WO2024106163A1 - Metallized film for secondary battery positive electrodes - Google Patents
Metallized film for secondary battery positive electrodes Download PDFInfo
- Publication number
- WO2024106163A1 WO2024106163A1 PCT/JP2023/038681 JP2023038681W WO2024106163A1 WO 2024106163 A1 WO2024106163 A1 WO 2024106163A1 JP 2023038681 W JP2023038681 W JP 2023038681W WO 2024106163 A1 WO2024106163 A1 WO 2024106163A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- metal film
- aluminum
- less
- metallized
- Prior art date
Links
- 239000011104 metalized film Substances 0.000 title claims abstract description 58
- 239000010408 film Substances 0.000 claims abstract description 201
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 105
- 229920005989 resin Polymers 0.000 claims abstract description 81
- 239000011347 resin Substances 0.000 claims abstract description 81
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 31
- 230000008859 change Effects 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims description 61
- 239000002184 metal Substances 0.000 claims description 61
- 238000002441 X-ray diffraction Methods 0.000 claims description 24
- 230000003746 surface roughness Effects 0.000 claims description 21
- 239000011888 foil Substances 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 11
- 239000011149 active material Substances 0.000 abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 230000037303 wrinkles Effects 0.000 abstract description 6
- 238000004804 winding Methods 0.000 abstract description 2
- 238000000151 deposition Methods 0.000 description 52
- 230000008021 deposition Effects 0.000 description 51
- 239000013078 crystal Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 25
- 238000001771 vacuum deposition Methods 0.000 description 22
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 230000020169 heat generation Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- -1 polyethylene terephthalate Polymers 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910001120 nichrome Inorganic materials 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000313 electron-beam-induced deposition Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- 229910006025 NiCoMn Inorganic materials 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- PSMHQAOEOARJDH-UHFFFAOYSA-L [Co]=O.C([O-])([O-])=O.[Li+].[Li+] Chemical compound [Co]=O.C([O-])([O-])=O.[Li+].[Li+] PSMHQAOEOARJDH-UHFFFAOYSA-L 0.000 description 1
- FBDMJGHBCPNRGF-UHFFFAOYSA-M [OH-].[Li+].[O-2].[Mn+2] Chemical compound [OH-].[Li+].[O-2].[Mn+2] FBDMJGHBCPNRGF-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HTQOEHYNHFXMJJ-UHFFFAOYSA-N oxosilver zinc Chemical compound [Zn].[Ag]=O HTQOEHYNHFXMJJ-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/68—Current collectors characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/66—Current collectors
- H01G11/70—Current collectors characterised by their structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
Definitions
- the present invention relates to a metallized film for use in the positive electrodes of secondary batteries.
- storage batteries installed in vehicles have a configuration in which the positive and negative electrodes are formed in sheet form, and the sheet-like positive and negative electrodes are wound or stacked and placed in a case with a separator also formed in sheet form between them.
- the sheet-like electrode plate has a structure in which a mixture layer containing active material is formed on the surface of a metal foil that serves as a current collector.
- one of the methods to obtain high output density is to reduce the resistance of the various materials that make up the storage battery (internal resistance of the storage battery).
- internal resistance of the storage battery In storage batteries, aluminum foil is often used as the current collector, but ordinary aluminum foil current collectors have an oxide film, and it is said that the oxide film formed on the surface of the aluminum increases the internal resistance. When the internal resistance increases, the voltage drops when charging and discharging with a large current, which results in a decrease in the output of the storage battery.
- aluminum forms a natural oxide film that is a strong insulator with a thickness of 5 to 10 nm, but the aluminum surface has the characteristic of maintaining good conductivity.
- the reasons for this include the theory that current flows from defective parts of the oxide film, and the theory that in the field of quantum mechanics, a tunneling phenomenon in which particles pass through a region that is usually energy insurmountable with a certain probability, and that good electronic conduction occurs when an electronic conductor approaches an electrical insulator to a distance of about 10 nm or less. Although it is not very clear, it is thought that the aluminum oxide film itself has a strong influence on the internal resistance.
- Patent Document 1 As a method for reducing the contact resistance between the electrode and the active material, which suppresses the increase in internal resistance caused by the oxide film, there is a method of making the surface of the metal foil used in the electrode uneven (for example, Patent Document 1). It is not clear whether roughening the aluminum surface increases the number of defects or whether forming many protrusions makes it easier for the tunnel effect to occur, but this is an effective method for reducing contact resistance.
- Patent Document 2 a material consisting of a biaxially oriented polyester thin film, which has excellent mechanical properties and heat-resistant dimensional stability, on the surface of which a conductive thin film layer of metal or the like is provided, with the function of a current collector and used as an electrode substrate (for example, Patent Document 2).
- JP 2008-160053 A Japanese Patent Application Laid-Open No. 10-40919
- the total electrical resistance value increases because the metal thickness is thinner than the metal foil that was previously used. Even if the metal surface is roughened to lower the contact resistance of the aluminum metal surface, a conductive thin film layer of metal or the like on the surface of the resin film is usually a vapor-deposited metal film formed by a vacuum deposition method or the like, and because it is a thin metal film, it is very difficult to roughen it by etching or the like. If the surface of the polyester thin film itself is roughened, it becomes more susceptible to breakage, making it difficult to transport during the manufacturing process.
- the objective of the present invention is to provide a metallized film that can be transported without breaking or wrinkling, and does not increase contact resistance even when a conductive thin film layer is formed on the resin surface.
- the inventors have succeeded in creating a metallized film that does not break or wrinkle during roll transport and has low contact resistance, by controlling the processing temperature and tension during or immediately after forming the evaporated metal film using the vacuum deposition method, as well as the surface shape of the evaporated film, and have also developed a method for producing the same.
- the present invention relates to a metallized film for a secondary battery positive electrode, which is a resin film having an aluminum metal film formed on at least one surface thereof and wound into a roll shape, the metallized film for a secondary battery positive electrode being characterized in that, after heat treatment at 150° C.
- the metallized film for a secondary battery positive electrode wherein the ratio I[200]/I[111] of the peak intensity I[111] of X-ray diffraction from the aluminum 111 plane to the peak intensity I[200] of X-ray diffraction from the aluminum 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less; the metallized film for a secondary battery positive electrode, wherein the surface resistance of the metal film is 0.15 ⁇ / ⁇ or less; the metallized film for a secondary battery positive electrode, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less; The metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
- the present invention makes it possible to obtain a metallized film that can be transported by rolls without breaking or wrinkling, even when a conductive thin film layer is formed on the resin surface, without increasing contact resistance, and a method for producing the same.
- 1 is a cross-sectional schematic diagram of a metallized film of the present invention.
- 1 is a cross-sectional schematic diagram of a metallized film of the present invention.
- 1 is a cross-sectional schematic diagram of a metallized film of the present invention.
- 1 is a scanning electron microscope (SEM) photograph of the surface of an aluminum metal film (film thickness 1.48 ⁇ m) in which large, dense crystal grains were grown using an induction heating type deposition source with a carbon crucible.
- 1 is a SEM photograph of the surface of an aluminum metal film (film thickness 0.53 ⁇ m) when large, dense crystal grains were grown using an induction heating type deposition source using a carbon crucible.
- the metallized film 4 of the present invention has an aluminum metal film 3 on one or both surfaces of a resin film 1 (FIGS. 1, 2 and 3).
- the metallized film 4 of the present invention is a film wound in a roll shape, and when the active material is coated on the metallized film, it can be pulled out from the roll, and after passing through the surface coating and drying processes, it can be wound into a roll shape. Processing in a roll shape makes the metallized film easier to handle, allows for faster processing speed, and makes it easier to save space in the processing device. However, since the metallized film 4 has a smaller rigidity and a larger thermal shrinkage than conventional aluminum foils, when the metallized film is transported by roll processing with added heat treatment, the metallized film is likely to break or deform into streaks, which makes it difficult to process cleanly.
- the thermal shrinkage of the metallized film in the film width direction (sometimes called the TD direction), which is perpendicular to the roll transport direction (sometimes called the MD direction)
- the thermal shrinkage in the TD direction becomes the starting point, and wrinkles and folds occur during roll transport. Therefore, it is preferable that the thermal shrinkage of the metallized film in the TD direction is small, and the dimensional change rate (negative shrinkage) in the TD direction after heat treatment at 150°C for 30 minutes is preferably -0.02% or more, and more preferably 0.00% or more.
- a common method for reducing thermal shrinkage in the TD direction is to accelerate the thermal shrinkage of the resin in the metallized film by heating, but if the thermal shrinkage of the metallized film in the TD direction and the MD direction is reduced by the same amount, deformation and flexibility will be lost due to uneven shrinkage in the MD and TD directions, and the film will no longer be able to maintain flatness during transport, which may cause deformation such as wrinkles. Therefore, it is preferable that the thermal shrinkage in the MD direction be a certain value or higher. Specifically, it is preferable that the dimensional change rate in the MD direction after heat treatment at 150°C for 30 minutes is -0.10% or less, and more preferably -0.20% or less.
- the tension and heating conditions vary greatly depending on the type of resin in the resin film, the thickness of the resin film, the film width, the evaporated metal film, and the transport roll diameter and transport roll pitch during heat treatment.
- the heat treatment can be performed before, during, or after deposition, but it is more preferable to perform it during vacuum deposition, which does not require a separate heat treatment step.
- the aluminum metal film 3 in the present invention is an aggregate of aluminum metal formed by laminating one or more layers whose main component is aluminum.
- the main component means that the aluminum content exceeds 80 atomic % when the entire layer is taken as 100 atomic %.
- the thickness of the aluminum metal film 3 in the present invention is preferably 0.7 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 2.5 ⁇ m or less.
- the metal film surface resistance is preferably 0.15 ⁇ / ⁇ or less, and more preferably 0.05 ⁇ / ⁇ or less.
- the thickness of the aluminum metal film is preferably 0.7 ⁇ m or more, and if it is 1.0 ⁇ m or more, the resistance will be lower and the rise in internal resistance can be reduced.
- a thickness of 3.0 ⁇ m or less is preferable, and 2.5 ⁇ m or less is even more preferable.
- the aluminum metal film 3 in the present invention has the characteristic of being able to reduce contact resistance by controlling the crystal growth of the metal film so that the surface irregularities become large when the film is formed by vacuum deposition.
- the contact resistance is preferably 15 m ⁇ or less, and more preferably 10 m ⁇ or less, in order to reduce the increase in internal resistance.
- the contact resistance is a value that includes the contact resistance of the two electrode areas of 25 mm x 25 mm and the film resistance (surface resistance) between the two electrodes.
- the ratio of the contact resistance value to the surface resistance value [contact resistance value]/[surface resistance value] can indicate a value that is less affected by the surface resistance, and the ratio of the surface resistance value [contact resistance value]/[surface resistance value] is preferably 0.35 or less, and more preferably 0.25 or less.
- the specular reflectance of the surface of the aluminum metal film 3 that is not in contact with the resin film at a wavelength of 555 nm is preferably 30% or less, and more preferably 20% or less. This is because the surface of the aluminum metal film is finely roughened, which reduces the specular reflectance of visible light at 555 nm, and is effective in reducing contact resistance.
- the surface roughness Ra of the surface of the aluminum metal film 3 that is not in contact with the resin film 1 is preferably 2.3 nm or more and 10.0 nm or less, and more preferably 5.0 nm or more and 10.0 nm or less.
- the contact resistance tends to be low, and the larger the surface roughness Ra, the more preferable it tends to be.
- the surface roughness Ra is too large, the thin aluminum metal film 3 can cause the metal film to break when transported or folded, so it is preferable that it be 10.0 nm or less.
- the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 plane of the aluminum metal film 3 to the X-ray diffraction peak intensity I[200] of the aluminum 200 plane is preferably 1.0 or more, and more preferably 2.0 or more.
- aluminum is a cubic crystal, so when aluminum is in powder form, the crystal orientation is random, so the peak intensity of the X-ray diffraction of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is less than 1.0.
- rolled aluminum foil becomes dense through the rolling process, and the crystal orientation is aligned, so the peak intensity I[111] of the X-ray diffraction of the diagonal 111 plane is weaker, and the intensity ratio I[200]/I[111] is greater than 1.0.
- the metal particles of the aluminum metallized film produced by the normal vacuum deposition method are columnar crystal films with large gaps, and the peak intensity of the X-ray diffraction of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is less than 1.0.
- the columnar crystals become larger and denser, the crystals are aligned in the 200-plane direction, and the intensity ratio I[200]/I[111] becomes greater than 1.0.
- the substrate is a resin film
- increasing the substrate temperature will cause it to melt and break, so if the substrate is produced without proper care, the substrate temperature cannot be increased, and the metal particles in the aluminum metallized film produced by vacuum deposition will become a columnar crystal film with large gaps, resulting in an intensity ratio I[200]/I[111] of less than 1.0.
- the columnar crystals of the aluminum metal film are grown large and dense, and the crystal grains are enlarged, which successfully forms appropriate irregularities on the surface of the aluminum metal film.
- the resin film is forcibly cooled from the back side while increasing the heat generation amount of the deposition source and controlling the degree of vacuum to 9.0 ⁇ 10 -3 Pa or more and 1 ⁇ 10 -2 Pa or less, the temperature is raised only near the surface of the resin film where the deposition source is exposed, making it possible to make the columnar crystals large and dense.
- the crystal grains are grown large and dense by using a deposition source of an induction heating method using a carbon crucible or a method of heating by an electron beam, which generates a large amount of heat, or by a vacuum deposition method in which the distance between the deposition source and the resin film is shortened to increase the amount of heat transferred to the resin film surface even if a heating boat method is used, and an inert gas such as argon is introduced and the degree of vacuum is controlled to 9.0 ⁇ 10 ⁇ 3 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less.
- the resin film will melt due to the heat if left as is, it is preferable to forcibly cool the resin film from the back side to a temperature just before it melts, thereby growing the columnar crystals of the aluminum metal film large and dense, and forming appropriate unevenness on the surface of the aluminum metal film.
- Figures 4 and 5 are SEM photographs of the surface of an aluminum metal film when crystal grains were grown large and densely using an induction heating deposition source with a carbon crucible that generates a large amount of heat on a resin film (polyethylene terephthalate (PET) film) with a surface roughness Ra of 1.6 nm.
- Figure 4 is an SEM photograph of the surface of an aluminum metal film with a thickness of 1.48 ⁇ m
- Figure 5 is an SEM photograph of the surface of an aluminum metal film with a thickness of 0.53 ⁇ m. It can be seen from Figures 4 and 5 that by enlarging the crystal grains, appropriate irregularities can be formed on the surface of the aluminum metal film.
- the surface roughness Ra at this time was 8.3 nm in Figure 4 and 2.7 nm in Figure 5.
- Figure 6 is a cross-sectional SEM photograph of the aluminum metal film in Figure 4, from which it can be seen that the aluminum metal film is columnar crystals, and that each convex part of the unevenness on the aluminum metal film surface corresponds to a single columnar crystal. From this, it can be inferred that the larger the convex part of the unevenness on the aluminum metal film surface, the larger and denser the columnar crystals are. Comparing Figures 4 and 5, it can be inferred that the growth of columnar crystals is greater in Figure 4, where the deposition time is longer and the amount of heat is greater in order to thicken the film.
- the thickness of the aluminum metal film is preferably 0.7 ⁇ m or more, and more preferably 1.0 ⁇ m or more.
- the method for forming the aluminum metal film 3 is preferably a vacuum deposition method that can form a metal film on a thin resin film without using an adhesive for the purpose of producing a thin electrode.
- Vacuum deposition methods include induction heating deposition, resistance heating deposition, laser beam deposition, and electron beam deposition, and among them, electron beam deposition, laser beam deposition, and induction heating deposition, which have a large amount of heat generated by the deposition source, are preferably used.
- the amount of heat generated by the deposition source needs to be large enough to form large and dense crystal grains of the aluminum metal film 3, and the substrate surface temperature needs to be sufficiently high, but since it is difficult to actually measure, it is judged whether the amount of heat is sufficient by confirming that the aluminum metal film 3 after deposition has the required physical properties.
- the aluminum metal film 3 preferably has a specular reflectance of 30% or less at a wavelength of 555 nm on the surface of the metal film that is not in contact with the resin film, a ratio I[200]/I[111] of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane of aluminum is preferably 1.0 or more and 10 or less, and the surface roughness Ra of the surface of the metal film is preferably 2.3 nm or more and 10.0 nm or less.
- the temperature of the resin film may rise and melt if the cooling function of the normal vacuum deposition method is controlled, so that the deposition is performed while controlling the cooling function so that the temperature does not rise too much during deposition and the film can be cooled uniformly.
- a cooling mechanism consisting of a metal plate or metal roll sufficiently cooled by a refrigerant. In order to cool uniformly, it is essential to make close contact between the resin film and the cooling mechanism without creating any gaps.
- the scratched portion will become a gap, and the resin film will not be able to cool at the scratched portion, resulting in melting.
- the foreign object gets into the resin film and the metal roll of the cooling mechanism, the foreign object will not be able to cool the resin film, resulting in melting.
- the heat generation amount of the deposition source is increased to the required heat amount, scratches on the metal roll and inclusion of foreign objects, which are acceptable in normal vacuum deposition methods, will become a problem, so that it is necessary to further strictly manage scratches on the metal roll and inclusion of foreign objects.
- the resin film 1 used in the present invention is preferably a thin film of a polymer such as a synthetic resin.
- resin films suitable for use in the present invention include polyester films, and among polyester films, polyethylene terephthalate films and polyethylene naphthalate films, or polyimide films, polyphenylene sulfide films, and polypropylene films. Of these, polyethylene terephthalate films are more preferably used. These resin films may be used alone or in combination. Furthermore, resin films coated with resin, adhesive, or the like on the surface thereof may be used.
- the thickness of the resin film 1 is preferably 1 ⁇ m or more and 20 ⁇ m or less, and more preferably 3 ⁇ m or more and 10 ⁇ m or less.
- the resin film is thin, and it is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
- the resin film is too thin, there is a possibility that the yield will decrease due to breakage during the manufacturing process, so it is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more.
- the surface roughness Ra of the resin film is preferably 0.6 nm or more and 2.0 nm or less. If the surface roughness of the resin film is 0.6 nm or less, when the resin film is wound into a roll, it may stick and become difficult to transport.
- the surface roughness of the resin film is preferably 0.6 nm or more, and more preferably 1.0 nm or more.
- the aluminum metal film surface since it is preferable for the aluminum metal film surface to have large irregularities, it is not preferable to increase the surface roughness Ra of the resin film, as this makes the resin film more likely to break during transport. It is preferable for the resin film to have the minimum amount of irregularities necessary for transport and to be as smooth as possible, so the surface roughness Ra is preferably 2.0 nm or less, and more preferably 1.5 nm or less.
- An anchor layer 2 may be provided between the resin film and the aluminum metal film 3 of the metallized film 4 of the present invention. By providing the anchor layer 2, it is expected that the adhesion between the resin film and the aluminum metal film can be improved. As the anchor layer 2, it is preferable to form a metal layer on the resin film by a sputtering method. The sputtering method makes it possible to reduce the thickness of the anchor layer, which is optimal for storage battery applications that require thinner layers.
- the anchor layer 2 is preferably a metal layer containing one or more selected from the group consisting of aluminum, nickel, titanium, nichrome, and chromium. At this time, it is important to keep the metal surface of aluminum, nickel, titanium, chromium, nichrome, etc. selected as the anchor layer 2 in a state where it is not oxidized while forming the aluminum metal film on it. Specifically, after forming a metal layer as the anchor layer 2 by sputtering, it is important to form the aluminum metal film 3 while maintaining a vacuum without exposing it to the atmosphere. If the metal surface of aluminum, nickel, titanium, chromium, nichrome, etc.
- the anchor layer 2 is oxidized, a stable metal oxide film is formed, which makes it difficult to form a metal bond with the interface with the aluminum metal film 3 formed thereon, and the adhesion cannot be secured, and the aluminum metal film 3 may peel off from the anchor layer 2. Therefore, it is important not to oxidize the aluminum, nickel, titanium, chromium, nichrome, etc. selected as the anchor layer 2.
- the thickness of the anchor layer 2 is preferably 3 nm to 40 nm, and more preferably 5 nm to 20 nm. If the thickness is less than 3 nm, sufficient adhesion may not be obtained. On the other hand, even if the anchor layer is made thicker than 40 nm, the effect of improving adhesion will not be great, so it is preferably 40 nm or less. If the anchor layer is produced by a sputtering method with a slow film formation speed, it is even more preferable to make the anchor layer 20 nm or less to improve productivity.
- the storage battery according to the present invention includes an electrode assembly and a battery case that houses the electrode assembly.
- the electrode assembly includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
- Such storage batteries include, for example, primary batteries, secondary batteries, electric double-layer capacitors, and aluminum electrolytic capacitors, but in this invention it refers to secondary batteries.
- Secondary batteries include, for example, lithium secondary batteries, lead acid batteries, nickel cadmium batteries, nickel hydrogen batteries, nickel iron batteries, silver oxide zinc batteries, manganese dioxide lithium secondary batteries, lithium cobalt oxide carbonate secondary batteries, vanadium lithium secondary batteries, etc.
- secondary batteries are preferred because they can be used for a long period of time, and lithium secondary batteries are even more preferred because they achieve high energy density by using organic solvents.
- the positive electrode is a current collector on which a positive electrode material consisting of an active material, a binder resin, and a conductive additive is laminated. It is preferable to use the metallized film 4 of the present invention as the current collector.
- active materials include layered lithium-containing transition metal oxides such as LiCoO2 , LiNiO2 , and Li( NiCoMn ) O2 , spinel-type manganese oxides such as LiMn2O4 , and iron-based compounds such as LiFePO4 .
- binder resin a resin with high oxidation resistance can be used. Specific examples include fluorine-containing resin, acrylic resin, and styrene-butadiene resin.
- Conductive additives include carbon materials such as carbon black and graphite.
- electrolyte examples include LiPF 6 , LiBF 4 , and LiClO 4 , with LiPF6 being preferred from the standpoint of solubility in organic solvents and ionic conductivity.
- organic solvents examples include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc., and two or more of these organic solvents may be mixed and used.
- lithium secondary batteries which are the most commonly used storage batteries.
- an active material and a conductive assistant are dispersed in a binder resin solution to prepare a coating solution for the electrodes, and then this coating solution is applied to a current collector and the solvent is dried to obtain a positive electrode and a negative electrode.
- the thickness of the coating film after drying is 50 ⁇ m to 500 ⁇ m.
- a separator for lithium secondary batteries is placed between the obtained positive and negative electrodes so that it is in contact with the active material layer of each electrode, and then it is enclosed in an exterior material such as an aluminum laminate film. After injecting the electrolyte, the negative electrode lead and safety valve are installed, and the exterior material is sealed.
- the lithium secondary battery obtained in this way has high adhesion to the electrodes, has excellent battery characteristics, and can be manufactured at low cost.
- Magnetic sputtering A resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a metal layer was formed using a target of 70 mm ⁇ 550 mm in an argon gas atmosphere adjusted to a vacuum of 1 ⁇ 10 ⁇ 2 Pa or less by applying a pulse power source.
- sputtering and vacuum deposition were performed consecutively to prevent contact with the air between the anchor layer and the aluminum metal film.
- the resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a vacuum was drawn until the vacuum reached 9.0 ⁇ 10 ⁇ 3 Pa or less. After that, the deposition boat was heated under the conveying speed, output conditions, and feed speed for feeding the aluminum wire into the deposition boat that achieved a predetermined aluminum film thickness, and the fed aluminum wire was heated to perform vacuum deposition, thereby forming an aluminum metal film.
- EWC-060 manufactured by ULVAC
- a resin film was placed inside a roll-type vacuum deposition device (ULVAC EWC-060), and vacuum deposition was performed by heating an aluminum ingot using induction heating deposition with a carbon crucible under the conveying speed and output conditions that resulted in the aluminum film thickness being the specified value, forming an aluminum metal film.
- UVAC EWC-060 roll-type vacuum deposition device
- XRD X-ray diffraction
- Measurements were performed using an X-ray diffraction (RIGAKU SmartLab 9kW). Measurement conditions were: X-ray tube voltage and current: 45 kV-200 mA, scanning speed: 2°/min, entrance slit: 1.0 mm, receiving slit: 1.0 mm.
- the peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak intensity I[200] of the X-ray diffraction of the 200 plane were obtained from the measurement results, and the ratio I[200]/I[111] was calculated and compared.
- An absolute reflectance measuring device ASR-3105 (incident angle 5°) was attached to a spectrophotometer UV-3600i Plus with a large sample chamber unit MPC-603A manufactured by Shimadzu Corporation, and the reflectance of the measurement sample was measured using the aluminum mirror attached to the absolute reflectance measuring device as a reference.
- the reflectance data for visible light of 555 nm was used as a representative value.
- a metallized film was placed on a 10 mm thick NR sponge rubber (NRS-06 manufactured by Wake Sangyo Co., Ltd.) with the metal film facing upwards, and two gold-plated copper plates measuring 25 mm x 25 mm were placed 1 mm apart, with a 500 g weight placed on each of the copper plates.
- the resistance between the two copper plates was measured with a resistance meter RM3544 manufactured by Hioki E.E. Co., Ltd., and was taken as the contact resistance.
- the metallized film was cut to a size of approximately 300 mm x approximately 80 mm, and the surface resistance was measured at three points using a simple low resistivity meter (Loresta (registered trademark) EP MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) by the four-terminal method, and the average value was used as the surface resistance value.
- a simple low resistivity meter Liesta (registered trademark) EP MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
- the metallized film was cut to a size of approximately 30 mm x approximately 30 mm, and 10 sheets were stacked and the thickness was measured with a micrometer to calculate the thickness of each metallized film.
- the thickness of the aluminum metal film was calculated from the difference between this thickness and the metallized film thickness calculated from the thickness of an undeposited resin film, which was similarly measured with a micrometer by stacking 10 sheets.
- a metallized film of approximately 300 mm x approximately 300 mm is prepared, a hole of ⁇ 1 mm is drilled in approximately the center, and three holes of ⁇ 1 mm are drilled at positions 75 mm apart in front and behind the hole in the center in the roll conveyance direction (MD direction) of the metallized film, for a total of nine holes. Then, one hole is drilled at positions 50 mm in front and behind each of the three holes in the width direction (TD direction) of the film, for a total of nine holes.
- the distance between adjacent holes for nine holes was measured using a manual two-dimensional image measuring machine "EXLON-Y” manufactured by Nakamura Mfg. Co., Ltd., and then the metallized film was heated in an oven at 150°C for 30 minutes, and the distance between adjacent holes for the same nine holes was measured using a manual two-dimensional image measuring machine "EXLON-Y” manufactured by Nakamura Mfg. Co., Ltd.
- the average dimensional change rate in the MD and TD directions was calculated for nine adjacent holes, with each distance taken as 100%. Shrinkage was shown as a negative value, and expansion was shown as a positive value.
- the positive electrode active material was continuously applied to the aluminum metal film surface not in contact with the resin film on both sides or one side of the metallized film by the method described in the Examples, and after heating and drying, the positive electrode current collector was processed by calendar press processing. During this processing, it was carefully observed whether wrinkles or folds occurred during the transportation or winding process, and if these defects did not occur, the transportation suitability was judged to be " ⁇ ", and if these defects occurred, the transportation suitability was judged to be " ⁇ ".
- Example 1 A biaxially oriented polyethylene terephthalate film with a thickness of 5.7 ⁇ m (Lumirror (registered trademark), type: F53, manufactured by Toray Industries, Inc.) was used as the resin film. The surface roughness of this resin film was 1.6 nm.
- a roll of this resin film was placed in a roll-type vacuum deposition apparatus (EWC-060, manufactured by ULVAC), and aluminum was deposited by sputtering to a thickness of 5 nm by applying a pulsed power supply. The sputtering output condition was 2.0 kW using a pulsed power supply.
- An aluminum metal film was then vacuum-deposited to a thickness of 1.06 ⁇ m by a vacuum deposition method in which the deposition boat was heated immediately after sputtering to heat the aluminum wire being sent out.
- argon was introduced and the degree of vacuum during deposition was controlled to 9.0 ⁇ 10 ⁇ 3 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less.
- the output of the deposition source, the conveying speed, and the tension during deposition were adjusted so that the dimensional change rate around 150° C. for 30 minutes was ⁇ 0.10% or less in the MD direction and ⁇ 0.02% or more in the TD direction.
- the metallized film produced in this manner had a dimensional change rate of -0.28% in the MD direction and 0.06% in the TD direction at 150°C for 30 minutes, the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 face to the X-ray diffraction peak intensity I[200] of the aluminum 200 face was 3.1, the specular reflectance of the aluminum metal film surface not in contact with the resin film was 7.1% at a wavelength of 555 nm, and the surface roughness was 6.1 nm.
- the surface resistance of the aluminum metal film surface not in contact with the resin film of this metal film was 0.051 ⁇ / ⁇ , the contact resistance was 10.12 m ⁇ , and the ratio of the contact resistance to the surface resistance [contact resistance/surface resistance] was 0.20.
- the contact resistance was small enough that the contact resistance was judged to be acceptable, and the transportability was rated as acceptable.
- Example 2 A metallized film was prepared and evaluated in the same manner as in Example 1, except that argon was not introduced during deposition, the degree of vacuum during deposition was 9.0 ⁇ 10 ⁇ 3 Pa or higher, and the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
- Example 1 A metallized film was produced and evaluated in the same manner as in Example 1, except that the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150°C for 30 minutes was -0.10% or less in the MD direction and -0.02% or more in the TD direction, and the output of the induction heating deposition method using a carbon crucible as the deposition source was reduced to prevent the resin film from being damaged by heat as much as possible.
- Example 2 A metallized film was prepared and evaluated in the same manner as in Example 1, except that vacuum deposition was performed under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0 ⁇ 10 ⁇ 3 Pa or higher, the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150° C. for 30 minutes was ⁇ 0.10% or lower in the MD direction and ⁇ 0.02% or higher in the TD direction, and the tension on the resin film was kept as low as possible. The results are shown in Table 1.
- Example 3 A metallized film was produced and evaluated in the same manner as in Example 1, except that the aluminum wire was vacuum-deposited under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0 ⁇ 10 ⁇ 3 Pa or more, the output, conveying speed, and tension of the deposition source during deposition were not adjusted so that the dimensional change rate at around 150° C. for 30 minutes was ⁇ 0.10% or less in the MD direction and ⁇ 0.02% or more in the TD direction, the tension on the resin film was kept as low as possible, and the output of the deposition boat was not increased. The results are shown in Table 1.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
The present invention enables the achievement of a production method which is capable of uniformly applying an active material to a film collector foil by roll conveyance without the occurrence of wrinkles or folds caused by heating or dimensional shrinkage during the roll conveyance even if the film collector foil is obtained by forming a conductive thin film layer on a resin surface and has a lower stiffness in comparison to conventional aluminum foils. According to the present invention, a metallized film for secondary battery positive electrodes is obtained by forming an aluminum metal film on at least one surface of a resin film, and winding the resulting film into a roll. This metallized film for secondary battery positive electrodes has a dimensional change rate in the MD direction of -0.10% or less and a dimensional change rate in the TD direction of -0.02% or more after a heat treatment at 150°C for 30 minutes.
Description
本発明は二次電池正極用金属化フィルムに関する。
The present invention relates to a metallized film for use in the positive electrodes of secondary batteries.
近年、電気電子機器の小型化や、環境問題から、脱ガソリン車(ハイブリット自動車、電気自動車)の二次電池やキャパシタなどの蓄電池が、小型化、軽量化するのと同時に、瞬時に大電流を充放電できる高出力密度であることが求められている。
In recent years, due to the miniaturization of electrical and electronic devices and environmental concerns, storage batteries such as secondary batteries and capacitors for non-gasoline-powered vehicles (hybrid and electric vehicles) are required to be smaller and lighter, while at the same time having a high output density that allows them to instantly charge and discharge large currents.
一般に、車両に搭載される蓄電池は、重量エネルギー密度を向上させるために、正極および負極がシート状に形成され、同じくシート状に形成されたセパレータを介して、シート状の正極および負極が巻回あるいは積層された状態で、ケース内に納められた構成を有している。シート状の電極板は、集電体となる金属箔の表面に、活物質を含む合剤層を形成した構造をしている。
Generally, in order to improve the weight energy density, storage batteries installed in vehicles have a configuration in which the positive and negative electrodes are formed in sheet form, and the sheet-like positive and negative electrodes are wound or stacked and placed in a case with a separator also formed in sheet form between them. The sheet-like electrode plate has a structure in which a mixture layer containing active material is formed on the surface of a metal foil that serves as a current collector.
また、高出力密度を得る方法のひとつに、蓄電池を構成する各種の材質の抵抗(蓄電池の内部抵抗)を低減する方法がある。蓄電池において、集電体にはアルミニウム箔が用いられていることが多いが、通常のアルミニウム箔による集電体は酸化皮膜を有しており、アルミニウムの表面に形成される酸化皮膜により、内部抵抗が増加するといわれている。内部抵抗が増加すると、大電流で充放電を行ったときに電圧降下を招き、この結果として、蓄電池の出力の低下を招いていた。一般的にアルミニウムには通常厚み5~10nmの強固な絶縁体の自然酸化膜が形成されるが、アルミニウム表面としては良好な導電性を保持する特徴がある。その理由として酸化膜の欠陥部分から電流が流れる説と、量子力学の分野で、エネルギー的に通常は超えることのできない領域を粒子が一定の確率で通り抜けてしまうトンネル現象から、電気的絶縁体を挟んで電子伝導体が、10nm程度以下に接近すると良好な電子伝導が生じるトンネル効果の説などがあり、あまり明確にはなっていないが、アルミニウム酸化膜自体が内部抵抗に強く影響していると考えられている。
Also, one of the methods to obtain high output density is to reduce the resistance of the various materials that make up the storage battery (internal resistance of the storage battery). In storage batteries, aluminum foil is often used as the current collector, but ordinary aluminum foil current collectors have an oxide film, and it is said that the oxide film formed on the surface of the aluminum increases the internal resistance. When the internal resistance increases, the voltage drops when charging and discharging with a large current, which results in a decrease in the output of the storage battery. Generally, aluminum forms a natural oxide film that is a strong insulator with a thickness of 5 to 10 nm, but the aluminum surface has the characteristic of maintaining good conductivity. The reasons for this include the theory that current flows from defective parts of the oxide film, and the theory that in the field of quantum mechanics, a tunneling phenomenon in which particles pass through a region that is usually energy insurmountable with a certain probability, and that good electronic conduction occurs when an electronic conductor approaches an electrical insulator to a distance of about 10 nm or less. Although it is not very clear, it is thought that the aluminum oxide film itself has a strong influence on the internal resistance.
酸化皮膜による内部抵抗向上を抑制する電極と活性物質との接触抵抗を下げる方法として、電極に使用される金属箔の表面に凹凸させる方法がある(例えば、特許文献1)。アルミニウム表面を粗化することで、欠陥数を増大させるのか、突起部を多く形成することで、トンネル効果が発現しやすくなっているかは明らかではないが、接触抵抗を低下させる手法として有効である。
As a method for reducing the contact resistance between the electrode and the active material, which suppresses the increase in internal resistance caused by the oxide film, there is a method of making the surface of the metal foil used in the electrode uneven (for example, Patent Document 1). It is not clear whether roughening the aluminum surface increases the number of defects or whether forming many protrusions makes it easier for the tunnel effect to occur, but this is an effective method for reducing contact resistance.
小型化および軽量化しながら高出力密度を向上させる方法としては、体積エネルギー密度の向上や、重量エネルギー密度の向上を目的として、電極基材の薄膜化が進められている。しかしながら対応すべく電極に使用されている金属箔を単純に薄膜化すると、強度の不足という問題が発生する。また、接触抵抗を低下させる目的で薄膜化した金属箔の表面凹凸を大きくすると、更に金属箔の強度低下の原因となり好ましくない。そこで金属に代わる新たな素材として、機械特性や耐熱寸法安定性に優れる二軸延伸ポリエステル薄膜フィルムの表面に、金属などの導電性薄膜層を設けた構成を有する素材の、集電体機能を持たせて電極基材として用いることが提案されている(例えば、特許文献2)。
As a method of improving high power density while reducing size and weight, progress has been made in thinning the electrode substrate with the aim of improving volumetric energy density and weight energy density. However, simply thinning the metal foil used in the electrodes to address this issue results in a problem of insufficient strength. Furthermore, increasing the surface irregularities of the thinned metal foil in order to reduce contact resistance is undesirable as it further reduces the strength of the metal foil. As a result, a new material has been proposed to replace metals: a material consisting of a biaxially oriented polyester thin film, which has excellent mechanical properties and heat-resistant dimensional stability, on the surface of which a conductive thin film layer of metal or the like is provided, with the function of a current collector and used as an electrode substrate (for example, Patent Document 2).
しかしながら、ポリエステル薄膜フィルム等の樹脂フィルムの表面に金属などの導電性薄膜層を設けた構成の場合、従来のアルミニウム箔と比較して剛性が弱くなり、加熱処理により寸法収縮が発生することで、ロール搬送時にシワや折れが発生してしまい、活物質をロール搬送で均一に塗布することが大変難しい。
However, when a conductive thin film layer such as a metal is applied to the surface of a resin film such as a polyester thin film, the film becomes less rigid than conventional aluminum foil, and dimensional shrinkage occurs due to heat treatment, which leads to wrinkles and creases during roll transport, making it very difficult to apply the active material uniformly when transported by roll.
また、従来使用していた金属箔よりも金属厚は薄くなる分、トータルの電気抵抗値は上昇してしまう。そして、アルミニウム金属表面の接触抵抗を低くする目的で金属表面を粗化するにしても、通常、樹脂フィルムの表面に金属などの導電性薄膜層は真空蒸着法等により形成する蒸着金属膜であり、薄膜金属であるため、エッチング等で粗化することは大変難しい。ポリエステル薄膜フィルムの表面自体を粗化すると、破断しやすくなり、製造工程の搬送が困難になる。
In addition, the total electrical resistance value increases because the metal thickness is thinner than the metal foil that was previously used. Even if the metal surface is roughened to lower the contact resistance of the aluminum metal surface, a conductive thin film layer of metal or the like on the surface of the resin film is usually a vapor-deposited metal film formed by a vacuum deposition method or the like, and because it is a thin metal film, it is very difficult to roughen it by etching or the like. If the surface of the polyester thin film itself is roughened, it becomes more susceptible to breakage, making it difficult to transport during the manufacturing process.
本発明は上述の事実に鑑み、樹脂表面に導電性薄膜層形成しても、接触抵抗が上昇しないで、破断やシワ発生することなく搬送できる金属化フィルムを提供することをその課題とする。
In light of the above, the objective of the present invention is to provide a metallized film that can be transported without breaking or wrinkling, and does not increase contact resistance even when a conductive thin film layer is formed on the resin surface.
本発明者らは、上記の課題に鑑み鋭意検討した結果、真空蒸着法を用いて蒸着金属膜を形成するとき、または直後の処理温度および張力や蒸着膜の表面形状をコントロールすることで、ロール搬送で破断やシワ発生しなく、接触抵抗が小さい金属化フィルム、および、その製造方法を得るに至った。
As a result of intensive research into the above-mentioned problems, the inventors have succeeded in creating a metallized film that does not break or wrinkle during roll transport and has low contact resistance, by controlling the processing temperature and tension during or immediately after forming the evaporated metal film using the vacuum deposition method, as well as the surface shape of the evaporated film, and have also developed a method for producing the same.
すなわち、本発明は、樹脂フィルムの少なくとも一方の表面にアルミニウム金属膜が形成され、ロール形状に巻かれた二次電池正極用金属化フィルムであって、150℃30分の熱処理後のMD方向の寸法変化率が-0.10%以下であり、TD方向の寸法変化率が-0.02%以上であることを特徴とする二次電池正極用金属化フィルム、
該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である上記二次電池正極用金属化フィルム、
前記金属膜の表面抵抗が0.15Ω/□以下である上記二次電池正極用金属化フィルム、
前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下である上記二次電池正極用金属化フィルム、
前記金属膜の表面粗さRaが2.3nm以上10.0nm以下である上記二次電池正極用金属化フィルム、に関する。 That is, the present invention relates to a metallized film for a secondary battery positive electrode, which is a resin film having an aluminum metal film formed on at least one surface thereof and wound into a roll shape, the metallized film for a secondary battery positive electrode being characterized in that, after heat treatment at 150° C. for 30 minutes, the dimensional change rate in the MD direction is −0.10% or less and the dimensional change rate in the TD direction is −0.02% or more;
the metallized film for a secondary battery positive electrode, wherein the ratio I[200]/I[111] of the peak intensity I[111] of X-ray diffraction from the aluminum 111 plane to the peak intensity I[200] of X-ray diffraction from the aluminum 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less;
the metallized film for a secondary battery positive electrode, wherein the surface resistance of the metal film is 0.15 Ω/□ or less;
the metallized film for a secondary battery positive electrode, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less;
The metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である上記二次電池正極用金属化フィルム、
前記金属膜の表面抵抗が0.15Ω/□以下である上記二次電池正極用金属化フィルム、
前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下である上記二次電池正極用金属化フィルム、
前記金属膜の表面粗さRaが2.3nm以上10.0nm以下である上記二次電池正極用金属化フィルム、に関する。 That is, the present invention relates to a metallized film for a secondary battery positive electrode, which is a resin film having an aluminum metal film formed on at least one surface thereof and wound into a roll shape, the metallized film for a secondary battery positive electrode being characterized in that, after heat treatment at 150° C. for 30 minutes, the dimensional change rate in the MD direction is −0.10% or less and the dimensional change rate in the TD direction is −0.02% or more;
the metallized film for a secondary battery positive electrode, wherein the ratio I[200]/I[111] of the peak intensity I[111] of X-ray diffraction from the aluminum 111 plane to the peak intensity I[200] of X-ray diffraction from the aluminum 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less;
the metallized film for a secondary battery positive electrode, wherein the surface resistance of the metal film is 0.15 Ω/□ or less;
the metallized film for a secondary battery positive electrode, wherein the resin film has a surface roughness Ra of 0.6 nm or more and 2.0 nm or less;
The metal film has a surface roughness Ra of 2.3 nm or more and 10.0 nm or less.
本発明によると、樹脂表面に導電性薄膜層を形成しても、接触抵抗が上昇しないで、破断やシワ発生することなくロール搬送できる金属化フィルム、および、その製造方法を得ることが可能となる。
The present invention makes it possible to obtain a metallized film that can be transported by rolls without breaking or wrinkling, even when a conductive thin film layer is formed on the resin surface, without increasing contact resistance, and a method for producing the same.
本発明について以下詳細に説明する。
The present invention is described in detail below.
<金属化フィルム>
本発明の金属化フィルム4は、樹脂フィルム1の一方、もしくは両方の面にアルミニウム金属膜3を有する(図1、図2、図3)。 <Metallized film>
Themetallized film 4 of the present invention has an aluminum metal film 3 on one or both surfaces of a resin film 1 (FIGS. 1, 2 and 3).
本発明の金属化フィルム4は、樹脂フィルム1の一方、もしくは両方の面にアルミニウム金属膜3を有する(図1、図2、図3)。 <Metallized film>
The
本発明の金属化フィルム4はロール形状に巻かれたフィルムであって、金属化フィルム上に活物質をコートする際もロールから引き出し、表面コートおよび乾燥工程を通過後にロール状に巻き取ることが可能である。ロール状で加工した方が、金属化フィルムの取り扱いがしやすく、加工速度も速くでき、加工装置の省スペース化がしやすい。ただし、金属化フィルム4は従来のアルミ箔と比較すると剛性が小さく、熱収縮も大きいため、加熱処理を加えた加工でロール搬送すると金属化フィルムが折れてしまったり、スジ状に変形してしまったりし、きれいに加工できない不具合が発生しやすい。特に、金属化フィルムのロール搬送方向(MD方向ということがある)に対して垂直方向であるフィルム幅方向(TD方向ということがある)の熱収縮が大きい場合、TD方向への熱収縮することが起点となり、ロール搬送中にシワ、折れの変形が発生してしまう。よって、金属化フィルムのTD方向の熱収縮は小さい方が好ましく、150℃30分の熱処理後のTD方向の寸法変化率(収縮がマイナス)は-0.02%以上であることが好ましく、0.00%以上であることがより好ましい。
The metallized film 4 of the present invention is a film wound in a roll shape, and when the active material is coated on the metallized film, it can be pulled out from the roll, and after passing through the surface coating and drying processes, it can be wound into a roll shape. Processing in a roll shape makes the metallized film easier to handle, allows for faster processing speed, and makes it easier to save space in the processing device. However, since the metallized film 4 has a smaller rigidity and a larger thermal shrinkage than conventional aluminum foils, when the metallized film is transported by roll processing with added heat treatment, the metallized film is likely to break or deform into streaks, which makes it difficult to process cleanly. In particular, when the thermal shrinkage of the metallized film in the film width direction (sometimes called the TD direction), which is perpendicular to the roll transport direction (sometimes called the MD direction), is large, the thermal shrinkage in the TD direction becomes the starting point, and wrinkles and folds occur during roll transport. Therefore, it is preferable that the thermal shrinkage of the metallized film in the TD direction is small, and the dimensional change rate (negative shrinkage) in the TD direction after heat treatment at 150°C for 30 minutes is preferably -0.02% or more, and more preferably 0.00% or more.
TD方向の熱収縮を小さくする方法としては、加熱により金属化フィルムの樹脂の熱収縮をより進ませる方法が一般的であるが、金属化フィルムのTD方向の熱収縮とMD方向の熱収縮を同様に小さくすると、MD方向とTD方向の不均一な収縮による変形と柔軟性が損なわれることから、フィルム搬送時の平坦性が保てなくなり、シワ等の変形の原因となりうる。よってMD方向の熱収縮はある程度以上の値であることが好ましい。具体的には150℃30分の熱処理後のMD方向の寸法変化率が-0.10%以下であることが好ましく、-0.20%以下であることがより好ましい。
A common method for reducing thermal shrinkage in the TD direction is to accelerate the thermal shrinkage of the resin in the metallized film by heating, but if the thermal shrinkage of the metallized film in the TD direction and the MD direction is reduced by the same amount, deformation and flexibility will be lost due to uneven shrinkage in the MD and TD directions, and the film will no longer be able to maintain flatness during transport, which may cause deformation such as wrinkles. Therefore, it is preferable that the thermal shrinkage in the MD direction be a certain value or higher. Specifically, it is preferable that the dimensional change rate in the MD direction after heat treatment at 150°C for 30 minutes is -0.10% or less, and more preferably -0.20% or less.
ロール形状に巻かれた金属化フィルムの、150℃30分の熱処理後のMD方向の寸法変化率が-0.10%以下であり、TD方向の寸法変化率が-0.02%以上とするためには、樹脂フィルムもしくは金属化フィルムのMD方向に張力をかけながら、加熱処理を行うことで達成可能である。張力や加熱条件については、樹脂フィルムの樹脂の種類、樹脂フィルムの厚さ、フィルム幅、蒸着金属膜、熱処理時の搬送ロール径や搬送ロールピッチの影響で大きく変化するため、張力と加熱条件を調整しながら行い、最適化することで金属化フィルムの状態で、150℃30分の熱処理後のMD方向の寸法変化率が-0.10%以下であり、TD方向の寸法変化率が-0.02%以上となるように調整することが可能である。
In order to ensure that the dimensional change rate in the MD direction of a metallized film wound in a roll shape is -0.10% or less and the dimensional change rate in the TD direction is -0.02% or more after heat treatment at 150°C for 30 minutes, this can be achieved by applying tension in the MD direction of the resin film or metallized film while performing heat treatment. The tension and heating conditions vary greatly depending on the type of resin in the resin film, the thickness of the resin film, the film width, the evaporated metal film, and the transport roll diameter and transport roll pitch during heat treatment. By adjusting and optimizing the tension and heating conditions, it is possible to adjust the dimensional change rate in the MD direction of the metallized film after heat treatment at 150°C for 30 minutes to -0.10% or less and the dimensional change rate in the TD direction to -0.02% or more.
加熱処理を行うタイミングとしては、蒸着前でも蒸着中でも蒸着後でも構わないが、加熱処理工程が別途追加されることがない真空蒸着時に行うことが更に好ましい。
The heat treatment can be performed before, during, or after deposition, but it is more preferable to perform it during vacuum deposition, which does not require a separate heat treatment step.
<アルミニウム金属膜>
本発明におけるアルミニウム金属膜3は、アルミニウムを主成分とする層を1層または2層以上積層したアルミニウム金属の集合体である。主成分とは層全体を100原子%としたとき、80原子%を超えることをさす。 <Aluminum metal film>
Thealuminum metal film 3 in the present invention is an aggregate of aluminum metal formed by laminating one or more layers whose main component is aluminum. The main component means that the aluminum content exceeds 80 atomic % when the entire layer is taken as 100 atomic %.
本発明におけるアルミニウム金属膜3は、アルミニウムを主成分とする層を1層または2層以上積層したアルミニウム金属の集合体である。主成分とは層全体を100原子%としたとき、80原子%を超えることをさす。 <Aluminum metal film>
The
本発明におけるアルミニウム金属膜3の厚みは0.7μm以上3.0μm以下が好ましく、1.0μm以上2.5μm以下であることがより好ましい。
The thickness of the aluminum metal film 3 in the present invention is preferably 0.7 μm or more and 3.0 μm or less, and more preferably 1.0 μm or more and 2.5 μm or less.
電極用途では、電気抵抗は低いほど好ましく、表面抵抗では金属膜表面抵抗が0.15Ω/□以下であることが好ましく、0.05Ω/□以下であることがさらに好ましい。一方、エネルギー密度向上のためには薄膜化する必要があるため、金属膜を単純に厚くすることは好ましくない。電極の電気抵抗を考慮すれば、アルミニウム金属膜の厚みは 0.7μm以上が好ましく、1.0μm以上であればより低抵抗となり、内部抵抗の上昇を低減できる。一方、体積エネルギー密度の向上の目的から電極基材の薄膜化を進める必要があり、3.0μm以下が好ましく、2.5μm以下であることが更に好ましい。
For electrode applications, the lower the electrical resistance, the better, and in terms of surface resistance, the metal film surface resistance is preferably 0.15 Ω/□ or less, and more preferably 0.05 Ω/□ or less. On the other hand, since thinning is necessary to improve energy density, simply making the metal film thicker is not preferable. Considering the electrical resistance of the electrode, the thickness of the aluminum metal film is preferably 0.7 μm or more, and if it is 1.0 μm or more, the resistance will be lower and the rise in internal resistance can be reduced. On the other hand, in order to improve volumetric energy density, it is necessary to further thin the electrode substrate, and a thickness of 3.0 μm or less is preferable, and 2.5 μm or less is even more preferable.
本発明におけるアルミニウム金属膜3は、真空蒸着法での成膜時に表面凹凸が大きくなるように金属膜の結晶成長を制御することにより、接触抵抗を低くできる特徴をもつ。
The aluminum metal film 3 in the present invention has the characteristic of being able to reduce contact resistance by controlling the crystal growth of the metal film so that the surface irregularities become large when the film is formed by vacuum deposition.
10mm厚のNRスポンジゴムの上に、金属化フィルム4のアルミニウム金属膜3が上向きになるようにのせ、25mm×25mmの大きさの金メッキを施した銅板2枚を1mmの間隔をあけてそれぞれの銅板に500gのおもりを乗せ、その2枚の銅板間の抵抗値を接触抵抗の値としたとき、内部抵抗上昇を低減するためには接触抵抗値は15mΩ以下であることが好ましく、10mΩ以下であることが更に好ましい。ここでの接触抵抗値は25mm×25mmの2枚の電極面積の接触抵抗と2枚の電極間の膜抵抗(表面抵抗)を含んだ値である。よって、接触抵抗値と表面抵抗値の比[接触抵抗値]/[表面抵抗値]は、表面抵抗の影響が少ない値を示すことができ、表面抵抗値の比[接触抵抗値]/[表面抵抗値]は0.35以下が好ましく、0.25以下であることが更に好ましい。
When the aluminum metal film 3 of the metallized film 4 is placed on top of a 10 mm thick NR sponge rubber, and two gold-plated copper plates measuring 25 mm x 25 mm are placed with a 1 mm gap between them and a 500 g weight is placed on each of the copper plates, and the resistance between the two copper plates is taken as the contact resistance, the contact resistance is preferably 15 mΩ or less, and more preferably 10 mΩ or less, in order to reduce the increase in internal resistance. The contact resistance here is a value that includes the contact resistance of the two electrode areas of 25 mm x 25 mm and the film resistance (surface resistance) between the two electrodes. Therefore, the ratio of the contact resistance value to the surface resistance value [contact resistance value]/[surface resistance value] can indicate a value that is less affected by the surface resistance, and the ratio of the surface resistance value [contact resistance value]/[surface resistance value] is preferably 0.35 or less, and more preferably 0.25 or less.
金属膜の結晶成長を制御して接触抵抗を低くするアルミニウム金属膜3の表面の特徴として、アルミニウム金属膜3の樹脂フィルムと接していない表面の波長555nmの鏡面反射率が30%以下であることが好ましく、20%以下であることがより好ましい。これはアルミニウム金属膜の表面が細かく粗化されているために、可視光555nmの鏡面反射率が低下しており、接触抵抗を低くするのに有効である。
As a feature of the surface of the aluminum metal film 3, which controls the crystal growth of the metal film and reduces contact resistance, the specular reflectance of the surface of the aluminum metal film 3 that is not in contact with the resin film at a wavelength of 555 nm is preferably 30% or less, and more preferably 20% or less. This is because the surface of the aluminum metal film is finely roughened, which reduces the specular reflectance of visible light at 555 nm, and is effective in reducing contact resistance.
金属膜の結晶成長を制御して接触抵抗を低くするアルミニウム金属膜3の表面の特徴として、アルミニウム金属膜3の樹脂フィルム1と接していない表面の表面粗さRaが2.3nm以上10.0nm以下であることが好ましく、5.0nm以上10.0nm以下であることが更に好ましい。アルミニウム表面が十分粗化され、凸部と凹部の高さにある程度の大きさが確保された時に接触抵抗が低くなる傾向があり、表面粗さRaは大きい程好ましい傾向になる。ただし、表面粗さRaが大きすぎると薄いアルミニウム金属膜3が、搬送時や折り曲げ時に金属膜の破断する原因になるため、10.0nm以下であることが好ましい。
As a feature of the surface of the aluminum metal film 3 that controls the crystal growth of the metal film and reduces the contact resistance, the surface roughness Ra of the surface of the aluminum metal film 3 that is not in contact with the resin film 1 is preferably 2.3 nm or more and 10.0 nm or less, and more preferably 5.0 nm or more and 10.0 nm or less. When the aluminum surface is sufficiently roughened and a certain degree of size is ensured for the height of the convex and concave portions, the contact resistance tends to be low, and the larger the surface roughness Ra, the more preferable it tends to be. However, if the surface roughness Ra is too large, the thin aluminum metal film 3 can cause the metal film to break when transported or folded, so it is preferable that it be 10.0 nm or less.
金属膜の結晶成長を制御して接触抵抗を低くするアルミニウム金属膜3の表面の特徴として、アルミニウム金属膜3のアルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であることが好ましく、2.0以上であることが更に好ましい。
As a feature of the surface of the aluminum metal film 3 that controls the crystal growth of the metal film and reduces the contact resistance, the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 plane of the aluminum metal film 3 to the X-ray diffraction peak intensity I[200] of the aluminum 200 plane is preferably 1.0 or more, and more preferably 2.0 or more.
参考までに、アルミニウムは立方晶系であるため、アルミニウムがパウダーの場合、結晶方位がランダムであるため、111面のX線回折のピーク強度が一番大きく、強度比I[200]/I[111]は1.0未満となる。一方、圧延アルミニウム箔は圧延工程により緻密となり、結晶配向が揃うため、斜め方向の111面のX線回折のピーク強度I[111]は弱くなり、強度比I[200]/I[111]は1.0より大きくなる。強度比I[200]/I[111]が大きい程、アルミニウム金属膜3の結晶方位は緻密に揃うため、膜抵抗(表面抵抗)は小さくなり、接触面の接触抵抗も低下する。通常の真空蒸着法で作製したアルミニウム金属膜化フィルムの金属粒子は、隙間が大きい柱状結晶膜であり、111面のX線回折のピーク強度が一番大きく、強度比I[200]/I[111]は1.0未満となる。
For reference, aluminum is a cubic crystal, so when aluminum is in powder form, the crystal orientation is random, so the peak intensity of the X-ray diffraction of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is less than 1.0. On the other hand, rolled aluminum foil becomes dense through the rolling process, and the crystal orientation is aligned, so the peak intensity I[111] of the X-ray diffraction of the diagonal 111 plane is weaker, and the intensity ratio I[200]/I[111] is greater than 1.0. The larger the intensity ratio I[200]/I[111], the more densely aligned the crystal orientation of the aluminum metal film 3 is, so the film resistance (surface resistance) is smaller, and the contact resistance of the contact surface is also reduced. The metal particles of the aluminum metallized film produced by the normal vacuum deposition method are columnar crystal films with large gaps, and the peak intensity of the X-ray diffraction of the 111 plane is the largest, and the intensity ratio I[200]/I[111] is less than 1.0.
蒸着時の基材(樹脂フィルムのこと。以下、樹脂フィルムを基材と記すことがある。)の表面温度を上げることで、柱状結晶は大きく緻密になることで、結晶は200面方向に揃い、強度比I[200]/I[111]は1.0より大きくなる。
By increasing the surface temperature of the substrate (resin film; hereafter, the resin film will be referred to as the substrate) during deposition, the columnar crystals become larger and denser, the crystals are aligned in the 200-plane direction, and the intensity ratio I[200]/I[111] becomes greater than 1.0.
ただし、基材が樹脂フィルムの場合、基材温度を上昇させると溶融して破断してしまうため、工夫せず作製すると、基材温度を上げることができず、真空蒸着法で作製したアルミニウム金属膜化フィルムの金属粒子は隙間が大きい柱状結晶膜になってしまい、強度比I[200]/I[111]は1.0未満となる。
However, if the substrate is a resin film, increasing the substrate temperature will cause it to melt and break, so if the substrate is produced without proper care, the substrate temperature cannot be increased, and the metal particles in the aluminum metallized film produced by vacuum deposition will become a columnar crystal film with large gaps, resulting in an intensity ratio I[200]/I[111] of less than 1.0.
本発明では基材が樹脂フィルムであっても、アルミニウム金属膜の柱状結晶を大きく緻密に成長させ、結晶粒を大きくすることで、アルミニウム金属膜表面に適度な凹凸を形成させることに成功した。樹脂フィルムを裏面から強制的に冷却しながら、蒸着源の発熱量を大きくするし、真空度9.0×10-3Pa以上、1×10-2Pa以下に制御する真空蒸着法により、蒸着源の露出している樹脂フィルムの表面近傍のみの温度を上昇させて、柱状結晶は大きく緻密にすることが可能となった。
In the present invention, even if the substrate is a resin film, the columnar crystals of the aluminum metal film are grown large and dense, and the crystal grains are enlarged, which successfully forms appropriate irregularities on the surface of the aluminum metal film. By using a vacuum deposition method in which the resin film is forcibly cooled from the back side while increasing the heat generation amount of the deposition source and controlling the degree of vacuum to 9.0×10 -3 Pa or more and 1×10 -2 Pa or less, the temperature is raised only near the surface of the resin film where the deposition source is exposed, making it possible to make the columnar crystals large and dense.
発熱量の大きい、カーボンルツボを用いた誘導加熱方式や、電子ビームにより加熱する方式の蒸着源を用いる、もしくは加熱ボート方式であっても蒸着源と樹脂フィルムの距離を短くすることで樹脂フィルム表面に伝わる熱量を大きくし、アルゴン等の不活性ガスを導入し、真空度9.0×10-3Pa以上、1×10-2Pa以下に制御する真空蒸着法により結晶粒を大きく緻密に成長させる。ただし、そのままでは樹脂フィルムは熱により溶融してしまうので、溶融しない直前の温度まで樹脂フィルムを裏面から強制的に冷却することでアルミニウム金属膜の柱状結晶を大きく緻密に成長させ、アルミニウム金属膜表面に適度な凹凸を形成させることが好ましい。
The crystal grains are grown large and dense by using a deposition source of an induction heating method using a carbon crucible or a method of heating by an electron beam, which generates a large amount of heat, or by a vacuum deposition method in which the distance between the deposition source and the resin film is shortened to increase the amount of heat transferred to the resin film surface even if a heating boat method is used, and an inert gas such as argon is introduced and the degree of vacuum is controlled to 9.0×10 −3 Pa or more and 1×10 −2 Pa or less. However, since the resin film will melt due to the heat if left as is, it is preferable to forcibly cool the resin film from the back side to a temperature just before it melts, thereby growing the columnar crystals of the aluminum metal film large and dense, and forming appropriate unevenness on the surface of the aluminum metal film.
図4および図5は、樹脂フィルム(ポリエチレンテレフタレート(PET)フィルム)の表面粗さRaが1.6nmであるその上に、発熱量の大きいカーボンルツボを用いた誘導加熱方式の蒸着源を用いて、結晶粒を大きく緻密に成長させたときのアルミニウム金属膜表面のSEM写真である。図4は1.48μmの厚さのアルミニウム金属膜の表面SEM写真、図5は0.53μmの厚さのアルミニウム金属膜の表面SEM写真である。図4および図5から結晶粒を大きくすることで、アルミニウム金属膜表面に適度な凹凸を形成できていることが判別できる。このときの表面粗さRaは図4で8.3nm 図5で2.7nmであった。
Figures 4 and 5 are SEM photographs of the surface of an aluminum metal film when crystal grains were grown large and densely using an induction heating deposition source with a carbon crucible that generates a large amount of heat on a resin film (polyethylene terephthalate (PET) film) with a surface roughness Ra of 1.6 nm. Figure 4 is an SEM photograph of the surface of an aluminum metal film with a thickness of 1.48 μm, and Figure 5 is an SEM photograph of the surface of an aluminum metal film with a thickness of 0.53 μm. It can be seen from Figures 4 and 5 that by enlarging the crystal grains, appropriate irregularities can be formed on the surface of the aluminum metal film. The surface roughness Ra at this time was 8.3 nm in Figure 4 and 2.7 nm in Figure 5.
図6は図4のアルミニウム金属膜の断面SEM写真であり、アルミニウム金属膜が柱状結晶であり、アルミニウム金属膜表面の凹凸の凸部が一つの柱状結晶に相当することが判別できる。これより、アルミニウム金属膜表面の凹凸の凸部の大きさが大きいほど柱状結晶が大きく緻密であることが推測される。図4と図5を比較した場合、膜厚を厚くするために蒸着時間が長く熱量がより大きい図4の方が、より柱状結晶の成長が大きいと推測される。
Figure 6 is a cross-sectional SEM photograph of the aluminum metal film in Figure 4, from which it can be seen that the aluminum metal film is columnar crystals, and that each convex part of the unevenness on the aluminum metal film surface corresponds to a single columnar crystal. From this, it can be inferred that the larger the convex part of the unevenness on the aluminum metal film surface, the larger and denser the columnar crystals are. Comparing Figures 4 and 5, it can be inferred that the growth of columnar crystals is greater in Figure 4, where the deposition time is longer and the amount of heat is greater in order to thicken the film.
また、結晶粒を大きく、緻密な金属膜にさせるためには、熱源である蒸着源にある程度の時間露出させる必要があり、結果的に蒸着時間を長くすることが必要であり、アルミニウム金属膜厚は0.7μm以上の厚みであることが好ましく、1.0μm以上であればさらに好ましい。
Furthermore, to make the crystal grains large and the metal film dense, it is necessary to expose the film to the heat source, which is the deposition source, for a certain amount of time, and as a result, it is necessary to extend the deposition time. The thickness of the aluminum metal film is preferably 0.7 μm or more, and more preferably 1.0 μm or more.
<アルミニウム金属膜の作製方法>
アルミニウム金属膜3の成膜方法としては、薄い電極作製を作製する目的で、接着剤を用いず、薄い樹脂フィルムに金属膜を形成できる真空蒸着法が好ましい。真空蒸着法には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがあるが、その中でも蒸着源の発熱量の大きい電子ビーム蒸着法、レーザービーム蒸着法、誘導加熱蒸着法が好適に用いられる。蒸着源の発熱量は、アルミニウム金属膜3の結晶粒を大きくかつ緻密に形成するまで、大きくする必要があり、基材表面温度が十分高いことが必要であるが、実測することが困難であるため、蒸着後のアルミニウム金属膜3が必要な物性であることを確認して十分な熱量であるかどうかを判断する。 <Method of Producing Aluminum Metal Film>
The method for forming thealuminum metal film 3 is preferably a vacuum deposition method that can form a metal film on a thin resin film without using an adhesive for the purpose of producing a thin electrode. Vacuum deposition methods include induction heating deposition, resistance heating deposition, laser beam deposition, and electron beam deposition, and among them, electron beam deposition, laser beam deposition, and induction heating deposition, which have a large amount of heat generated by the deposition source, are preferably used. The amount of heat generated by the deposition source needs to be large enough to form large and dense crystal grains of the aluminum metal film 3, and the substrate surface temperature needs to be sufficiently high, but since it is difficult to actually measure, it is judged whether the amount of heat is sufficient by confirming that the aluminum metal film 3 after deposition has the required physical properties.
アルミニウム金属膜3の成膜方法としては、薄い電極作製を作製する目的で、接着剤を用いず、薄い樹脂フィルムに金属膜を形成できる真空蒸着法が好ましい。真空蒸着法には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがあるが、その中でも蒸着源の発熱量の大きい電子ビーム蒸着法、レーザービーム蒸着法、誘導加熱蒸着法が好適に用いられる。蒸着源の発熱量は、アルミニウム金属膜3の結晶粒を大きくかつ緻密に形成するまで、大きくする必要があり、基材表面温度が十分高いことが必要であるが、実測することが困難であるため、蒸着後のアルミニウム金属膜3が必要な物性であることを確認して十分な熱量であるかどうかを判断する。 <Method of Producing Aluminum Metal Film>
The method for forming the
アルミニウム金属膜3は、樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下であることが好ましく、アルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比I[200]/I[111]が1.0以上10以下であることが好ましく、かつ、前記金属膜の表面の表面粗さRaが2.3nm以上10.0nm以下であることが好ましい。ただし、蒸着源の発熱量を必要な熱量まで上昇させると、通常の真空蒸着法の冷却機能の管理では樹脂フィルムの温度が上昇して溶解しまう可能性があるため、蒸着中は温度が上昇しすぎないように、フィルムを均一に冷却出来るように冷却機能を管理しながら蒸着する必要がある。具体的には、冷媒で十分冷やされた金属製の板もしくは金属ロールからなる冷却機構で蒸着面の裏面から均一に冷却する必要がある。均一に冷却するためには樹脂フィルムと冷却機構の間に隙間を作らずに密着させることが必須となる。
The aluminum metal film 3 preferably has a specular reflectance of 30% or less at a wavelength of 555 nm on the surface of the metal film that is not in contact with the resin film, a ratio I[200]/I[111] of the peak intensity I[111] of the X-ray diffraction of the 111 plane of aluminum to the peak intensity I[200] of the X-ray diffraction of the 200 plane of aluminum is preferably 1.0 or more and 10 or less, and the surface roughness Ra of the surface of the metal film is preferably 2.3 nm or more and 10.0 nm or less. However, if the heat generation amount of the deposition source is increased to the required heat amount, the temperature of the resin film may rise and melt if the cooling function of the normal vacuum deposition method is controlled, so that the deposition is performed while controlling the cooling function so that the temperature does not rise too much during deposition and the film can be cooled uniformly. Specifically, it is necessary to uniformly cool the back side of the deposition surface with a cooling mechanism consisting of a metal plate or metal roll sufficiently cooled by a refrigerant. In order to cool uniformly, it is essential to make close contact between the resin film and the cooling mechanism without creating any gaps.
例えば、冷却機構の金属ロールにキズがあるとキズの部分が隙間となり、キズ部分で樹脂フィルムが冷却できず、溶解してしまう。例えば、異物が樹脂フィルムと冷却機構の金属ロールに入り込むと、異物で樹脂フィルムが冷却できず溶解してしまう。蒸着源の発熱量を必要な熱量まで上昇させると、通常の真空蒸着法では許容される金属ロールのキズや異物混入が問題となるため、金属ロールのキズや異物混入の管理は更に厳しくする必要がある。これらの蒸着源の発熱量の増加および冷却機能の管理の強化により、アルミニウム金属膜3の結晶粒を大きく成長させかつ緻密に形成させ、接触抵抗を含む内部抵抗の低下につなげることが可能となる。特に電子ビーム蒸着法、レーザービーム蒸着法の場合は、蒸着ルツボにカーボンルツボよりも保温性に優れたアルミナルツボを採用することで、より蒸着源の発熱量を大きくすることが出来るため、更に好ましい。
For example, if the metal roll of the cooling mechanism has a scratch, the scratched portion will become a gap, and the resin film will not be able to cool at the scratched portion, resulting in melting. For example, if a foreign object gets into the resin film and the metal roll of the cooling mechanism, the foreign object will not be able to cool the resin film, resulting in melting. If the heat generation amount of the deposition source is increased to the required heat amount, scratches on the metal roll and inclusion of foreign objects, which are acceptable in normal vacuum deposition methods, will become a problem, so that it is necessary to further strictly manage scratches on the metal roll and inclusion of foreign objects. By increasing the heat generation amount of these deposition sources and strengthening the management of the cooling function, it is possible to grow the crystal grains of the aluminum metal film 3 large and densely, leading to a reduction in internal resistance including contact resistance. In particular, in the case of electron beam deposition and laser beam deposition, it is even more preferable to use an alumina crucible, which has better heat retention than a carbon crucible, as the deposition crucible, since it is possible to further increase the heat generation amount of the deposition source.
<樹脂フィルム>
本発明で用いられる樹脂フィルム1は、合成樹脂などの高分子を薄い膜状に成型したものが好ましい。本発明で好適に用いられる樹脂フィルムとして、例えば、ポリエステルフィルム、ポリエステルフィルムの中でもポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム、または、ポリイミドフィルム、ポリフェニレンサルファイドフィルム、ポリプロピレンフィルムが例示される。このうちポリエチレンテレフタレートフィルムがより好ましく用いられる。これらの樹脂フィルムは単独で用いても構わないし、複合されたものを用いても構わない。また樹脂フィルム表面に樹脂や粘着剤等をコーティングしたものを用いても構わない。 <Resin film>
Theresin film 1 used in the present invention is preferably a thin film of a polymer such as a synthetic resin. Examples of resin films suitable for use in the present invention include polyester films, and among polyester films, polyethylene terephthalate films and polyethylene naphthalate films, or polyimide films, polyphenylene sulfide films, and polypropylene films. Of these, polyethylene terephthalate films are more preferably used. These resin films may be used alone or in combination. Furthermore, resin films coated with resin, adhesive, or the like on the surface thereof may be used.
本発明で用いられる樹脂フィルム1は、合成樹脂などの高分子を薄い膜状に成型したものが好ましい。本発明で好適に用いられる樹脂フィルムとして、例えば、ポリエステルフィルム、ポリエステルフィルムの中でもポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム、または、ポリイミドフィルム、ポリフェニレンサルファイドフィルム、ポリプロピレンフィルムが例示される。このうちポリエチレンテレフタレートフィルムがより好ましく用いられる。これらの樹脂フィルムは単独で用いても構わないし、複合されたものを用いても構わない。また樹脂フィルム表面に樹脂や粘着剤等をコーティングしたものを用いても構わない。 <Resin film>
The
かかる樹脂フィルム1の厚さは1μm以上20μm以下であることが好ましく、3μm以上10μm以下であることが更に好ましい。電極基材の薄膜化のために樹脂フィルムの厚さが薄い方がより好ましく、20μm以下であることが好ましく、10μm以下であることが更に好ましい。ただし、あまりに薄いと製造工程中での破断等で収率を低下させる可能性があり、1μm以上であることが好ましく、3μm以上であることが更に好ましい。
The thickness of the resin film 1 is preferably 1 μm or more and 20 μm or less, and more preferably 3 μm or more and 10 μm or less. In order to make the electrode substrate thinner, it is more preferable that the resin film is thin, and it is preferably 20 μm or less, and more preferably 10 μm or less. However, if the resin film is too thin, there is a possibility that the yield will decrease due to breakage during the manufacturing process, so it is preferably 1 μm or more, and more preferably 3 μm or more.
前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下であることが好ましい。樹脂フィルム表面粗さが0.6nm以下の場合、樹脂フィルムをロール状に巻き取ったとき、貼り付いてしまい搬送が難しくなることがある。樹脂フィルムの表面粗さは0.6nm以上が好ましく、1.0nm以上であることが更に好ましい。一方、アルミニウム金属膜表面の凹凸は大きい方が好ましいため、樹脂フィルムの表面粗さRaを大きくしてしまうと、樹脂フィルム搬送時に破断しやすくなるため好ましくない。樹脂フィルムとしては搬送するために必要な最小限の凹凸を形成し、出来るだけ平滑であることが好ましいため、表面粗さRaは2.0nm以下であることが好ましく、1.5nm以下であることがさらに好ましい。
The surface roughness Ra of the resin film is preferably 0.6 nm or more and 2.0 nm or less. If the surface roughness of the resin film is 0.6 nm or less, when the resin film is wound into a roll, it may stick and become difficult to transport. The surface roughness of the resin film is preferably 0.6 nm or more, and more preferably 1.0 nm or more. On the other hand, since it is preferable for the aluminum metal film surface to have large irregularities, it is not preferable to increase the surface roughness Ra of the resin film, as this makes the resin film more likely to break during transport. It is preferable for the resin film to have the minimum amount of irregularities necessary for transport and to be as smooth as possible, so the surface roughness Ra is preferably 2.0 nm or less, and more preferably 1.5 nm or less.
<アンカー層>
本発明の金属化フィルム4の樹脂フィルムとアルミニウム金属膜3との間には、アンカー層2を有していても構わない。アンカー層2を設けることにより、樹脂フィルムとアルミニウム金属膜の密着力向上が期待できる。アンカー層2としては樹脂フィルム上にスパッタリング法により金属層を形成することが好ましい。スパッタリング法ではアンカー層厚みを薄くすることが可能で、より薄膜化が要求される蓄電池用途では最適である。 <Anchor layer>
Ananchor layer 2 may be provided between the resin film and the aluminum metal film 3 of the metallized film 4 of the present invention. By providing the anchor layer 2, it is expected that the adhesion between the resin film and the aluminum metal film can be improved. As the anchor layer 2, it is preferable to form a metal layer on the resin film by a sputtering method. The sputtering method makes it possible to reduce the thickness of the anchor layer, which is optimal for storage battery applications that require thinner layers.
本発明の金属化フィルム4の樹脂フィルムとアルミニウム金属膜3との間には、アンカー層2を有していても構わない。アンカー層2を設けることにより、樹脂フィルムとアルミニウム金属膜の密着力向上が期待できる。アンカー層2としては樹脂フィルム上にスパッタリング法により金属層を形成することが好ましい。スパッタリング法ではアンカー層厚みを薄くすることが可能で、より薄膜化が要求される蓄電池用途では最適である。 <Anchor layer>
An
アンカー層2としてはアルミニウム、ニッケル、チタン、ニクロム、及びクロムからなる群より選ばれるいずれか1つ以上を含む金属層であることが好ましい。このとき注意すべきとして、アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどの金属表面を酸化させない状態を維持しながら、その上にアルミニウム金属膜を形成することが重要となる。具体的にはスパッタリングにてアンカー層2として金属層を形成したあと、大気開放せず、真空を維持したままアルミニウム金属膜3を形成することが重要となる。アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどの金属表面が酸化されると、安定した金属酸化膜が形成され、その上に形成されるアルミニウム金属膜3との界面との金属結合が困難となり、密着力が確保できず、アルミニウム金属膜3がアンカー層2から剥離してしまうことがある。そのため、アンカー層2として選択されたアルミニウム、ニッケル、チタン、クロム、ニクロムなどは酸化させないことが重要となる。
The anchor layer 2 is preferably a metal layer containing one or more selected from the group consisting of aluminum, nickel, titanium, nichrome, and chromium. At this time, it is important to keep the metal surface of aluminum, nickel, titanium, chromium, nichrome, etc. selected as the anchor layer 2 in a state where it is not oxidized while forming the aluminum metal film on it. Specifically, after forming a metal layer as the anchor layer 2 by sputtering, it is important to form the aluminum metal film 3 while maintaining a vacuum without exposing it to the atmosphere. If the metal surface of aluminum, nickel, titanium, chromium, nichrome, etc. selected as the anchor layer 2 is oxidized, a stable metal oxide film is formed, which makes it difficult to form a metal bond with the interface with the aluminum metal film 3 formed thereon, and the adhesion cannot be secured, and the aluminum metal film 3 may peel off from the anchor layer 2. Therefore, it is important not to oxidize the aluminum, nickel, titanium, chromium, nichrome, etc. selected as the anchor layer 2.
アンカー層2の厚みは3nm以上40nm以下であることが好ましく、5nm以上20nm以下であることがより好ましい。厚みが3nm未満であると十分な密着力が得られないことがある。一方で、アンカー層を40nmから大きくしても、密着力向上の効果は大きくなることはないため、40nm以下であることが好ましく、成膜速度が遅いスパッタリング法にてアンカー層を作製している場合、アンカー層は20nm以下にして生産性向上させた方が更に好ましい。
The thickness of the anchor layer 2 is preferably 3 nm to 40 nm, and more preferably 5 nm to 20 nm. If the thickness is less than 3 nm, sufficient adhesion may not be obtained. On the other hand, even if the anchor layer is made thicker than 40 nm, the effect of improving adhesion will not be great, so it is preferably 40 nm or less. If the anchor layer is produced by a sputtering method with a slow film formation speed, it is even more preferable to make the anchor layer 20 nm or less to improve productivity.
<蓄電池>
本発明で言う蓄電池は、電極組立体と、電極組立体を収容する電池ケースとを備える。電極組立体は、正極、負極、及び正極と負極との間に介されたセパレータを含む。 <Storage battery>
The storage battery according to the present invention includes an electrode assembly and a battery case that houses the electrode assembly. The electrode assembly includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
本発明で言う蓄電池は、電極組立体と、電極組立体を収容する電池ケースとを備える。電極組立体は、正極、負極、及び正極と負極との間に介されたセパレータを含む。 <Storage battery>
The storage battery according to the present invention includes an electrode assembly and a battery case that houses the electrode assembly. The electrode assembly includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
このような蓄電池としては、例えば、一次電池、二次電池、電気二重層キャパシタ、アルミ電解コンデンサ等が挙げられるが、本発明では二次電池を指す。
Such storage batteries include, for example, primary batteries, secondary batteries, electric double-layer capacitors, and aluminum electrolytic capacitors, but in this invention it refers to secondary batteries.
二次電池としては、例えば、リチウム二次電池、鉛蓄電池、ニッケル・カドニウム電池、ニッケル・水素電池、ニッケル・鉄蓄電池、酸化銀・亜鉛蓄電池、二酸化マンガン・リチウム二次電池、コバルト酸リチウム・炭酸系二次電池、バナジウム・リチウム二次電池等が挙げられる。
Secondary batteries include, for example, lithium secondary batteries, lead acid batteries, nickel cadmium batteries, nickel hydrogen batteries, nickel iron batteries, silver oxide zinc batteries, manganese dioxide lithium secondary batteries, lithium cobalt oxide carbonate secondary batteries, vanadium lithium secondary batteries, etc.
これらの中でも、長期に利用できることから、二次電池が好ましく、有機溶媒を利用することにより高エネルギー密度を実現しているリチウム二次電池がより好ましい。
Among these, secondary batteries are preferred because they can be used for a long period of time, and lithium secondary batteries are even more preferred because they achieve high energy density by using organic solvents.
正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものである。集電体である本発明の金属化フィルム4を用いることが好ましい。
The positive electrode is a current collector on which a positive electrode material consisting of an active material, a binder resin, and a conductive additive is laminated. It is preferable to use the metallized film 4 of the present invention as the current collector.
活物質としては、LiCoO2、LiNiO2、Li(NiCoMn)O2などの層状構造のリチウム含有遷移金属酸化物、LiMn2O4などのスピネル型マンガン酸化物、およびLiFePO4などの鉄系化合物などが挙げられる。
Examples of active materials include layered lithium-containing transition metal oxides such as LiCoO2 , LiNiO2 , and Li( NiCoMn ) O2 , spinel-type manganese oxides such as LiMn2O4 , and iron-based compounds such as LiFePO4 .
バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的には、フッ素含有樹脂、アクリル樹脂、スチレン-ブタジエン樹脂などが挙げられる。
As the binder resin, a resin with high oxidation resistance can be used. Specific examples include fluorine-containing resin, acrylic resin, and styrene-butadiene resin.
導電助剤としては、カーボンブラック、黒鉛などの炭素材料などが挙げられる。
Conductive additives include carbon materials such as carbon black and graphite.
電解質としては、LiPF6、LiBF4、およびLiClO4などが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPF6が好適に用いられている。
Examples of the electrolyte include LiPF 6 , LiBF 4 , and LiClO 4 , with LiPF6 being preferred from the standpoint of solubility in organic solvents and ionic conductivity.
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。
Examples of organic solvents include ethylene carbonate, propylene carbonate, fluoroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, etc., and two or more of these organic solvents may be mixed and used.
以下、蓄電池の中でも好ましく用いられるリチウム二次電池の作製方法について説明する。
Below, we will explain how to make lithium secondary batteries, which are the most commonly used storage batteries.
リチウム二次電池の作製方法としては、まず活物質と導電助剤をバインダー樹脂溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。さらに、好ましくはロールプレス法などの方法で、集電体上に形成した活物質層に圧力を加え、緻密化し、集電体を薄膜化することが好ましい。
To manufacture a lithium secondary battery, first, an active material and a conductive assistant are dispersed in a binder resin solution to prepare a coating solution for the electrodes, and then this coating solution is applied to a current collector and the solvent is dried to obtain a positive electrode and a negative electrode. It is preferable that the thickness of the coating film after drying is 50 μm to 500 μm. Furthermore, it is preferable to apply pressure to the active material layer formed on the current collector, preferably by a method such as roll pressing, to densify it and make the current collector into a thin film.
得られた正極と負極の間にリチウム二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入後、負極リードや安全弁を設置し、外装材を封止する。
A separator for lithium secondary batteries is placed between the obtained positive and negative electrodes so that it is in contact with the active material layer of each electrode, and then it is enclosed in an exterior material such as an aluminum laminate film. After injecting the electrolyte, the negative electrode lead and safety valve are installed, and the exterior material is sealed.
このようにして得られたリチウム二次電池は、電極との接着性が高く、かつ優れた電池特性を有し、また、低コストでの製造が可能となる。
The lithium secondary battery obtained in this way has high adhesion to the electrodes, has excellent battery characteristics, and can be manufactured at low cost.
以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを発明の範囲から除外するものではない。
The present invention will be described below based on examples. Note that the present invention is not limited to these examples, and these examples can be modified or changed based on the spirit of the present invention, and are not excluded from the scope of the invention.
(マグネトロンスパッタリング)
ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、70mm×550mmサイズのターゲットを用い、アルゴンガス雰囲気中で真空到達度1×10-2Pa以下に調整して、パルス電源を印加して金属層を形成した。 (Magnetron sputtering)
A resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a metal layer was formed using a target of 70 mm×550 mm in an argon gas atmosphere adjusted to a vacuum of 1×10 −2 Pa or less by applying a pulse power source.
ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、70mm×550mmサイズのターゲットを用い、アルゴンガス雰囲気中で真空到達度1×10-2Pa以下に調整して、パルス電源を印加して金属層を形成した。 (Magnetron sputtering)
A resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a metal layer was formed using a target of 70 mm×550 mm in an argon gas atmosphere adjusted to a vacuum of 1×10 −2 Pa or less by applying a pulse power source.
なお、特に記載のない限り、スパッタリングと真空蒸着については連続して処理を行い、アンカー層とアルミニウム金属膜間で大気と触れさせないようにした。
Unless otherwise specified, sputtering and vacuum deposition were performed consecutively to prevent contact with the air between the anchor layer and the aluminum metal film.
(真空蒸着)
ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、真空到達度9.0×10-3Pa以下になるまで真空引きをしてから、アルミニウム膜厚が所定の値になる搬送速度、出力条件、蒸着ボートにアルミニウムワイヤーを送り出す送り速度を採用した蒸着ボートを加熱して送り出されるアルミニウムワイヤーを加熱することで真空蒸着を実施し、アルミニウム金属膜を形成した。 (Vacuum deposition)
The resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a vacuum was drawn until the vacuum reached 9.0 × 10 −3 Pa or less. After that, the deposition boat was heated under the conveying speed, output conditions, and feed speed for feeding the aluminum wire into the deposition boat that achieved a predetermined aluminum film thickness, and the fed aluminum wire was heated to perform vacuum deposition, thereby forming an aluminum metal film.
ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、真空到達度9.0×10-3Pa以下になるまで真空引きをしてから、アルミニウム膜厚が所定の値になる搬送速度、出力条件、蒸着ボートにアルミニウムワイヤーを送り出す送り速度を採用した蒸着ボートを加熱して送り出されるアルミニウムワイヤーを加熱することで真空蒸着を実施し、アルミニウム金属膜を形成した。 (Vacuum deposition)
The resin film was placed in a roll-type vacuum deposition apparatus (EWC-060 manufactured by ULVAC), and a vacuum was drawn until the vacuum reached 9.0 × 10 −3 Pa or less. After that, the deposition boat was heated under the conveying speed, output conditions, and feed speed for feeding the aluminum wire into the deposition boat that achieved a predetermined aluminum film thickness, and the fed aluminum wire was heated to perform vacuum deposition, thereby forming an aluminum metal film.
もしくは、ロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、アルミニウム膜厚が所定の値になる搬送速度、出力条件でカーボンルツボを採用した誘導加熱蒸着法にてアルミニウムインゴットを加熱することで真空蒸着を実施し、アルミニウム金属膜を形成した。
Alternatively, a resin film was placed inside a roll-type vacuum deposition device (ULVAC EWC-060), and vacuum deposition was performed by heating an aluminum ingot using induction heating deposition with a carbon crucible under the conveying speed and output conditions that resulted in the aluminum film thickness being the specified value, forming an aluminum metal film.
(XRD(X線回折)測定方法)
X線回折(RIGAKU SmartLab9kW)を用いて測定した。測定条件は、X線管球の電圧と電流:45kV-200mA、走査速度:2°/min、入射スリット:1.0mm、受光スリット:1.0mmで測定した。測定結果で出た111面のX線回折のピーク強度I[111]、200面のX線回折のピーク強度I[200]求め、比率I[200]/I[111]を算出して比較した。 (XRD (X-ray diffraction) measurement method)
Measurements were performed using an X-ray diffraction (RIGAKU SmartLab 9kW). Measurement conditions were: X-ray tube voltage and current: 45 kV-200 mA, scanning speed: 2°/min, entrance slit: 1.0 mm, receiving slit: 1.0 mm. The peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak intensity I[200] of the X-ray diffraction of the 200 plane were obtained from the measurement results, and the ratio I[200]/I[111] was calculated and compared.
X線回折(RIGAKU SmartLab9kW)を用いて測定した。測定条件は、X線管球の電圧と電流:45kV-200mA、走査速度:2°/min、入射スリット:1.0mm、受光スリット:1.0mmで測定した。測定結果で出た111面のX線回折のピーク強度I[111]、200面のX線回折のピーク強度I[200]求め、比率I[200]/I[111]を算出して比較した。 (XRD (X-ray diffraction) measurement method)
Measurements were performed using an X-ray diffraction (RIGAKU SmartLab 9kW). Measurement conditions were: X-ray tube voltage and current: 45 kV-200 mA, scanning speed: 2°/min, entrance slit: 1.0 mm, receiving slit: 1.0 mm. The peak intensity I[111] of the X-ray diffraction of the 111 plane and the peak intensity I[200] of the X-ray diffraction of the 200 plane were obtained from the measurement results, and the ratio I[200]/I[111] was calculated and compared.
(分光光度計絶対反射率)
株式会社島津製作所製分光光度計UV-3600i Plus大型試料室ユニットMPC-603A付に、絶対反射率測定装置ASR-3105(入射角5°)を取り付け、絶対反射率測定装置付属のアルミミラーを基準として、測定サンプルの反射率測定を行った。可視光555nmの反射率データを代表値とした。 (Spectrophotometer absolute reflectance)
An absolute reflectance measuring device ASR-3105 (incident angle 5°) was attached to a spectrophotometer UV-3600i Plus with a large sample chamber unit MPC-603A manufactured by Shimadzu Corporation, and the reflectance of the measurement sample was measured using the aluminum mirror attached to the absolute reflectance measuring device as a reference. The reflectance data for visible light of 555 nm was used as a representative value.
株式会社島津製作所製分光光度計UV-3600i Plus大型試料室ユニットMPC-603A付に、絶対反射率測定装置ASR-3105(入射角5°)を取り付け、絶対反射率測定装置付属のアルミミラーを基準として、測定サンプルの反射率測定を行った。可視光555nmの反射率データを代表値とした。 (Spectrophotometer absolute reflectance)
An absolute reflectance measuring device ASR-3105 (incident angle 5°) was attached to a spectrophotometer UV-3600i Plus with a large sample chamber unit MPC-603A manufactured by Shimadzu Corporation, and the reflectance of the measurement sample was measured using the aluminum mirror attached to the absolute reflectance measuring device as a reference. The reflectance data for visible light of 555 nm was used as a representative value.
(接触抵抗測定)
10mm厚のNRスポンジゴム(和気産業株式会社製NRS-06)の上に金属化フィルムを金属膜が上向きになるようにのせ、25mm×25mmの大きさの、金メッキを施した銅板2枚を1mmの間隔をあけてそれぞれの銅板に500gのおもりを乗せた。その2枚の銅板間の抵抗値を、日置電機株式会社製抵抗計RM3544で測定し、接触抵抗とした。 (Contact resistance measurement)
A metallized film was placed on a 10 mm thick NR sponge rubber (NRS-06 manufactured by Wake Sangyo Co., Ltd.) with the metal film facing upwards, and two gold-plated copper plates measuring 25 mm x 25 mm were placed 1 mm apart, with a 500 g weight placed on each of the copper plates. The resistance between the two copper plates was measured with a resistance meter RM3544 manufactured by Hioki E.E. Co., Ltd., and was taken as the contact resistance.
10mm厚のNRスポンジゴム(和気産業株式会社製NRS-06)の上に金属化フィルムを金属膜が上向きになるようにのせ、25mm×25mmの大きさの、金メッキを施した銅板2枚を1mmの間隔をあけてそれぞれの銅板に500gのおもりを乗せた。その2枚の銅板間の抵抗値を、日置電機株式会社製抵抗計RM3544で測定し、接触抵抗とした。 (Contact resistance measurement)
A metallized film was placed on a 10 mm thick NR sponge rubber (NRS-06 manufactured by Wake Sangyo Co., Ltd.) with the metal film facing upwards, and two gold-plated copper plates measuring 25 mm x 25 mm were placed 1 mm apart, with a 500 g weight placed on each of the copper plates. The resistance between the two copper plates was measured with a resistance meter RM3544 manufactured by Hioki E.E. Co., Ltd., and was taken as the contact resistance.
(表面抵抗測定)
金属化フィルムを約300mm×約80mmの大きさにカットして、簡易型低抵抗率計(株式会社三菱ケミカルアナリテック製“ロレスタ(登録商標)”EP MCP-T360)を使って、4端子法にて3カ所の表面抵抗を測定し、平均値を表面抵抗値として採用した。 (Surface resistance measurement)
The metallized film was cut to a size of approximately 300 mm x approximately 80 mm, and the surface resistance was measured at three points using a simple low resistivity meter (Loresta (registered trademark) EP MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) by the four-terminal method, and the average value was used as the surface resistance value.
金属化フィルムを約300mm×約80mmの大きさにカットして、簡易型低抵抗率計(株式会社三菱ケミカルアナリテック製“ロレスタ(登録商標)”EP MCP-T360)を使って、4端子法にて3カ所の表面抵抗を測定し、平均値を表面抵抗値として採用した。 (Surface resistance measurement)
The metallized film was cut to a size of approximately 300 mm x approximately 80 mm, and the surface resistance was measured at three points using a simple low resistivity meter (Loresta (registered trademark) EP MCP-T360 manufactured by Mitsubishi Chemical Analytech Co., Ltd.) by the four-terminal method, and the average value was used as the surface resistance value.
(アルミニウム金属膜厚さ)
金属化フィルムを約30mm×約30mmの大きさにカットして、10枚重ねてマイクロメータにて厚みを測定し、1枚当たりの金属化フィルムの厚み算出し、そこから同様に10枚重ねてマイクロメータにて測定した未蒸着の樹脂フィルムの厚みから算出した金属化フィルム厚との差異から、アルミニウム金属膜厚を算出した。 (Aluminum metal film thickness)
The metallized film was cut to a size of approximately 30 mm x approximately 30 mm, and 10 sheets were stacked and the thickness was measured with a micrometer to calculate the thickness of each metallized film. The thickness of the aluminum metal film was calculated from the difference between this thickness and the metallized film thickness calculated from the thickness of an undeposited resin film, which was similarly measured with a micrometer by stacking 10 sheets.
金属化フィルムを約30mm×約30mmの大きさにカットして、10枚重ねてマイクロメータにて厚みを測定し、1枚当たりの金属化フィルムの厚み算出し、そこから同様に10枚重ねてマイクロメータにて測定した未蒸着の樹脂フィルムの厚みから算出した金属化フィルム厚との差異から、アルミニウム金属膜厚を算出した。 (Aluminum metal film thickness)
The metallized film was cut to a size of approximately 30 mm x approximately 30 mm, and 10 sheets were stacked and the thickness was measured with a micrometer to calculate the thickness of each metallized film. The thickness of the aluminum metal film was calculated from the difference between this thickness and the metallized film thickness calculated from the thickness of an undeposited resin film, which was similarly measured with a micrometer by stacking 10 sheets.
(表面粗さ)
株式会社日立ハイテクサイエンス製 走査型白色干渉顕微鏡にて表面粗さRaを測定した。測定条件は測定モード「wave」、光源は530White、対物レンズは50倍で行い、付属の解析ソフトを用いて面補正は4次、補完は「完全」、ガウシングガウシアンフィルタは「カットオフ2μm」の条件で算出した数値を用いた。 (Surface roughness)
Surface roughness Ra was measured using a scanning white light interference microscope manufactured by Hitachi High-Tech Science Co., Ltd. Measurement conditions were measurement mode "wave", light source 530 White, objective lens 50x, and values calculated using the attached analysis software under the following conditions: surface correction 4th order, complement "full", Gaussing Gaussian filter "cutoff 2 μm".
株式会社日立ハイテクサイエンス製 走査型白色干渉顕微鏡にて表面粗さRaを測定した。測定条件は測定モード「wave」、光源は530White、対物レンズは50倍で行い、付属の解析ソフトを用いて面補正は4次、補完は「完全」、ガウシングガウシアンフィルタは「カットオフ2μm」の条件で算出した数値を用いた。 (Surface roughness)
Surface roughness Ra was measured using a scanning white light interference microscope manufactured by Hitachi High-Tech Science Co., Ltd. Measurement conditions were measurement mode "wave", light source 530 White, objective lens 50x, and values calculated using the attached analysis software under the following conditions: surface correction 4th order, complement "full", Gaussing Gaussian filter "
(寸法変化率測定)
金属化フィルムを約300mm×約300mm用意し、およそ中央部にφ1mmの穴をドリル加工で開け、中央部の穴を起点に金属化フィルムのロール搬送方向(MD方向)の前後に75mm離れた位置に1個ずつφ1mmの計3つの穴をあける。そしてそれぞれの3つの穴に対してフィルム幅方向(TD方向)の前後50mmの位置にそれぞれ1個ずつの穴を開け、トータル9個の穴をあける。 (Dimensional change rate measurement)
A metallized film of approximately 300 mm x approximately 300 mm is prepared, a hole of φ1 mm is drilled in approximately the center, and three holes of φ1 mm are drilled at positions 75 mm apart in front and behind the hole in the center in the roll conveyance direction (MD direction) of the metallized film, for a total of nine holes. Then, one hole is drilled at positions 50 mm in front and behind each of the three holes in the width direction (TD direction) of the film, for a total of nine holes.
金属化フィルムを約300mm×約300mm用意し、およそ中央部にφ1mmの穴をドリル加工で開け、中央部の穴を起点に金属化フィルムのロール搬送方向(MD方向)の前後に75mm離れた位置に1個ずつφ1mmの計3つの穴をあける。そしてそれぞれの3つの穴に対してフィルム幅方向(TD方向)の前後50mmの位置にそれぞれ1個ずつの穴を開け、トータル9個の穴をあける。 (Dimensional change rate measurement)
A metallized film of approximately 300 mm x approximately 300 mm is prepared, a hole of φ1 mm is drilled in approximately the center, and three holes of φ1 mm are drilled at positions 75 mm apart in front and behind the hole in the center in the roll conveyance direction (MD direction) of the metallized film, for a total of nine holes. Then, one hole is drilled at positions 50 mm in front and behind each of the three holes in the width direction (TD direction) of the film, for a total of nine holes.
まず、9個の穴で、近接する穴同士の距離を株式会社中村製作所製 手動式二次元画像測定機“EXLON-Y エクスロン-ワイ”にて測定したのち、その後、金属化フィルムをオーブンにて150℃30分加熱処理し、同じ9個の穴で、近接する穴同士の距離を株式会社中村製作所製 手動式二次元画像測定機“EXLON-Y エクスロン-ワイ”にて測定した。
First, the distance between adjacent holes for nine holes was measured using a manual two-dimensional image measuring machine "EXLON-Y" manufactured by Nakamura Mfg. Co., Ltd., and then the metallized film was heated in an oven at 150°C for 30 minutes, and the distance between adjacent holes for the same nine holes was measured using a manual two-dimensional image measuring machine "EXLON-Y" manufactured by Nakamura Mfg. Co., Ltd.
9個の近接する穴で、MD方向およびTD方向にわけて、それぞれの距離を100%としたときのMD方向およびTD方向の寸法変化率の平均値を算出した。寸法が収縮した場合はマイナス、膨張した場合はプラス表記とした。
The average dimensional change rate in the MD and TD directions was calculated for nine adjacent holes, with each distance taken as 100%. Shrinkage was shown as a negative value, and expansion was shown as a positive value.
(搬送性の評価)
金属化フィルムの両面もしくは片面の、樹脂フィルムと接していないアルミニウム金属膜面に、実施例に記載の方法で正極活物質を連続塗布し、加熱乾燥後、カレンダープレス加工して、正極用集電体へ加工した。この加工の際に、搬送あるいは巻取り工程でのしわ、折れが起こらないか良く観察し、これらの不良が生じない場合は搬送適性“○”、これらの不具合が発生した場合には搬送適性“×”と判定した。 (Evaluation of Transportability)
The positive electrode active material was continuously applied to the aluminum metal film surface not in contact with the resin film on both sides or one side of the metallized film by the method described in the Examples, and after heating and drying, the positive electrode current collector was processed by calendar press processing. During this processing, it was carefully observed whether wrinkles or folds occurred during the transportation or winding process, and if these defects did not occur, the transportation suitability was judged to be "○", and if these defects occurred, the transportation suitability was judged to be "×".
金属化フィルムの両面もしくは片面の、樹脂フィルムと接していないアルミニウム金属膜面に、実施例に記載の方法で正極活物質を連続塗布し、加熱乾燥後、カレンダープレス加工して、正極用集電体へ加工した。この加工の際に、搬送あるいは巻取り工程でのしわ、折れが起こらないか良く観察し、これらの不良が生じない場合は搬送適性“○”、これらの不具合が発生した場合には搬送適性“×”と判定した。 (Evaluation of Transportability)
The positive electrode active material was continuously applied to the aluminum metal film surface not in contact with the resin film on both sides or one side of the metallized film by the method described in the Examples, and after heating and drying, the positive electrode current collector was processed by calendar press processing. During this processing, it was carefully observed whether wrinkles or folds occurred during the transportation or winding process, and if these defects did not occur, the transportation suitability was judged to be "○", and if these defects occurred, the transportation suitability was judged to be "×".
(実施例1)
樹脂フィルムとして厚さ5.7μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製“ルミラー(登録商標)”、タイプ:F53)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムのロール原反をロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、パルス電源を印加してアルミニウムを5nmの厚さにスパッタリングにて蒸着した。条件として、スパッタリング出力はパルス電源を用いて2.0kWを採用した。そしてスパッタ直後に蒸着ボートを加熱して送り出されるアルミニウムワイヤーを加熱する真空蒸着法によってアルミニウム金属膜を1.06μmの厚さに真空蒸着した。 Example 1
A biaxially oriented polyethylene terephthalate film with a thickness of 5.7 μm (Lumirror (registered trademark), type: F53, manufactured by Toray Industries, Inc.) was used as the resin film. The surface roughness of this resin film was 1.6 nm. A roll of this resin film was placed in a roll-type vacuum deposition apparatus (EWC-060, manufactured by ULVAC), and aluminum was deposited by sputtering to a thickness of 5 nm by applying a pulsed power supply. The sputtering output condition was 2.0 kW using a pulsed power supply. An aluminum metal film was then vacuum-deposited to a thickness of 1.06 μm by a vacuum deposition method in which the deposition boat was heated immediately after sputtering to heat the aluminum wire being sent out.
樹脂フィルムとして厚さ5.7μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製“ルミラー(登録商標)”、タイプ:F53)を使用した。この樹脂フィルムの表面粗さは1.6nmであった。この樹脂フィルムのロール原反をロール式真空蒸着装置(アルバック製EWC-060)内に樹脂フィルムを設置し、パルス電源を印加してアルミニウムを5nmの厚さにスパッタリングにて蒸着した。条件として、スパッタリング出力はパルス電源を用いて2.0kWを採用した。そしてスパッタ直後に蒸着ボートを加熱して送り出されるアルミニウムワイヤーを加熱する真空蒸着法によってアルミニウム金属膜を1.06μmの厚さに真空蒸着した。 Example 1
A biaxially oriented polyethylene terephthalate film with a thickness of 5.7 μm (Lumirror (registered trademark), type: F53, manufactured by Toray Industries, Inc.) was used as the resin film. The surface roughness of this resin film was 1.6 nm. A roll of this resin film was placed in a roll-type vacuum deposition apparatus (EWC-060, manufactured by ULVAC), and aluminum was deposited by sputtering to a thickness of 5 nm by applying a pulsed power supply. The sputtering output condition was 2.0 kW using a pulsed power supply. An aluminum metal film was then vacuum-deposited to a thickness of 1.06 μm by a vacuum deposition method in which the deposition boat was heated immediately after sputtering to heat the aluminum wire being sent out.
このときアルゴンを導入し、蒸着時の真空度9.0×10-3Pa以上、1×10-2Pa以下に制御した。このとき、蒸着時の蒸着源の出力および搬送速度および張力を調整して、150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整した。
At this time, argon was introduced and the degree of vacuum during deposition was controlled to 9.0×10 −3 Pa or more and 1×10 −2 Pa or less. At this time, the output of the deposition source, the conveying speed, and the tension during deposition were adjusted so that the dimensional change rate around 150° C. for 30 minutes was −0.10% or less in the MD direction and −0.02% or more in the TD direction.
このように作製した金属化フィルムについて、150℃×30分前後の寸法変化率がMD方向-0.28%、TD方向0.06%であり、アルミニウムの111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]は3.1、その樹脂フィルムと接していないアルミニウム金属膜表面の波長555nmの鏡面反射率7.1%、表面粗さ6.1nmであった。
The metallized film produced in this manner had a dimensional change rate of -0.28% in the MD direction and 0.06% in the TD direction at 150°C for 30 minutes, the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 face to the X-ray diffraction peak intensity I[200] of the aluminum 200 face was 3.1, the specular reflectance of the aluminum metal film surface not in contact with the resin film was 7.1% at a wavelength of 555 nm, and the surface roughness was 6.1 nm.
この金属フィルムの樹脂フィルムと接していないアルミニウム金属膜表面の表面抵抗値は0.051Ω/□、接触抵抗値は10.12mΩ、接触抵抗値と表面抵抗値の比[接触抵抗/表面抵抗]は0.20であった。
The surface resistance of the aluminum metal film surface not in contact with the resin film of this metal film was 0.051 Ω/□, the contact resistance was 10.12 mΩ, and the ratio of the contact resistance to the surface resistance [contact resistance/surface resistance] was 0.20.
接触抵抗が十分小さく接触抵抗の判定は合格で〇であり、搬送性の評価は〇であった。
The contact resistance was small enough that the contact resistance was judged to be acceptable, and the transportability was rated as acceptable.
(実施例2)
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、アルミニウム金属膜の厚みを表1に記載の通りとした以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 Example 2
A metallized film was prepared and evaluated in the same manner as in Example 1, except that argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or higher, and the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、アルミニウム金属膜の厚みを表1に記載の通りとした以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 Example 2
A metallized film was prepared and evaluated in the same manner as in Example 1, except that argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or higher, and the thickness of the aluminum metal film was as shown in Table 1. The results are shown in Table 1.
(比較例1)
蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムが熱負けしないように、蒸着源であるカーボンルツボを採用した誘導加熱蒸着法の出力を落として、真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 1)
A metallized film was produced and evaluated in the same manner as in Example 1, except that the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150°C for 30 minutes was -0.10% or less in the MD direction and -0.02% or more in the TD direction, and the output of the induction heating deposition method using a carbon crucible as the deposition source was reduced to prevent the resin film from being damaged by heat as much as possible.
蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムが熱負けしないように、蒸着源であるカーボンルツボを採用した誘導加熱蒸着法の出力を落として、真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 1)
A metallized film was produced and evaluated in the same manner as in Example 1, except that the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150°C for 30 minutes was -0.10% or less in the MD direction and -0.02% or more in the TD direction, and the output of the induction heating deposition method using a carbon crucible as the deposition source was reduced to prevent the resin film from being damaged by heat as much as possible.
(比較例2)
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムへの張力を低くする条件で、真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 2)
A metallized film was prepared and evaluated in the same manner as in Example 1, except that vacuum deposition was performed under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or higher, the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150° C. for 30 minutes was −0.10% or lower in the MD direction and −0.02% or higher in the TD direction, and the tension on the resin film was kept as low as possible. The results are shown in Table 1.
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムへの張力を低くする条件で、真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 2)
A metallized film was prepared and evaluated in the same manner as in Example 1, except that vacuum deposition was performed under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or higher, the output of the deposition source, the conveying speed, and the tension during deposition were not adjusted so that the dimensional change rate at about 150° C. for 30 minutes was −0.10% or lower in the MD direction and −0.02% or higher in the TD direction, and the tension on the resin film was kept as low as possible. The results are shown in Table 1.
(比較例3)
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムへの張力を低くし、蒸着ボートの出力を大きくしない条件でアルミニウムワイヤーを真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 3)
A metallized film was produced and evaluated in the same manner as in Example 1, except that the aluminum wire was vacuum-deposited under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or more, the output, conveying speed, and tension of the deposition source during deposition were not adjusted so that the dimensional change rate at around 150° C. for 30 minutes was −0.10% or less in the MD direction and −0.02% or more in the TD direction, the tension on the resin film was kept as low as possible, and the output of the deposition boat was not increased. The results are shown in Table 1.
蒸着時にアルゴンを導入せずに、蒸着時の真空度を9.0×10-3Pa以上とし、蒸着時の蒸着源の出力および搬送速度および張力を150℃×30分前後の寸法変化率がMD方向-0.10%以下であり、TD方向-0.02%以上であるように調整せず、できるだけ樹脂フィルムへの張力を低くし、蒸着ボートの出力を大きくしない条件でアルミニウムワイヤーを真空蒸着した以外は、実施例1と同様に金属化フィルムを作製し、評価した。結果を表1に示す。 (Comparative Example 3)
A metallized film was produced and evaluated in the same manner as in Example 1, except that the aluminum wire was vacuum-deposited under conditions in which argon was not introduced during deposition, the degree of vacuum during deposition was 9.0×10 −3 Pa or more, the output, conveying speed, and tension of the deposition source during deposition were not adjusted so that the dimensional change rate at around 150° C. for 30 minutes was −0.10% or less in the MD direction and −0.02% or more in the TD direction, the tension on the resin film was kept as low as possible, and the output of the deposition boat was not increased. The results are shown in Table 1.
1 樹脂フィルム
2 アンカー層
3 アルミニウム金属膜
4 金属化フィルム 1resin film 2 anchor layer 3 aluminum metal film 4 metallized film
2 アンカー層
3 アルミニウム金属膜
4 金属化フィルム 1
Claims (8)
- 樹脂フィルムの少なくとも一方の表面にアルミニウム金属膜が形成され、ロール形状に巻かれた二次電池正極用金属化フィルムであって、150℃30分の熱処理後のMD方向の寸法変化率が-0.10%以下であり、TD方向の寸法変化率が-0.02%以上であることを特徴とする二次電池正極用金属化フィルム。 A metallized film for a secondary battery positive electrode, which is a resin film having an aluminum metal film formed on at least one surface thereof and wound into a roll shape, characterized in that after heat treatment at 150°C for 30 minutes, the dimensional change rate in the MD direction is -0.10% or less and the dimensional change rate in the TD direction is -0.02% or more.
- 該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 plane to the X-ray diffraction peak intensity I[200] of the 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less.
- 前記金属膜の表面抵抗が0.15Ω/□以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for a secondary battery positive electrode according to claim 1, wherein the surface resistance of the metal film is 0.15 Ω/□ or less.
- 前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the surface roughness Ra of the resin film is 0.6 nm or more and 2.0 nm or less.
- 前記金属膜の表面粗さRaが2.3nm以上10.0nm以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the surface roughness Ra of the metal film is 2.3 nm or more and 10.0 nm or less.
- 前記金属膜の表面抵抗が0.15Ω/□以下であり、該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the surface resistance of the metal film is 0.15 Ω/□ or less, the ratio I[200]/I[111] of the peak intensity I[111] of the X-ray diffraction of the aluminum 111 plane of the metal film to the peak intensity I[200] of the X-ray diffraction of the aluminum 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less.
- 前記樹脂フィルムの表面粗さRaが0.6nm以上2.0nm以下であり、該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the surface roughness Ra of the resin film is 0.6 nm or more and 2.0 nm or less, the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 plane of the metal film to the X-ray diffraction peak intensity I[200] of the 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less.
- 前記金属膜の表面粗さRaが2.3nm以上10.0nm以下であり、該金属膜のアルミニウムの、111面のX線回折のピーク強度I[111]と200面のX線回折のピーク強度I[200]との比 I[200]/I[111]が1.0以上であり、該樹脂フィルムと接していない金属膜表面の波長555nmの鏡面反射率が30%以下である、請求項1記載の二次電池正極用金属化フィルム。 The metallized film for secondary battery positive electrodes according to claim 1, wherein the surface roughness Ra of the metal film is 2.3 nm or more and 10.0 nm or less, the ratio I[200]/I[111] of the X-ray diffraction peak intensity I[111] of the aluminum 111 plane of the metal film to the X-ray diffraction peak intensity I[200] of the 200 plane of the metal film is 1.0 or more, and the specular reflectance at a wavelength of 555 nm of the metal film surface not in contact with the resin film is 30% or less.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022181557 | 2022-11-14 | ||
JP2022-181557 | 2022-11-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024106163A1 true WO2024106163A1 (en) | 2024-05-23 |
Family
ID=91084256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/038681 WO2024106163A1 (en) | 2022-11-14 | 2023-10-26 | Metallized film for secondary battery positive electrodes |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024106163A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320868A (en) * | 1992-05-25 | 1993-12-07 | Nissin Electric Co Ltd | Method for controlling crystal orientation of aluminum film |
JP2004273304A (en) * | 2003-03-10 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Electrode and battery using the same |
JP2013253278A (en) * | 2012-06-06 | 2013-12-19 | Geomatec Co Ltd | Aluminum alloy film and method for producing the same |
JP2018098206A (en) * | 2016-12-14 | 2018-06-21 | 日産自動車株式会社 | Bipolar secondary battery |
JP2018181796A (en) * | 2017-04-21 | 2018-11-15 | トヨタ自動車株式会社 | Current collecting laminate |
WO2018207643A1 (en) * | 2017-05-10 | 2018-11-15 | 日産自動車株式会社 | Bipolar secondary battery |
JP2019102427A (en) * | 2017-12-05 | 2019-06-24 | 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited | Current collector, electrode sheet thereof, and battery |
WO2021145344A1 (en) * | 2020-01-17 | 2021-07-22 | 富士フイルム株式会社 | Nonaqueous electrolyte secondary battery, current collector, and method for manufacturing nonaqueous electrolyte secondary battery |
WO2022244326A1 (en) * | 2021-05-20 | 2022-11-24 | 東レKpフィルム株式会社 | Metallized film for secondary battery positive electrodes and method for producing same |
-
2023
- 2023-10-26 WO PCT/JP2023/038681 patent/WO2024106163A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05320868A (en) * | 1992-05-25 | 1993-12-07 | Nissin Electric Co Ltd | Method for controlling crystal orientation of aluminum film |
JP2004273304A (en) * | 2003-03-10 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Electrode and battery using the same |
JP2013253278A (en) * | 2012-06-06 | 2013-12-19 | Geomatec Co Ltd | Aluminum alloy film and method for producing the same |
JP2018098206A (en) * | 2016-12-14 | 2018-06-21 | 日産自動車株式会社 | Bipolar secondary battery |
JP2018181796A (en) * | 2017-04-21 | 2018-11-15 | トヨタ自動車株式会社 | Current collecting laminate |
WO2018207643A1 (en) * | 2017-05-10 | 2018-11-15 | 日産自動車株式会社 | Bipolar secondary battery |
JP2019102427A (en) * | 2017-12-05 | 2019-06-24 | 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited | Current collector, electrode sheet thereof, and battery |
WO2021145344A1 (en) * | 2020-01-17 | 2021-07-22 | 富士フイルム株式会社 | Nonaqueous electrolyte secondary battery, current collector, and method for manufacturing nonaqueous electrolyte secondary battery |
WO2022244326A1 (en) * | 2021-05-20 | 2022-11-24 | 東レKpフィルム株式会社 | Metallized film for secondary battery positive electrodes and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7188675B1 (en) | Metallized film for secondary battery positive electrode and method for producing the same | |
US6649033B2 (en) | Method for producing electrode for lithium secondary battery | |
US7824801B2 (en) | Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same | |
US20100236055A1 (en) | Method of manufacturing a secondary battery | |
JP5993726B2 (en) | Lithium ion secondary battery | |
KR20160033482A (en) | Manufacturing method of electrode, electrode manufactured by the same and secondary battery containing the same | |
WO2009095973A1 (en) | Method for manufacturing electrochemical element electrode | |
JP2007122992A (en) | Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery | |
US20220123278A1 (en) | Method and system for thermal gradient during electrode pyrolysis | |
WO2020037494A1 (en) | Ultra-thin ceramic coating on separator for batteries | |
KR102412900B1 (en) | Method for fabricating graphite composite, system for fabricating graphite composite and lithium secondary battery having graphite composite | |
WO2024106163A1 (en) | Metallized film for secondary battery positive electrodes | |
JPWO2013180083A1 (en) | Lithium ion secondary battery | |
WO2024101196A1 (en) | Metallized film for secondary battery positive electrode and method for producing same | |
JP7328954B2 (en) | METHOD AND APPARATUS FOR MANUFACTURING ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY | |
KR20170023227A (en) | Manufacturing method for negative electrode materials | |
EP4086986A1 (en) | Rechargeable battery, electrode sheet thereof, and preparation method for electrode sheet | |
WO2024057665A1 (en) | Metallized film for secondary battery positive electrodes and method for producing same | |
WO2012131972A1 (en) | Nonaqueous electrolyte battery | |
JP2024117735A (en) | Metallized film for secondary battery positive electrode and method for producing same | |
JP2009123402A (en) | Method of manufacturing negative electrode for lithium secondary battery | |
JP2014089916A (en) | Collector for lithium ion secondary battery, and lithium ion secondary battery using the same | |
KR101919715B1 (en) | Manufacturing method for negative electrode materials | |
TW202432362A (en) | Metallized film for secondary battery positive electrode and its manufacturing method, storage element and storage module | |
JP5094034B2 (en) | Method for manufacturing electrode for lithium secondary battery and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23891318 Country of ref document: EP Kind code of ref document: A1 |