JP4419404B2 - Electrode, battery using the same, and nonaqueous electrolyte secondary battery - Google Patents

Electrode, battery using the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4419404B2
JP4419404B2 JP2003063318A JP2003063318A JP4419404B2 JP 4419404 B2 JP4419404 B2 JP 4419404B2 JP 2003063318 A JP2003063318 A JP 2003063318A JP 2003063318 A JP2003063318 A JP 2003063318A JP 4419404 B2 JP4419404 B2 JP 4419404B2
Authority
JP
Japan
Prior art keywords
electrode
film
resin film
current collector
conductive thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063318A
Other languages
Japanese (ja)
Other versions
JP2004273304A (en
Inventor
英男 海谷
文夫 大尾
賢 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003063318A priority Critical patent/JP4419404B2/en
Publication of JP2004273304A publication Critical patent/JP2004273304A/en
Application granted granted Critical
Publication of JP4419404B2 publication Critical patent/JP4419404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池用電極に用いる集電体、及びそれを用いた電池に関するものである。
【0002】
【従来の技術】
近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでいる。それに伴ってこれらの駆動用電源として使用される電池としても、小型、軽量で高エネルギー密度を有する二次電池への要求が高まっている。この中でリチウムを活物質とする非水電解質電池はとりわけ高電圧、高エネルギー密度を有する電池として期待が大きく盛んに研究開発が行われている。
【0003】
これらの電池系の正極材料にはLiCoO2、LiNiO2やLiMn24などリチウムイオンと可逆的に電気化学反応をするリチウム含有複合酸化物等をその支持体である正極集電体に保持してなる正極板、負極材料としてリチウムイオンを吸蔵・放出できる結晶性黒鉛あるいは非晶性黒鉛質をその支持体である負極集電体に保持してなる負極板,電解液を保持するとともに負極板と正極板との間に介在して両極の短絡を防止するセパレータ、電解液としてLiBF4、LiPF6等のリチウム塩を溶解した非プロトン性の有機溶媒を使用したものから構成される。
【0004】
上記の電池系の円筒型電池、角型電池の場合、上記正極板・負極板及びセパレータはいずれも薄いシート状に成型されたものを順じ積層し、または積層した後に螺旋状に巻回して電池容器に収納される。
【0005】
しかし、非水電解質電池に限らず電池の重量エネルギー密度向上のためには、重量密度の小さい材料を集電体に用いることが好ましい。このような観点から樹脂フィルムに導電性薄膜を形成した集電体を用いることが多数報告されている(特許文献一参照)。
【0006】
【特許文献1】
特開平9−213338号公報
【0007】
【発明が解決しようとする課題】
しかしながら、一般に表面自由エネルギーの小さい樹脂フィルムに導電性薄膜を形成するには、単に蒸着やスパッタリング、イオンプレーティ等の手法を用いても、樹脂フィルムと導電性素材との接着性・密着性の点で問題があり、特に二次電池の場合、高率充放電を行ったときに正・負極材料の膨張・収縮現象が生じ、これに呼応して樹脂フィルム上の導電性薄膜に膨張・収縮の物理的負荷が加わることにより導電性薄膜が電極合剤から欠落し十分な充電・放電の電気化学反応が進行しなくなり、電池性能を十分発輝できないという問題がある。
【0008】
本発明は、上記集電体の問題点を解決し、電池の重量エネルギー密度の向上を図るとともに、高率充放電特性においても従来の金属箔の集電体を用いた電池と遜色のない電池特性を示す非水電解質二次電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するために本発明の集電体は、樹脂フィルムの導電性薄膜形成面をサンドブラスト法、ショットピーニング法等のエヤーブラスト法により表面加工を行い樹脂フィルムの表面に他の部分より極めて僅か肉薄となる凹み部を形成した後、表面をマグネトロンスパッタリング法により樹脂フィルムのガラス転移温度より低温か、ガラス転移温度より20℃高い温度雰囲気で、あらかじめ導電性薄膜と同一の金属、或いはその酸化物、複合酸化物をスパッタリングによりスパッタ膜を形成した後、導電性素材を真空蒸着、スパッタリング、イオンプレーティング等の方法でメタライジングする事で導電性薄膜を形成するものである。スパッタリング、メタライジングを行う温度条件としては前記のように樹脂フィルムのガラス転移温度より低温かあるいは、20℃程度高温雰囲気で行われる事が好ましい。
【0010】
この範疇を超えると、樹脂フィルムが熱損傷を生じ変形,表面微細クラックが生じこの種の用途には適さなくなる。
【0011】
これにより、高率充放電時における電池容量を低下させることなく、電池の重量エネルギー密度を向上させることができる。
【0012】
【発明の実施の形態】
本発明は、樹脂フィルムの導電性素材形成面をエヤーブラスト法の物理的手法により表面加工を行い樹脂フィルムの表面に他の部分より極めて僅か肉薄となる凹み部を形成した後、表面をマグネトロンスパッタリング法により樹脂フィルムのガラス転移温度より低温か、ガラス転移温度より20℃高い温度雰囲気で、あらかじめ導電性薄膜と同一の金属、或いはその酸化物、複合酸化物をスパッタリングにより数十〜数百オングストロームの厚みのスパッタ膜を形成した後、導電性素材を真空蒸着、スパッタリング、イオンプレーティング等の方法でメタライジングしスパッタ膜より厚い導電性薄膜を形成した樹脂フィルムを集電体とする事で樹脂フィルムと導電性薄膜の強固な密着状態が得られ、電極集電体の電子伝導ネットワークを完全なものとすることができる。従って、高率充放電時においても集電効果の劣化による電池容量の低下はほとんどみられない。導電性薄膜の厚みとしては、電気伝導及び加工性の観点より0.1μm〜5μmであれば良く、好ましくは0.5μm〜3μmであれば十分である。
【0013】
スパッタリング処理、メタライジングを行う温度条件としては樹脂フィルムのガラス転移温度より低温かあるいは、20℃程度高温雰囲気で行われる事が好ましい。
【0014】
一般的にスパッタリング法は、アルゴンガス等の不活性ガスを封入した真空中で電極間に高電圧を印加させて放電させ、イオン化したアルゴンを導電性薄膜材料(ターゲット)に衝突させ、そこからたたき出された導電性薄膜材料の原子を、樹脂フィルム上に付着させ薄膜を形成させるもので、印加電圧が直流電圧(DC)、或いは、高周波電圧(RF)かにより、RFスパッタリング法、DCスパッタリング法がある。本願のマグネトロンスパッタリング法は放電空間に磁場をかけることで、磁場によるローレンツ力をうけて電子がサイクロイド運動を起こし、薄膜材料金属の近傍の陽イオンの生成効率が従来法に比べ良好なものとなり、生膜速度の高速化、印加電圧の低電圧化が図れるため、樹脂フィルム表面の温度上昇を小さく押さえることが可能となり、この種の電池に使用される集電体の製造には極めて適したものである。
【0015】
マグネトロンスパッタリングにより生膜する導電性金属、或いはその酸化物、複合酸化物のスパッタ膜の厚みは数十〜数百オングストロームで十分である。
【0016】
導電性薄膜の厚みとしては、電気伝導及び加工性の観点より0.1μm〜5μmであれば良く、好ましくは0.5μm〜3μmであれば十分である。
【0017】
樹脂フィルムの材質には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートなどのポリエステル、ポリエチレン、ポリプロピレン、ポリケトン等のポリオレフイン、ポリスルポン、ポリフェニレンオキシド、ポリイミド、ポリウレタン、不飽和ポリエステル樹脂等の高分子が挙げられるが、これらに限られるものではない。またその厚みとしては機械的強度、取り扱い性を考慮すると1μm以上であれば十分である。好ましくは5μm〜50μmがこの種の用途としては適している。
【0018】
また、表面に形成されている導電性薄膜についても、炭素など電子伝導性が高い材料を有する材料なら特に限定されるものではないが、金属材料、がその電子伝導性の高さ、取り扱い性などから好ましい。特にリチウムイオン二次電池等の非水電解質二次電池の場合、正極の集電体となる薄膜材料として耐食性に優れ、正極が高電位となる充電時において電解液に溶け出さないアルミニウムが好ましい。
【0019】
負極の集電体となる薄膜材料として好ましいのは銅,銅−ニッケル合金又はニッケルが適しているが、特に銅はコストの点、導電率の点から特に好ましい。
【0020】
樹脂フィルムの表面に温度条件として樹脂フィルムのガラス転移温度より低温かあるいは、20℃程度高温雰囲気で加工を施す方法としては、本発明のマグネトロンスパッタリング法で実現できる、つまりヘリウム、ネオン、アルゴン等の不活性ガスを封入したマグネトロンスパッタリング装置内で行うのが好ましい。マグネトロンスパッタリング法は放電空間に磁場をかけることで、磁場によるローレンツ力をうけて電子がサイクロイド運動を起こし、ターゲットつまり、薄膜材料金属の近傍の陽イオンの生成効率が従来法に比べ良好なものとなり、生膜速度の高速化、印加電圧の低電圧化が図れるため、樹脂フィルム表面の温度上昇を小さく押さえ、厚みが数十〜数百オングストロームの薄さに生膜する事が可能となり、樹脂フィルム表面に金属との親和力に優れる下地処理が形成できるものである。スパッタ処理された樹脂フィルムに導電性薄膜を形成する方法としては真空蒸着、スパッタリング、イオンプレーティング等の方法で形成すれば良い。
【0021】
本発明の非水電解質二次電池は、上記電極集電体を用いるものである。これにより、高率充放電時における電池容量を低下させることなく、電池の重量エネルギー密度を向上させることができる。
【0022】
以下、本発明の非水電解質二次電池の詳細な構成内容を示す。
【0023】
本発明に用いられる正極及び負極は、リチウムの吸蔵・放出が可能な正極材料や負極材料に導電剤、結着剤等を含む合剤層を本発明における集電体の表面に塗着して作成されたものである。
【0024】
本発明の正極材料は、リチウム含有遷移金属酸化物を用いることができる。例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4(M=Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも一種)、(ここでx=0〜1.2、y=0〜0.9、z=2.0〜2.3)があげられる。ここで、上記のx値は、充放電開始前の値であり、充放電により増減する。正極活物質粒子の平均粒径は、特に限定はされないが、1〜30μmであることが好ましい。
【0025】
本発明で使用される正極用導電剤は、用いる正極材料の充放電電位において、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック等で、これらの導電剤のなかで、人造黒鉛、アセチレンブラックが特に好ましい。
【0026】
導電剤の添加量は、特に限定されないが、正極材料に対して1〜50重量%が好ましく、特に1〜30重量%が好ましい。カーボンやグラファイトでは、2〜15重量%が特に好ましい。
【0027】
本発明に用いられる正極用結着剤は、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)等で、これらの材料の中でより好ましい材料はポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)である。
【0028】
本発明に用いられる正極用集電体としては、前記の本発明の電極集電体を用いることが出きる。
【0029】
本発明で用いられる負極材料としては、金属間化合物、炭素、有機化合物、無機化合物、金属錯体、有機高分子化合物等のリチウムイオンを吸蔵・放出できる化合物であればよい、炭素質材料としては、コークス、熱分解炭素類、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、黒鉛化メソフェーズ小球体、不定形炭素、有機物の焼成された炭素などが挙げられ、これらは単独でも、組み合わせて用いてもよい。なかでもメソフェーズ小球体を黒鉛化したもの、天然黒鉛、人造黒鉛等の黒鉛材料が好ましい。
【0030】
本発明に用いられる負極用結着剤としては、例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、エチレン−アクリル酸共重合体等で、これらの材料を単独又は混合物として用いることができる。
【0031】
またこれらの材料の中でより好ましい材料は、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン−アクリル酸共重合体である。
【0032】
本発明に用いられる負極用集電体としては、前記した本発明の集電体を用いることができる。
【0033】
本発明における負極板と正極板の構成は、少なくとも正極合剤面の対向面に負極合剤面が存在していることが好ましい。
【0034】
本発明に用いられる非水電解質は、溶媒と、その溶媒に溶解するリチウム塩とから構成されている。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、などの鎖状カーボネート類、ギ酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテなどの非プロトン性有機溶媒を挙げることができ、これらの一種または二種以上を混合して使用する。なかでも環状カーボネートと鎖状カーボネートとの混合系または環状カーボネートと鎖状カーボネート及び脂肪族カルボン酸エステルとの混合系が好ましい。
【0035】
これらの溶媒に溶解するリチウム塩としては、例えばLiBF4、LiPF6、LiAlCl4、LiSbF6、LiCl、LiCF3SO3、LiCF3CO2、Li(CF3SO22、LiN(CF3SO22、等を挙げることができ、これらを使用する電解液等に単独又は二種以上を組み合わせて使用することができるが、特にLiPF6を含ませることがより好ましい。
【0036】
本発明における特に好ましい非水電解質は、エチレンカーボネートとエチルメチルカーボネートを少なくとも含み、支持塩としてLiPF6を含む電解液である。これら電解質を電池内に添加する量は、特に限定されないが、正極材料や負極材料の量や電池のサイズによって必要量を用いることができる。支持電解質の非水溶媒に対する溶解量は、特に限定されないが、0.2〜2mol/lが好ましい。特に、0.5〜1.5mol/lとすることがより好ましい。
【0037】
本発明に用いられるセパレータとしては、大きなイオン透過度を持ち、所定の機械的強度を持ち、絶縁性の微多孔性薄膜が用いられる。また、一定温度以上で孔を閉塞し、抵抗をあげる機能を持つことが好ましい。耐有機溶剤性と疎水性からポリプロピレン、ポリエチレンなどの単独又は組み合わせたオレフィン系ポリマー用いられる。
【0038】
電池の形状はコイン型、ボタン型、シート型、積層型、円筒型、扁平型、角型、電気自動車等に用いる大型のものなどいずれにも適用できる。
【0039】
また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気自動車等に用いることができるが、特にこれらに限定されるわけではない。
【0040】
尚、本発明の電極集電体は、従来の金属製の集電体よりも軽く、集電効率が高く非水電解質二次電池に限らず、他の一次電池及び二次電池の電池全般に使用することも可能である。従って、Ni−Cd電池、Ni−MH電池、鉛電池、ポリマー電池、全固体電解質電池等においても本発明による効果が得られる。
【0041】
【実施例】
以下、リチウムイオン二次電池を用いた実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0042】
実施例、比較例に共したリチウムイオン二次電池の共通構成としては、図1に示す負極板1において負極合剤2は、石油系コークスを加熱処理した炭素粉末100重量部に、スチレンブタジエンゴム3重量部を混合し、カルボキシメチルセルロース水溶液に懸濁させてペースト状としたものを用いた。
【0043】
負極集電体3には、厚さ12μmのポリエチレンナフタレート樹脂(帝人デュポンフィルム製 登録商標 テネックスフィルムQ51)、とポリエチレンテレフタレート樹脂(帝人デュポンフィルム製 登録商標 テイジンテトロンS)シートの両面に、銅からなる厚さ1μmの導電性薄膜4を有するシートを用いた。この負極集電体の両面に前記負極合剤のペーストを塗着し、乾燥後0.2mmに圧延し、幅39mm、長さ440mmの大きさに切断して負極板1とした。
【0044】
図2に示す正極板5において正極合剤6には、コバルト酸リチウムLiCoO4100重量部に、アセチレンブラック5重量部、ポリフッ化ビニリデン(PVDF)5重量部を混合し、N−メチルピロリジノンに懸濁させたペースト状のものを用いた。
【0045】
正極集電体7には、厚さ12μmのポリエチレンナフタレート樹脂(帝人デュポン製 登録商標 テネックスフィルムQ51)とポリエチレンテレフタレート樹脂(帝人デュポンフィルム製 登録商標 テイジンテトロンS)シートの両面に、蒸着法により形成したアルミニウムからなる厚さ1μmの導電性薄膜8を有するシートを用いた。この正極集電体の両面に正極合剤のペーストを塗着し、乾燥後0.13mmに圧延し、幅37mm、長さ400mmの大きさに切断して正極板6とした。
【0046】
電解液には、炭酸エチレン(EC)と炭酸ジエチル(DEC)の等容積混合溶媒に、六フッ化リン酸リチウム(LiPF6)を1.5mol/lの割合で溶解させたものを用いた。
【0047】
外部接続リードを設けた正極板5と負極板1を、セパレータを介して渦巻状に巻回し、直径16.3mm、高さ50.7mmの電池ケースに収納した。そして、電解液を極板群に注入した後、電池を密封口し、試験電池とした。
【0048】
(実施例1)
正極集電体フィルム(前記の厚さ12μmのポリエチレンナフタレート樹脂)をアルミニウムをターゲットとし、真空度10-5mmHgのアルゴンガス雰囲気中で60℃でDCマグネトロンスパッタリング装置で厚さ15オングストロームのアルミニウムスパッタ膜8aを形成。
【0049】
負極集電体フィルムとしては同様に、銅をターゲットとし50℃で厚さ20オングストロームの銅スパッタ膜4aを形成。その後、正極集電体にはスパッタ膜の上にAlを厚さ1μm、負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0050】
この時、ポリエチレンナフタレート樹脂のガラス転移温度(以後Tgと記す)は120℃である。
【0051】
(実施例2)
正極集電体フィルム(前記の厚さ25μmのポリエチレンテレフタレート樹脂)をアルミニウムをターゲットとし、真空度10-5mmHgのアルゴンガス雰囲気中で60℃でDCマグネトロンスパッタリング装置で厚さ20オングストロームのアルミニウムスパッタ膜8aを形成。
【0052】
負極集電体フィルムとしては同様に、銅をターゲットとし50℃で厚さ50オングストロームの銅スパッタ膜4aを形成。その後、正極集電体にはスパッタ膜の上にAlを厚さ1μm、負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0053】
この時、ポリエチレンテレフタレート樹脂のガラス転移温度(以後Tgと記す)は78℃である。
【0054】
(実施例3)
正極集電体フィルム(前記の厚さ12μmのポリエチレンナフタレート樹脂)をアルミニウムをターゲットとし、真空度10-5mmHgのアルゴンガス雰囲気中で60℃でDCマグネトロンスパッタリング装置で厚さ60オングストロームのアルミニウムスパッタ膜8aを形成。
【0055】
負極集電体フィルムとしては同様に、銅をターゲットとし50℃で厚さ50オングストロームの銅スパッタ膜4aを形成。その後、正極集電体にはスパッタ膜の上にAlを厚さ1μm、負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0056】
正・負極集電体フィルムは上記処理加工の前に、エヤーブラスト法、具体的には、研磨剤としてモース硬度2〜5、粒径5μm以下の樹脂を高圧エヤーで数秒間吹き付けることで樹脂フィルムの表面に図3に示すような極薄の凹み部9(厚みMin部0.02〜Max部0.05μm)を形成させた後、上記スパッター処理、メタライジング処理を施したもの。尚、研磨剤としてモース硬度5以下、好ましくは2〜4、粒径5μm以下の樹脂で行った。基本的に硬度は樹脂フィルムと同じ樹脂素材で粒径が樹脂フィルムの厚みより小さいものであれば良い。
【0057】
(実施例4)
正極集電体フィルム(前記の厚さ25μmのポリエチレンテレフタレート樹脂)をアルミニウムをターゲットとし、真空度10-5mmHgのアルゴンガス雰囲気中で60℃でDCマグネトロンスパッタリング装置で厚さ20オングストロームのアルミニウムスパッタ膜8aを形成。
【0058】
負極集電体フィルムとしては同様に、銅をターゲットとし50℃で厚さ50オングストロームの銅スパッタ膜4aを形成。その後、正極集電体にはスパッタ膜の上にAlを厚さ1μm、負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0059】
この時、ポリエチレンテレフタレート樹脂のガラス転移温度(以後Tgと記す)は78℃である。
【0060】
正・負極集電体フィルムは上記処理加工の前に、エヤーブラスト法、具体的には、研磨剤としてモース硬度2〜5、粒径5μm以下の樹脂を高圧エヤーで数秒間吹き付けることで樹脂フィルムの表面に図3に示すような極薄の凹み部9(厚みMin部0.02〜Max部0.05μm)を形成させた後、上記スパッター処理、メタライジング処理を施したもの。尚、研磨剤としてモース硬度5以下、好ましくは2〜4、粒径5μm以下の樹脂で行った。基本的に硬度は樹脂フィルムと同じ樹脂素材で粒径が樹脂フィルムの厚みより小さいものであれば良い。
【0061】
(比較例1)
正・負極集電体フィルム(前記の厚さ12μmのポリエチレンナフタレート樹脂)に正極集電体には単にAlを厚さ1μmに負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0062】
(比較例2)
正・負極集電体フィルム(前記の厚さ25μmのポリエチレンテレフタレート樹脂)に正極集電体には単にAlを厚さ1μmに負極集電体にはCuを同様に真空蒸着法で形成させたもの。
【0063】
(比較例3)
正・負極集電体として金属箔を用いたもので正極集電体として厚さ20μmのAl、負極集電体には厚さ15μmのCuを使用したもの。
【0064】
以上の電池を各50セル構成し、最大電流600mA、充電終止電流50mA、電圧4.2Vの条件で定電圧充電を行い、放電電流500mAで、電圧2.5Vまで定電流放電を行う充放電試験を5サイクル実施した後、最大電流600mA、充電終止電流50mA、電圧4.2Vの条件で定電圧充電を行なった電池を150mA・600mAの定電流放電で終止電圧2.5Vまでの放電容量を比較した。
【0065】
その結果を表1に示す。
【0066】
【表1】

Figure 0004419404
【0067】
また、実施例1、2、3、4の電池重量の平均値はそれぞれ20.3g、20.5g、20.1g、20.7g、比較例1、2、3の電池の重量はそれぞれ20.9g、20.4g、27.1gであった。このことから、一般的な従来構成の比較例3の電池に比べ、実施例1、2、3、4の電池は重量エネルギー密度が向上していることが明らかである。
【0068】
しかし、放電電流値が大きくなると、比較例1、2の電池の電池容量は著しく低下した。これは集電体の導電性に起因すると考えられる。つまり、集電体樹脂フィルムと導電性薄膜部の密着性が弱いため充放電を繰り返す時に生じる電池正負極材料の膨張・収縮の応力により電池材料と導電性薄膜との密着界面に部分的な剥離が生じ十分な電気伝導が行われなくなるためである。一方、実施例1.2のものは樹脂フィルムの下地処理として同種の金属のスパッター膜を形成した上に導電性薄膜を形成しているため強固な密着状態を維持できるため、強固な密着性が確保され、従来の金属箔を使用したものと何等遜色の内電池を提供できる、また実施例3.4の電池はスパッター処理に加えスパッター処理前に樹脂フィルムの表面に極肉薄の凹み部を設けた後スパッター処理、蒸着処理を施す事により導電性薄膜が肉厚に形成され集電効果が向上するため高率充放電特性においても有効に作用するものである。また本実施例ではスパッター処理の材料として形成する導電性薄膜材料と同種の金属素材をターゲットとして使用したが、金属酸化物或いは異種金属との複合酸化物でも同様の処理を施す事ができ、その効果においても同様の傾向を示すことが確認されている。また、実施例ではDCマグネトロンスパッタリングでの例を示したが、DCに替えてRFマグネトロンスパッタリングでもその効果においても同様の傾向を示すことが確認されている。ただ、RFマグネトロンスパッタリングでは装置のスケールが若干ではあるが大きくなる場合がある。
【0069】
また、本実施例では樹脂フィルムのガラス転移温度より低温雰囲気で、あらかじめ導電性薄膜と同一の金属をスパッタリングしたものを示したが、諸種実験の結果、温度雰囲気として、樹脂フィルムのガラス転移温度より20℃高い温度雰囲気で、スパッター処理を施しても何等性能的に本実施例の結果と大差無いことが判明している。
【0070】
以上述べたように本発明の集電体を使用した電池は、電池の軽量化が計れ重量エネルギー密度が向上できるものである。
【0071】
つまり、本発明の集電体を用いた電池では、従来の集電体に金属製の箔を集電体に用いた電池と比較しても高率放電特性を損なうことなく、重量エネルギー密度を向上させることができた。また本実施例の集電体樹脂フィルムの全面に導電性薄膜を形成したものを示したが、図4に示すように樹脂フィルム3・7の両端部A、Bを除いて表面に本発明と同様の方法でスパッター膜4a・8a、導電性薄膜4・8を形成させた樹脂フィルムを作成し、導電性薄膜の形成面上に正・負極合剤2・6を形成した電極1・5を使用してこれらの電極をセパレータを介して巻回して構成される電池は巻回時に生じる巻きずれ等が生じても正負電極同志が接触して短絡を生じる可能性が皆無となり、安全性・生産性に優れる電池を提供できる。
【0072】
【発明の効果】
以上のように本発明は、表面にあらかじめ導電性薄膜と同一の金属、或いはその酸化物、複合酸化物をスパッタリングしたスパッター膜を形成し、その表面に導電性薄膜を形成した樹脂フィルムを電極集電体とし、この電極集電体を電池、特にリチウムイオン二次電池に用いることにより、電池特性を維持しつつ電池の軽量化を図ることができ、結果として重量エネルギー密度に優れた電池を提供することが可能となるものである。
【図面の簡単な説明】
【図1】実施例における本発明に係る負極電極の断面概念図
【図2】実施例における本発明に係る正極電極の断面概念図
【図3】本発明の他の実施例に係る正・負電極集電体の断面概念図
【図4】本発明の他の実施例に係る正・負電極の断面概念図
【符号の説明】
1 負極板
2 負極合剤
3 負極集電体樹脂フィルム
4 負極集電体導電性薄膜
4a スパッター膜
5 正極板
6 正極合剤
7 正極集電体樹脂フィルム
8 負極集電体導電性薄膜
8a スパッター膜
9 凹み部
A・B 両端部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current collector used for a battery electrode, and a battery using the current collector.
[0002]
[Prior art]
In recent years, portable and cordless electronic devices such as AV devices and personal computers are rapidly progressing. Accordingly, as a battery used as a driving power source, there is an increasing demand for a secondary battery having a small size, a light weight and a high energy density. Among them, non-aqueous electrolyte batteries using lithium as an active material are particularly actively researched and developed as batteries having high voltage and high energy density.
[0003]
In these battery system positive electrode materials, lithium-containing composite oxides such as LiCoO 2 , LiNiO 2, and LiMn 2 O 4 that reversibly electrochemically react with lithium ions are held on the positive electrode current collector that is the support. A positive electrode plate, a negative electrode plate in which crystalline graphite or amorphous graphite capable of occluding and releasing lithium ions as a negative electrode material is held in a negative electrode current collector that is a support thereof, and a negative electrode plate that holds an electrolyte and And a separator that prevents a short circuit between both electrodes, and an electrolyte that uses an aprotic organic solvent in which a lithium salt such as LiBF 4 or LiPF 6 is dissolved.
[0004]
In the case of the above-described battery-type cylindrical battery and prismatic battery, the positive electrode plate, the negative electrode plate, and the separator are laminated in the order of a thin sheet, or wound in a spiral after being laminated. Housed in a battery container.
[0005]
However, not only a non-aqueous electrolyte battery but also a material having a low weight density is preferably used for the current collector in order to improve the weight energy density of the battery. From such a viewpoint, many reports have been made on the use of a current collector in which a conductive thin film is formed on a resin film (see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-9-213338
[Problems to be solved by the invention]
However, in general, in order to form a conductive thin film on a resin film having a small surface free energy, even if a technique such as vapor deposition, sputtering, or ion plating is used, the adhesion / adhesion between the resin film and the conductive material can be reduced. In particular, in the case of secondary batteries, the positive and negative electrode materials expand and contract when the high rate charge / discharge is performed. In response, the conductive thin film on the resin film expands and contracts. When the physical load is applied, the conductive thin film is missing from the electrode mixture, and sufficient charging / discharging electrochemical reaction does not proceed, so that the battery performance cannot be sufficiently radiated.
[0008]
The present invention solves the above-mentioned problems of the current collector, improves the weight energy density of the battery, and has a battery comparable to a battery using a current collector of metal foil in high rate charge / discharge characteristics. An object is to provide a non-aqueous electrolyte secondary battery exhibiting characteristics.
[0009]
[Means for Solving the Problems]
Current collector of the present invention to solve the aforementioned problem, sandblasting the conductive thin film forming surface of the tree butter film, the other part on the surface of the resin film was surface processed by Eyaburasuto method such as shot peening After forming a recess that becomes extremely slightly thinner, the surface of the resin is lower than the glass transition temperature of the resin film by the magnetron sputtering method or 20 ° C. higher than the glass transition temperature. A sputtered film is formed by sputtering the oxide or composite oxide, and then a conductive thin film is formed by metallizing the conductive material by a method such as vacuum deposition, sputtering, or ion plating. As described above, the temperature condition for performing sputtering and metallizing is preferably performed in an atmosphere at a temperature lower than the glass transition temperature of the resin film or at a temperature as high as about 20 ° C.
[0010]
If this category is exceeded, the resin film will be thermally damaged, deformed, and surface microcracks will become unsuitable for this type of application.
[0011]
Thereby, the weight energy density of a battery can be improved, without reducing the battery capacity at the time of high rate charge / discharge.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention, after forming a very small thin to become recessed portion than other portions of the conductive material forming face on the surface of the resin film subjected to surface treatment by a physical method Eyaburasuto method tree fat film, magnetron surface Several tens to hundreds of angstroms of the same metal as the conductive thin film or its oxide or composite oxide in advance by sputtering in an atmosphere at a temperature lower than the glass transition temperature of the resin film or 20 ° C. higher than the glass transition temperature. After forming a sputtered film with the thickness of the resin, the resin film is formed by using a resin film that is thicker than the sputtered film by metallizing the conductive material by vacuum deposition, sputtering, ion plating, etc. A strong adhesion between the film and the conductive thin film is obtained, and the electron conduction network of the electrode current collector is completely completed. It can be a thing. Therefore, even during high rate charge / discharge, there is almost no decrease in battery capacity due to deterioration of the current collection effect. The thickness of the conductive thin film may be 0.1 μm to 5 μm, preferably 0.5 μm to 3 μm from the viewpoint of electrical conduction and workability.
[0013]
As a temperature condition for performing sputtering treatment and metallizing, it is preferable that the temperature is lower than the glass transition temperature of the resin film or in an atmosphere at a high temperature of about 20 ° C.
[0014]
In general, sputtering is performed by applying a high voltage between electrodes in a vacuum filled with an inert gas such as argon gas, causing ionized argon to collide with a conductive thin film material (target), and tapping from there. Atoms of the discharged conductive thin film material are deposited on a resin film to form a thin film. Depending on whether the applied voltage is a direct current voltage (DC) or a high frequency voltage (RF), an RF sputtering method or a DC sputtering method is used. There is. In the magnetron sputtering method of the present application, by applying a magnetic field to the discharge space, the electrons undergo cycloidal motion due to the Lorentz force due to the magnetic field, and the generation efficiency of cations near the metal of the thin film material is better than the conventional method, Since the speed of the raw film can be increased and the applied voltage can be reduced, the temperature rise on the surface of the resin film can be suppressed to a small level, making it extremely suitable for the manufacture of current collectors used in this type of battery. It is.
[0015]
A thickness of several tens to several hundreds of angstroms is sufficient for a conductive metal film formed by magnetron sputtering or a sputtered film of oxide or composite oxide thereof.
[0016]
The thickness of the conductive thin film may be 0.1 μm to 5 μm, preferably 0.5 μm to 3 μm from the viewpoint of electrical conduction and workability.
[0017]
Examples of the resin film material include polyesters such as polyethylene terephthalate, polyethylene naphthalate and polybutylene naphthalate, polyolefins such as polyethylene, polypropylene and polyketone, polymers such as polysulfone, polyphenylene oxide, polyimide, polyurethane and unsaturated polyester resin. However, it is not limited to these. Further, the thickness is preferably 1 μm or more in consideration of mechanical strength and handleability. Preferably 5 μm to 50 μm is suitable for this type of application.
[0018]
Also, the conductive thin film formed on the surface is not particularly limited as long as it has a material having a high electron conductivity such as carbon, but a metal material has a high electron conductivity, handling property, etc. To preferred. In particular, in the case of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, aluminum that is excellent in corrosion resistance as a thin film material serving as a current collector of the positive electrode and that does not dissolve in the electrolyte during charging when the positive electrode is at a high potential is preferable.
[0019]
Copper, copper-nickel alloy or nickel is suitable as the thin film material used as the current collector of the negative electrode, but copper is particularly preferred from the viewpoint of cost and conductivity.
[0020]
As a method of processing the surface of the resin film at a temperature lower than the glass transition temperature of the resin film or at a temperature as high as about 20 ° C., it can be realized by the magnetron sputtering method of the present invention, that is, helium, neon, argon, etc. It is preferable to carry out in a magnetron sputtering apparatus filled with an inert gas. In the magnetron sputtering method, a magnetic field is applied to the discharge space, the electrons undergo cycloidal motion due to the Lorentz force due to the magnetic field, and the generation efficiency of cations near the target, that is, the metal of the thin film material, is better than the conventional method. Because the film formation speed can be increased and the applied voltage can be reduced, the temperature rise on the surface of the resin film can be kept small, and the film can be formed to a thickness of tens to hundreds of angstroms. A surface treatment having excellent affinity with metal can be formed on the surface. The conductive thin film may be formed on the sputtered resin film by a method such as vacuum deposition, sputtering, or ion plating.
[0021]
The nonaqueous electrolyte secondary battery of the present invention uses the above electrode current collector. Thereby, the weight energy density of a battery can be improved, without reducing the battery capacity at the time of high rate charge / discharge.
[0022]
Hereafter, the detailed structure content of the nonaqueous electrolyte secondary battery of this invention is shown.
[0023]
The positive electrode and the negative electrode used in the present invention are prepared by applying a mixture layer containing a conductive agent, a binder and the like to a positive electrode material and a negative electrode material capable of occluding and releasing lithium on the surface of the current collector in the present invention. It has been created.
[0024]
The positive electrode material of the present invention can use a lithium-containing transition metal oxide. For example, Li x CoO 2, Li x NiO 2, Li x MnO 2, Li x Co y Ni 1-y O 2, Li x Co y M 1-y O z, Li x Ni 1-y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4 (M = Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B (Wherein x = 0 to 1.2, y = 0 to 0.9, z = 2.0 to 2.3). Here, said x value is a value before the start of charging / discharging, and it increases / decreases by charging / discharging. The average particle diameter of the positive electrode active material particles is not particularly limited, but is preferably 1 to 30 μm.
[0025]
The conductive agent for positive electrode used in the present invention may be anything as long as it is an electron conductive material that does not cause a chemical change at the charge / discharge potential of the positive electrode material used. For example, natural graphite (such as flake graphite), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, etc., among these conductive agents Artificial graphite and acetylene black are particularly preferable.
[0026]
Although the addition amount of a electrically conductive agent is not specifically limited, 1-50 weight% is preferable with respect to positive electrode material, and 1-30 weight% is especially preferable. In the case of carbon or graphite, 2 to 15% by weight is particularly preferable.
[0027]
Examples of the positive electrode binder used in the present invention include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoro. Propylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and the like, and more preferable materials among these materials are polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). is there.
[0028]
As the positive electrode current collector used in the present invention, the above-described electrode current collector of the present invention can be used.
[0029]
The negative electrode material used in the present invention may be any compound that can occlude / release lithium ions, such as intermetallic compounds, carbon, organic compounds, inorganic compounds, metal complexes, and organic polymer compounds. Examples include coke, pyrolytic carbons, natural graphite, artificial graphite, mesocarbon microbeads, graphitized mesophase microspheres, amorphous carbon, and baked carbon of organic matter. These may be used alone or in combination. . Of these, graphite materials such as graphitized mesophase spherules, natural graphite, and artificial graphite are preferable.
[0030]
Examples of the negative electrode binder used in the present invention include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, ethylene-acrylic acid copolymer, and the like. The materials can be used alone or as a mixture.
[0031]
Of these materials, more preferred are styrene butadiene rubber, polyvinylidene fluoride, and ethylene-acrylic acid copolymer.
[0032]
As the negative electrode current collector used in the present invention, the above-described current collector of the present invention can be used.
[0033]
In the configuration of the negative electrode plate and the positive electrode plate in the present invention, it is preferable that the negative electrode mixture surface is present at least on the opposite surface of the positive electrode mixture surface.
[0034]
The nonaqueous electrolyte used in the present invention is composed of a solvent and a lithium salt dissolved in the solvent. Examples of the non-aqueous solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and chain carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC). Aliphatic carboxylic acid esters such as methyl formate, methyl propionate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE) And aprotic organic solvents such as chain ethers such as ethoxymethoxyethane (EME), and cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran. These may be used alone or in combination. . Among these, a mixed system of a cyclic carbonate and a chain carbonate or a mixed system of a cyclic carbonate, a chain carbonate, and an aliphatic carboxylic acid ester is preferable.
[0035]
Examples of the lithium salt dissolved in these solvents include LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiCl, LiCF 3 SO 3 , LiCF 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 etc. can be mentioned, and it can be used singly or in combination of two or more in the electrolyte solution using these, and it is more preferable to contain LiPF 6 in particular.
[0036]
A particularly preferred non-aqueous electrolyte in the present invention is an electrolytic solution containing at least ethylene carbonate and ethyl methyl carbonate and LiPF 6 as a supporting salt. The amount of the electrolyte added to the battery is not particularly limited, but a necessary amount can be used depending on the amount of the positive electrode material and the negative electrode material and the size of the battery. The amount of dissolution of the supporting electrolyte in the nonaqueous solvent is not particularly limited, but is preferably 0.2 to 2 mol / l. In particular, 0.5 to 1.5 mol / l is more preferable.
[0037]
As the separator used in the present invention, an insulating microporous thin film having a large ion permeability and a predetermined mechanical strength is used. Moreover, it is preferable to have a function of closing the hole at a certain temperature or higher and increasing the resistance. Olefin polymers such as polypropylene and polyethylene are used alone or in combination because of their organic solvent resistance and hydrophobicity.
[0038]
The shape of the battery can be applied to any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, a large type used for an electric vehicle, and the like.
[0039]
Further, the nonaqueous electrolyte secondary battery of the present invention can be used for a portable information terminal, a portable electronic device, a small electric power storage device for home use, a motorcycle, an electric vehicle, a hybrid electric vehicle, etc., but is not particularly limited thereto. I don't mean.
[0040]
The electrode current collector of the present invention is lighter than conventional metal current collectors, has high current collection efficiency, and is not limited to non-aqueous electrolyte secondary batteries, but also to other primary batteries and secondary batteries in general. It is also possible to use it. Therefore, the effects of the present invention can be obtained in Ni-Cd batteries, Ni-MH batteries, lead batteries, polymer batteries, all solid electrolyte batteries, and the like.
[0041]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples using lithium ion secondary batteries. However, the present invention is not limited to these examples.
[0042]
As a common configuration of lithium ion secondary batteries used in Examples and Comparative Examples, the negative electrode mixture 2 in the negative electrode plate 1 shown in FIG. 1 is composed of 100 parts by weight of carbon powder obtained by heat-treating petroleum coke, and styrene-butadiene rubber. 3 parts by weight was mixed and suspended in an aqueous carboxymethyl cellulose solution to make a paste.
[0043]
The negative electrode current collector 3 is made of copper on both sides of a 12 μm-thick polyethylene naphthalate resin (registered trademark Tenex Film Q51 made by Teijin DuPont Film) and a polyethylene terephthalate resin (registered trademark Teijin Tetron S made by Teijin DuPont Film). A sheet having a conductive thin film 4 having a thickness of 1 μm was used. The negative electrode mixture paste was applied to both surfaces of the negative electrode current collector, dried and rolled to 0.2 mm, and cut into a size of 39 mm wide and 440 mm long to obtain a negative electrode plate 1.
[0044]
In the positive electrode plate 5 shown in FIG. 2, in the positive electrode mixture 6, 5 parts by weight of acetylene black and 5 parts by weight of polyvinylidene fluoride (PVDF) are mixed with 100 parts by weight of lithium cobaltate LiCoO4 and suspended in N-methylpyrrolidinone. A pasty paste was used.
[0045]
The positive electrode current collector 7 is formed by vapor deposition on both sides of a 12 μm thick polyethylene naphthalate resin (registered trademark Tenex Film Q51 manufactured by Teijin DuPont) and a polyethylene terephthalate resin (registered trademark Teijin Tetron S manufactured by Teijin DuPont Film). A sheet having a conductive thin film 8 made of aluminum and having a thickness of 1 μm was used. A positive electrode mixture paste was applied to both surfaces of the positive electrode current collector, dried and rolled to 0.13 mm, and cut into a size of 37 mm in width and 400 mm in length to obtain a positive electrode plate 6.
[0046]
As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) at a ratio of 1.5 mol / l in an equal volume mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) was used.
[0047]
The positive electrode plate 5 and the negative electrode plate 1 provided with external connection leads were spirally wound through a separator and stored in a battery case having a diameter of 16.3 mm and a height of 50.7 mm. And after inject | pouring electrolyte solution into an electrode group, the battery was sealed and it was set as the test battery.
[0048]
Example 1
A positive electrode current collector film (polyethylene naphthalate resin having a thickness of 12 μm) as a target and aluminum sputtering with a DC magnetron sputtering apparatus at 60 ° C. in an argon gas atmosphere with a vacuum degree of 10 −5 mmHg and a thickness of 15 Å A film 8a is formed.
[0049]
Similarly, as the negative electrode current collector film, a copper sputtered film 4a having a thickness of 20 Å is formed at 50 ° C. using copper as a target. After that, the positive electrode current collector is formed by depositing Al on the sputtered film with a thickness of 1 μm, and the negative electrode current collector is similarly formed by Cu by vacuum evaporation.
[0050]
At this time, the glass transition temperature (hereinafter referred to as Tg) of the polyethylene naphthalate resin is 120 ° C.
[0051]
(Example 2)
An aluminum sputtered film having a thickness of 20 Å with a DC magnetron sputtering apparatus at 60 ° C. in an argon gas atmosphere with a vacuum degree of 10 −5 mmHg, using aluminum as a positive electrode current collector film (polyethylene terephthalate resin having a thickness of 25 μm). Form 8a.
[0052]
Similarly, as the negative electrode current collector film, a copper sputter film 4a having a thickness of 50 angstroms was formed at 50 ° C. using copper as a target. After that, the positive electrode current collector is formed by depositing Al on the sputtered film with a thickness of 1 μm, and the negative electrode current collector is similarly formed by Cu by vacuum evaporation.
[0053]
At this time, the glass transition temperature (hereinafter referred to as Tg) of the polyethylene terephthalate resin is 78 ° C.
[0054]
(Example 3)
A cathode current collector film (polyethylene naphthalate resin having a thickness of 12 μm) as a target and aluminum sputtering with a thickness of 60 Å using a DC magnetron sputtering apparatus at 60 ° C. in an argon gas atmosphere with a vacuum degree of 10 −5 mmHg. A film 8a is formed.
[0055]
Similarly, as the negative electrode current collector film, a copper sputter film 4a having a thickness of 50 angstroms was formed at 50 ° C. using copper as a target. After that, the positive electrode current collector is formed by depositing Al on the sputtered film with a thickness of 1 μm, and the negative electrode current collector is similarly formed by Cu by vacuum evaporation.
[0056]
The positive / negative electrode current collector film is a resin film obtained by spraying a resin having a Mohs hardness of 2 to 5 and a particle size of 5 μm or less as an abrasive for several seconds using a high pressure air before the above processing. After forming the very thin dent part 9 (thickness Min part 0.02-Max part 0.05 micrometer) as shown in FIG. 3 on the surface of this, the said sputtering process and metallizing process were given. The polishing agent was a resin having a Mohs hardness of 5 or less, preferably 2 to 4 and a particle size of 5 μm or less. Basically, the hardness may be the same resin material as the resin film and having a particle size smaller than the thickness of the resin film.
[0057]
Example 4
An aluminum sputtered film having a thickness of 20 Å with a DC magnetron sputtering apparatus at 60 ° C. in an argon gas atmosphere with a vacuum degree of 10 −5 mmHg, using aluminum as a positive electrode current collector film (polyethylene terephthalate resin having a thickness of 25 μm). Form 8a.
[0058]
Similarly, as the negative electrode current collector film, a copper sputter film 4a having a thickness of 50 angstroms was formed at 50 ° C. using copper as a target. After that, the positive electrode current collector is formed by depositing Al on the sputtered film with a thickness of 1 μm, and the negative electrode current collector is similarly formed by Cu by vacuum evaporation.
[0059]
At this time, the glass transition temperature (hereinafter referred to as Tg) of the polyethylene terephthalate resin is 78 ° C.
[0060]
The positive / negative electrode current collector film is a resin film obtained by spraying a resin having a Mohs hardness of 2 to 5 and a particle size of 5 μm or less as an abrasive for several seconds using a high pressure air before the above processing. After forming the very thin dent part 9 (thickness Min part 0.02-Max part 0.05 micrometer) as shown in FIG. 3 on the surface of this, the said sputtering process and metallizing process were given. The polishing agent was a resin having a Mohs hardness of 5 or less, preferably 2 to 4 and a particle size of 5 μm or less. Basically, the hardness may be the same resin material as the resin film and having a particle size smaller than the thickness of the resin film.
[0061]
(Comparative Example 1)
A positive / negative current collector film (polyethylene naphthalate resin having a thickness of 12 μm) was formed by simply depositing Al on the positive current collector and 1 μm in thickness on the negative electrode current collector using a vacuum deposition method. thing.
[0062]
(Comparative Example 2)
A positive / negative current collector film (polyethylene terephthalate resin with a thickness of 25 μm) formed on the positive electrode current collector by simply forming Al with a thickness of 1 μm and Cu on the negative electrode current collector by the same vacuum deposition method. .
[0063]
(Comparative Example 3)
A metal foil is used as the positive / negative current collector, and 20 μm thick Al is used as the positive current collector, and 15 μm thick Cu is used as the negative current collector.
[0064]
A charge / discharge test in which the above-described batteries are each composed of 50 cells, are subjected to constant voltage charging under the conditions of a maximum current of 600 mA, a charge end current of 50 mA, and a voltage of 4.2 V, and are discharged at a discharge current of 500 mA to a voltage of 2.5 V. After performing 5 cycles, compare the discharge capacities up to a final voltage of 2.5V with a constant current discharge of 150mA / 600mA with a constant current charge under the conditions of maximum current 600mA, end-of-charge current 50mA, voltage 4.2V did.
[0065]
The results are shown in Table 1.
[0066]
[Table 1]
Figure 0004419404
[0067]
In addition, the average values of the battery weights of Examples 1, 2, 3, and 4 were 20.3 g, 20.5 g, 20.1 g, and 20.7 g, respectively, and the weights of the batteries of Comparative Examples 1, 2, and 3 were 20. They were 9g, 20.4g, and 27.1g. From this, it is clear that the batteries of Examples 1, 2, 3, and 4 have an improved weight energy density as compared with the battery of Comparative Example 3 having a general conventional configuration.
[0068]
However, as the discharge current value increased, the battery capacities of the batteries of Comparative Examples 1 and 2 significantly decreased. This is considered due to the conductivity of the current collector. In other words, due to weak adhesion between the current collector resin film and the conductive thin film part, partial peeling at the adhesion interface between the battery material and the conductive thin film is caused by the stress of expansion / contraction of the battery positive / negative electrode material that occurs when charging and discharging are repeated. This is because sufficient electric conduction is not performed. On the other hand, in Example 1.2, since the conductive thin film is formed on the same kind of metal sputtered film as the base treatment of the resin film, it is possible to maintain a strong adhesion state. The battery of Example 3.4 is provided with an extremely thin dent on the surface of the resin film before the sputtering process in addition to the sputtering process. After that, by conducting sputtering treatment and vapor deposition treatment, the conductive thin film is formed thick and the current collection effect is improved, so that it also works effectively in high rate charge / discharge characteristics. In this example, the same metal material as the conductive thin film material formed as the material for the sputtering treatment was used as a target, but the same treatment can be performed with a metal oxide or a composite oxide with a different metal. It has been confirmed that the same tendency is shown in the effect. Moreover, although the example in DC magnetron sputtering was shown in the Example, it has been confirmed that the same tendency is shown also in the effect even in RF magnetron sputtering instead of DC. However, in RF magnetron sputtering, the scale of the apparatus may be slightly increased.
[0069]
In this example, the same metal as the conductive thin film was previously sputtered in an atmosphere at a temperature lower than the glass transition temperature of the resin film, but as a result of various experiments, the temperature atmosphere was determined from the glass transition temperature of the resin film. It has been found that even if the sputtering treatment is performed in an atmosphere at a temperature as high as 20 ° C., there is no significant difference in performance from the results of this example.
[0070]
As described above, the battery using the current collector of the present invention can reduce the weight of the battery and improve the weight energy density.
[0071]
That is, in the battery using the current collector of the present invention, the weight energy density is reduced without impairing the high rate discharge characteristics even when compared with the battery using the current collector made of metal foil as the current collector. I was able to improve. In addition, the current collector resin film of the present example was formed by forming a conductive thin film on the entire surface. As shown in FIG. 4, the present invention was formed on the surface except for both ends A and B of the resin films 3 and 7. Resin films 4a and 8a and conductive thin films 4 and 8 are formed in the same manner, and electrodes 1 and 5 having positive and negative electrode mixtures 2 and 6 formed on the surface of the conductive thin film are formed. Batteries constructed by using these electrodes and winding them through a separator eliminate the possibility of a short circuit due to contact between the positive and negative electrodes, even if winding misalignment occurs during winding. A battery having excellent properties can be provided.
[0072]
【The invention's effect】
As described above, according to the present invention, the electrode film is formed by forming on the surface a sputtered film obtained by sputtering the same metal as the conductive thin film, or an oxide or composite oxide thereof, and forming the conductive thin film on the surface. By using this electrode current collector for a battery, particularly a lithium ion secondary battery, it is possible to reduce the weight of the battery while maintaining the battery characteristics. As a result, a battery having excellent weight energy density is provided. It is possible to do.
[Brief description of the drawings]
FIG. 1 is a conceptual cross-sectional view of a negative electrode according to the present invention in an embodiment. FIG. 2 is a conceptual cross-sectional view of a positive electrode according to the present invention in an embodiment. Fig. 4 is a conceptual cross-sectional view of an electrode current collector. Fig. 4 is a conceptual cross-sectional view of positive and negative electrodes according to another embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Negative electrode mixture 3 Negative electrode collector resin film 4 Negative electrode collector conductive thin film 4a Sputter film 5 Positive electrode plate 6 Positive electrode mixture 7 Positive electrode collector resin film 8 Negative electrode collector conductive thin film 8a Sputter film 9 Recessed part A ・ B Both ends

Claims (11)

集電体上に電極材料層を形成した電極であって、前記集電体は、その表面にあらかじめ肉薄な凹み部を形成させた後、導電性薄膜と同一の金属、或いはその酸化物、複合酸化物をマグネトロンスパッタリング法によりスパッタ膜を形成させた後、表面に導電性薄膜を形成させた樹脂フィルムである電極。  An electrode in which an electrode material layer is formed on a current collector, wherein the current collector is formed with a thin recess in advance on its surface, and then the same metal as the conductive thin film, or an oxide or composite thereof. An electrode which is a resin film in which an oxide film is formed by a magnetron sputtering method and then a conductive thin film is formed on the surface. マグネトロンスパッタリング処理が樹脂フィルムのガラス転移温度より低温か、ガラス転移温度より20℃高い温度雰囲気で行われる事を特徴とする請求項記載の樹脂フィルムを備えた電極。Electrode magnetron sputtering process with a temperature lower than the glass transition temperature or a resin film of claim 1, wherein a carried out at a higher 20 ° C. than the glass transition temperature atmosphere of the resin film. マグネトロンスパッタリング処理が直流電圧、あるいは高周波電圧で行われる事を特徴とする請求項記載の樹脂フィルムを備えた電極。Magnetron sputtering process DC voltage or electrode with a resin film according to claim 1, characterized in that takes place in a high frequency voltage. あらかじめスパッタリングにより導電性薄膜と同一の金属、或いはその酸化物、複合酸化物の厚みは導電性薄膜の厚みより薄い事を特徴とする請求項記載の樹脂フィルムを備えた電極。Advance by sputtering conductive thin film and the same metal, or an oxide thereof, the electrode thickness of the composite oxide having a resin film according to claim 1, wherein a thinner than the thickness of the conductive thin film. 表面にあらかじめ肉薄な凹み部をエヤーブラストにより形成させる事を特徴とする請求項記載の樹脂フィルムを備えた電極。Electrode with a resin film according to claim 1, characterized in that to form a Eyaburasuto advance thin-walled recess in the surface. エヤーブラストに使用される研磨材が樹脂フィルム素材と同じものかモース硬度5以下の樹脂である請求項記載の樹脂フィルムを備えた電極。6. An electrode provided with a resin film according to claim 5, wherein the abrasive used for air blasting is the same as the resin film material or a resin having a Mohs hardness of 5 or less. エヤーブラストに使用される研磨材の粒径が樹脂フィルムの厚み以下の樹脂である請求項記載の樹脂フィルムを備えた電極。The electrode provided with the resin film according to claim 5 , wherein the particle size of the abrasive used for air blasting is a resin having a thickness equal to or less than the thickness of the resin film. 導電性薄膜が金属材料である請求項記載の樹脂フィルムを備えた電極。Electrode conductive thin film comprising a resin film according to claim 1, wherein the metallic material. 請求項記載の電極を備えた電池。A battery comprising the electrode according to claim 1 . 正極集電体の導電性薄膜がアルミニウムである請求項1記載の電極を備えた非水電解質二次電池。The nonaqueous electrolyte secondary battery provided with the electrode according to claim 1, wherein the conductive thin film of the positive electrode current collector is aluminum. 負極集電体の導電性薄膜が銅である請求項1記載の電極を備えた非水電解質二次電池。The nonaqueous electrolyte secondary battery provided with the electrode according to claim 1, wherein the conductive thin film of the negative electrode current collector is copper.
JP2003063318A 2003-03-10 2003-03-10 Electrode, battery using the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4419404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063318A JP4419404B2 (en) 2003-03-10 2003-03-10 Electrode, battery using the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063318A JP4419404B2 (en) 2003-03-10 2003-03-10 Electrode, battery using the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004273304A JP2004273304A (en) 2004-09-30
JP4419404B2 true JP4419404B2 (en) 2010-02-24

Family

ID=33124928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063318A Expired - Fee Related JP4419404B2 (en) 2003-03-10 2003-03-10 Electrode, battery using the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4419404B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070037060A1 (en) * 2005-08-12 2007-02-15 Lee Young G All-solid-state primary film battery and method of manufacturing the same
JP5381078B2 (en) 2008-12-19 2014-01-08 日産自動車株式会社 Electrode and manufacturing method thereof
DE102015106811B4 (en) * 2015-04-30 2022-02-03 VON ARDENNE Asset GmbH & Co. KG Use of a foil structure in an energy store and energy store
CN109873160B (en) * 2017-12-05 2021-05-18 宁德时代新能源科技股份有限公司 Current collector, pole piece thereof and battery
CN109873165B (en) * 2017-12-05 2021-07-06 宁德时代新能源科技股份有限公司 Current collector, pole piece thereof and battery
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery
CN109873161B (en) 2017-12-05 2021-07-30 宁德时代新能源科技股份有限公司 Battery with a battery cell
CN110165223B (en) * 2018-02-13 2024-06-07 宁德时代新能源科技股份有限公司 Current collector, pole piece, battery and current collector manufacturing method
CN112310407B (en) * 2018-09-30 2022-03-08 宁德时代新能源科技股份有限公司 Current collector, pole piece and electrochemical device
CN110660999A (en) * 2018-09-30 2020-01-07 宁德时代新能源科技股份有限公司 Current collector, pole piece and electrochemical device
EP3872907B1 (en) 2018-11-09 2023-06-07 Xingyao Technology (Shenzhen) Co., Ltd Film and manufacturing process thereof
CN112133925B (en) * 2019-04-26 2021-10-26 宁德时代新能源科技股份有限公司 Battery, electric automobile and consumer electronics
CN113161628A (en) * 2021-03-08 2021-07-23 深圳市璞厉科技有限公司 Battery cell
JP7304380B2 (en) * 2021-04-26 2023-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Electrode current collector and secondary battery
JP7188675B1 (en) * 2021-05-20 2022-12-13 東レKpフィルム株式会社 Metallized film for secondary battery positive electrode and method for producing the same
JPWO2023053322A1 (en) * 2021-09-30 2023-04-06
WO2024057665A1 (en) * 2022-09-12 2024-03-21 東レKpフィルム株式会社 Metallized film for secondary battery positive electrodes and method for producing same
WO2024106163A1 (en) * 2022-11-14 2024-05-23 東レKpフィルム株式会社 Metallized film for secondary battery positive electrodes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06187996A (en) * 1992-12-18 1994-07-08 Yuasa Corp Battery and manufacture thereof
JPH0878758A (en) * 1994-09-08 1996-03-22 Sony Corp Magnetoresistance effect element
JPH10135130A (en) * 1996-09-03 1998-05-22 Hoya Corp X-ray mask blank, its manufacture, and x-ray mask
JP2003031224A (en) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd Light-weight current collector for secondary battery

Also Published As

Publication number Publication date
JP2004273304A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4419404B2 (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP4865673B2 (en) Lithium secondary battery
JP4949018B2 (en) Lithium secondary battery
CN102270759B (en) Cathode, lithium ion secondary battery, electric power tool and electrical vehicle
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
KR20160128355A (en) Non-aqueous electrolyte secondary battery
JP2007073334A (en) Lithium secondary battery
JP2001143705A (en) Non-aqueous electrolyte secondary battery
WO2007083405A1 (en) Lithium secondary battery
US20130157126A1 (en) Electrode assembly of lithium secondary battery
JP6607188B2 (en) Positive electrode and secondary battery using the same
JP2005100959A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
WO2016194733A1 (en) Lithium ion secondary battery
WO2015037367A1 (en) Nonaqueous-electrolyte secondary battery
WO2023070268A1 (en) Electrochemical device and power consumption apparatus comprising same
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2005197080A (en) Anode for secondary battery and secondary battery using it
CN109075383B (en) Lithium ion secondary battery and battery pack
JP2000011991A (en) Organic electrolyte secondary battery
KR20200076076A (en) Negative electrode comprising magnesium protective layer, method for manufacturing and lithium secondary battery comprising thereof
US20200203714A1 (en) Deposition of lithium fluoride on surface of lithium metal and lithium secondary battery using the same
KR20220046267A (en) Anodeless lithium secondary battery and preparing method thereof
JP4419402B2 (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP4582684B2 (en) Non-aqueous secondary battery
CN111247672A (en) Lithium secondary battery with long service life and ultra-high energy density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees