WO2023090365A1 - 大型電子管、磁性体、及び、大型電子管の使用方法 - Google Patents

大型電子管、磁性体、及び、大型電子管の使用方法 Download PDF

Info

Publication number
WO2023090365A1
WO2023090365A1 PCT/JP2022/042577 JP2022042577W WO2023090365A1 WO 2023090365 A1 WO2023090365 A1 WO 2023090365A1 JP 2022042577 W JP2022042577 W JP 2022042577W WO 2023090365 A1 WO2023090365 A1 WO 2023090365A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
electron tube
magnetic body
large electron
tube according
Prior art date
Application number
PCT/JP2022/042577
Other languages
English (en)
French (fr)
Inventor
貴浩 新屋
亮介 池田
貴之 小林
Original Assignee
国立研究開発法人量子科学技術研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人量子科学技術研究開発機構 filed Critical 国立研究開発法人量子科学技術研究開発機構
Publication of WO2023090365A1 publication Critical patent/WO2023090365A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • H01J23/075Magnetron injection guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/10Magnet systems for directing or deflecting the discharge along a desired path, e.g. a spiral path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons

Definitions

  • the present invention relates to large electron tubes.
  • the present invention also relates to a magnetic body attached to a large electron tube.
  • the invention also relates to a method of using a large electron tube.
  • An object of one aspect of the present invention is to suppress parasitic oscillation that occurs in a cylindrical collector in a large electron tube.
  • a large-sized electron tube includes a cylindrical (for example, cylindrical) collector, and a magnetic body disposed outside the collector, the magnet having no axial symmetry with respect to the central axis of the collector. have a body.
  • a large electron tube eg, a gyrotron device for fusion plasma.
  • FIG. 2 is a diagram showing an overview of an embodiment of the present invention, showing lines of magnetic force from the electron gun to the collector of the ITER gyrotron ( ⁇ the orbital center of the electron beam); The five curves shown in the figure represent magnetic lines of force with collector coil currents of 0, 5, 10, 15 and 20 A from the left.
  • FIG. 4 is a diagram showing an overview of an embodiment of the present invention, showing frequencies of RF noise (586 MHz is background noise) measured during collector coil current sweep.
  • FIG. 2 shows details of an embodiment of the invention, relating to the structure of the ITER gyroton;
  • FIG. 4 is a diagram showing the details of the embodiment of the present invention, and relates to the measurement results of the high-frequency noise measuring device and the long pulse operation.
  • FIG. 4 is a diagram showing details of an embodiment of the present invention, and relates to measurement results during short-pulse operation;
  • Fig. 3 shows a detail of an embodiment of the invention, relating to the resonant frequency of the collector;
  • FIG. 2 is a diagram showing details of an embodiment of the present invention, and relates to consideration of a high-frequency noise generation mechanism;
  • FIG. 4 is a diagram showing details of an embodiment of the present invention, and relates to suppression of high-frequency noise using a magnetic material; It is a figure which shows the detail of the Example of this invention, and is related with the influence on the high frequency noise generation which the magnetic shield (magnetic body) of an ion pump gives.
  • FIG. 3 shows a detail of an embodiment of the invention, relating to the resonant frequency of the collector
  • FIG. 2 is a diagram showing details of an embodiment of the present invention, and relates to consideration of a high-frequency noise generation mechanism
  • FIG. 4 is a diagram showing details of an embodiment of the present
  • FIG. 2 is a diagram showing details of an embodiment of the present invention, and relates to an example of application to a gyrotron (138 GHz) for JT-60SA; It is a figure which shows the large-sized electron tube which concerns on one Embodiment of this invention.
  • (a) is a longitudinal sectional view of the large electron tube
  • (b) is a transverse sectional view of the large electron tube.
  • a large electron tube 1 according to an embodiment of the present invention will be described with reference to FIG.
  • (a) is a longitudinal sectional view of the large electron tube 1
  • (b) is a lateral sectional view of the large electron tube 1.
  • the cross section shown in FIG. 11(b) is the AA' section of the large electron tube 1 shown in FIG. 11(a).
  • the large electron tube 1 according to this embodiment is a gyroton.
  • the large electron tube 1 includes a magnetron electron gun 10, a tubular (cylindrical in this embodiment) resonator 11, and a superconducting coil 12 surrounding the resonator 11 from the outside.
  • a magnetron electron gun 10 generates a hollow electron beam EB1.
  • the energy in the direction perpendicular to the magnetic lines of force formed in the superconducting coil 12 is converted into TE mode millimeter wave energy inside the resonator 11 by the cyclotron resonance maser action.
  • the TE mode millimeter wave is converted into a Gaussian beam by a mode converter and a mirror and output to the outside through the output window 13 .
  • the large-sized electron tube 1 includes a tubular (cylindrical in this embodiment) collector 14 and a collector coil 15 surrounding the collector 14 from the outside.
  • the collector coil 15 functions as a sweep mechanism that sweeps the lines of magnetic force inside the collector 14 to change the collision position of the spent electron beam EB ⁇ b>2 on the inner surface of the collector 14 .
  • parasitic oscillation may occur in the collector 14 of the large electron tube 1, parasitic oscillation may occur.
  • parasitic oscillations can occur if the resonant frequency of collector 14 satisfies cyclotron resonance conditions.
  • the large electron tube 1 has a magnetic body 16 arranged outside the collector 14 .
  • the magnetic body 16 does not have axial symmetry with respect to the central axis L of the collector 14 .
  • the spent electron beam EB2 can be spread asymmetrically.
  • the oscillation conditions for parasitic oscillation for example, the cyclotron resonance condition described above
  • parasitic oscillation can be suppressed.
  • the magnetic body 16 is preferably designed so that the spent electron beam EB2 inside the collector 14 collides with the water-cooled portion 14a of the collector 14. Accordingly, it is possible to prevent the collector 14 from being overheated by the collision of the spent electron beam EB2 and, as a result, the temperature of the collector 14 from excessively increasing.
  • the magnetic body 16 a plate-shaped magnetic body that is arranged along the outer surface of the collector 14 and covers less than 1/2 of the outer circumference of the collector 14 is used. Thereby, a mechanism for suppressing parasitic oscillation can be easily added to the large electron tube 1 . Further, in this embodiment, an iron plate is used as the magnetic body 16 . As a result, a mechanism for suppressing parasitic oscillation can be added to the large-sized electron tube 1 at low cost.
  • the magnetic body 16 may be a single magnetic plate (for example, an iron plate) curved along the outer surface of the collector 14, or a plurality of magnetic plates arranged along the outer surface of the collector 14. A magnetic plate (for example, an iron plate) may be used.
  • each magnetic plate may be a flat magnetic plate that is not curved.
  • the ratio of the outer circumference of the collector 14 covered by the magnetic material 16 can be changed.
  • the ratio of the outer periphery of the collector 14 covered by the magnetic material 16 can be changed.
  • the scope of application of the present invention is not limited to gyrotrons. That is, the present invention can also be applied to large electron tubes other than gyrotrons, such as klystrons.
  • a high-power, long-pulse, high-efficiency gyrotron developed for fusion plasma operates as follows (see Fig. 1). i) Generating an annular electron beam with an electron gun. ii) magnetic compression with an external magnetic field; iii) Convert the energy in the direction perpendicular to the magnetic line of force into millimeter wave energy by the cyclotron resonance maser action in the cylindrical resonator. iv) High-order TE mode millimeter waves are converted into Gaussian beams by a mode converter and a mirror, and emitted from the output window.
  • a one-turn pickup coil was installed on the atmospheric side near the gyrotron, and the signal was directly measured with a high-time resolution oscilloscope. As a result, high-frequency noise of about 570MHz was detected for about 1-2 seconds after the oscillation. From this, it was found that the presence or absence of noise generation is related to the collector coil current and the applied voltage.
  • the collector coil current was fixed with a short pulse (1 ms), and the noise frequency was measured while sweeping the collector coil current for each shot.
  • high-frequency noise of about 570 MHz was observed at 11-18A, as shown in the graph on the right side of FIG. 5(a).
  • high-frequency noise did not occur when CPD was increased from 25 kV to 29 kV.
  • the resonance frequency of the collector was calculated according to the following formula, it was about 570 MHz in the TE 1,1,2 mode, as shown in FIG. 6(a). Also, when the S11 spectrum was measured using a loop antenna and a network analyzer, the graph shown in FIG. 6(c) was obtained. Since the resonance frequency calculated according to the following formula matches the frequency of the measured high-frequency noise, it was confirmed that there is a high possibility that the collector acts as a resonator and generates RF noise.
  • the resonance frequency of the collector was calculated as shown in FIG. 6(b). , in both cases was about 570 MHz in the TE 1,1,2 mode. Since the resonance frequency calculated according to the following formula also matches the measured high-frequency noise frequency (see (c) in Fig. 6), it is highly likely that the collector acts as a resonator and generates RF noise. confirmed again.
  • the electron beam in the collector oscillates due to the cyclotron resonance maser action, and high-frequency noise of about 570 MHz leaks into the atmosphere, presuming that this is the cause of the high-frequency noise.
  • the grounds for this presumption include the following points.
  • the application target of the present invention is not limited to the ITER gyrotron (170 GHz).
  • the inventors have demonstrated that even if the present invention is applied to the JT-60SA gyrotron (138 GHz), the effect of suppressing collector noise can be obtained.
  • an iron plate (specifically, a cold-rolled steel plate) with a length of 110 mm, a width of 110 mm, and a thickness of 6 mm was used as the magnetic material.
  • multiple jigs were installed on the collector flange, and the iron plate was screwed to these jigs. This is because the size and number of iron plates suitable for noise suppression differ for each gyrotron, so that the size and number of iron plates to be used can be easily changed.
  • the collector noise is suitably reduced. confirmed that it can be done.

Landscapes

  • Microwave Tubes (AREA)

Abstract

大型電子管(1)は、筒状のコレクター(14)と、コレクター(14)の外部に配置された磁性体(16)であって、コレクター(14)の中心軸に対する軸対称性を有さない磁性体(16)を備えている。これにより、コレクター(14)の内部で生じる寄生発振を抑制することができる。

Description

大型電子管、磁性体、及び、大型電子管の使用方法
 本発明は、大型電子管に関する。また、本発明は、大型電子管に装着する磁性体に関する。また、本発明は、大型電子管の使用方法に関する。
 ジャイロトロンやクライストロンなどの各種大型電子管が実用化されている。例えば、大電力・長パルス・高効率のジャイロトロンが核融合プラズマ用に開発されている。また、ロケットを推進させるための動力源として、或いは、ロケットを遠隔充電するための電力源として、ジャイロトロンを利用することも検討されている。また、クライストロンは、各種加速器の電力源として利用されている。核融合プラズマ用のジャイロトロンを開示した文献としては、例えば、特許文献1が挙げられる。
特開平4-351836号
 本発明の一態様は、大型電子管において、筒状のコレクターで生じる寄生発振を抑制することを目的とする。
 本発明の一態様にかかる大型電子管は、筒状(例えば、円筒状)のコレクターと、前記コレクター外に配置された磁性体であって、前記コレクターの中心軸に対する軸対称性を有さない磁性体を備えている。
 本発明によれば、大型電子管(例えば、核融合プラズマ用のジャイロトロン装置)において生じる寄生発振を抑制することができる。
本発明の実施例の概要を示す図であり、ITERジャイロトロンの電子銃からコレクターまでの磁力線(≒電子ビームの軌道中心)を示す。図示した5本の曲線は、左からコレクターコイル電流が0、5、10、15、20Aの磁力線を表す。 本発明の実施例の概要を示す図であり、コレクターコイル電流掃引時に計測されたRFノイズの周波数(586MHzは背景ノイズ)を示す。 本発明の実施例の詳細を示す図であり、ITERジャイロトンの構造に関する。 本発明の実施例の詳細を示す図であり、高周波ノイズの計測装置・長パルス運転時の計測結果に関する。 本発明の実施例の詳細を示す図であり、短パルス運転時の計測結果に関する。 本発明の実施例の詳細を示す図であり、コレクターの共振周波数に関する。 本発明の実施例の詳細を示す図であり、高周波ノイズの発生機構について考察に関する。 本発明の実施例の詳細を示す図であり、磁性体を用いた高周波ノイズの抑制に関する。 本発明の実施例の詳細を示す図であり、イオンポンプの磁気シールド(磁性体)が与える高周波ノイズ発生への影響に関する。 本発明の実施例の詳細を示す図であり、JT-60SA用ジャイロトロン(138GHz)への適用例に関する。 本発明の一実施形態に係る大型電子管を示す図である。(a)は、その大型電子管の縦断面図であり、(b)は、その大型電子管の横断面図である。
 本発明の一実施形態に係る大型電子管1について、図11を参照して説明する。図11において、(a)は、大型電子管1の縦断面図であり、(b)は、大型電子管1の横断面図である。図11の(b)に示す横断面は、図11の(a)に示す大型電子管1のAA’断面である。本実施形態に係る大型電子管1は、ジャイロトンである。
 大型電子管1は、マグネトロン電子銃10と、筒状(本実施形態においては円筒状)の共振器11と、共振器11を外部から取り囲む超電導コイル12と、を備えている。マグネトロン電子銃10は、中空電子ビームEB1を発生する。中空電子ビームEB1のエネルギーのうち、超電導コイル12に形成された磁力線に直交する方向のエネルギーは、共振器11の内部においてサイクロトロン共鳴メーザー作用によってTEモードのミリ波のエネルギーに変換される。TEモードのミリ波は、モード変換器及びミラーによってガウスビームに変換され、出力窓13を介して外部に出力される。
 大型電子管1は、筒状(本実施形態においては円筒状)のコレクター14と、コレクター14を外部から取り囲むコレクターコイル15と、を備えている。共振器11を通過した中空電子ビームEB1、すなわち、スペント電子ビームEB2は、コレクター14の内側面に衝突することによって、そのエネルギーが回収される。コレクターコイル15は、コレクター14の内部の磁力線を掃引することによって、コレクター14の内側面においてスペント電子ビームEB2が衝突する位置を変化させる掃引機構として機能する。
 大型電子管1のコレクター14においては、寄生発振が生じる場合がある。例えば、コレクター14の共振周波数がサイクロトロン共鳴条件を満たす場合、このような寄生発振が生じ得る。
 このような寄生発振を抑制するために、大型電子管1は、コレクター14の外部に配置された磁性体16を備えている。磁性体16は、コレクター14の中心軸Lに対する軸対称性を有さない。このような磁性体16を設けることによって、スペント電子ビームEB2を非対称に広げることができる。これにより、寄生発振の発振条件(例えば、上述したサイクロトロン共鳴条件)が非充足となり、その結果、寄生発振を抑制することができる。
 磁性体16は、コレクター14の内部のスペント電子ビームEB2がコレクター14の水冷部位14aに衝突するように設計されていることが好ましい。これにより、スペント電子ビームEB2の衝突によってコレクター14が過熱され、その結果、コレクター14の温度が過度に上昇することを、抑制することができる。
 本実施形態においては、磁性体16として、コレクター14の外側面に沿うように配置された、コレクター14の外周の1/2以下を覆う板状の磁性体を用いている。これにより、寄生発振を抑制する機構を、大型電子管1に容易に付加することができる。また、本実施形態においては、磁性体16として、鉄板を用いている。これにより、寄生発振を抑制する機構を、大型電子管1に安価に付加することができる。なお、磁性体16は、コレクター14の外側面に沿うように湾曲した1枚の磁性体板(例えば、鉄板)であってもよいし、コレクター14の外側面に沿うように配置された複数枚の磁性体板(例えば、鉄板)であってもよい。後者の場合、各磁性体板は、湾曲していない平板状の磁性体板であってもよい。前者の場合、例えば、磁性体板のサイズを変えることによって、磁性体16がコレクター14の外周を覆う割合を変化させることができる。また、後者の場合、例えば、磁性体板の枚数を変えることによって、磁性体16がコレクター14の外周を覆う割合を変化させることができる。
 なお、本発明の適用範囲は、ジャイロトロンに限定されない。すなわち、本発明は、ジャイロトロン以外の大型電子管、例えば、クライストロンにも適用することができる。
 (概要)
 核融合プラズマ用に開発された大電力・長パルス・高効率のジャイロトロンは、次のように動作する(図1参照)。i)電子銃で円環状電子ビームを生成する。ii)外部磁場で磁気圧縮を行う。iii)円筒型共振器内で磁力線垂直方向のエネルギーをサイクロトロン共鳴メーザー作用でミリ波のエネルギーに変換する。iv)モード変換器とミラーで高次TEモードのミリ波をガウスビームに変換して出力窓より放射する。v)一方、共振器を通過したスペント電子ビームのエネルギーを電源にて一部回収する(CPD)vi)残りのスペント電子ビームのエネルギーをコレクターで回収する。ジャイロトロンを設計する上で注意すべき点は、この過程において共振器以外で発振(寄生発振)させないことである。例えば、過程iiで寄生発振を回避するためには、共振器までの電極形状をテーパーにすること、炭化珪素材などの吸収体を挿入することが有効であると先行研究でわかっている。ジャイロトロンにおける寄生発振は出尽くしたように思われたが、ITER及びJT-60SA用ジャイロトロン(170GHz、138GHz)の運転時に、発振直後の約1-2秒間だけ計測機器がノイズによる信号の乱れを検出した。これは、未知の寄生発振がある可能性を示唆している。ノイズ発生によりジャイロトロンの性能が悪化することはないものの、計測機器に多大な影響を与えることから、これを抑制することは急務であり、調査を行なった。
 まず、ITERジャイロトロン近傍の大気中に一巻きの磁気プローブを設置してノイズの周波数を計測した。その結果、約570MHzと約600MHzの高周波(RF)ノイズが観測された(図2参照)。また、RFノイズ発生の有無は、スペント電子ビームの衝突位置を掃引するためのコレクターコイル電流に依存することがわかった(図1,2参照)。そこで、コレクターの共振周波数を計算したところ、TE1,1,2モードで約570MHz、TE1,1,3モードで約600MHzであった。計測されたRFノイズの周波数と一致することから、コレクターが共振器となりRFノイズを発生している可能性があることが明らかになった。また、コレクター内の電子ビームのエネルギーを低下させるとRFノイズが発生しないことも分かった。このこともなんらかの仕組みでコレクターにて発振していることを示唆する現象と考えられる。RFノイズの抑制については、設計変更が不必要な方法を模索した。すなわち磁性体で外部からコレクター内のスペント電子ビームの軌道を一部だけ乱して、発振条件を阻害すれば良いと考え、鉄板のサイズや設置位置を調整した。その結果、特定の磁性体の設置により、コレクターへの熱負荷分布を偏らせることなく、RFノイズを抑制することに成功した。
 (詳細)
 1.寄生発振
 寄生発振について、図3を参照して説明する。
 大電力・長パルス・高効率のジャイロトロンを設計する上で注意すべき点は、共振器以外で発振(寄生発振)させないことである。ジャイロトロンにおける寄生発振は出尽くしたように思われたが、ITERジャイロトロン(170GHz)の運転時に、発振直後の約1-2秒間だけ計測機器がノイズによる信号の乱れを検出した。これは、未知の寄生発振がある可能性を示唆している。計測機器に多大な影響を与えることから、これを抑制することは必須であり、調査を行なった。なお、このような寄生発振は、発振効率が悪い場合、及び、発振効率が良くても何らかの理由により発振条件が満たされた場合には、発振直後に限らず生じ得る。特に、発振直後は、発振効率が悪いため、このような寄生発振が生じやすい。
 2.高周波ノイズの計測装置・長パルス運転時の計測結果
 高周波ノイズの計測装置、及び、長パルス運転時の計測結果について、図4を参照して説明する。
 一巻きのピックアップコイルをジャイロトロン近傍の大気側に設置し、信号を高時間分解能オシロスコープで直接計測した。その結果、発振後の約1-2秒間だけ約570MHzの高周波ノイズが検波された。このことから、ノイズ発生の有無はコレクターコイル電流および印加電圧と関係していることがわかった。
 3.短パルス運転時の計測結果
 短パルス運転時の計測結果について、図5を参照して説明する。
 短パルス(1ms)でコレクターコイル電流を固定し、ショット毎にコレクターコイル電流を掃引しながらノイズの周波数計測を行った。その結果、図5の(a)の右側のグラフに示すように、11-18Aで約570MHzの高周波ノイズが観測された。また、図5の(b)の左側のグラフに示すように、CPDを25kVから29kVに上げると高周波ノイズが発生しなかった。
 4.コレクターの共振周波数
 コレクターの共振周波数について、図6を参照して説明する。
 下記の式に従って、コレクターの共振周波数を計算したところ、図6の(a)に示すように、TE1,1,2モードで約570MHzであった。また、ループアンテナとネットワークアナライザを用いてS11スペクトラムを測定したところ、図6の(c)に示すグラフが得られた。下記の式に従って計算された共振周波数と計測された高周波ノイズの周波数と一致することから、コレクターが共振器となりRFノイズを発生している可能性が高いことが確かめられた。
Figure JPOXMLDOC01-appb-M000001
 また、一端開/一端閉(Open-Close)及び両端閉(Close-Close)のそれぞれの場合について、下記の式に従って、コレクターの共振周波数を計算したところ、図6の(b)に示すように、いずれの場合もTE1,1,2モードで約570MHzであった。下記の式に従って計算された共振周波数も計測された高周波ノイズの周波数(図6の(c)参照)と一致することから、コレクターが共振器となりRFノイズを発生している可能性が高いことが改めて確かめられた。
Figure JPOXMLDOC01-appb-M000002
 5.高周波ノイズの発生機構について考察
 高周波ノイズの発生機構について、図7を参照して説明する。
 コレクター内の電子ビームがサイクロトロン共鳴メーザー作用で発振し、約570MHzの高周波ノイズが大気中に漏れ出していることが、高周波ノイズの発生原因であると推定した。この推定の根拠としては、以下の点が挙げられる。
Figure JPOXMLDOC01-appb-M000003
 ・後進波発振(BWO)であれば、TE1,1,2の発振条件を満たす。
 ・CPDを高くするとTE1,1,2が発振条件を満たさなくなる傾向は計測結果と一致。
 ・高周波ノイズが発生した電子軌道は、TE1,1,2の電場が最大となる腹の位置で発振条件を満たしている。
 6.磁性体を用いた高周波ノイズの抑制
 磁性体を用いた高周波ノイズの抑制について、図8を参照して説明する。
 高周波ノイズの抑制方法として、設計変更が不必要な方法を模索した。コレクター内のビーム軌道を一部乱すことで発振条件を満たす電子ビームの割合を低下させることができれば、発振を抑制できる可能性がある。そこで、コレクター外部から磁性体で磁力線を外側に広げる手法を考案した。そして、鉄板のサイズ・位置を調整した結果、高周波ノイズを抑制することに成功した。また、コレクターの温度分布を計測し、電子ビームの衝突位置が冷却部位にあることを確認した。
 7.イオンポンプの磁気シールド(磁性体)が与える高周波ノイズ発生への影響
 イオンポンプの磁気シールド(磁性体)が与える高周波ノイズ発生への影響について、図9を参照して説明する。
 2台のイオンポンプ(8L及び20L)の磁気シールドを外した状態で高周波ノイズ計測を実施した。その結果、コレクターコイル電流が4-5.5Aのとき、新たに約600MHzの高周波ノイズが観測された。この高周波ノイズの周波数(600MHz)は、TE1,1,3の共振周波数と一致する。このことから、イオンポンプの磁気シールドは、コレクター下部で発生する高周波ノイズを抑制していることが明らかになった。
 8.まとめ
 本実施例についてまとめれば、以下のとおりである。
 ・ピックアップコイルを用いた計測によって、ITERジャイロトロンから約570MHz、600MHzの高周波ノイズが発生することが明らかになった。
 ・コレクターの共振周波数が観測周波数と一致することから、コレクターが共振器となりRFノイズを発生している可能性があることが明らかになった。
 ・CPDを25kVから29kVに上げると高周波ノイズが発生しないことがわかった。
 ・500×100×1.6mmの鉄板をコレクターの大気側に装着することで高周波ノイズを抑制することに成功した。
 なお、本実施例においては、ITER用ジャイロトロン(170GHz)に対する本発明の適用例ついて説明したが、本発明の適用対象は、ITER用ジャイロトロン(170GHz)に限定されない。実際、発明者らは、JT-60SA用ジャイロトロン(138GHz)に対して本発明を適用しても、コレクターノイズを抑制する効果が得られることを実証した。
 JT-60SA用ジャイロトロン(138GHz)への適用に際しては、磁性体として、縦110mm、横110mm、厚さ6mmの鉄板(具体的には、冷間圧延鋼板)を用いた。また、鉄板のジャイロトロンへの取り付けに際しては、まず、コレクターフランジに複数の治具を設置し、この治具に鉄板をねじ止めする手法を採用した。これは、ノイズ抑制に適した鉄板のサイズ及び枚数は、ジャイロトロン毎に異なるため、用いる鉄板のサイズ及び枚数を容易に変更できるようにするためである。その結果、JT-60SA用ジャイロトロン(138GHz)においては、図10に示すように、上述したサイズの鉄板を3枚用いてコレクター全周の37%を覆ったときに、好適にコレクターノイズを低減できることが確かめられた。
 (付記事項)
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1    大型電子管
 10   マグネトロン電子銃
 11   共振器
 12   超電導コイル
 13   出力窓
 14   コレクター
 15   コレクターコイル
 16   磁性体

 

Claims (11)

  1.  筒状のコレクターと、
     前記コレクター外に配置された磁性体であって、前記コレクターの中心軸に対する軸対称性を有さない磁性体を備えている、
    ことを特徴とする大型電子管。
  2.  前記磁性体は、前記コレクター内のスペント電子ビームが前記コレクターの水冷部位に衝突するように設計されている、
    ことを特徴とする請求項1に記載の大型電子管。
  3.  前記コレクター内の磁力線を掃引する掃引機構を更に備えている、
    ことを特徴とする請求項1又は2に記載の大型電子管。
  4.  前記磁性体は、前記コレクターの外側面に沿うように配置され、前記コレクターの外周の1/2以下を覆う板状の磁性体である、
    ことを特徴とする請求項1から3の何れか一項に記載の大型電子管。
  5. コレクターの共振周波数が電子のサイクロトロン共鳴条件を満たす、
    ことを特徴とする請求項1から4の何れか一項に記載の大型電子管。
  6.  中空電子ビームを発生するマグネトロン入射電子銃を更に備えている、
    ことを特徴とする請求項1から5の何れか一項に記載の大型電子管。
  7.  前記磁性体は、鉄板である、
    ことを特徴とする請求項1から6の何れか一項に記載の大型電子管。
  8.  ジャイロトロンである、
    ことを特徴とする請求項1から7までの何れか一項に記載の大型電子管。
  9.  クライストロンである、
    ことを特徴とする請求項1から8までの何れか一項に記載の大型電子管。
  10.  筒状のコレクターを備えた大型電子管に装着する磁性体であって、
     前記コレクター外に装着したときに、前記コレクターの中心軸に対する軸対称性を有さない、
    ことを特徴とする磁性体。
  11.  筒状のコレクターを備えた大型電子管の使用方法であって、前記コレクター内のスペント電子ビームを非対称に広げる工程を含んでいる、
    ことを特徴とする大型電子管の使用方法。

     
PCT/JP2022/042577 2021-11-19 2022-11-16 大型電子管、磁性体、及び、大型電子管の使用方法 WO2023090365A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-188962 2021-11-19
JP2021188962 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023090365A1 true WO2023090365A1 (ja) 2023-05-25

Family

ID=86397140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042577 WO2023090365A1 (ja) 2021-11-19 2022-11-16 大型電子管、磁性体、及び、大型電子管の使用方法

Country Status (1)

Country Link
WO (1) WO2023090365A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119649A (ja) * 1982-12-24 1984-07-10 Nec Corp 電子ビ−ムジヤイロ装置
JPH0541169A (ja) * 1991-08-07 1993-02-19 Japan Atom Energy Res Inst ビーム直進形マイクロ波管装置
JP2010526417A (ja) * 2007-05-04 2010-07-29 マックス プランク ゲゼルシャフト ツゥアー フェデルゥン デル ヴィッセンシャフテン エー フォー 電子ビームコレクタの掃引を制御する方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119649A (ja) * 1982-12-24 1984-07-10 Nec Corp 電子ビ−ムジヤイロ装置
JPH0541169A (ja) * 1991-08-07 1993-02-19 Japan Atom Energy Res Inst ビーム直進形マイクロ波管装置
JP2010526417A (ja) * 2007-05-04 2010-07-29 マックス プランク ゲゼルシャフト ツゥアー フェデルゥン デル ヴィッセンシャフテン エー フォー 電子ビームコレクタの掃引を制御する方法及び装置

Similar Documents

Publication Publication Date Title
Sakamoto et al. Development of 170 and 110 GHz gyrotrons for fusion devices
Thumm Progress on gyrotrons for ITER and future thermonuclear fusion reactors
Liu et al. Investigation of an ${X} $-Band Long Pulse High-Power High-Gain Coaxial Multibeam Relativistic Klystron Amplifier
Yamaguchi et al. High power 303 GHz gyrotron for CTS in LHD
Fan et al. Experimental investigation of an improved MILO
Fan et al. A high-efficiency repetitively pulsed magnetically insulated transmission line oscillator
Piosczyk A novel 4.5-MW electron gun for a coaxial cavity gyrotron
WO2023090365A1 (ja) 大型電子管、磁性体、及び、大型電子管の使用方法
Tot'meninov et al. Repetitively pulsed relativistic BWO with enhanced mechanical frequency tunability
Kobayashia et al. Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz
Thumm et al. 2.2 MW record power of the 0.17 THz European pre-prototype coaxial-cavity gyrotron for ITER
Rzesnicki et al. 170 GHz, 2 MW Coaxial Cavity Gyrotron-investigation of the parasitic oscillations and efficiency of the RF-output system
Leggieri et al. Thales th1507 140 ghz 1 mw cw gyrotron for w7-x stellarator
Miao et al. Experimental demonstration of dual-mode relativistic backward wave oscillator with a beam filtering ring packaged with permanent magnet
Piosczyk et al. 2.2 MW, 165 GHz coaxial cavity gyrotron
Luo et al. Operation of a Ka-band harmonic-multiplying gyrotron traveling-wave tube
Rostov et al. High-efficiency relativistic generators of nanosecond pulses in the millimeter-wavelength range
Jelonnek et al. Development of advanced gyrotrons in europe
Kalynov et al. Universal subterahertz large-orbit gyrotron: operation at the second and third cyclotron harmonics
Greening et al. Experimental harmonic characterization in the multi-frequency recirculating planar magnetron
Magda et al. Relativistic magnetron of 8 mm waveband
Kas' yanenko et al. Measurements of electron beam characteristics in the moderate-power 4-mm gyrotron
JP4499093B2 (ja) 低スプリアス放射マイクロ波チューブ
Shlapakovski et al. Observation of plasma at the quartz rod inside annular electron beam produced from a knife-edge cathode in a magnetic field
Gantenbein et al. Experimental results of series gyrotrons for the stellarator W7-X

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023562381

Country of ref document: JP

Kind code of ref document: A