification result. A method of forming a temperature measurement signal of a programmable controller which is formed and can be adapted to resistance measurement elements having different characteristics.
【請求項5】接続される測温抵抗素子の抵抗に基づき測
温対象物の温度に対応した測温信号を形成するプログラ
マブルコントローラの測温信号形成用のプログラムであ
って、 コンピュータに、 定電流を流し上記測温抵抗素子の電圧降下レベルを検知
する手順と、 該電圧降下レベルに基づき該測温抵抗素子を識別する手
順と、 該識別結果に基づき信号増幅率を制御する手順と、 を実行させて、上記プログラマブルコントローラを異な
る特性の測温抵抗素子に対応可能なようにすることを特
徴とするプログラマブルコントローラの測温信号形成用
のプログラム。
5. A program for forming a temperature measurement signal of a programmable controller for forming a temperature measurement signal corresponding to the temperature of an object to be measured based on the resistance of a connected temperature measurement resistance element. Executing a procedure of detecting the voltage drop level of the resistance temperature sensor element, identifying the resistance temperature element based on the voltage drop level, and controlling a signal amplification factor based on the identification result. A program for forming a temperature measurement signal of the programmable controller, wherein the programmable controller is adapted to be compatible with temperature measurement resistance elements having different characteristics.
【請求項6】接続される測温抵抗素子の抵抗に基づき測
温対象物の温度に対応した信号を形成可能なプログラマ
ブルコントローラの測温モジュールであって、 定電流を流したときの上記測温抵抗素子の電圧降下レベ
ルにより該測温抵抗素子を識別する識別回路を備え、異
なる特性の測温抵抗素子に対応可能な構成を特徴とする
プログラマブルコントローラの測温抵抗体入力モジュー
ル。
6. A temperature measuring module of a programmable controller capable of forming a signal corresponding to a temperature of a temperature measuring object based on a resistance of a connected temperature measuring resistance element, wherein the temperature measuring is performed when a constant current flows. A temperature measuring resistor input module for a programmable controller, comprising: an identification circuit for identifying the temperature measuring resistance element according to a voltage drop level of the resistance element;
JP2001168211A 2001-06-04 2001-06-04 Programmable controller Expired - Fee Related JP4422365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001168211A JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001168211A JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Publications (2)

Publication Number Publication Date
JP2002357484A true JP2002357484A (en) 2002-12-13
JP4422365B2 JP4422365B2 (en) 2010-02-24

Family

ID=19010472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001168211A Expired - Fee Related JP4422365B2 (en) 2001-06-04 2001-06-04 Programmable controller

Country Status (1)

Country Link
JP (1) JP4422365B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528522A (en) * 2006-03-01 2009-08-06 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー Method and apparatus for identifying a temperature sensor coupled to a control unit
KR101247810B1 (en) 2010-11-19 2013-04-03 엘에스산전 주식회사 Temperature controlling module
EP2302344A3 (en) * 2009-09-29 2014-07-02 Siemens Aktiengesellschaft An apparatus for measuring temperature and method thereof
CN103968969A (en) * 2013-01-29 2014-08-06 西门子公司 Temperature measuring device and chip of system on programmable chip
CN104422537A (en) * 2013-08-19 2015-03-18 苏州能健电气有限公司 Temperature signal acquisition circuit of PLC control system
WO2017121616A1 (en) * 2016-01-14 2017-07-20 BSH Hausgeräte GmbH Domestic appliance comprising a temperature measurement circuit
DE102017007303A1 (en) 2016-08-12 2018-02-15 Fanuc Corporation MOTOR CONTROL DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR SPECIFYING A TYPE OF TEMPERATURE SENSOR
EP3760956A1 (en) * 2019-07-04 2021-01-06 Ivoclar Vivadent AG Dental oven
CN113557417A (en) * 2019-03-01 2021-10-26 卡姆鲁普股份有限公司 Utility meter including temperature sensor detection algorithm

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528522A (en) * 2006-03-01 2009-08-06 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー Method and apparatus for identifying a temperature sensor coupled to a control unit
EP2302344A3 (en) * 2009-09-29 2014-07-02 Siemens Aktiengesellschaft An apparatus for measuring temperature and method thereof
KR101247810B1 (en) 2010-11-19 2013-04-03 엘에스산전 주식회사 Temperature controlling module
CN103968969A (en) * 2013-01-29 2014-08-06 西门子公司 Temperature measuring device and chip of system on programmable chip
CN104422537A (en) * 2013-08-19 2015-03-18 苏州能健电气有限公司 Temperature signal acquisition circuit of PLC control system
WO2017121616A1 (en) * 2016-01-14 2017-07-20 BSH Hausgeräte GmbH Domestic appliance comprising a temperature measurement circuit
DE102017007303A1 (en) 2016-08-12 2018-02-15 Fanuc Corporation MOTOR CONTROL DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR SPECIFYING A TYPE OF TEMPERATURE SENSOR
CN107728598A (en) * 2016-08-12 2018-02-23 发那科株式会社 Control device of electric motor, control method and computer-readable medium
US10260966B2 (en) 2016-08-12 2019-04-16 Fanuc Corporation Motor control device, control method, and non-transitory computer readable medium encoded with control program, for specifying type of temperature sensor
CN107728598B (en) * 2016-08-12 2019-08-13 发那科株式会社 Control device of electric motor, control method and computer-readable medium
DE102017007303B4 (en) * 2016-08-12 2020-03-05 Fanuc Corporation ENGINE CONTROL DEVICE, CONTROL METHOD AND CONTROL PROGRAM FOR SPECIFYING A TYPE OF TEMPERATURE SENSOR
CN113557417A (en) * 2019-03-01 2021-10-26 卡姆鲁普股份有限公司 Utility meter including temperature sensor detection algorithm
EP3760956A1 (en) * 2019-07-04 2021-01-06 Ivoclar Vivadent AG Dental oven
WO2021001561A1 (en) * 2019-07-04 2021-01-07 Ivoclar Vivadent Ag Dental furnace

Also Published As

Publication number Publication date
JP4422365B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4736508B2 (en) Physical quantity detection method and sensor device
JP5667192B2 (en) Multiplexer for detecting and correcting leakage current
US7367712B2 (en) RTD measurement unit including detection mechanism for automatic selection of 3-wire or 4-wire RTD measurement mode
EP2302344A2 (en) An apparatus for measuring temperature and method thereof
US20050099163A1 (en) Temperature manager
US20180136182A1 (en) Accurate multi-gas analyzer
JP2002357484A (en) Programmable controller, resistance thermometer element input module for it, and method and program for forming temperature measurement signal
JP4059056B2 (en) Sensor device and output characteristic switching method of sensor device
US10634565B2 (en) Temperature sensing apparatus and temperature sensing method thereof
US5874790A (en) Method and apparatus for a plurality of modules to independently read a single sensor
JP4350458B2 (en) Signal input device
JP5437654B2 (en) Temperature measuring device
US11656284B2 (en) Method for operating a battery sensor, and battery sensor
US10671103B2 (en) Voltage supply apparatus
JPH11295354A (en) Current detector
JP2007285849A (en) Gas concentration detector
KR101622435B1 (en) An apparatus for measuring temperature with rtd and a method for measuring temperature using it
JP2007093592A (en) Temperature sensor control device
US11581898B2 (en) Circuit for analog/digital conversion
JP3161311B2 (en) RTD circuit
JP2000214030A (en) Pressure sensor circuit
JP2002084151A (en) Physical quantity detector
JP2008107162A (en) Sensor
JP3019783B2 (en) Printed circuit board temperature detector
KR0128890Y1 (en) Micro-temperature measuring circuit of heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees