JP4418661B2 - プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置 - Google Patents

プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置 Download PDF

Info

Publication number
JP4418661B2
JP4418661B2 JP2003370595A JP2003370595A JP4418661B2 JP 4418661 B2 JP4418661 B2 JP 4418661B2 JP 2003370595 A JP2003370595 A JP 2003370595A JP 2003370595 A JP2003370595 A JP 2003370595A JP 4418661 B2 JP4418661 B2 JP 4418661B2
Authority
JP
Japan
Prior art keywords
plasma
power
density information
plasma density
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003370595A
Other languages
English (en)
Other versions
JP2005135746A (ja
Inventor
仁 新田
直樹 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Nissin Dental Products Inc
Original Assignee
Tokyo Electron Ltd
Nissin Dental Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Nissin Dental Products Inc filed Critical Tokyo Electron Ltd
Priority to JP2003370595A priority Critical patent/JP4418661B2/ja
Publication of JP2005135746A publication Critical patent/JP2005135746A/ja
Application granted granted Critical
Publication of JP4418661B2 publication Critical patent/JP4418661B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体デバイスの製造工程等で利用されるプラズマの密度情報を測定するためのプラズマ密度情報測定プローブ及びプラズマ密度情報測定装置と、こうした測定装置を用いたプラズマ処理装置に関する。
半導体デバイスの製造工程ではプラズマを利用した各種処理が広く採用されている。代表的なものとしては、ウエハ上に薄膜を形成するためのプラズマCVD(化学気相成長)やウエハ上に形成されたSiO2膜等を部分的に除去するためのプラズマエッチングなどがある。こうしたプラズマを利用した処理装置の基本的な構成としては、真空雰囲気としたチャンバ内へ処理ガスを導入し、チャンバ内に配設した電極に高周波電圧を印加してこの高周波電界により処理ガスをプラズマ化している。
例えばプラズマエッチング装置では、上記のように形成したプラズマ中に処理対象のウエハを設置し、プラズマにより活性化されたラジカルの化学的反応によりウエハ上の膜をエッチングする。チャンバ内に生成されているプラズマの状態は必ずしも一定ではないので、エッチング速度を制御するためには、プラズマの密度情報をリアルタイムで正確に把握することが非常に重要である。従来からプラズマ密度の測定方法としてはラングミュア・プローブ法を始めとする各種方法が知られているが、長時間の連続的な測定には適していない、或いは測定が煩雑である等の問題があった。
これに対し、より簡便であって、比較的長期間、正確にプラズマ密度を測定可能な方法として、近年、特許文献1、2などに開示されているものが知られている。図13はこの測定装置の要部の構成図である。プラズマ密度測定用の測定プローブ102はプラズマ処理室であるチャンバ101内に挿入されるように設置される。この測定プローブ102は、電力を放射するアンテナ105と、該アンテナ105に測定用電力を伝送する同軸ケーブル104と、先端が閉塞された円筒形状の誘電体製のチューブ103とから成り、チューブ103内に同軸ケーブル104が挿設され、その先端にアンテナ105が接続されている。
チャンバ101の外側に設置された測定用電源107で生成された測定用電力は方向性結合器108を介し、同軸ケーブル102を通してアンテナ105へと供給され、アンテナ105からチャンバ101内のプラズマPMに向けて放射される。この放射電力はプラズマPMによる負荷(プラズマ負荷という)に一部が吸収されるが、殆どは反射されてアンテナ105に戻って来て、同軸ケーブル104を通して回路部側へと戻る。すなわち、プラズマPMに向けて放射された測定用電力によってチューブ103の表面にプラズマPMによる表面波が励起され、定在波を生じるか否かによってプラズマ負荷の吸収又は反射が起こる。この測定用電力の反射又は吸収の度合に基づいて、プラズマ密度情報を得ることができる。
詳しく述べると、測定用電源107は所定の周波数範囲において周波数走査を行う。測定用電力がプラズマPMにより反射されると、その反射分の電力が測定プローブ102から戻って来る。方向性結合器108はこの反射電力を検出して出力部109へと送る。出力部109には測定用電源107から走査中の周波数情報も順次送られてくるため、両情報に基づいて測定用電力の反射率の周波数依存性を求めることができる。つまり、同一周波数において、[測定用電力の検出反射量]/[測定用電力の全出力量]なる演算処理を実行して測定用電力の反射率を求め、その反射率と走査周波数とを対応付けてプロットする。そして、そのグラフから、プラズマ密度に起因して測定用電力の強い吸収が生じる吸収周波数を導出する。この吸収周波数はプラズマ密度(電子密度)と一定の相関関係があるので、吸収周波数からプラズマ密度情報を算出することができる。
しかしながら、上記のような従来の構成の測定プローブ102では次のような問題がある。すなわち、測定プローブ102のアンテナ105は、自らの測定用電力の放射に対してのプラズマPMによる反射電力を受けるのみならず、それ以外の各種電磁波も受ける。例えばプラズマ励起用にチャンバ101内に供給された高周波電力やそれ以外の各種電磁波の飛び込みを受け、これらは反射電力波に重畳されて回路部へと入り込む。こうしたノイズ成分のために反射電力を表す信号成分のS/N比が低下すると、吸収周波数を高い精度で導出することが困難になり、プラズマ密度の検出精度が低下してしまう。
また、アンテナ105及び伝送線路である同軸ケーブル104は誘電体であるチューブ103を介するものの、ノイズ源(チャンバ101内の図示しない電極など)に近接しているため、そのノイズ源と高周波的に結合してしまう。それによって、同軸ケーブル104を通して導出されたノイズをチャンバ101の外部へと撒き散らし、自己の計測器はもとより他の計測器を誤動作させる要因となる。さらに、こうした不要輻射ノイズを防止するために同軸ケーブル104のシールド部をチャンバ101の外部で接地させると、シールド部に高周波電流が流れ、同軸ケーブル104が発熱して損傷を引き起こすことがある。
特開2000−100598号公報 特開2000−100599号公報
本発明はこうした課題を解決するために成されたものであり、その主な目的は、不所望のノイズを低減することによってプラズマ密度情報の測定精度を向上させるとともに、発熱を抑制することによって耐久性を向上させることができるプラズマ密度情報測定プローブとそのプローブを用いたプラズマ密度情報測定装置、さらにこうした測定装置を用いたプラズマ処理装置を提供することである。
上記課題を解決するために成された本発明に係るプラズマ密度情報測定プローブは、
チャンバ内に生成されたプラズマ雰囲気中に配置されて該プラズマに起因する電力を外部から受けるアンテナ部と、該アンテナ部で受けた電力を測定部へ伝送する伝送線路と、を含み、前記アンテナ部で受けた電力量に基づいてプラズマの密度情報を測定するためのプラズマ密度情報測定プローブであって、
前記伝送線路に沿って少なくともその一部の範囲に設けられたシールド部と、
前記シールド部に設けられ、金属製のホルダを介して前記チャンバに電気的に接続された連結部と、
前記連結部と前記アンテナ部との間で前記伝送線路を取り囲むように設けられた、抵抗率の異なる複数の抵抗体素子から成るノイズ吸収体と、
前記アンテナ部、前記伝送線路の一部及び前記ノイズ吸収体を内部に収容する、該アンテナ部側の先端が閉塞し、前記連結部側の端部前記チャンバの外部の大気中で開口した、誘電体から成る筒状体と、
を有するとともに、前記抵抗体素子が前記アンテナ部側から前記連結部に向かって抵抗率が増加するように配列されていることを特徴としている。
発明の実施の形態、及び効果
発明に係るプラズマ密度情報測定プローブでは、プラズマ雰囲気中に設置されたアンテナ部がプラズマに起因する信号電力を受け、この信号電力は伝送線路を通して測定部へと伝送される。しかしながら、アンテナ部にはプラズマ負荷に由来する信号電力のみならず、プラズマ励起用の高周波電力やそれ以外の各種の電磁波も飛び込むため、これらノイズ成分による電力は目的とする信号電力に重畳して伝送線路を通る。
本発明に係るプラズマ密度情報測定プローブにおいては、伝送線路にノイズ成分が伝導して来ると、この伝送線路を取り囲むように設けられたノイズ吸収体には誘導電流が誘起され、抵抗成分によって電気エネルギーが熱エネルギーに変換される。それによって、伝送線路を通って伝導して来るノイズ成分は減衰し、測定部まで到達するノイズ成分は軽減される。したがって、目的とする信号電力のS/N比が向上するので、プラズマ密度情報を高い精度で以て測定することができる。また、ノイズ吸収体の抵抗成分により伝送線路のシールド部を流れる高周波電流を抑制し、この高周波電流に起因する発熱を抑えることができる。
また、ノイズ吸収体は、そのサイズや透磁率等で決まる抵抗率が大きいほどノイズ吸収作用が大きい反面、温度上昇が大きくなる。そこで、特に接地部位の方向からしかノイズ吸収体の空冷が行えないような場合においては、ノイズ吸収体を抵抗率の異なる複数の抵抗体素子から構成し、アンテナ部側から接地部位に向かって抵抗率が増加するように前記抵抗体素子を配列する構成とすることが好ましい。これによれば、冷却効率の高い、接地部位側に位置する抵抗体素子においてより大きな発熱が生じるので、ノイズ吸収体全体として温度上昇を抑制し易くなる。
なお、プラズマを真空チャンバ内で生成する場合には、チャンバ自体を電気的な接地電位とし、本発明に係るプラズマ密度情報測定プローブにおけるシールド部を所定位置でチャンバと接続することにより電気的に接地する構成とすることができる。
また、発明に係るプラズマ密度情報測定プローブの一実施形態として、前記伝送線路は同軸ケーブルの内部導体であるとともに前記シールド部は外部導体であり、該外部導体を所定位置で接地するとともに、その接地部位と前記アンテナ部との間でその同軸ケーブルの外側にノイズ吸収体を周設した構成とすることができる。
また、発明に係るプラズマ密度情報測定プローブの他の実施形態として、前記伝送線路は同軸ケーブルの内部導体であるとともに前記シールド部はその同軸ケーブルのさらに外側に設けられた管状の導体であり、その管状の導体を所定位置で接地するとともに、その接地部位と前記アンテナ部との間であって且つ管状の導体内面と同軸ケーブル外面との間の間隙に前記ノイズ吸収体を周設した構成としてもよい。
また、発明に係るプラズマ密度情報測定プローブにおいて、前記ノイズ吸収体として例えば中空の磁性体コアを用いることができ、具体的にはフェライトコア、フェライトビーズ等と呼ばれるノイズ対策部品を用いるとよい。こうした部品は、その特性やサイズの種類が豊富であり、また、樹脂製ケースに収容されたもの、分割スリーブ型など、各種の形態のものが容易に入手可能ある。したがって、プラズマ密度情報測定プローブの形態に応じて、或いは問題となるノイズ成分の周波数帯域に応じて、適宜の部品を選択して効果的にノイズ低減を行うことができる。
また、発明に係るプラズマ密度情報測定プローブでは、ノイズから変換された熱によってノイズ吸収体自体の温度が上昇する。この温度が高くなり過ぎると、ノイズ吸収作用が低下するのみならず、そのノイズ吸収体自体のケースや同軸ケーブルの絶縁被膜等の熱変形や損傷を引き起こすおそれもある。そこで、こうした不具合を回避するために、前記ノイズ吸収体を冷却するための冷却手段をさらに備える構成とすることが好ましい。冷却手段としては、強制的に空気をノイズ吸収体に送給することで空冷するもの、冷却フィンや熱伝導性の良好な材料から成る放熱体をノイズ吸収体に熱的に接触して設けることで自発的な空冷を補助するもの、或いは、空冷でなく冷媒等を利用したもの、などとすることができる。
発明に係るプラズマ密度情報測定プローブは、それ自体は電力を放出する等のプラズマに対する能動的機能を有さず、単にプラズマ雰囲気から到来する信号を受動的に受けて測定部へとその信号を伝送するものに適用してもよいが、能動的に測定用電力を放出する機能とそれに由来する電力を受ける機能とを併せ持つ構成とする場合に好適である。すなわち、発明に係るプラズマ密度情報測定プローブは、前記アンテナ部及び前記伝送線路の一部は誘電体から成る先端が閉塞した筒状体の内部に収容され、前記伝送線路を通して前記アンテナ部に測定用電力を供給し、該アンテナ部から前記筒状体を介してプラズマ中に放射される放射電力に対してプラズマ負荷による反射電力を前記アンテナ部で受け、そのプラズマ負荷による反射又は吸収に基づいてプラズマ密度情報を測定する構成とすることができる。
この構成では、伝送線路を通してアンテナ部に測定用電力が供給されると、アンテナ部から測定用電力が放出される。誘電体である筒状体の表面にはプラズマによってプラズマ表面波が励起されるから、アンテナ部から放出された測定用電力はこの筒状体の表面を介してプラズマ負荷と結合し、それによってプラズマ負荷による吸収又は反射が起こる。この反射電力をアンテナ部で受けて伝送線路を介して測定部へと戻す。測定用電力はプラズマ密度に応じた特定の周波数において特に強い吸収を受けるから、測定用電力の周波数を走査して反射量又は反射率を調べることにより、プラズマ密度情報を得ることができる。その際に、反射電力の信号のS/N比が良好であるので、吸収周波数を正確に求めることができ、それ故にプラズマ密度情報を高い精度で以て算出することができる。
すなわち、上記プラズマ密度情報測定プローブを用いたプラズマ密度情報測定装置は、前記伝送線路を通して前記アンテナ部に所定周波数の測定用電力を供給する測定用電源と、該測定用電力によってアンテナ部からプラズマ中に放射される放射電力に対してプラズマ負荷による反射電力を前記アンテナ部で受け、前記伝送線路を介して戻ってきた反射電力を検出する電力検出手段と、測定用電力と反射電力とに基づいてプラズマ負荷による反射又は吸収の程度を求め、その反射又は吸収の程度と測定用電力の周波数との関係とからプラズマ密度情報を算出する処理手段と、を備える構成とすることができる。
このように上記プラズマ密度情報測定装置によれば、その時点でのプラズマ密度情報を正確に把握することができるので、各種のプラズマ処理装置においてそのプラズマ処理速度を制御したり、一定に維持したりするために非常に有用である。すなわち、本発明に係るプラズマ処理装置は、上記プラズマ密度情報測定装置を用いたプラズマ処理装置であって、処理対象物を内部に収容するとともにプラズマを生成するプラズマ生成手段を有するプラズマ処理室を備え、前記プラズマ密度情報測定プローブの少なくとも先端が前記プラズマ処理室内部に挿入されて成る構成とする。
ここでプラズマ処理とは、例えばプラズマエッチング、プラズマCVD、プラズマクリーニングなどプラズマを利用した各種処理が考えられる。この構成によれば、こうしたプラズマ処理を精度良く制御できるので、処理精度が向上する、処理効率が向上する等の利点がある。
以下、本発明に係るプラズマ密度情報測定プローブを用いたプラズマ密度情報測定装置を適用したプラズマ処理装置として、プラズマエッチング装置を例に挙げて説明する。
図1は第1実施例によるプラズマエッチング装置の要部の構成図である。プラズマ処理室としてのエッチング室であるチャンバ10は例えばステンレス製の円筒形状体であって、電気的には接地されている。このチャンバ10内の底部にはエッチング対象であるワークWを載置するための載置台12が電極を兼ねて設けられ、これと対向してチャンバ10内上部にはプラズマ生成用の放電電極11が配置されている。放電電極11には、励起用電源17で発生されたプラズマ生成用の高周波電力がインピーダンス整合器18を介して供給される。励起用電力制御部19は後述する電子密度算出部36からの信号を受けて、チャンバ10内のプラズマ密度を調整すべくインピーダンス整合器18を制御する。励起用電源17で発生される高周波電力の大きさは例えば1〜3kW程度であり、その周波数は例えば13.56MHzを代表とするRF帯から900MHz〜2.45GHz程度のマイクロ波帯の間の周波数である。もちろん、高周波電力の大きさ及び周波数はこれに限るものではない。
チャンバ10には排気管13が接続され、排気ポンプ14の動作によりチャンバ10内のガスは外部へと排出される。一方、チャンバ10にはガス供給管15も接続され、流量調節弁16により制御されるガスがチャンバ10内へと供給される。チャンバ10内は排気ポンプ14による真空排気によって適宜のガス圧に維持される。具体的には、ガス圧としては例えば数〜数十mTorr程度とするとよい。また、供給されるガスの種類はアルゴン、窒素、酸素、フッ素系、塩素系などであり、その流量は10〜100mL/分程度とするとよい。
このプラズマエッチング装置は、プラズマ密度情報である電子密度を高い精度で測定するために電子密度測定部20を備える。この電子密度測定部20は、チャンバ10の壁面を貫通してチャンバ10内部に突出して設けられる測定プローブ21と、チャンバ10の外側に備えられ、測定プローブ21と電気的に接続されたプローブ制御/処理部22とから構成される。
プローブ制御/処理部22は、周波数走査自在の測定用発振器31と、方向性結合器32と、減衰器33と、フィルタ34と、プラズマPMによる吸収周波数を算出するプラズマ吸収周波数導出部35と、プラズマ吸収周波数から電子密度つまりプラズマ密度を計算する電子密度算出部36と、この結果を表示する表示器37とを備える。ここで表示器37はモニタ用として設けられているものであって省略することもできる。
測定用発振器31は、100kHzから3GHz程度の周波数範囲において10mW程度の高周波信号を走査する。測定用発振器31から出力された測定用信号は方向性結合器32、減衰器33、フィルタ34を通って測定プローブ21へと送られる。この測定用信号による測定用電力は測定プローブ21からプラズマPMに向けて放射されるが、その全てがプラズマ負荷に吸収されるわけではなく、多くの場合、大部分はプラズマ負荷に吸収されずに反射して戻って来る。この反射電力はプローブ制御/処理部22に戻ってフィルタ34及び減衰器33を通り、方向性結合器32に達して検出され、プラズマ吸収周波数導出部35へと送られる。測定用発振器31が周波数走査を行う際にプラズマ吸収周波数導出部35はプラズマPMによる吸収周波数を求め、電子密度算出部36がその吸収周波数からプラズマ密度情報としての電子密度を算出する。したがって、電子密度算出部36はその時点でチャンバ10内に生成されているプラズマPMの実際の電子密度をプラズマ密度情報として出力する。
図2は測定プローブ21の構成を示す概略断面図、図3は測定プローブ21の一部である同軸ケーブル43を中心とする要部の概略斜視図である。図2において、チューブ41はチャンバ10内に位置する先端部が閉塞し、後端が大気に開放した円筒形状体であり、誘電体、具体的には例えば石英、セラミックス、強化耐熱ガラスなどから成る。チューブ41の内側には、測定用電力を放射するためのアンテナ42を先端に設けた同軸ケーブル43が開放後端面から挿入された状態となっている。同軸ケーブル43は従来から知られている1芯同軸ケーブルであり、実際には、この同軸ケーブル43の先端において外皮絶縁体43aと外部導体(シールド線)43bとを所定長さだけ切除し、内側の内部絶縁体43cと内部導体(芯線)43dとを突出させた状態となっており、この突出した内部導体43dがアンテナ42として機能するようになっている。すなわち、本実施例においては、同軸ケーブル43の内部導体43dが本発明における伝送線路に相当し、外部導体43bが本発明におけるシールド部に相当する。もちろん、アンテナ42はループ状など他の形状としてもよい。
チャンバ10には金属製のホルダ46が固着され、ホルダ46に固定されたコネクタ47を介して同軸ケーブル43は外部の同軸ケーブル48と接続されている。このコネクタ47による連結部49において同軸ケーブル43の外部導体43bは、ホルダ46を介してチャンバ10に電気的に接続されている。すなわち、連結部49において同軸ケーブル43の外部導体43bは接地されている(つまり電位0Vである)とみなすことができる。そこで、ここではこの連結部49を接地部位と言い換える。
また、この測定プローブ21では、接地部位49と測定プローブ21先端部との間のチューブ41内部に、同軸ケーブル43が内側に挿通するように環状のフェライトコアであるノイズ低減素子50を複数連ねて設けている。フェライトコアは周知のように酸化鉄を主材料とするセラミックスであり、そのインダクタンスによってノイズを低減する機能を持つ。この場合、同軸ケーブル43に電流が流れることにより発生する磁界を吸収し熱に変換することでノイズを低減させる作用と、インピーダンスの不整合によりアンテナ42側から同軸ケーブル43を伝送して来る信号を反射することでノイズを低減させる作用とを併せ持つ。すなわち、本実施例においてはこのノイズ低減素子50が本発明における磁性体及びノイズ吸収体に相当する。
前述のようにアンテナ42から測定用電力がプラズマPMに放射され、それに対する反射電力がアンテナ42に戻って来るが、アンテナ42はその反射電力のみならず、プラズマ励起用の高周波電力に由来する電磁波のほか幅広い周波数帯域における各種のノイズを拾う。これらノイズ成分がそのままプローブ制御/処理部22へと伝送されると、目的とする反射電力による信号レベルのS/N比を劣化させることになる。それに対し、この測定プローブ21の構成では、ノイズ低減素子50と接地部位49における同軸ケーブル43の外部導体43bの接地とによって、同軸ケーブル43を通るノイズ成分を低減することができる。
これによって、アンテナ42に入射した電磁波のノイズが線路を伝播してプローブ制御/処理部22に到達することを抑制することができ、目的とする周波数(走査される周波数)に対する信号のS/N比が改善される。それにより、後述するような横軸に周波数、縦軸に吸収量をプロットした吸収スペクトルにおいて吸収周波数をより精度よく求めることができる。
但し、フェライトコア等のノイズ低減素子はノイズを低減する際に熱を発生するから、この熱が適切に外部に放散されないと、ノイズ低減効果が下がったり、或いは熱によって同軸ケーブルの外皮を損傷したりするおそれがある。この実施例の構成では、アンテナ42側ではチューブ41が閉塞されていて熱が発散しにくく、チューブ41の開放端面側のほうが格段に熱の放散効率がよい。そこで、ノイズ低減素子50として抵抗率の相違するものを用意し、アンテナ42側からチューブ41の根元側に向かって抵抗率が順次高くなるように配列している。抵抗率が高いほどノイズの低減効果が高い反面、それだけ発熱量も大きくなるが、上述したように素子を配列することで、特に熱が放散しにくいアンテナ42側に配置されたノイズ低減素子の発熱量を少なくすることができる。それによって、ノイズ低減素子の局所的な異常な温度上昇を防止することができ、ノイズ低減効果を維持することができるとともに同軸ケーブル等の損傷を防止することができる。
次に、本装置においてエッチング処理を行う際の動作を図4のフローチャートに沿って説明する。まず初期状態として励起用電源17は作動しており、チャンバ10内には所定流量でガスが供給され、プラズマPMも既に生成された状態にあるものとする。
測定用発振器31はその周波数を例えば100kHz〜2.5GHzの範囲で走査しながら測定用信号を発生させる(ステップS1)。これにより、同軸ケーブル43を介して測定プローブ21のアンテナ42から測定用電力が放射される。この放射電力に対し、上述したようにプラズマPMの表面波による吸収又は反射が生じ、反射電力が電力供給とは逆に同軸ケーブル43を介してプローブ制御/処理部22へと戻って来る。この反射電力は、フィルタ34、減衰器33、方向性結合器32を経由し、プラズマ吸収周波数導出部35へと送り込まれる(ステップS2)。
プラズマ吸収周波数導出部35では、同一周波数について、(反射電力量)/(測定用電力の全出力量)を計算することで反射率を算出し、測定用発振器31から与えられる周波数情報に基づいて。走査周波数範囲の各周波数において上記演算を行うことで、周波数と反射率との関係を取得する(ステップS3)。こうして得られる周波数と反射率との関係の一例を図5に示す。図5において、反射率が大きく低下するピークPa、Pbが見られるが、これがプラズマ密度に起因して測定用電力の強い吸収が起こる吸収ポイントであり、そのピークトップに対応する周波数fa、fbが吸収周波数ということになる(ステップS4)。
図5の例ではピークが2個存在し、それに対応して吸収周波数も2個得られる。このように、多くの場合、吸収周波数は複数存在する。これら吸収周波数はいずれも電子密度等のプラズマ密度情報と相関関係を有するが、特に、電子密度の2乗に比例する吸収周波数はプラズマ表面波共鳴周波数と呼ばれるものであり、プラズマ密度を導出する際に特に有用な物理量の1つである。なお、同じプラズマ雰囲気中であっても電子密度は局所的に変化するので、基板Wに対する処理に寄与するプラズマ密度情報をより正確に求めるためには、基板Wの表面近傍に測定プローブ21の先端部を配置させて上記のような測定を行うことが望ましい。
電子密度算出部36は、上記のようにして得られた吸収周波数から電子密度を算出する(ステップS5)。この電子密度の算出結果(ここでは実電子密度という)は励起用電力制御部19へと送られ、励起用電力制御部19は実電子密度と電子密度の目標値との差を求め、その差に基づいてインピーダンス整合器18を制御する。具体的には、実電子密度と目標値との差が許容値よりも大きい場合には(ステップS6でNo)、その差に応じて、例えばインピーダンス整合器18のチューナの位置を変えることにより放電電極11へ供給される電力を増加又は減少させる(ステップS8)。そして、実電子密度と目標値との差が許容値内に収束するまで(ステップS6でYes)、ステップS1へ戻ってそうした励起用電力の調整を繰り返す。
このようにしてプラズマ密度が所望の状態になった後に、基板Wをチャンバ10内に投入して載置台12上にセットし、載置台12に所定の電圧を印加することでプラズマPM中のイオンや電子を基板Wに接触させてエッチング(又は他の表面処理)を行う(ステップS7)。プラズマ密度の目標値が時間経過に伴って変化する場合でも、エッチング中にプラズマ密度情報を連続的にモニタすることで適切にプラズマ密度を制御することもできる。
上述したような処理の過程で、本実施例による測定プローブ21は、測定用電力をプラズマPMに向けて放射する一方、反射して来た電力を受けて同軸ケーブル43を介してプローブ制御/処理部22へと伝送する。その際に、アンテナ42には本来の測定対象である反射電力のみならず、プラズマ励起用の高周波電力やそれ以外の各種の信号も飛び込む。これらは密度測定用の反射電力の検出にとってはノイズ成分となるが、上記のようなノイズ低減素子50のノイズ除去作用によってプローブ制御/処理部22に入力される信号のノイズは大幅に抑制され、目的とする周波数に対する信号のS/N比が改善される。それにより、プラズマ吸収周波数をより精度よく求めることができ、その結果、電子密度の算出精度も向上しプラズマ密度の制御性が向上する。
次に本発明の第2実施例によるプラズマ密度情報測定プローブについて説明する。図6(a)は第2実施例による測定プローブ21の可動部の構成を示す外観図、図6(b)及び(c)は可動部をガイド部に挿入した状態の構成を示す外観図、図7はチューブ内の概略断面図である。なお、上記実施例による構成と同一又は相当する箇所について同一符号を付して特に要しない限り説明を省略する。
この第2実施例において、可動部のチューブ41は、先端部側が誘電体である石英ガラス製の先端部41aと、金属製の基部41bとから成り、先端部41aはアンテナを内側に収容する、小さな径(ここでは外径がΦ2mm)の細径部41a1とより大きな径(ここでは外径がΦ6mm)の太径部41a2とに形成されている。また、基部41bの外径はΦ11mmであり、このチューブ41内に挿入される同軸ケーブルの外径はΦ1mm以下の細いものである。チューブ41の根元には、この可動部を後述のガイド部に挿抜する際に分析者が把持するための把持部60が固定され、この把持部60には目盛を長手方向に刻んだ外筒状の目盛管61が固着される。
上記構成を有する可動部は、可動部をチャンバ10内に案内する機能を有する外筒状のガイド部62に挿通され、この測定プローブ21をチャンバ10内へ挿入するとガイド部62はチューブ41及び目盛管61と共に移動し、図6(b)に示すように、フランジ62aがチャンバ10の外壁に当接して止まる。そのまま、測定プローブ21を押し入れると、チューブ41が同軸ケーブル43と共に更にチャンバ10内へと挿入される。チャンバ10への可動部の挿入長さは、ガイド部62の後端部における目盛管61の目盛によってわかるから、適切な位置まで可動部を挿入することができる。
この第2実施例では、金属管42bが本発明におけるシールド部に相当する。すなわち、この金属管42bと電気的に接続されている把持部60が、接地されているチャンバ10と電気的に接続され、それによって把持部60が本発明における接地部位となる。図7に示すように、この接地部位よりもアンテナ42側に位置している金属管42bの内側の同軸ケーブル43の周囲に複数のフェライトコア等のノイズ低減素子50が設けられる。これによって第1実施例と同様に、アンテナ42で受けた反射電力の信号に重畳している各種ノイズは同軸ケーブル43を伝送する途中で減衰する。もちろん、金属管42bの内側のみでなく、更に先端側の先端部41aの内側においても同軸ケーブル43にノイズ低減素子50を周設してもよい。
次に、本発明の構成によるノイズ低減効果を実証するための実験結果について説明する。図8は実験系の構成を示す概略図、図9及び図10は図8中にC1及びC2で示した箇所におけるノイズ低減素子の配置方法を示す透視図である。この実験では簡単化のために、測定プローブ21の内部ではなく測定プローブ21とプローブ制御/処理部22とを接続する同軸ケーブル48に対してノイズ低減素子を設置した。すなわち、図8に示すように、同軸ケーブル43を合成樹脂製の管状の絶縁チューブ70に挿通し、更にその外側をアルミニウム箔から成るシールド部材71で被覆した。このシールド部材71はフィルタ34において接地されており、この接地部位と測定プローブ21(つまりアンテナ42)との間のC2の位置に図10に示すように絶縁チューブ70が貫通するフェライトコア50bを設け、その位置から測定プローブ21側のC1の位置に図9に示すように絶縁チューブ70の内側にあって同軸ケーブル48が貫通するフェライトビーズ50aを設けている。
測定条件としてプラズマ励起用電力の最大出力を20mT、2700/1350Wとし、このときに
(1)フェライトビーズ(FB)、フェライトコア(FC)共になし
(2)フェライトビーズ(FB)のみ設置
(3)フェライトビーズ(FB)、フェライトコア(FC)共に設置
の状態でそれぞれ吸収周波数と反射率との関係を実測した。その結果を図11に示す。図11で判るように、FB、FC無しの場合に比べてFBを設けた場合にはS/N比の改善効果が見られ、さらにFCを併用することでS/N比は一段と改善される。反射率の落ち込みのピークトップで比較すると、FBとFCとを併用した場合にはFB、FC無しの場合に比べて1.5〜2dB程度、S/N比が改善している。これは、同軸ケーブル48を伝送するノイズがFB、FCによって低減されていることによるものと推測できる。
また、図12には、或る一定条件の下での測定プローブの耐久性について、フェライトコアを使用しないとき(a)、使用したとき(b)、及び最適化したとき(c)の評価結果を示す。図12(a)に示すように、フェライトコアを使用しない場合には、測定開始から8分45秒が経過したときに吸収波形が全く崩れてしまっている。これは、シールド部に流れる高周波電流によって発熱が生じ、測定プローブが破損してしまったためである。これに対し、フェライトコアを使用した場合には、図12(b)に示すように、測定開始から10分が経過した時点でも吸収ピークを確認することができ測定プローブが正常に動作していることが判る。さらに、フェライトコアの数を増加したりノイズ周波数に対して最適化したりした構成においては、図12(c)に示すように、測定開始から10分が経過した時点で吸収ピークの吸収率も測定開始時とほぼ同レベルを維持することができる。このようにフェライトコアによって発熱を抑制し、それによって測定プローブの耐久性を増し信頼性を向上できることが判る。
本発明に係るプラズマ密度情報測定プローブについては、上記説明した以外に各種の変形が可能である。
例えば、ノイズ低減素子の材質や形状等は適宜に選択することができる。すなわち、ノイズ低減素子の材質としてはフェライトが一般的であるが、そのほかに鉄系やコバルト系等のアモルファス合金などが利用できる。こうした材質はフェライトよりも透磁率が高いので、より高いノイズ吸収効果が期待できる。また、ノイズ低減に特に有効な周波数帯域はノイズ低減素子の磁気的特性とサイズとによって決まるから、プラズマ励起用電力の周波数等、プラズマ密度情報測定に対するノイズ成分に支配的な周波数帯域に応じて適宜の特性とサイズとを選択することが好ましい。また、上記実施例のように複数のノイズ低減素子を並べて使用する場合には、主たるノイズ低減周波数帯域がそれぞれ異なるようなノイズ低減素子を組み合わせることも有効である。さらにまた、高いノイズ低減効果を得るために、同軸ケーブル(伝送線路)を環状のノイズ低減素子に複数回巻き付けるのも有効である。
一方、前述したようにノイズ低減効果を大きくしようとした場合に問題となるのが発熱である。発熱はノイズ吸収効果の劣化、及び同軸ケーブル等の損傷という2つの問題を引き起こす。前者の解決策として採り得る1つの方法は、ノイズ低減素子の材質としてできるだけキュリー点の高いものを使用することである。それによって、発熱によって温度が上昇しても磁性を失いにくく、ノイズ吸収効果を維持することができる。
他方、後者の解決策としてはできるだけノイズ低減素子からの熱放散を促進可能な構成とすることが必要である。その1つの方法が上述したように複数のノイズ低減素子の抵抗率の相違を利用するものである。また、それ以外に、ノイズ低減素子からの放熱を促すようないわゆる冷却フィンを利用するとよい。例えば、第2実施例のように2重シールド構造であって外側のシールド部材(上記例では金属管42b)が露出している場合には、このシールド部材に冷却フィンの機能を持たせることができる。すなわち、ノイズ低減素子とシールド部材とを密着させることにより、また好ましくはシールド部材として熱伝導性の高いものを利用することにより、ノイズ低減素子で発生した熱をシールド部材を通して迅速に外部へと放出することができる。もちろん、シールド部材とは別に冷却フィンに相当する部材を設けてもよい。さらに放熱を積極的に促進させるには、ノイズ低減素子自体や冷却フィン等に向けて空気を送給する小型ファンなどの送風装置を設けてもよいし、また水やそのほかの冷媒等を利用した強制的な循環冷却装置を設けてもよい。
なお、上記説明した以外の点についても、本発明の趣旨の範囲で適宜、変形、修正又は追加を行っても本発明の特許請求の範囲に包含されることは明らかである。
本発明の第1実施例によるプラズマ密度情報測定装置を用いたプラズマエッチング装置の要部の構成図。 図1中の測定プローブの構成を示す概略断面図。 図1中の測定プローブの一部である同軸ケーブルを中心とする要部の概略斜視図。 本実施例によるプラズマエッチング装置にてエッチング処理を行う際の動作を示すフローチャート。 本実施例によるプラズマエッチング装置で得られる測定用電力の周波数と反射率との関係の一例を示す図。 本発明の第2実施例による測定プローブの可動部の構成を示す外観図(a)、及び可動部をガイド部に挿入した状態の構成を示す外観図(b)、(c)。 図6に示した測定プローブのチューブ内の概略断面図。 本発明の構成による効果を実証する実験系の構成を示す概略図。 図8中にC1で示した箇所におけるノイズ低減素子の配置方法を示す透視図。 図8中にC2で示した箇所におけるノイズ低減素子の配置方法を示す透視図。 図8に示す実験系により吸収周波数と反射率との関係を実測した結果を示す図。 或る一定条件の下でのフェライトコアによる発熱抑制効果の評価結果を示す図。 従来知られているプラズマ密度情報測定装置の構成図。
符号の説明
10…チャンバ
11…放電電極
12…載置台
13…排気管
14…排気ポンプ
15…ガス供給管
16…流量調節弁
17…励起用電源
18…インピーダンス整合器
19…励起用電力制御部
20…電子密度測定部
21…測定プローブ
22…プローブ制御/処理部
31…測定用発振器
32…方向性結合器
33…減衰器
34…フィルタ
35…プラズマ吸収周波数導出部
36…電子密度算出部
37…表示器
41…チューブ
41a…先端部
41a1…細径部
41a2…太径部
41b…基部
42…アンテナ
42b…金属管
43…同軸ケーブル
43a…外皮絶縁体
43b…外部導体
43c…内部絶縁体
43d…内部導体
46…ホルダ
47…コネクタ
48…同軸ケーブル
49…接地部位(連結部)
50…ノイズ低減素子
50a…フェライトビーズ
50b…フェライトコア
60…把持部
61…目盛管
62…ガイド部
62a…フランジ
W…ワーク(基板)

Claims (8)

  1. チャンバ内に生成されたプラズマ雰囲気中に配置されて該プラズマに起因する電力を外部から受けるアンテナ部と、該アンテナ部で受けた電力を測定部へ伝送する伝送線路と、を含み、前記アンテナ部で受けた電力量に基づいてプラズマの密度情報を測定するためのプラズマ密度情報測定プローブであって、
    前記伝送線路に沿って少なくともその一部の範囲に設けられたシールド部と、
    前記シールド部に設けられ、金属製のホルダを介して前記チャンバに電気的に接続された連結部と、
    前記連結部と前記アンテナ部との間で前記伝送線路を取り囲むように設けられた、抵抗率の異なる複数の抵抗体素子から成るノイズ吸収体と、
    前記アンテナ部、前記伝送線路の一部及び前記ノイズ吸収体を内部に収容する、該アンテナ部側の先端が閉塞し、前記連結部側の端部前記チャンバの外部の大気中で開口した、誘電体から成る筒状体と、
    を有するとともに、前記抵抗体素子が前記アンテナ部側から前記連結部に向かって抵抗率が増加するように配列されていることを特徴とするプラズマ密度情報測定プローブ。
  2. 前記伝送線路は同軸ケーブルの内部導体であるとともに前記シールド部は外部導体であり、該外部導体を連結部で接地するとともに、その連結部と前記アンテナ部との間でその同軸ケーブルの外側に前記ノイズ吸収体を周設したことを特徴とする請求項1に記載のプラズマ密度情報測定プローブ。
  3. 前記伝送線路は同軸ケーブルの内部導体であるとともに前記シールド部はその同軸ケーブルのさらに外側に設けられた管状の導体であり、その管状の導体を連結部で接地するとともに、その連結部と前記アンテナ部との間であって且つ管状の導体内面と同軸ケーブル外面との間の間隙に前記ノイズ吸収体を周設したことを特徴とする請求項1に記載のプラズマ密度情報測定プローブ。
  4. 前記ノイズ吸収体は中空の磁性体コアであることを特徴とする請求項1〜3のいずれかに記載のプラズマ密度情報測定プローブ。
  5. 前記ノイズ吸収体を冷却するための冷却手段をさらに備えることを特徴とする請求項1〜4のいずれかに記載のプラズマ密度情報測定プローブ。
  6. 前記伝送線路を通して前記アンテナ部に測定用電力を供給し、該アンテナ部から前記筒状体を介してプラズマ中に放射される放射電力に対してプラズマ負荷による反射電力を前記アンテナ部で受け、そのプラズマ負荷による反射又は吸収に基づいてプラズマ密度情報を測定することを特徴とする請求項1〜5のいずれかに記載のプラズマ密度情報測定プローブ。
  7. 請求項6に記載のプラズマ密度情報測定プローブを用いたプラズマ密度情報測定装置であって、前記伝送線路を通して前記アンテナ部に所定周波数の測定用電力を供給する測定用電源と、該測定用電力によってアンテナ部からプラズマ中に放射される放射電力に対してプラズマ負荷による反射電力を前記アンテナ部で受け、前記伝送線路を介して戻ってきた反射電力を検出する電力検出手段と、測定用電力と反射電力とに基づいてプラズマ負荷による反射又は吸収の程度を求め、その反射又は吸収の程度と測定用電力の周波数との関係とからプラズマ密度情報を算出する処理手段と、を備えることを特徴とするプラズマ密度情報測定装置。
  8. 請求項7に記載のプラズマ密度情報測定装置を用いたプラズマ処理装置であって、処理対象物を内部に収容するとともにプラズマを生成するプラズマ生成手段を有するプラズマ処理室を備え、前記プラズマ密度情報測定プローブの少なくとも先端が前記プラズマ処理室内部に挿入されて成ることを特徴とするプラズマ処理装置。
JP2003370595A 2003-10-30 2003-10-30 プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置 Expired - Fee Related JP4418661B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003370595A JP4418661B2 (ja) 2003-10-30 2003-10-30 プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003370595A JP4418661B2 (ja) 2003-10-30 2003-10-30 プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置

Publications (2)

Publication Number Publication Date
JP2005135746A JP2005135746A (ja) 2005-05-26
JP4418661B2 true JP4418661B2 (ja) 2010-02-17

Family

ID=34647559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003370595A Expired - Fee Related JP4418661B2 (ja) 2003-10-30 2003-10-30 プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置

Country Status (1)

Country Link
JP (1) JP4418661B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601397B1 (en) 2015-09-03 2017-03-21 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021480B1 (ko) * 2007-12-07 2011-03-16 성균관대학교산학협력단 페라이트 구조체를 구비하는 플라즈마 소스 및 이를채택하는 플라즈마 발생장치
JP5546757B2 (ja) * 2008-11-20 2014-07-09 芝浦メカトロニクス株式会社 プラズマ密度測定子、プラズマ密度測定装置、プラズマ処理装置、およびプラズマ密度測定方法
JP6899693B2 (ja) * 2017-04-14 2021-07-07 東京エレクトロン株式会社 プラズマ処理装置及び制御方法
DE102020115056A1 (de) * 2020-06-05 2021-12-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Messsonde zum Messen von für ein Plasma charakteristischen Größen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9601397B1 (en) 2015-09-03 2017-03-21 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system
US10566176B2 (en) 2015-09-03 2020-02-18 Samsung Electronics Co., Ltd. Microwave probe, plasma monitoring system including the microwave probe, and method for fabricating semiconductor device using the system

Also Published As

Publication number Publication date
JP2005135746A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
US6184623B1 (en) Method for controlling plasma-generating high frequency power, and plasma generating apparatus
US6744211B2 (en) Plasma density information measuring method, probe used for measuring plasma density information, and plasma density information measuring apparatus
JP6846776B2 (ja) プラズマ処理装置
JP3709552B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP4607073B2 (ja) マイクロ波共鳴プラズマ発生装置、該装置を備えるプラズマ処理システム
JP4303654B2 (ja) プラズマ電子密度測定およびモニタリング装置
EP1377138B1 (en) Device and control method for micro wave plasma processing
KR102544625B1 (ko) 고온 환경에서 무선 주파수 전력을 측정하기 위한 전압-전류 프로브 및 이를 교정하는 방법
JP2005277397A (ja) プラズマ処理装置
JP4418661B2 (ja) プラズマ密度情報測定プローブ、プラズマ密度情報測定装置、及びプラズマ処理装置
KR101456542B1 (ko) 초고주파 플라즈마 진단 장치
JP4187386B2 (ja) プラズマ処理装置及びプラズマ処理方法
JP2004103264A (ja) プラズマモニタリング方法、プラズマモニタリング装置及びプラズマ処理装置
JP2002043093A (ja) プラズマ密度情報測定方法及びその装置並びにプラズマ密度情報測定用プローブ、プラズマ発生方法及びその装置、プラズマ処理方法及びその装置
JP2005531912A (ja) 半導体プラズマパラメータの非侵入性の測定と解析のための方法と装置
JP2004055324A (ja) プラズマ密度情報測定方法およびその装置、並びにプラズマ密度情報監視方法およびその装置、並びにプラズマ処理方法およびその装置
JP2005203124A (ja) プラズマ密度情報測定用プローブおよびプラズマ密度情報測定用装着具、プラズマ密度情報測定方法およびその装置、プラズマ処理方法およびその装置
JP7489905B2 (ja) チャンバーコンディションの診断方法及び基板処理装置
JP2002216998A (ja) プラズマ密度情報測定方法及びその装置並びにプラズマ密度情報測定用プローブ、プラズマ処理方法及びその装置
Bak et al. Diamagnetism measurements in the Hanbit magnetic mirror device
JP2004039733A (ja) プラズマ密度情報測定用プローブおよびそれを用いたプラズマ密度情報測定方法並びにその装置、プラズマ密度情報測定用プローブを用いたプラズマ処理方法およびその装置
JP5546757B2 (ja) プラズマ密度測定子、プラズマ密度測定装置、プラズマ処理装置、およびプラズマ密度測定方法
JPH0729695A (ja) エッチング方法
Ji et al. A microwave power coupling structure for an electron cyclotron resonance plasma etcher
Shimatani et al. A new microwave-excited plasma source using an internal dielectric microwave applicator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4418661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees