JPH0878758A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPH0878758A
JPH0878758A JP6214961A JP21496194A JPH0878758A JP H0878758 A JPH0878758 A JP H0878758A JP 6214961 A JP6214961 A JP 6214961A JP 21496194 A JP21496194 A JP 21496194A JP H0878758 A JPH0878758 A JP H0878758A
Authority
JP
Japan
Prior art keywords
film
substrate
magnetoresistive effect
magnetoresistive
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6214961A
Other languages
Japanese (ja)
Inventor
Toshihiko Yaoi
俊彦 矢追
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6214961A priority Critical patent/JPH0878758A/en
Priority to EP95108223A priority patent/EP0685746A3/en
Priority to US08/453,788 priority patent/US5903708A/en
Priority to KR1019950013794A priority patent/KR100442753B1/en
Publication of JPH0878758A publication Critical patent/JPH0878758A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE: To obtain a gigantic magnetoresistance effect and to prevent the magnetoresistance effect from deteriorating on operation by setting the thermal conductivity of a substrate to a specific range. CONSTITUTION: A magneticresistance element is formed by forming a multilayer magnetoresistance film in artificial lattice film structure where a ferromagnetic film 3 and a non-magnetic film 2 are alternately laminated on a substrate 1 with a thermal conductivity of 2W/mK or larger. In this manner, by using a substrate with a high thermal conductivity, the deterioration of the magnetoresistance effect can be eliminated by operating the magnetoresistance element using a high-density current since heat escapes from the substrate and no heat build-up is generated even if a high-density current is fed to the multilayer magnetoresistance effect film, thus preventing a magnetization arrangement from being disturbed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工格子膜構造あるい
はスピンバルブ構造の多層磁気抵抗効果膜を有する磁気
抵抗効果素子に関し、特に、動作時の磁気抵抗効果の向
上を図れる構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect element having a multilayer magnetoresistive effect film having an artificial lattice film structure or a spin valve structure, and more particularly to a structure capable of improving the magnetoresistive effect during operation.

【0002】[0002]

【従来の技術】磁気抵抗効果を有する磁気抵抗効果膜
は、磁界を検出する磁気抵抗効果素子として、磁気セン
サ、磁気ヘッド、回転検出素子、位置検出素子等の分野
において盛んに用いられている。
2. Description of the Related Art A magnetoresistive film having a magnetoresistive effect is widely used as a magnetoresistive effect element for detecting a magnetic field in the fields of a magnetic sensor, a magnetic head, a rotation detecting element, a position detecting element and the like.

【0003】従来、上記磁気抵抗効果膜としては、主に
Fe−Ni合金膜(いわゆるパーマロイ膜)が使用され
てきた。しかし、パーマロイ膜の磁気抵抗変化率は小さ
く、今後さらなる高密度磁気記録を図るには、感度が不
十分になると思われる。
Conventionally, an Fe-Ni alloy film (so-called permalloy film) has been mainly used as the magnetoresistive film. However, the rate of change in magnetoresistance of the permalloy film is small, and it is considered that the sensitivity will be insufficient for further high density magnetic recording in the future.

【0004】一方、近年、異種の金属を数原子層ずつ交
互に積層した人工格子膜構造の多層磁気抵抗効果膜が注
目されている。その中で、Feよりなる強磁性膜とCr
よりなる導体膜(非磁性膜)との積層体からなる人工格
子膜において、数十%もの磁気抵抗変化率(以下、「巨
大磁気抵抗効果」と称する。)が得られることが報告さ
れ、磁気抵抗効果素子への応用が期待されている。(フ
ィジカル・レビュー・レターズ、61巻、2472ペー
ジ、1988年) その後、Fe層とCr層の組み合わせ以外にも、強磁性
膜をCo層、非磁性膜をCu層とした組み合わせでも巨
大磁気抵抗効果が得られることが報告されている。(フ
ィジカル・レビュー・レターズ、66巻、2152ペー
ジ、1991年)また、強磁性膜に、Fe、Ni、Co
の三元素を組み合わせた合金を用いることで、小さな磁
場変化でも大きな抵抗変化が得られるようになり、外部
磁場に対する感度が改善され、実用的な観点から有効で
あることも報告されている。
On the other hand, in recent years, attention has been paid to a multi-layered magnetoresistive film having an artificial lattice film structure in which different kinds of metals are alternately laminated by several atomic layers. Among them, a ferromagnetic film made of Fe and Cr
It has been reported that an artificial lattice film composed of a laminated body of a conductor film (non-magnetic film) made of a magnetic material has a magnetoresistance change rate of several tens of percent (hereinafter referred to as “giant magnetoresistance effect”). It is expected to be applied to resistance effect elements. (Physical Review Letters, Vol. 61, page 2472, 1988) After that, in addition to the combination of the Fe layer and the Cr layer, the combination of the ferromagnetic film as the Co layer and the nonmagnetic film as the Cu layer has a giant magnetoresistive effect. It is reported that (Physical Review Letters, 66, 2152 pages, 1991) In addition, Fe, Ni, Co are added to the ferromagnetic film.
It has also been reported that by using an alloy in which the above three elements are combined, a large resistance change can be obtained even with a small magnetic field change, sensitivity to an external magnetic field is improved, and it is effective from a practical viewpoint.

【0005】さらに、強磁性膜、非磁性膜、強磁性膜が
この順に積層されてなる3層膜を主構成要素とする膜
(いわゆるスピンバルブ膜)でも、巨大磁気抵抗効果が
得られることが報告されている。(ジャーナル・オブ・
マグネティズム・アンド・マグネティク・マテリアル
ズ、93巻、101ページ、1991年) なお、上述のような人工格子膜構造やスピンバルブ構造
の多層磁気抵抗効果膜にて巨大磁気抵抗効果が観測され
る原因としては、導体中の伝導電子を介し、強磁性膜間
でRKKY(ルーダーマン、キッテル、糟谷、芳田)相
互作用が働き、相対する強磁性膜が反強磁性的に結合す
ることにより、反平行スピンの状態が発生し、その結果
スピン依存散乱が生じるためであると考えられている。
Further, a giant magnetoresistive effect can be obtained even with a film (so-called spin valve film) whose main constituent element is a three-layer film in which a ferromagnetic film, a non-magnetic film and a ferromagnetic film are laminated in this order. It has been reported. (Journal of
(Magnetic and Magnetic Materials, Vol. 93, p. 101, 1991) In addition, the reason why the giant magnetoresistive effect is observed in the multi-layered magnetoresistive film of the artificial lattice film structure or the spin valve structure as described above As an example, the RKKY (Luddermann, Kittel, Kasuya, Yoshida) interaction works between the ferromagnetic films via the conduction electrons in the conductor, and the opposing ferromagnetic films are antiferromagnetically coupled to each other, resulting in antiparallel spin. It is believed that this is due to the occurrence of the above condition, resulting in spin-dependent scattering.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たような多層磁気抵抗効果膜を用いた磁気抵抗効果素子
は、動作時に高い電流密度の電流が流れることによっ
て、磁気抵抗効果の劣化が起こるといった問題を抱えて
いる。これは、高い電流密度の電流が流れることによっ
て発熱が起こると、多層磁気抵抗効果膜内に形成されて
いた磁化配列が乱れるためであると思われる。
However, the magnetoresistive effect element using the multilayer magnetoresistive effect film as described above has a problem that the magnetoresistive effect is deteriorated by the flow of a current having a high current density during operation. Have a It is considered that this is because, when heat is generated by the flow of a current having a high current density, the magnetization arrangement formed in the multilayer magnetoresistive effect film is disturbed.

【0007】そこで本発明は、かかる実情に鑑みて提案
されたものであり、巨大磁気抵抗効果が得られ、且つ、
動作時の磁気抵抗効果の劣化が防止された磁気抵抗効果
素子を提供することを目的とする。
Therefore, the present invention has been proposed in view of such circumstances, and a giant magnetoresistive effect can be obtained, and
It is an object of the present invention to provide a magnetoresistive effect element in which deterioration of the magnetoresistive effect during operation is prevented.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の目
的を達成せんものと鋭意検討を重ねた結果、多層磁気抵
抗効果膜を形成する基板として熱伝導率の高いものを用
いることによって、高い電流密度の電流を流しても磁気
抵抗効果の劣化が抑制できることを見い出した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies as to achieve the above-mentioned object, and as a result, by using a substrate having a high thermal conductivity as a substrate for forming a multilayer magnetoresistive film. , It was found that the deterioration of the magnetoresistive effect can be suppressed even when a current having a high current density is passed.

【0009】即ち、本発明に係る磁気抵抗効果素子は、
強磁性膜と非磁性膜とからなる多層磁気抵抗効果膜が基
板上に形成されてなる磁気抵抗効果素子において、前記
基板の熱伝導率が2W/mK以上のものである。
That is, the magnetoresistive effect element according to the present invention is
In a magnetoresistive effect element in which a multilayer magnetoresistive effect film including a ferromagnetic film and a nonmagnetic film is formed on a substrate, the substrate has a thermal conductivity of 2 W / mK or more.

【0010】磁気抵抗効果素子を例えば磁気ヘッドに適
用する場合、1×106 〜9×106 A/cm2 の電流
を流すことになるが、基板の熱伝導率が2W/mK未満
である場合、電流密度1×106 A/cm2 以上の電流
を流すと急激に磁気抵抗効果(抵抗変化率)が劣化し、
電流密度9×106 A/cm2 の電流を流したときに
は、電流密度1×105 A/cm2 の電流を流したとき
の20%未満の抵抗変化率となってしまう。
When the magnetoresistive effect element is applied to, for example, a magnetic head, a current of 1 × 10 6 to 9 × 10 6 A / cm 2 is applied, but the thermal conductivity of the substrate is less than 2 W / mK. In this case, when a current having a current density of 1 × 10 6 A / cm 2 or more is applied, the magnetoresistive effect (rate of change in resistance) is rapidly deteriorated,
When a current having a current density of 9 × 10 6 A / cm 2 is passed, the resistance change rate is less than 20% when a current having a current density of 1 × 10 5 A / cm 2 is passed.

【0011】なお、前記基板としては、熱伝導率が2W
/mK以上であれば特に限定されず、NiO−MnO等
のセラミック基板、Mn−Znフェライト,Ni−Zn
フェライト等のフェライト基板、Al2 3 −TiC基
板、また、エピタキシャル成長を考慮して単結晶のGa
As,Si,MgOよりなる基板等を使用することが可
能である。但し、上記フェライト基板を用いる場合は、
表面を非磁性化処理しておくことが好ましい。また、磁
気抵抗効果素子に外力が加わったときに人工格子膜の格
子に歪を生じさせないために、基板のヤング率は1×1
9 Nm-2以上であることが好ましい。
The substrate has a thermal conductivity of 2 W.
/ MK or more, but not particularly limited, a ceramic substrate such as NiO-MnO, Mn-Zn ferrite, Ni-Zn
A ferrite substrate such as ferrite, an Al 2 O 3 —TiC substrate, or a single crystal Ga in consideration of epitaxial growth.
It is possible to use a substrate made of As, Si, MgO or the like. However, when using the above ferrite substrate,
It is preferable that the surface is non-magnetized. In addition, the Young's modulus of the substrate is 1 × 1 in order to prevent distortion of the lattice of the artificial lattice film when an external force is applied to the magnetoresistive element.
It is preferably 0 9 Nm -2 or more.

【0012】このような基板上に成膜される多層磁気抵
抗効果膜は、強磁性膜と非磁性膜とが交互に積層された
人工格子膜より構成されても、強磁性膜、非磁性膜、強
磁性膜がこの順に積層されたスピンバルブ膜より構成さ
れてもよい。
The multilayer magnetoresistive film formed on such a substrate is composed of an artificial lattice film in which ferromagnetic films and nonmagnetic films are alternately laminated, but even if it is composed of ferromagnetic films and nonmagnetic films. The ferromagnetic film may be composed of spin valve films stacked in this order.

【0013】そして、多層磁気抵抗効果膜が人工格子膜
構造、スピンバルブ構造のいずれの場合においても、非
磁性膜としては、Fe、Co、Ni、Cr、V、Mo、
Nb、Ta、W、Re、Ru、Cu、Rh、Pd、I
r、Pt、B、C、N、O、Si、Al、Ga、Ge、
Sn、Sb、Agの元素のうち少なくとも1種類以上の
元素からなる導体で、室温で非磁性体であるものが使用
可能である。中でも、Cu、Ag、Crより選ばれる少
なくとも1種を主成分とするものを用いると、巨大磁気
抵抗効果を有する多層磁気抵抗効果膜を構成できる。
Whether the multilayer magnetoresistive film has an artificial lattice film structure or a spin valve structure, the nonmagnetic film is made of Fe, Co, Ni, Cr, V, Mo,
Nb, Ta, W, Re, Ru, Cu, Rh, Pd, I
r, Pt, B, C, N, O, Si, Al, Ga, Ge,
It is possible to use a conductor made of at least one kind of element among Sn, Sb, and Ag, which is a nonmagnetic material at room temperature. Above all, when a material containing at least one selected from Cu, Ag, and Cr as a main component is used, a multilayer magnetoresistive effect film having a giant magnetoresistive effect can be formed.

【0014】なお、Fe,Co,Niより選ばれる少な
くとも1種を0.05〜5原子%含有していてもよい。
Incidentally, at least one selected from Fe, Co and Ni may be contained in an amount of 0.05 to 5 atom%.

【0015】そして、該非磁性膜の膜厚は1.8〜2.
8nmであることが好ましい。磁気抵抗効果は非磁性膜
の膜厚によっても変動し、上記範囲より薄すぎても厚す
ぎても該磁気抵抗効果が劣化してしまうからである。
The thickness of the non-magnetic film is 1.8-2.
It is preferably 8 nm. This is because the magnetoresistive effect varies depending on the film thickness of the nonmagnetic film, and the magnetoresistive effect deteriorates if the thickness is too thin or too thick.

【0016】一方、多層磁気抵抗効果膜を構成する強磁
性膜としては、Fe、Co、Ni、Cr、V、Mo、N
b、Ta、W、Re、Ru、Cu、Rh、Pd、Ir、
Pt、B、C、N、O、Si、Al、Ga、Ge、S
n、Sbの元素のうち少なくとも1種類以上の元素から
なる磁性体で、室温で強磁性体であるものが使用でき
る。
On the other hand, as the ferromagnetic film forming the multilayer magnetoresistive film, Fe, Co, Ni, Cr, V, Mo and N are used.
b, Ta, W, Re, Ru, Cu, Rh, Pd, Ir,
Pt, B, C, N, O, Si, Al, Ga, Ge, S
A magnetic substance composed of at least one or more of n and Sb elements, which is a ferromagnetic substance at room temperature, can be used.

【0017】中でも、Cuを1〜50原子%含有し、且
つ、Fe,Co,Niより選ばれる少なくとも1種を含
有するものを磁性体層とするのが好ましい。このとき、
前記磁性体層に含有されるFe,Co,Niは、外部磁
場に対する感度を向上させるために、その組成比を下記
のように定めることが特に好ましい。
Above all, it is preferable that the magnetic layer contains 1 to 50 atomic% of Cu and at least one selected from Fe, Co and Ni. At this time,
It is particularly preferable that the composition ratio of Fe, Co, and Ni contained in the magnetic layer is determined as follows in order to improve sensitivity to an external magnetic field.

【0018】FexCoyNiz (x,y,zは原子%)
とすると、10≦x≦25,40≦y≦80,10≦z
≦40,x+y+z=100 なお、上記人工格子膜においては、強磁性膜が、Ni膜
とFe膜との積層体、Ni合金膜とFe合金膜との積層
体、Ni−Fe系合金膜、組成の異なるNi−Fe系合
金膜同士の積層体等より構成されていてもよく、このよ
うな人工格子膜には、その上層および下層には軟磁性膜
が設けられて好適である。該軟磁性膜としては、軟磁性
を示せば従来公知の材料が使用可能であるが、特に、N
i−Fe系合金より構成されて好適である。
Fe x Co y Ni z (x, y, z are atomic%)
Then, 10 ≦ x ≦ 25, 40 ≦ y ≦ 80, 10 ≦ z
≦ 40, x + y + z = 100 In the artificial lattice film, the ferromagnetic film is a laminate of a Ni film and a Fe film, a laminate of a Ni alloy film and a Fe alloy film, a Ni—Fe alloy film, a composition. It may be composed of a laminated body of Ni—Fe alloy films different from each other, etc., and such an artificial lattice film is suitable because a soft magnetic film is provided in the upper and lower layers thereof. As the soft magnetic film, any conventionally known material can be used as long as it exhibits soft magnetism.
It is preferable that it is composed of an i-Fe alloy.

【0019】また、人工格子膜を構成する強磁性膜と非
磁性膜の厚みをそれぞれtA,tBとすると、0.5n
m≦tA,tB≦50nm、交互に積層する強磁性膜と
非磁性膜との組数をnとすると、1≦n≦30、全膜厚
をTとすると、5nm≦T≦100nmとされて好適で
ある。
When the thicknesses of the ferromagnetic film and the nonmagnetic film forming the artificial lattice film are tA and tB, respectively, 0.5n
m ≦ tA, tB ≦ 50 nm, assuming that the number of pairs of alternately laminated ferromagnetic films and nonmagnetic films is n, 1 ≦ n ≦ 30, and if the total film thickness is T, 5 nm ≦ T ≦ 100 nm. It is suitable.

【0020】一方、スピンバルブ膜には、その少なくと
も一側面には反強磁性体層が設けられていてもよい。該
反強磁性体層を構成する材料としては、反強磁性を示す
ものであれば特に限定されないが、Fe−Mn、Ni
O、CoO、NiCoO、Tb−Co等の材料が挙げら
れる。
On the other hand, an antiferromagnetic material layer may be provided on at least one side surface of the spin valve film. The material forming the antiferromagnetic layer is not particularly limited as long as it exhibits antiferromagnetism, but Fe-Mn, Ni
Materials such as O, CoO, NiCoO, and Tb-Co can be used.

【0021】なお、いずれの多層磁気抵抗効果膜におい
ても、巨大磁気抵抗効果を安定に得るためには、非磁性
膜および強磁性膜に含まれる酸素量を7原子%以下とす
ることが好ましい。
In any of the multi-layered magnetoresistive films, it is preferable that the amount of oxygen contained in the non-magnetic film and the ferromagnetic film be 7 atomic% or less in order to stably obtain the giant magnetoresistive effect.

【0022】ところで、以上のような多層磁気抵抗効果
膜を構成している各材料膜の成膜方法としては、従来公
知のものがいずれも使用可能であり、例えば真空蒸着
法、スパッタリング法、イオンプレーティング法等が挙
げられるが、合金膜を成膜する場合には、該合金の組成
比に等しいターゲットを使用したスパッタリング法によ
って成膜することが好ましい。このスパッタリング法と
しては、RFマグネトロン方式,DCマグネトロン方
式,対向ターゲット方式等が有効である。但し、成膜時
のガス圧等の条件によっても作製された多層磁気抵抗効
果膜の磁気抵抗効果が異なってくるため、適宜成膜条件
を適正化する必要がある。
By the way, as a film forming method of each material film constituting the above-mentioned multilayer magnetoresistive effect film, any conventionally known method can be used, for example, a vacuum vapor deposition method, a sputtering method, an ion method. Although a plating method and the like can be mentioned, when forming an alloy film, it is preferable to form the film by a sputtering method using a target having a composition ratio of the alloy. As this sputtering method, an RF magnetron method, a DC magnetron method, a facing target method, or the like is effective. However, since the magnetoresistive effect of the manufactured multi-layered magnetoresistive film varies depending on the conditions such as the gas pressure during film formation, it is necessary to appropriately optimize the film formation conditions.

【0023】なお、以上のような磁気抵抗効果素子の磁
気抵抗効果は4端子法にて磁気抵抗を測定し、その変化
率を算出することによって求められる。
The magnetoresistive effect of the magnetoresistive effect element as described above can be obtained by measuring the magnetoresistive property by the four-terminal method and calculating the rate of change.

【0024】[0024]

【作用】人工格子膜構造、スピンバルブ構造のいずれの
多層磁気抵抗効果膜においても、本発明を適用して、多
層磁気抵抗効果膜を成膜する基板として高い熱伝導率を
有するものを用いると、高い電流密度の電流を用いて磁
気抵抗効果素子を動作させても磁気抵抗効果が劣化する
ことがなくなる。これは、高い電流密度の電流を多層磁
気抵抗効果膜に流しても、基板から熱が逃げて発熱が防
止されるため、磁化配列の乱れが起こらないからであ
る。
The present invention is applied to any of the multi-layered magnetoresistive film having the artificial lattice film structure and the spin valve structure, and a substrate having high thermal conductivity is used as a substrate for forming the multi-layered magnetoresistive film. Even if the magnetoresistive effect element is operated using a current having a high current density, the magnetoresistive effect does not deteriorate. This is because even if a current having a high current density is passed through the multilayer magnetoresistive effect film, heat escapes from the substrate and heat generation is prevented, so that the magnetization arrangement is not disturbed.

【0025】また、たとえ高い電流密度の電流が長時間
に亘って連続的に供給されたり、外部から熱が加わった
りしても、多層磁気抵抗効果膜の近傍に熱が蓄積されな
いため、多層磁気抵抗効果膜の各膜間における金属の熱
拡散が発生することもない。
Further, even if a current having a high current density is continuously supplied for a long time or heat is applied from the outside, heat is not accumulated in the vicinity of the multilayer magnetoresistive effect film, so that the multilayer magnetic No thermal diffusion of metal occurs between the films of the resistance effect film.

【0026】さらに、本発明の磁気抵抗効果素子におい
ては、多層磁気抵抗効果膜を構成する非磁性膜がCu,
Ag,Crのうち少なくとも1種を主成分とするもので
あるため、巨大磁気抵抗効果が得られやすい。
Further, in the magnetoresistive effect element of the present invention, the non-magnetic film forming the multilayer magnetoresistive effect film is Cu,
Since at least one of Ag and Cr is the main component, the giant magnetoresistive effect is easily obtained.

【0027】[0027]

【実施例】以下、本発明を適用した具体的な実施例につ
いて図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments to which the present invention is applied will be described below with reference to the drawings.

【0028】実施例1 本実施例では、Siよりなる基板上に人工格子膜型の多
層磁気抵抗効果膜が成膜された磁気抵抗効果素子の一例
について説明する。
Example 1 In this example, an example of a magnetoresistive effect element in which an artificial lattice film type multi-layered magnetoresistive effect film is formed on a substrate made of Si will be described.

【0029】この磁気抵抗効果素子は、その要部を図1
に示すように、300Kにおける熱伝導率が148W/
mKであるSiよりなる基板1上に、Fe20−Ni45
Co35よりなる強磁性膜3とCuよりなる非磁性膜2が
交互に30周期積層された人工格子膜構造の多層磁気抵
抗効果膜が形成されてなる。なお、各材料膜は、非磁性
膜2が2.1〜2.3nm、強磁性膜3が1.0nmで
ある。
The main part of this magnetoresistive element is shown in FIG.
As shown in, the thermal conductivity at 300K is 148 W /
on a substrate 1 made of a mK Si, Fe 20 -Ni 45 -
A multilayer magnetoresistive effect film having an artificial lattice film structure in which a ferromagnetic film 3 made of Co 35 and a nonmagnetic film 2 made of Cu are alternately laminated for 30 periods is formed. In each material film, the nonmagnetic film 2 has a thickness of 2.1 to 2.3 nm and the ferromagnetic film 3 has a thickness of 1.0 nm.

【0030】以上のような構成を有する磁気抵抗効果素
子を作製するに際しては、図3に示されるようなRFマ
グネトロンスパッタ装置30を用いた。このRFマグネ
トロンスパッタ装置30は、チャンバ21内に設けられ
た、基板1を保持する基板ホルダ22、この基板1を回
転させるための回転板23、Fe20−Ni45−Co35
りなるターゲット24、同じくCuよりなるターゲット
25、基板1への成膜の開始/停止を制御するためのシ
ャッタ26,27よりなる。また、図示しないが、チャ
ンバ21には、スパッタガスを導入するためのガス導入
口、排気を行うための排気口が設けられている。
When manufacturing the magnetoresistive effect element having the above structure, the RF magnetron sputtering apparatus 30 as shown in FIG. 3 was used. This RF magnetron sputtering apparatus 30 is provided in a chamber 21, a substrate holder 22 for holding the substrate 1, a rotating plate 23 for rotating the substrate 1, a target 24 made of Fe 20 —Ni 45 —Co 35 , A target 25 also made of Cu, and shutters 26 and 27 for controlling the start / stop of film formation on the substrate 1. Further, although not shown, the chamber 21 is provided with a gas inlet for introducing a sputtering gas and an exhaust outlet for exhausting.

【0031】上述のRFマグネトロンスパッタ装置30
を用いて実際に強磁性膜3および非磁性膜2を成膜する
には、先ず、排気口よりチャンバ21内の排気を行った
後、ガス導入口よりスパッタガスを導入し、さらに回転
板23により非磁性基板1を回転させた状態にて、シャ
ッタ26,27を閉鎖したままターゲット24,25を
スパッタする。そして、強磁性膜3を成膜する際にはタ
ーゲット24上のシャッタ26を開放し、非磁性膜2を
成膜する際には上記シャッタ26を閉鎖するとともに、
ターゲット25上のシャッタ27を開放する。このよう
に、開放するシャッタ26,27を切り替えることによ
って、非磁性基板1に対してFe20−Ni45−Co35
りなる強磁性膜3、Cuよりなる非磁性膜2を交互に被
着させる。なお、実際に強磁性膜3、非磁性膜2を成膜
した条件を以下に示す。
The RF magnetron sputtering apparatus 30 described above
In order to actually form the ferromagnetic film 3 and the non-magnetic film 2 by using, the inside of the chamber 21 is evacuated through the exhaust port, the sputter gas is introduced through the gas introduction port, and the rotary plate 23 is further introduced. With the non-magnetic substrate 1 rotated, the targets 24 and 25 are sputtered while the shutters 26 and 27 are closed. The shutter 26 on the target 24 is opened when the ferromagnetic film 3 is formed, and the shutter 26 is closed when the nonmagnetic film 2 is formed.
The shutter 27 on the target 25 is opened. In this way, by switching the shutters 26 and 27 to be opened, the ferromagnetic film 3 made of Fe 20 —Ni 45 —Co 35 and the nonmagnetic film 2 made of Cu are alternately deposited on the nonmagnetic substrate 1. . The conditions under which the ferromagnetic film 3 and the nonmagnetic film 2 were actually formed are shown below.

【0032】成膜条件 スパッタガス :アルゴン 到達真空度 :1×10-4Pa以下 アルゴンガス圧:0.3Pa 印加電力 :300W 成膜速度 :0.1〜0.5nm/sec 以上のようにして、基板1上に、非磁性膜2および強磁
性膜3がそれぞれ30層ずつ積層された人工格子膜を形
成し、磁気抵抗効果素子を完成した。
Film forming conditions Sputter gas: Argon Ultimate vacuum: 1 × 10 −4 Pa or less Argon gas pressure: 0.3 Pa Applied power: 300 W Film forming rate: 0.1 to 0.5 nm / sec On the substrate 1, an artificial lattice film in which 30 layers each of the non-magnetic film 2 and the ferromagnetic film 3 were laminated was formed to complete the magnetoresistive effect element.

【0033】実施例2 本実施例では、Siよりなる基板11上に、スピンバル
ブ型の多層磁気抵抗効果膜が形成された磁気抵抗効果素
子の一例を示す。
Embodiment 2 This embodiment shows an example of a magnetoresistive effect element in which a spin-valve type multi-layered magnetoresistive effect film is formed on a substrate 11 made of Si.

【0034】この磁気抵抗効果素子は、その要部を図2
に示すように、Siよりなる基板11上にパーマロイ膜
よりなる下層強磁性膜12、Cu膜よりなる非磁性膜1
3、パーマロイ膜よりなる上層強磁性膜14、Fe50
Mn50合金膜よりなる反強磁性膜15が、この順に形成
されたスピンバルブ構造の多層磁気抵抗効果膜が形成さ
れてなる。なお、各材料膜は、下層強磁性膜12が6.
0nm、非磁性膜13が2.2nm、上層強磁性膜14
が6.0nm、反強磁性膜15が8.0nmなる膜厚と
した。
The main part of this magnetoresistive element is shown in FIG.
, A lower ferromagnetic film 12 made of a permalloy film and a non-magnetic film 1 made of a Cu film are formed on a substrate 11 made of Si.
3, upper ferromagnetic film 14 made of permalloy film, Fe 50
The antiferromagnetic film 15 made of an Mn 50 alloy film is formed in this order to form a multilayer magnetoresistive film having a spin valve structure. In each material film, the lower ferromagnetic film 12 is 6.
0 nm, the non-magnetic film 13 is 2.2 nm, the upper ferromagnetic film 14
Was 6.0 nm, and the antiferromagnetic film 15 was 8.0 nm.

【0035】以上のような構成を有する磁気抵抗効果素
子を作製するには、実施例1同様、図3のマグネトロン
スパッタ装置を用いた。なお、下層強磁性膜12、非磁
性膜13、上層強磁性膜14の成膜条件を以下に示す。
In order to manufacture the magnetoresistive effect element having the above structure, the magnetron sputtering apparatus shown in FIG. 3 was used as in Example 1. The film forming conditions for the lower ferromagnetic film 12, the non-magnetic film 13, and the upper ferromagnetic film 14 are shown below.

【0036】下層強磁性膜12、非磁性膜13、上層強
磁性膜14の成膜条件 スパッタガス :アルゴン 到達真空度 :1×10-4Pa以下 アルゴンガス圧:0.5Pa 印加電力 :300W 成膜速度 :0.1〜0.5nm/sec 積層法 :Cuとパーマロイの二元による回転ス
パッタ実験1 ここで、磁気抵抗効果素子に流れる電流密度に対する磁
気抵抗変化率(MR比)の変化を調べることにした。
Film-forming conditions for the lower ferromagnetic film 12, the non-magnetic film 13, and the upper ferromagnetic film 14 Sputtering gas: Argon Ultimate vacuum: 1 × 10 −4 Pa or less Argon gas pressure: 0.5 Pa Applied power: 300 W Film velocity: 0.1 to 0.5 nm / sec Lamination method: Rotational sputtering experiment 1 using binary of Cu and permalloy Here, the change of magnetoresistance change rate (MR ratio) with respect to the current density flowing in the magnetoresistance effect element is investigated. It was to be.

【0037】具体的には、基板1が熱伝導率1.38W
/mKの石英ガラス(SiO2 )よりなる以外は、実施
例1と同様の構成を有する磁気抵抗効果素子を形成し、
この磁気抵抗効果素子と実施例1の磁気抵抗効果素子と
に様々な電流密度の電流を流してMR比を測定した。そ
して、電流密度1×105 A/cm2 の電流しか流れて
いない時のMR比に対するキープ率を算出した。この結
果を、電流密度とMR比キープ率との関係として図4に
示す。
Specifically, the substrate 1 has a thermal conductivity of 1.38 W.
A magnetoresistive effect element having the same structure as in Example 1 except that it is made of quartz glass (SiO 2 ) of / mK,
The MR ratio was measured by passing currents of various current densities through the magnetoresistive effect element and the magnetoresistive effect element of Example 1. Then, the keep ratio with respect to the MR ratio when only a current having a current density of 1 × 10 5 A / cm 2 was flowing was calculated. The result is shown in FIG. 4 as the relationship between the current density and the MR ratio keeping rate.

【0038】図4より、SiO2 よりなる基板1を用い
た場合、電流密度1×106 A/cm2 以上の電流を流
すと急激にMR比が劣化し、さらに、電流密度9×10
6 A/cm2 の電流を流すと、電流密度1×105 A/
cm2 の電流を流したときに比して、20%未満のMR
比しか確保できなくなることがわかる。一方、Siより
なる基板1を用いた場合、電流密度1×106 A/cm
2 以上の電流してもMR比の劣化は見られず、さらに、
電流密度9×106 A/cm2 の電流を流しても、電流
密度1×105 A/cm2 の電流を流したときに比し
て、90%のMR比を確保できることがわかる。
From FIG. 4, when the substrate 1 made of SiO 2 is used, the MR ratio is rapidly deteriorated when a current having a current density of 1 × 10 6 A / cm 2 or more is flown, and further the current density is 9 × 10.
When a current of 6 A / cm 2 is applied, the current density is 1 × 10 5 A /
MR less than 20% compared to when a current of 2 cm 2 is applied
It turns out that only a ratio can be secured. On the other hand, when the substrate 1 made of Si is used, the current density is 1 × 10 6 A / cm
Even if the current is 2 or more, the MR ratio is not deteriorated.
It can be seen that even when a current having a current density of 9 × 10 6 A / cm 2 is passed, an MR ratio of 90% can be secured as compared with the case where a current having a current density of 1 × 10 5 A / cm 2 is passed.

【0039】これより、基板1を構成する材料の熱伝導
率が高い方が、電流密度の増加によるMR比の劣化が小
さいことがわかった。
From this, it was found that the higher the thermal conductivity of the material forming the substrate 1, the smaller the deterioration of the MR ratio due to the increase in the current density.

【0040】実験2 また、基板11が熱伝導率1.38W/mKの石英ガラ
ス(SiO2 )よりなる以外は、実施例2と同様の構成
を有する磁気抵抗効果素子を形成し、この磁気抵抗効果
素子と実施例2の磁気抵抗効果素子とに様々な電流密度
の電流を流し、実験1と同様、MR比キープ率を調べ
た。この結果を図5に示す。
Experiment 2 Further , a magnetoresistive effect element having the same structure as in Example 2 was formed except that the substrate 11 was made of quartz glass (SiO 2 ) having a thermal conductivity of 1.38 W / mK. Currents with various current densities were passed through the effect element and the magnetoresistive effect element of Example 2, and the MR ratio keeping ratio was examined as in Experiment 1. The result is shown in FIG.

【0041】図5より、実施例2に示したようなスピン
バルブ型の磁気抵抗効果素子においても、人工格子膜型
の磁気抵抗効果素子と同様、基板11を構成する材料の
熱伝導率が高い方が、電流密度の増加によるMR比の劣
化が小さいことがわかった。
As shown in FIG. 5, also in the spin valve type magnetoresistive effect element as shown in Example 2, the thermal conductivity of the material forming the substrate 11 is high as in the artificial lattice film type magnetoresistive effect element. It was found that the deterioration of the MR ratio due to the increase of the current density was smaller.

【0042】実験3 次に、磁気抵抗効果素子に流れる電流の電流密度を一定
とし、基板を構成する材料の熱伝導率とMR比との関係
について調べた。
Experiment 3 Next, the relationship between the thermal conductivity of the material forming the substrate and the MR ratio was examined with the current density of the current flowing through the magnetoresistive element being constant.

【0043】具体的には、基板1としてSiの代わりに
SiO2 、NiO−MnO、Al23 −TiCを用い
た以外は、実施例1と同様にして磁気抵抗効果素子を作
製し、電流密度9×106 A/cm2 の電流を流した時
のMR比を測定した。そして、各磁気抵抗効果素子に電
流密度1×105 A/cm2 の電流しか流れていない時
のMR比に対するキープ率を算出した。基板1に用いた
材料の300Kにおける熱伝導率と上記算出結果(MR
比キープ率)とを表1に示す。なお、表1には、基板1
としてSiを用いた場合(実施例1)における結果も併
せて示す。
Specifically, a magnetoresistive effect element was prepared in the same manner as in Example 1 except that SiO 2 , NiO-MnO, and Al 2 O 3 -TiC were used as the substrate 1 instead of Si, and the current was applied. The MR ratio was measured when a current having a density of 9 × 10 6 A / cm 2 was passed. Then, the keep ratio with respect to the MR ratio when only a current having a current density of 1 × 10 5 A / cm 2 was flowing through each magnetoresistive effect element was calculated. The thermal conductivity of the material used for the substrate 1 at 300K and the above calculation results (MR
Table 1 shows the relative keep ratio. In addition, in Table 1, the substrate 1
The results obtained when Si is used as (Example 1) are also shown.

【0044】[0044]

【表1】 [Table 1]

【0045】また、上記熱伝導率と上記MR比キープ率
との関係をグラフにしたものを図6に示す。
FIG. 6 is a graph showing the relationship between the thermal conductivity and the MR ratio keeping rate.

【0046】これらの結果より、熱伝導率の高い材料を
基板1として用いるほど、MR比キープ率が向上する、
即ち、MR比の劣化が抑制できることがわかった。
From these results, the MR ratio keeping rate is improved as the material having the higher thermal conductivity is used for the substrate 1.
That is, it was found that the deterioration of the MR ratio can be suppressed.

【0047】なお、実施例2に示したスピンバルブ型の
磁気抵抗効果素子についても、基板11として熱伝導率
の異なる材料を用いてMR比キープ率を調べたところ、
上述の結果と同様のものとなった。
Regarding the spin-valve type magnetoresistive element shown in Example 2, the MR ratio keeping rate was examined by using materials having different thermal conductivities as the substrate 11.
The results are similar to the above.

【0048】[0048]

【発明の効果】以上の説明からも明らかなように、本発
明を適用すると、動作時の発熱による磁気抵抗効果の劣
化が防止された磁気抵抗効果素子となる。
As is apparent from the above description, when the present invention is applied, a magnetoresistive effect element in which deterioration of the magnetoresistive effect due to heat generation during operation is prevented can be obtained.

【0049】したがって、本発明に係る磁気抵抗効果素
子を例えば磁気ヘッドに適用すれば、さらなる高密度記
録化と、厳しい仕様条件にも対応できる高い性能を有す
るものとなる。
Therefore, if the magnetoresistive effect element according to the present invention is applied to, for example, a magnetic head, it will have higher density recording and higher performance capable of meeting severe specification conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】人工格子膜構造の磁気抵抗効果素子の一例を示
す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a magnetoresistive effect element having an artificial lattice film structure.

【図2】スピンバルブ型の磁気抵抗効果素子の一例を示
す模式的断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of a spin valve type magnetoresistive effect element.

【図3】本発明の磁気抵抗効果素子の作製に用いられた
RFマグネトロンスパッタ装置を示す模式図である。
FIG. 3 is a schematic view showing an RF magnetron sputtering apparatus used for manufacturing the magnetoresistive effect element of the present invention.

【図4】人工格子膜構造の磁気抵抗効果素子における、
電流密度とMR比キープ率との関係を示す特性図であ
る。
FIG. 4 shows a magnetoresistive effect element having an artificial lattice film structure,
It is a characteristic view which shows the relationship between current density and MR ratio keeping rate.

【図5】スピンバルブ型の磁気抵抗効果素子における、
電流密度とMR比キープ率との関係を示す特性図であ
る。
FIG. 5 shows a spin valve type magnetoresistive effect element,
It is a characteristic view which shows the relationship between current density and MR ratio keeping rate.

【図6】基板の熱伝導率とMR比キープ率との関係を示
す特性図である。
FIG. 6 is a characteristic diagram showing the relationship between the thermal conductivity of the substrate and the MR ratio keeping ratio.

【符号の説明】[Explanation of symbols]

1 基板 2 非磁性膜 3 強磁性膜 11 基板 12 下層強磁性膜 13 非磁性膜 14 上層強磁性膜 15 反強磁性膜 21 チャンバ 22 基板ホルダ 23 回転板 24,25 ターゲット 26,27 シャッタ 30 RFマグネトロンスパッタ装置 1 Substrate 2 Nonmagnetic Film 3 Ferromagnetic Film 11 Substrate 12 Lower Ferromagnetic Film 13 Nonmagnetic Film 14 Upper Ferromagnetic Film 15 Antiferromagnetic Film 21 Chamber 22 Substrate Holder 23 Rotating Plate 24, 25 Target 26, 27 Shutter 30 RF Magnetron Sputtering device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/26 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 10/26

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 強磁性膜と非磁性膜とからなる多層磁気
抵抗効果膜が基板上に形成されてなる磁気抵抗効果素子
において、 前記基板の熱伝導率が2W/mK以上であることを特徴
とする磁気抵抗効果素子。
1. A magnetoresistive effect element comprising a multi-layer magnetoresistive effect film comprising a ferromagnetic film and a non-magnetic film formed on a substrate, wherein the substrate has a thermal conductivity of 2 W / mK or more. And a magnetoresistive effect element.
【請求項2】 前記多層磁気抵抗効果膜が、前記強磁性
膜と前記非磁性膜とが交互に積層された人工格子膜より
なることを特徴とする請求項1記載の磁気抵抗効果素
子。
2. The magnetoresistive effect element according to claim 1, wherein the multilayer magnetoresistive effect film is made of an artificial lattice film in which the ferromagnetic films and the nonmagnetic films are alternately laminated.
【請求項3】 前記多層磁気抵抗効果膜が、前記強磁性
膜、前記非磁性膜、前記強磁性膜がこの順に積層された
スピンバルブ膜よりなることを特徴とする請求項1記載
の磁気抵抗効果素子。
3. The magnetoresistive film according to claim 1, wherein the multi-layered magnetoresistive film comprises a spin valve film in which the ferromagnetic film, the nonmagnetic film, and the ferromagnetic film are stacked in this order. Effect element.
【請求項4】 前記非磁性膜が、Cu、Ag、Crより
選ばれる少なくとも1種を主成分とするものであること
を特徴とする請求項1ないし請求項3のいずれか1項に
記載の磁気抵抗効果素子。
4. The non-magnetic film contains at least one selected from Cu, Ag, and Cr as a main component, and the non-magnetic film according to claim 1. Magnetoresistive element.
JP6214961A 1994-05-30 1994-09-08 Magnetoresistance effect element Pending JPH0878758A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6214961A JPH0878758A (en) 1994-09-08 1994-09-08 Magnetoresistance effect element
EP95108223A EP0685746A3 (en) 1994-05-30 1995-05-29 Magneto-resistance effect device with improved thermal resistance.
US08/453,788 US5903708A (en) 1994-05-30 1995-05-30 Magneto-resistance effect device with improved thermal resistance
KR1019950013794A KR100442753B1 (en) 1994-05-30 1995-05-30 Magneto-resistive effect element with improved heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6214961A JPH0878758A (en) 1994-09-08 1994-09-08 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPH0878758A true JPH0878758A (en) 1996-03-22

Family

ID=16664439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6214961A Pending JPH0878758A (en) 1994-05-30 1994-09-08 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPH0878758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097904A (en) * 2001-09-25 2003-04-03 Toyota Motor Corp Array-type sensor
JP2004273304A (en) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd Electrode and battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003097904A (en) * 2001-09-25 2003-04-03 Toyota Motor Corp Array-type sensor
JP2004273304A (en) * 2003-03-10 2004-09-30 Matsushita Electric Ind Co Ltd Electrode and battery using the same

Similar Documents

Publication Publication Date Title
US6548114B2 (en) Method of fabricating a spin valve/GMR sensor having a synthetic antiferromagnetic layer pinned by Mn-alloy
US6368706B1 (en) Magnetoresistance effect element
US6395388B1 (en) Magnetoresistance effect element
JP4409656B2 (en) Magnetoresistive element and magnetic reproducing apparatus
JP2962415B2 (en) Exchange coupling membrane
US20080068767A1 (en) Exchange-coupled film, method for making exchange-coupled film, and magnetic sensing element including exchange-coupled film
WO1997011499A1 (en) Magnetic transducer
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
KR100442753B1 (en) Magneto-resistive effect element with improved heat resistance
JP3276264B2 (en) Magnetoresistive multilayer film and method of manufacturing the same
JP3198265B2 (en) Magnetoresistance effect element
JPH11259820A (en) Magnetoresistive effect film and magnetoresistive effect head
JPH11328625A (en) Magnetoresistance effect film and magnetoresistance effect head
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
JPH07192919A (en) Artificial lattice film and magnetoresistive effect element using artificial lattice film
JP4939683B2 (en) High electrical resistivity magnetoresistive film
JPH0963021A (en) Magneto-resistive effect element having spin valve structure and its production
JP2002280641A (en) Exchange connection film and magnetic detection element using the same
JPH0878758A (en) Magnetoresistance effect element
JPH1092639A (en) Magneto-resistive film having high electric resistance
JPH0923031A (en) Magnetoresistance effect multilayered film
JP3274449B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP2002344042A5 (en)
JP3532607B2 (en) Magnetoresistance effect element
JPH0849063A (en) Magnetoresistance-effect film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031111