JP4414234B2 - 放射対称複屈折のための補償器 - Google Patents

放射対称複屈折のための補償器 Download PDF

Info

Publication number
JP4414234B2
JP4414234B2 JP2003575147A JP2003575147A JP4414234B2 JP 4414234 B2 JP4414234 B2 JP 4414234B2 JP 2003575147 A JP2003575147 A JP 2003575147A JP 2003575147 A JP2003575147 A JP 2003575147A JP 4414234 B2 JP4414234 B2 JP 4414234B2
Authority
JP
Japan
Prior art keywords
birefringence
optical axis
image forming
optical
forming apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003575147A
Other languages
English (en)
Other versions
JP2005530333A5 (ja
JP2005530333A (ja
Inventor
イー ウェブ,ジェイムズ
エイチ ブルーニング,ジョン
Original Assignee
コーニング トローペル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーニング トローペル コーポレイション filed Critical コーニング トローペル コーポレイション
Publication of JP2005530333A publication Critical patent/JP2005530333A/ja
Publication of JP2005530333A5 publication Critical patent/JP2005530333A5/ja
Application granted granted Critical
Publication of JP4414234B2 publication Critical patent/JP4414234B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • G02B5/3091Birefringent or phase retarding elements for use in the UV
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

関連出願の説明
本出願は、2002年3月6日に出願され米国仮特許出願第60/362234号の早期出願日確定の利益を請求する。本明細書における引用をもって、上記仮特許出願の内容全体がここに記載されているものとする。
入手可能な結晶質材料を使用した遠紫外線光による画像形成では、157ナノメーター付近のより短い波長で顕著さを増す固有複屈折の問題を補正するか、またはそのような問題に対処する必要がある。
マイクロリソグラフィック製造装置および顕微鏡検査装置は、より小さい線幅を画像形成することを目指して進歩し続けている。最小線幅は最終的には照明光の波長に依存する。線幅を狭くするには波長を短くする必要がある。現時点では、画像形成システムは193ナノメーター程度の短波長で問題なく動作しているが、次世代のマイクロリソグラフィ画像形成はさらに短い157ナノメーター前後の波長でも動作することが期待される。顕微鏡検査装置も、より短波長で動作するように開発が進められている。
波長157ナノメーター付近の紫外スペクトル内の光波長で画像を形成するのに適した光学特性を有する材料は多くはない。最有力候補は立方晶系結晶構造を有するフッ化カルシウム(CaF2)である。しかしながら、フッ化カルシウム(CaF2)は157ナノメーター波長で固有複屈折を示すことが知られている。結晶の{111}面に対して垂直の光線については複屈折は認められないが、他の面(例えば、{110}面、{101}面、および{011}面)を通る透過を伴う角度偏差のある光線は、異なる方向に異なる割合で増大する複屈折を生じる。複屈折のピークは均等に間隔を置いた3方向に発現し、これを「三回対称」と呼ぶ。
固有複屈折を回避または緩和するために数多くの解決策が提案されてきた。フッ化バリウム(BaF)とフッ化カルシウムを混合するなど、逆の複屈折を有する結晶材料を混合し、ある範囲の方向に複屈折を生じない複合結晶構造を作製する研究も進められている。別の取組みとして、符号が逆の固有複屈折を有する別々の材料から作られた光学素子を組み合わせて固有複屈折の累積作用を低減させることも行われている。
光軸を中心とする角度方位が相対的に異なっている複数の光学部品に単一種類の複屈折材料(例えば、フッ化カルシウム)を使用して、異なる方向の複屈折効果を相殺することも提案されてきた。この手順は、クロッキングと呼ばれている。例えば、フッ化カルシウムの複屈折のピークは、(111)面の軸のまわりに均等に間隔を置いた3方向に生じる。連続する光学部品を、それぞれの(111)面の軸が共通光軸と位置合わせされ、共通光軸のまわりにそれぞれ異なる量で角度回転させた状態に配置(すなわち、クロッキング)することにより、方向の影響を受けやすい複屈折を均等に配分できる。同様のクロッキング効果は、結晶の{001}面または{110}面などの他の結晶面を光軸に垂直に方向付け、連続する光学部品を光軸のまわりに別々の量ずつ回転させることによっても得られる。
アモルファス材料から作られる光学部品を備える画像形成装置も、開口数が高い装置などで、特に光線と光軸が著しく離れている場合に同様の複屈折効果を示す場合がある。このような複屈折は一般に光軸のまわりに均等に配分させられる。
本発明では、主として放射対称複屈折の問題を扱うが、より高次の複屈折に対処する特性をも提供する。
概して本発明者らは、補正のために、フッ化カルシウム(CaF)などの立方晶系結晶材料に特有の、方向の影響を受けやすい複屈折(例えば、三回対称)を、主として放射対称の複屈折に変換する方を選択する。本発明者らの補正光学部品はテレセントリックスペース内または 瞳孔スペース内に配置でき、特に放射対称性または他の形態の望ましくない複屈折を無くすようにビーム特性を2箇所で利用するように構成されている。
本発明者らの好ましい、波長157ナノメーター域で動作する遠紫外線画像形成装置は、所要の結像力の大部分が二重反射マンジャンミラーによって提供される反射屈折画像形成装置である。画像形成機能を完全なものにする(例えば、収差を補正する)ために必要な付加的なレンズ素子を通って進む光は、多くの複屈折累積を回避するために、曲げられることはほとんどない。発明者らの好ましい画像形成装置では、複屈折の大部分はマンジャンミラーの反射面間にある1つ以上の透過素子によって生じるが、しかしながら、複屈折を光軸のまわりにより均等に配分するクロッキング機能を行うように反射面間の透過素子を配置することもできる。
マンジャンミラーの透過素子と付加的なレンズ素子の両方を、結晶の{111}面が共通光軸に垂直となるように方向付けられたフッ化カルシウム(CaF)などの立方晶系結晶材料で作ることができる。度の低いレンズ素子を通過する光線はほとんど複屈折しない。マンジャンミラーの透過素子を透過する光線の角度が高くなるほど、より多くの複屈折が累積されるが、複数の透過素子を互いに相対的に回転(クロッキング)させることによって、累積した複屈折を光軸のまわりにより均等に配分する。
(111)面の軸からの光線の角度偏差によって、最も顕著な複屈折が共通光軸のまわりの3つの極角度配向に形成される。顕著な複屈折方向間の分離角は120°である。マンジャンミラー内の反射は照明光を180°回転させるものであるが、これは各パスを60°の奇数倍クロッキングさせたのと等価である。
マンジャンミラーは、複屈折自体を減少させるのではなく、光軸のまわりに角度的に集まっている複屈折を、光軸のまわりにより均等に配分する複屈折に変換する。変換された複屈折は、さらに放射対称性の高い複屈折となる。射出瞳に見られるように、変換された複屈折の大きさは光軸からの放射方向の距離(オフセット)に応じて増加するが、累積された複屈折の大きさは、光軸のまわりの極角の方位の関数として比較的一定のままである。
それ自体は放射対称であるが符号が逆である複屈折性を示す材料から作られた補償光学部品を使用することにより、残留する放射対称複屈折を減少させることができる。複屈折が強すぎてレンズ素子としては使用できない、サファイア、フッ化マグネシウム(MgF)およびフッ化ランタン(LaF)などの単軸結晶材料で、物体または像空間のテレセントリックまたは近テレセントリック部内の補償光学部品を作ることができる。単結晶の対称軸は、光軸と平行またはほぼ平行に方向付けられる。高複屈折性の単軸材料は、これよりずっと低複屈折の材料がこれより大きな放射角で生じる複屈折を補正するための補償光学部品として使用できる。高複屈折性の材料の使用によって可能となる補正高速化により、補償光学部品の厚さをさらに制限することが可能となり、それによって補償光学部品の減衰が制限される。
単軸結晶の複屈折は、通過する光線の傾斜角(例えば、円錐角)の影響を強く受けるが、同じ光線の光学軸からの放射方向のオフセットの影響はさほど強く受けないため、単軸結晶材料は、テレセントリックスペース(近テレセントリックスペースを含む)内で、放射対称補償光学部品として使用されることが好ましい。すなわち、補償光学部品の複屈折効果は角度依存型であるが、オフセット依存型は制限されている。
放射方向のオフセットに対して鈍感であることにより、角度依存型の補償光学部品はテレセントリックスペース(近テレセントリックスペースを含む)内で平面または他の一般形状として形成できる。定義上は開口絞りの中心を通ることになっている物点/像点の主光線は、互いにほぼ平行にテレセントリックスペースに延びているが、物平面物点/像面の像点の位置にしたがって光軸からずれている。よって、放射対称複屈折は、物点/像点の主光線の放射方向オフセットに鈍感な角度依存型の補償光学部品を使用して、テレセントリックスペース内で補正できる。
規則正しい形状の補償光学部品は、絶対テレセントリック性から少量ずれたテレセントリックスペースにおいても放射対称複屈折を補正できる。テレセントリック性からのずれは、付随的な周縁光線における対応角度のアンバランスとともに物点/像点の主光線の僅かな傾斜として明らかとなる。傾斜している軸平面では、一方の周縁光線は傾斜が増加し、他方の周縁光線は傾斜が減少する。傾斜の差に関連した複屈折効果は、角度依存型の補償光学部品を通る周縁光線の路長を変えることによって補償され得る。いずれか単一光線が角度依存型の補償光学部品を通過することによって生じる複屈折の量は、結晶軸に対する光線の傾斜および結晶を通る光線の路長の両方の関数である。そのような路長変更は、光軸からの放射方向距離に応じて補償光学部品の厚さを変えることによって実施できる。また、総合的な放射対称複屈折補償効果を提供しつつ、テレセントリック性からの小さいずれを補償するために、厚みの変動は、回転面など単純な球形または非球面の形状を取ることができる。
物体側および像側のテレセントリック(近テレセントリックを含む)空間内で動作する角度依存型の補償光学部品は、最小絞り寸法に近づく、ゆっくり集束または発散する光錐(すなわち、低開口数)内に位置することが好ましい。例えば、マイクロリソグラフィ画像形成装置などの縮小装置では、角度依存型の補償素子は、ゆっくり発散する光錐の起始部で物平面の近く(例えば、レチクルの近く)に配置されることが好ましい。所要の補正複屈折を示す単軸結晶材料は、直径が小さいほど入手しやすく低価格である。周縁光線(すなわち、複屈折によって最も影響を受ける光線)のゆっくりした発散により、複屈折によって異なる影響を受ける通常偏光方向と異常偏光方向の間の高複屈折単軸結晶による光線の分割が制限される。
角度依存型の補償光学部品は、光学素子(例えば、マンジャンミラーのレンズまたは透過素子)の光軸に対する結晶軸の小さな位置ずれを補償するように配置することもできる。例えば、レンズ素子製造中の結晶軸確認時に小さい誤差があると、結果として、光軸に対して傾斜している結晶軸を備えたレンズ素子が製造される可能性がある。レンズ素子の同様の位置ずれによる影響を少なくとも部分的に取り消すために、補償素子を、その結晶軸をその光軸に対して意図的にずらした状態で製造することもできる。
放射対称複屈折を低減するための補償光学部品は、テレセントリック装置の瞳孔または瞳孔付近に配置することもでき、その場合、物点/像点の主光線は、光軸に対してさまざまに傾けられた方位を通って光軸に接近する(すなわち、光軸近い位置に向かって集束するか、または光軸に近い位置から発散する)。周縁光線と主光線との角度関係に依存する瞳孔スペースでは、角度依存型の補償光学部品(テレセントリックスペースでの使用が提案される補償光学部品と同様)とオフセット依存型の補償光学部品の両方を使用できる。オフセット依存型の補償光学部品の複屈折補償は、光軸からの通過光線の放射方向距離にともなって増加するが、複屈折補償は同じ光軸に対する光線の傾斜に伴う変化はさほどでもない。フッ素をドープした溶融シリカなど、誘発応力を備えたアモルファス材料をこの目的に使用できる。そのようなアモルファス材料は、一般に単軸結晶材料よりも大きいサイズのもののほうが多い。
瞳孔スペースは、絞り直径がそれ相応に拡大されたときの焦点距離が増加するとさまざまな物点からの主光線間ならびに対応する周縁光線間の集束角が最小化される画像形成装置の低パワー部と、開口絞りより前で関連付けられることが好ましい。その結果、有用な瞳孔スペースが開口絞りの両側に延び、画像形成装置の低パワー部の多くを包含する。
さまざまな物点に対応する光線間の集束角を最小限にすることに加えて、主光線に対する周縁光線の平均の傾斜は、角度依存型の補償光学部品の複屈折効果を最小限または最大限にするように調整できる。主光線に対する周縁光線の平均傾斜が、対応する光線の間の集束角よりも著しく大きい場合、放射対称複屈折効果を生じさせるために角度依存型の補償光学部品を瞳孔スペース内で使用することも可能である。しかしながら、周縁光線の平均傾斜が対応する光線の間の集束角と同程度である場合、角度依存型の補償光学部品は放射対称複屈折の補正に効果を有しない。
いずれの場合でも、オフセット依存型の補償光学部品を瞳孔スペースに配置して放射対称複屈折効果を生じさせることができる。光線は、光線が瞳孔スペースに達する角度に関係なく、テレセントリックスペース内での光軸からの初期角度偏差にしたがって光軸からずれる。さまざまな物点から発出するテレセントリックスペース内の対応周縁光線は、瞳孔スペース内の同じ位置に集束する。換言すれば、テレセントリックスペース内で同量傾斜している光線は、それらの傾斜程度にしたがって光軸からずらされた位置にある、瞳孔スペース内の複数の共通箇所に集束する。よって、オフセット依存型の補償光学部品は、オフセットよりも傾斜角に対して高い複屈折感度を示すテレセントリックスペース内の角度依存型の補償光学部品の効果と同様に、傾斜角よりもオフセットに対して高い複屈折感度を示すことによって瞳孔スペース内の放射対称複屈折を相殺するために使用できる。
いずれかのタイプの補償光学部品の応力または形状厚を変更することによって、より複雑な別の複屈折補償効果を瞳孔スペース内に実現できる。角度依存型の光学部品とオフセット依存型の光学部品の両方を瞳孔スペース内で使用することにより、複合効果を達成できる。例えば、オフセット依存型の補償光学部品の単純な球形または非球面の曲率を使用して、光軸からのさまざまな放射方向距離において生じる複屈折の量をさらに変化させることもできる。瞳孔スペース内の各放射方向位置における所望の複屈折は、オフセット依存型の補償光学部品の厚さを、光軸からの放射方向距離に応じて調整することによって達成され、厚さが増すほど高い複屈折補償が得られる。
瞳孔スペース内に残留する放射対称複屈折を減少させるために、いずれかの型の補償素子に対して非放射方向の厚さ調整を施すこともできる。光軸まわりの極角の方位に応じて厚さを調整することによって、別の補償効果を達成できる。また、残存する非放射対称複屈折を補償するために、対称なオフセット効果を生じさせるのに必要なものよりも複雑な応力分布を使用できる。使用されるということもあり得る。
補償素子をテレセントリックスペースと瞳孔スペースの両方に配置することにより、大きな放射対称複屈折に適した複合的な補正を得ることができる。テレセントリックスペースに位置する補償光学部品は、オフセット依存性がほとんどない、角度依存型の複屈折効果を生じることが好ましく、瞳孔スペースに位置する補償光学部品は、角度依存性がほとんどない、オフセット依存型の複屈折効果を生じることが好ましいより正確な補正を行うために、厚みの変動および応力を、角度依存型の補償光学部品およびオフセット依存型の補償光学部品の一方または両方に付加できる。例えば、テレセントリック性からのわずかな偏差を補償するために、角度依存型の補償光学部品に対して単純な放射方向の厚みの変動を実施できる。放射方向複屈折効果を調節するために、オフセット依存型の補償光学部品に同様の厚みの変動を施すことができる。残留する複屈折の非放射対称成分を補償するために、オフセット依存型の補償光学部品に対して高次の厚みの変動を行うことができる。同様の高次効果を生じさせるために応力を追加することも可能である。
本発明の補償光学部品は、一般に画像形成装置によって累積される複屈折効果を低減するように構成されるが、小量の複屈折であれば、ウエハ基板のフォトレジスト層におけるように、引き続いて起こる偏光感度を補償するために望ましい場合もある。例えば、瞳孔で測定される小量の放射対称複屈折が、入射角の増大にともなって顕著になるフォトレジストの偏光感度を補償するのに有効な場合もあり得る。
レチクル12(物平面)の照射で始まり、ウエハ基板14(像面)のフォトレジスト層への縮小形態のレチクル12の画像形成で終了する、157ナノメーター付近の遠紫外線波長でのマイクロリソグラフィーに特に有用な反射屈折画像形成装置10が図1に示されている。レチクル12に関する情報を含んだ紫外線ビーム16は、最初に画像形成装置10によってテレセントリックな形態(図4も参照)で取り込まれる。画像形成装置10は、主光線18をレチクル12上の物点20から開口絞り22の中心を通るように方向付ける。レチクル12とウエハ基板14との間に光軸24が延び、画像形成装置10の部品を整列させるための基準軸として開口絞り22の中心を通過する。
画像形成装置10のテレセントリックスペース26内では、物点20の主光線18は、光軸24からさまざまにずれた位置で光軸24とほぼ平行に延びている。レチクル12を通過後、ビーム16は、主光線18を、徐々に集束する経路に沿って開口絞り22の中心に向かって再方向付ける集束光学部品28の後、限られた距離のあいだテレセントリックスペース26にとどまる。周縁光線17および19を含むビーム16は、それ自体は徐々に発散し続けて開口絞り22を満たす。
集束光学部品32、34、36、38、40、および42と補正板44とを含むレンズグループ30が、ビーム16を開口絞り22を含む瞳孔スペース46を通るように方向付ける。画像形成装置10の瞳孔46内では、物点20の主光線18は、光軸24に対してさまざまに傾けられた方位を通って光軸24に接近する。さまざまな物点20に対応する周縁光線17または19は、テレセントリックスペース26内の対応光線17または19の傾斜程度にしたがって光軸24からずらされた位置にある、瞳孔スペース46内の共通のポイントに向かって集束する。
レンズグループ30の全部の光学部品32、34、36、38、40、42、および44がフッ化カルシウム(CaF2)などの単結晶材料から作られることが好ましい。レンズグループ30の光学部品を構成するためにも使用し得る他の立方晶系結晶は、フッ化バリウム(BaF)、フッ化ストロンチウム(SrF)などである。フッ化カルシウム(CaF)結晶材料は、その<111>軸の1つがレンズグループ30内の光学部品の共通の光軸24と位置合わせされた状態に方向付けられることが好ましい。光軸24と平行またはほぼ平行に進む光線は、放射角が大きくなるほど顕著になる複屈折効果をほとんど受けない。レンズグループ30の光学部品はごく僅かな屈折力しか示さない(すなわち、光軸に向かったり、光軸から離れたりする光線の屈曲がほとんどない)。そのため、レンズグループ30を通る光ビーム16の通過によって、ごく小量の複屈折が累積される
集束光学部品28は、集束光学部品32、34、36、38、および40とともに、焦点距離の構築を担う開口絞り22よりも前方に位置する光学部品からなる前方グループを構成する。焦点距離は、画像形成装置10に入射するビーム16の開口数とともに、開口絞り22の直径を設定する。図1から明らかな長い焦点距離は、物点20に対応する主光線18および周縁光線17または19を、互いに相手に対して最小の角度を通って集束させるようになっている。対応する光線が交差する開口絞り22近傍において、集束光学部品32の前からビーム16がマンジャンミラー50に入るまで、対応する光線17、18,または19の放射方向の著しい発散は発現しない。よって、対応する光線17、18,または19がほぼ重なり合う瞳孔スペース46が、開口絞り22の両側に十分に延びている。
二重反射マンジャンミラー50はほぼ平行な形態のビーム16を受取るが、湾曲した反射面52によって、フッ化カルシウム(CaF)などの単結晶材料から作られることも好ましい透過素子54を通る集束経路に沿って反射する。代替例として、フッ化バリウム(BaF)、フッ化ストロンチウム(SrF)などがある。部分反射面56が、ビーム16を、透過素子54を通って戻る別の集束経路に再反射し、光線は湾曲した反射面52の開口部58を通ってマンジャンミラー50を出る。マンジャンミラー50を出た集束ビーム16は、レチクル12の縮小画像をウエハ基板14のフォトレジスト層の上に形成する。
マンジャンミラー50の2回の反射により、対応する開口数が増大するとともに、画像サイズが著しく縮小される。しかしながら、ビーム16および特にビーム16の周縁光線17および19は、光軸24からのかなりの角度ずれで透過素子44を横切る。図2にそのような通過例の1つとして示されるように、各回の通過で大きな複屈折が累積する。図2に示す瞳孔フィールド内では、複屈折は光軸24のまわりにさまざまな方向にさまざまな割合で増大する。フィールド内の複屈折の変化が最も速い局所方向にそれぞれ方向付けられ、フィールド内の複屈折の局所的な大きさにしたがってそれぞれ長さが決められた線分の配列によって、フィールド内の複屈折の分布が示されている。最大複屈折は均等に間隔を置いた3方向に発現し、これを「三回対称」と呼ぶ。
マンジャンミラーの反射面52および56からの各反射によってビーム16が反転されるが、これはビーム16を180°回転したことに等しい。三回対称は120°間隔で起きるので、ビーム16の180°回転は、図3に示すように光軸14のまわりに、より均等に分配された複屈折を生じるように重なり合う60°間隔のピーク複屈折を提供する。レンズグループ30(集束光学部品28を含む)およびマンジャンミラー50の両方の累積複屈折の主成分は放射対称複屈折である。
レンズグループ30に起因する複屈折はマンジャンミラー50に因る複屈折よりはるかに小さいが、レンズグループ30の光学素子32、34、36、38、40、42、および44を、光軸24のまわりに相対的に回転(すなわち、クロッキング)することにより、複屈折を光軸24のまわりにより均一に分配できる。さらに、複屈折を光軸24のまわりにさらに角度分配するために、レンズグループ30の光学素子を、<001>軸など、光学素子の他の結晶軸が光軸24に位置合わせされかつ光軸24のまわりにクロッキングされた状態に形成することができる。別の<001>結晶軸方位では4回対称が発現する。
図1および4の記載実施形態において、本発明は、累積した放射対称複屈折を取り消すか、または別の方法で補正するために、角度依存型の補償光学部品60をテレセントリックスペース26内に設ける。角度依存型の補償光学部品60は、サファイアなどの単軸結晶材料から作られ、集束光学部品28、レンズグループ30、およびマンジャンミラー50によって累積される放射対称複屈折と符号が逆である、角度に依存する複屈折効果を示すように方向付けられることが好ましい。角度依存型の補償光学部品60の他の例示的な材料として、フッ化マグネシウム(MgF)、フッ化ランタン(LaF)、および水晶などがある。
図4に示されるように、角度依存型の補償光学部品60は、テレセントリックスペース26の一部内の、レチクル12と集束光学部品28との間に配置される。物点20からの主光線18は、レチクル12の物体面内の物点20の位置にしたがって光軸24からさまざまにずらされた位置で、光軸24とほぼ平行に延びる。物点20の各々から出た周縁光線17および19は、それらに関連する主光線18と中心が合わせられている均一な光円錐を画定する。
角度依存型の補償光学部品60は、通過光線の光軸24に対する傾斜にともなって増大する複屈折補償効果を生じる。よって、各物点20の周縁光線17および19は、それらの関連主光線18(ほとんどまたは全く複屈折補償を得ない)よりもはるかに大きい複屈折補償を得る。しかしながら、角度依存型の補償光学部品60は、主光線18および周縁光線17と19の光軸からの放射方向オフセットに比較的低感度である。また一方、主光線18も周縁光線17および19も、それらのオフセット(すなわち、光軸からの放射方向距離)によって大きな複屈折を得ることはない。したがって、各円錐の周縁光線17および19が各円錐の主光線18よりも大きい複屈折補償を得るように物点20の光円錐の各々がほぼ等しく処理される。
角度依存型の補償光学部品60の放射対称複屈折効果は、角度依存型の補償光学部品60の全厚を調整することによって調整変更され、集束素子28、レンズグループ30、およびマンジャンミラー50によって生じる放射対称複屈折を取り消すことができる。角度依存型の補償光学部品60の複屈折効果は、通過光線のその結晶軸に対する角傾斜、および通過光線がその結晶材料を通って横切る距離の両方の関数である。主光線18が光軸と平行に伸びる真のテレセントリックスペース26では、角度依存型の補償光学部品60は、放射対称複屈折効果を生じるための平行平面なプレートの形態を取り得る。
この目的のために好ましい単軸材料は大きい複屈折が起きるので、所要の補償効果を小さい円錐角で(すなわち、周縁光線17および19のテレセントリックスペース26内の光軸24からの、マンジャンミラー50を通る同じ光線の大きな角度偏差と比較して、比較的小さい角度偏差で)、かつ制限された厚さで生じる。小さい円錯角は、光線がさまざまな偏光方向の間で分かれるのを制限する。角度依存型の補償光学部品60の制限された厚さが、ビーム16の減衰を低減する。テレセントリックスペース26内のレチクル12に隣接して角度依存型の補償光学部品60を配置することによって、補償光学部品60の所要直径が最小限となる。ビーム16はレチクル12と隣接してその最小絞り寸法である。単軸結晶材料はより小さいサイズでより容易に利用できる。
物点20からの主光線68が光軸24との平行からわずかにずれている場合にテレセントリックスペース66内で使用するための、変更された角度依存型の補償光学部品64が図5に示されている。わずかに集束または発散する経路に沿った主光線68の傾斜は、周縁光線67および69の光軸24に対するわずかな不均衡を伴う。不均衡の量は、主光線68の光軸24からのオフセット(すなわち、放射方向距離)にともなって増大する。
テレセントリック性からのわずかなずれは、角度依存型の補償光学部品64の厚さを光軸24からの放射方向オフセットに応じて変化させることによって補償可能である。さまざまな物点20から出る主光線68と周縁光線67および69との間の複屈折を平衡化させるために、角度依存型の補償光学部品64の面70の1つが球形または他の回転面の形態をとることもできる。いずれか1つの物点20の周縁光線67と69との間の角度不平衡は、同じ周縁光線67と69が角度依存型の補償光学部品64を横切る相対距離を変化させることによって補償される。さまざまな物点20から光円錐内にさまざまな補償効果を生じさせるために、高次の厚みの変動を行うことができる。同様の高次効果を生じさせるために応力を加えることもできる。
角度依存型の補償光学部品64の厚みの変動によって、テレセントリックスペース66内により高い放射対称性補償効果が生じるが、厚みの変動によって、偏光と無関係のビーム16に小さい収差も生じる。収差は、角度依存型の補償光学部品64とともに接合レンズ74を形成する合わせレンズ素子72によって、少なくとも部分的に元に戻される。合わせレンズ素子72は、角度依存型の補償光学部品64よりもはるかに制限された複屈折効果を示すフッ化カルシウムまたは他の透過材料から作製できる。合わせレンズ素子72によって生じる小さい複屈折は、角度依存型の補償光学部品60によって相殺される累積複屈折に含まれる。
同様の反射屈折画像形成装置80が図6に示されている。画像形成装置10と80との間の対応する構造は同じ参照数字が示されている。ただし、瞳孔スペース46内のオフセット依存型の補償光学部品82は、テレセントリックスペース26内の角度依存型の補償光学部品60に置き換わっている。オフセット依存型の補償光学部品82(図7も参照)によって与えられる複屈折補償は、光線17、18、および19の光軸24からの放射方向のオフセットにともなって増加するが、同じ光線17、18、および19の、光軸24に対する傾斜に伴う変化は顕著ではない。
主光線18と周縁光線17および19との間の平均の放射方向オフセットが主光線18と周縁光線17および19との間の平均角度オフセットよりも顕著であるため、オフセット依存型の補償光学部品82は、角度依存型の補償光学部品を覆って、本実施形態の瞳孔スペース46内で使用することが好ましい。また、オフセット依存型の補償光学部品を作るための材料によれば、瞳孔スペース46のより大きい直径の絞りをより簡単に手に入れることができる。
この目的のためには、適当な応力を受けているフッ素ドープ溶融シリカ好ましい。応力は、オフセット依存型の光学部品の形成中(例えば、焼き入れまたは焼き戻し中)に追加することもできるし、または現場で(例えば、機械的または熱的)外力として加えることもできる。
図8および9は、目的とする複屈折補償効果を調整変更するか、または別のやり方でさらに改善するために、瞳孔スペース46の別の箇所に配置された代替変更例のオフセット依存型補償光学部品84および88を示す。オフセット依存型の補償光学部品84および88は、いずれもそれぞれの合わせレンズ素子86および90に関連付けられ、オフセット依存型の補償光学部品84および88の表面改質によって生じる波面収差であれば、どんなものでも少なくとも部分的に元に戻す。合わせレンズ素子86および90は、画像形成装置10の他の部分と同様の、フッ化カルシウムなどの材料から作られ、複屈折の追加を最小限に抑えることが好ましい。
変更されたオフセット依存型の補償光学部品84は、光軸24と中心が合わせられた回転面の形態を取っている厚みの変動の典型である。オフセット依存型の補償光学部品84では、厚さは光軸24からの放射方向距離(オフセット)にともなって増加する。厚さ増加によってオフセット依存型の補償光学部品84を通る経路長が長くなり、複屈折補償効果を増加させる。よって、図8に示されるオフセット依存型の補償光学部品84の厚みの変動により、複屈折補償が、光軸24からの放射方向距離に応じて増加する。
変更されたオフセット依存型の補償光学部品88は、光軸24のまわりで対称ではない厚みの変動の典型例である。オフセット依存型の補償光学部品88では、厚さは光軸の周りの極角位置にともなって変化する。厚みの変動は簡素な楔形のものから複数の丸い突出物にまで及ぶ。例えば、光軸の周りに均等に分配されない、いずれか残留三回対称を取り除くために、光軸24のまわりに極角度配向を有する厚さの正弦波変化を使用することもできる。同様の効果を生じさせるために、オフセット依存型の補償光学部品88に対する追加の応力の変更を使用することもできる。
周縁光線17または19が、対応する周縁光線17または19が互いに相対的に傾斜されるよりもかなり大きい量だけ、光軸24に対して平均に傾斜していれば、角度依存型の補償光学部品をオフセット依存型の補償光学部品82、84、または88のうちのいずれか1つと置き換え、同様の複屈折補償を達成できる。開口絞り22より前の光学部品の複合焦点距離が長ければ、周縁光線17または19の互いに対する傾斜が低減する。瞳孔スペース46内のある位置で周縁光線17または19の主光線18に対する平均傾斜を調整するために、正および負の集束光学部品の組合せたものを使用することもできる。
別の反射屈折画像形成装置100が図10に示されている。可能であれば、前の画像形成装置10および80と共通の構造を示すために、同じ参照数字が使用されている。しかしながら、テレセントリックスペース26内の角度依存型の補償光学部品102、および瞳孔スペース46内のオフセット依存型の補償光学部品104の両方の追加することをはじめ、いくつかの相違が明らかである。2つの補償光学部品102および104が協働する放射対称複屈折だけでなく、三回対称によって生成される残留複屈折の補償など、放射方向対称ではない他の形態の複屈折補償も取り除くことが好ましい。
レンズ素子108、112、114、116、および118の変更された構成は、変更された二重反射マンジャンミラー120と組み合わせて使用される開口絞り22の前に位置する。前述の実施形態のマンジャンミラーと同様に、マンジャンミラー120は、透過素子124の両側に形成される湾曲した反射面122および部分的に反射する面126を含む。しかしながら、マンジャンミラー120の部分反射面122は、平面またはほぼ平面であって、マンジャンミラーによる2つの大きい角反射をよりよく平衡させる。ほぼ平面の部分反射面126は、湾曲した部分的に反射する面からの反射と関連する光線分割作用を低減すると考えられる。
角度依存型の補償光学部品102は、画像形成装置10の角度依存型の補償光学部品60または64と同様に構成されて、放射対称複屈折を取り消す。オフセット依存型の補償光学部品104は、画像形成装置80のオフセット依存型の補償光学部品82、84、または88と同様であるが、残留する放射方向または非放射方向の複屈折をさらに細かく補正するようになっている。この目的のために湾曲が示されているが、応力を使用することも可能である。オフセット依存型の補償光学部品104もまた、放射対称複屈折を低減するのに寄与し得る。
合わせレンズ素子130が、オフセット依存型の補償光学部品104と対にされて、オフセット依存型の補償光学部品104に対する表面改質に起因する収差を元に戻す。また、合わせレンズ素子130は画像形成装置100内で集束機能を果たす。
本実施形態または前述の他の実施形態において、画像形成装置内の光学部品のうちの他の結晶軸に対応する傾斜を補償するために、補償光学部品102または104のどちらかの結晶軸(例えば、<111>軸)を光軸24に対してわずかに傾斜させることもできる。角度依存型の補償光学部品60、64、または102を傾斜させることにより、通過光線の結晶軸に対する実効傾斜が傾斜軸の両側で変化させる。また、オフセット依存型の補償光学部品82、84、88、または104を傾斜させることにより、通過光線の光学部品の中心からの実効オフセットが傾斜軸の両側で変化する。
通常、応力を加えられるアモルファス材料が、オフセット依存型の補償光学部品を作製するために好ましく、単軸結晶が角度依存型の補償光学部品を作製するために好ましいが、適当に変更された結晶およびアモルファス材料が、どちらの目的のためにも使用され得る。さらに、薄膜、特にビーム分割膜が複屈折を示すように構成され得る。例えば、放射対称複屈折効果を与えるために湾曲面にビームスプリットフィルムを付着させて使用することもできる。
光軸24に対する異なる結晶配向に適合するように変更される、代替の二重反射マンジャンミラー150を有することを特徴とする、別の代替の反射屈折画像形成装置140が図11に示される。異なる結晶軸配向を除いて、画像形成装置140の他の素子は、前述の画像形成装置100の素子と一致している。一致する素子を示すために同じ参照数字が使用される。
マンジャンミラーは、マンジャンミラー120と同様の反射面152および部分的に反射する面156を有するほか、互いに対して相対的に回転させられる(すなわち、クロックされる)、1対の合わせ透過素子154および155を有する。透過素子154および155は、いずれもフッ化カルシウム(CaF2)のような立方晶系結晶材料から作られ、光軸24と整列されるそれらの<001>軸の1つに配向される。そのように配向された立方晶系結晶によって示される複屈折は光軸の周りで90°間隔でピークを有する。したがって、反射面152および156からの反射と関連する180°ビーム回転によって、複屈折が90°間隔分配されることはない。
マンジャンミラーの透過部分を2つの合わせ透過素子154および155に分割することによって、透過素子の1つを、光軸を中心として他方に対して回転させて(すなわち、クロッキングさせて)、複屈折を光軸のまわりにより均等に分配できる。残りの低パワー集束素子108、112、114、116、118、および130もまた、その<001>軸のうりの1つが光軸24と位置合わせされた状態に方向付けられることが好ましい。残りの残存低パワー集束素子108、112、114、116、118、および130によって寄与される複屈折は、マンジャンミラー150内の集束する反射によって生じる複屈折と比較して小さいが、残りの集束素子108、112、114、116、118、および130は、互いに、または2つの合わせ透過素子のどちらかに対してクロッキングされて、複屈折を放射対称の形でさらに分配し得る。
2つの補償素子102および104は、放射対称複屈折を除去するための同様の補償機能を実行する。しかし、表面または応力の変更を、光軸を中心として均等に分配されない、任意の残留4重複屈折を除去するために使用することもできる。
テレセントリックまたは瞳孔スペースからの補正対象の複屈折は、従来は瞳孔面に参照されてきたが、ウエハ基板14上の像面に明らかな複屈折パターンも2つの位置から補正できる。例えば、物点20からの主光線18および関連周縁光線17と19は、テレセントリックスペース26内で空間的に分離される。したがって、像面内のさまざまなポイントと関連する複屈折効果が、それらの対応する物点20と関連する光円錐に対して、複屈折変更を行うことによって補正され得る。
角度依存型の複屈折補償光学部品は、より基本的な放射対称複屈折効果が要求される限り、さまざまな物点20と関連する光円錐の間にさまざまな複屈折効果を生じさせるために、依然として、ただし変更された形態で使用できるであろう。厚さの変更または応力がこの目的のために使用されることもあり得る。像面複屈折補正のみが必要な場合、テレセントリックスペース26内で補正を行うには、異なる応力を与えたアモルファス材料が好適である。しかしながら、像面における複屈折パターンがたまたま放射対称である場合、オフセット依存型の補償光学部品をテレセントリックスペース内で使用することによって補正を行うこともできる。
テレセントリックスペース26内では、複屈折に対する像面補正は、所要の補償光学部品をレチクル(すなわち、物体面)にできるだけ密接して設置することによって最も正確に行われ得る。ここで、さまざまな物点と関連する光円錐はその最小の直径で投射する。
複屈折に対する画像フィールドの補正、特に放射対称を必要とする補正もまた、瞳孔スペース46内で行うことができる。そのような対称を達成するために、ビーム16はテレセントリックスペース46内で平行化されている必要がある。また、軸上の物点20と関連する周縁光線17および19は、瞳孔スペース46内で光軸24と平行に延びている必要がある。他のすべての物点20と関連する周縁光線17および19は、瞳孔スペース46内において、物体面内の同じ物点20の放射方向オフセットに対応する量だけ光軸24に対してさまざまに傾けられる。
したがって、像面内の放射対称複屈折を補正するために、光軸24からの放射方向距離とともに増大する複屈折などの角度依存型の補償光学部品を瞳孔スペース46内で使用できる。像面内の複屈折の他のパターンを補正するために、応力、形状湾曲、他のビーム変更を使用できる。
本発明の目的に容易に適合させることが可能な反射屈折画像形成装置のさらなる詳細は、達紫外線リソグラフィーのための画像形成装置(Imaging System for Deep Ultraviolet Lithography)と称する、共同出願された米国特許第5,650,877号明細書に記載されており、その内容を参照によって本明細書に組み込んだものとする。本発明はまた、特に遠紫外線スペクトル内で動作し且つ複屈折補正を必要とする、光学検査装置および他の光学画像形成装置にも適用可能である。
光学部品が実質的に放射対称性の複屈折を累積し、累積した放射対称複屈折を取り消すために画像形成装置のテレセントリックスペース内に角度依存型の補償光学部品が配置された反射屈折画像形成装置を示す図である。 反射屈折画像形成装置の二重反射マンジャンミラーを1回通ることによって生じる複屈折の3重分配を示す図である。 二重反射マンジャンミラーを合計3回通過することによって生じる、複屈折を組合せることによって生じる複屈折のより均一な(放射対称)分配を示す図である。 先行するレチクルにおける物点の分配にしたがって光軸からさまざまにずらされている平行な主光線の通過を示す、テレセントリックスペース内の角度依存型の補償光学部品の略図である。関連する周縁光線はレチクルにおける共通の物点からゆっくり発散する。 総合的な放射対称複屈折効果を生じながら、テレセントリック性からの小さいずれに対応するように変更される角度依存型の補償光学部品の略図である。 光学部品が実質的に放射対称性の複屈折を累積し、累積した放射対称複屈折を取り消すために画像形成装置の瞳孔スペース内にオフセット依存型の補償光学部品が配置された反射屈折画像形成装置を示す図である。 光軸に対してさまざまに傾けられた方位を通る主光線の光軸への接近を示す、瞳孔スペース内のオフセット依存型の補償光学部品の略図である。同様に相対的に傾けられた対応周縁光線は、テレセントリックスペース内のそれらの角度傾斜にしたがって瞳孔スペース内の放射方向にずらされている各点に接近する。 放射対称複屈折効果を調整するために、放射方向に依存する厚みの変動によって変更されるオフセット依存型の補償光学部品の略図である。 非放射対称複屈折効果を調整するために、極角に依存する厚みの変動によって変更されるオフセット依存型の補償光学部品の略図である。 光学素子が実質的に放射対称性の複屈折を累積し、累積した放射対称複屈折を取り消すために、角度依存型の補償光学部品が画像形成装置のテレセントリックスペース内に配置され、オフセット依存型の補償光学部品が画像形成装置の瞳孔スペース内に配置された、別の反射屈折画像形成装置を示す図である。二重反射マンジャンミラーがほぼ平らで部分反射する反射面を用いて構成されており、内部反射した光線の傾斜を光軸に対して平衡させる。 図10の装置と同様に構成されているが、異なる結晶方位と、伝達要素が分割され、相対的に回転させられて、複屈折の四重分配を図3に示すものに類似の複屈折のより均一な(放射対称)複屈折に変換する、変更された二重反射マンジャンミラーと、を有する光学部品を含む、別の反射屈折画像形成装置を示す図である。
符号の説明
10 画像形成装置
12 レチクル
14 基板
16 ビーム
17 周縁光線
18 主光線
19 周縁光線
20 物点
24 光軸
26 テレセントリックスペース
28 集束光学部品
30 レンズグループ
32 光学部品
34 光学部品
36 光学部品
38 光学部品
40 光学部品
42 光学部品
44 光学部品
46 瞳孔スペース
50 マンジャンミラー
52 反射面
54 透過素子
56 反射面
58 開口部
60 補償光学部品

Claims (10)

  1. 遠紫外線光を用いて画像を形成する光学的画像形成装置であって、
    共通光軸に沿って整列され、かつビーム光線の前記光軸に対する傾斜および前記ビーム光線の前記光軸のまわりの角度配向の両方に伴って変化する固有複屈折を遠紫外線光のビームに対して示す、光学素子の配列を有し、
    前記光学素子が、前記遠紫外線光のビームに対して、前記光軸を中心とした前記ビーム光線の角度配向に対する累積複屈折の感度が低くなるように配置され、
    前記累積複屈折と逆の放射対称複屈折を示す補償光学部品をさらに有し、それによって前記光学素子の配列とともに、前記遠紫外線光のビームの累積複屈折が前記ビーム光線の前記光軸に対する傾斜および前記ビーム光線の前記光軸を中心とする角度配向の両方に関して低減されることを特徴とする、光学的画像形成装置。
  2. 前記補償光学部品が、前記光軸に対する前記ビーム光線傾斜に対して特に敏感であるが、前記ビーム光線の前記光軸からのオフセットに対しては比較的鈍感である複屈折効果を示す、角度依存型の補償光学部品であることを特徴とする請求項1記載の画像形成装置。
  3. 前記オフセット依存型の補償光学部品がテレセントリックスペース内に配置され、前記テレセントリックスペース内において、物点/像点の主光線が前記光軸に対してさまざまにずらされた位置で、前光軸とほぼ平行に延びることを特徴とする請求項記載の画像形成装置。
  4. 前記角度依存型の補償光学部品の厚さが、前記光軸からの放射方向距離に応じて変更され、前記角度依存型の補償光学部品の厚さ変更によって、前記主光線の前記光軸と平行な方位からのわずかなずれを補償することを特徴とする請求項3記載の画像形成装置。
  5. 前記補償光学部品が、前記ビーム光線の前記光軸からの放射方向オフセットに対して特に敏感であるが、前記ビーム光線の前記光軸に対する傾斜に対しては比較的鈍感である複屈折効果を示す、オフセット依存型の補償光学部品であることを特徴とする請求項1記載の画像形成装置。
  6. 前記オフセット依存型の補償光学部品が、応力を与えたアモルファス材料から作られることを特徴とする請求項5記載の画像形成装置
  7. 前記オフセット依存型の補償光学部品が瞳孔スペース内に配置され、前記瞳孔スペース内において、物点/像点の主光線が前記光軸に対してさまざまに傾けられた方位を通って前記光軸に近づくことを特徴とする請求項5記載の画像形成装置。
  8. 前記オフセット依存型の補償光学部品の厚さが、前記光軸からの放射方向の距離に応じて変更されて、前記複屈折補正量を前記瞳孔スペース内の放射方向位置によって変更させることを特徴とする請求項7記載の画像形成装置
  9. 前記オフセット依存型の補償光学部品の厚さが、前記光軸を中心とする角度配向に応じて変更されて、前記複屈折補正量を前記瞳孔スペース内の角位置によって変更させることを特徴とする請求項7記載の画像形成装置
  10. 前記光学素子が、共通光軸に対する直角からわずかに傾けられた結晶面を有する単結晶から形成され、前記直角からのわずかな傾斜に起因して複屈折の不均衡を生じる少なくとも1つの光学素子を含み、前記補償素子が、前記共通光軸に対する直角からわずかに傾けられた結晶面を有する単結晶から形成され、少なくとも1つの光学素子において生じる複屈折の不均衡を低減することを特徴とする請求項1に記載の画像形成装置。
JP2003575147A 2002-03-06 2003-03-05 放射対称複屈折のための補償器 Expired - Fee Related JP4414234B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36223402P 2002-03-06 2002-03-06
US10/379,248 US7075721B2 (en) 2002-03-06 2003-03-04 Compensator for radially symmetric birefringence
PCT/US2003/006652 WO2003076978A2 (en) 2002-03-06 2003-03-05 Compensator for radially symmetric birefringence

Publications (3)

Publication Number Publication Date
JP2005530333A JP2005530333A (ja) 2005-10-06
JP2005530333A5 JP2005530333A5 (ja) 2009-10-01
JP4414234B2 true JP4414234B2 (ja) 2010-02-10

Family

ID=27791704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003575147A Expired - Fee Related JP4414234B2 (ja) 2002-03-06 2003-03-05 放射対称複屈折のための補償器

Country Status (5)

Country Link
US (1) US7075721B2 (ja)
EP (1) EP1521990A4 (ja)
JP (1) JP4414234B2 (ja)
AU (1) AU2003230595A1 (ja)
WO (1) WO2003076978A2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239447B2 (en) * 2001-05-15 2007-07-03 Carl Zeiss Smt Ag Objective with crystal lenses
KR20040015251A (ko) * 2001-05-15 2004-02-18 칼 짜이스 에스엠티 아게 불화물 결정 렌즈들을 포함하는 렌즈 시스템
DE10123725A1 (de) * 2001-05-15 2002-11-21 Zeiss Carl Projektionsbelichtungsanlage der Mikrolithographie, Optisches System und Herstellverfahren
US6683710B2 (en) * 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
WO2004063777A1 (en) * 2003-01-16 2004-07-29 Carl Zeiss Smt Ag Retardation plate
US7453641B2 (en) * 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6995908B2 (en) * 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US6844972B2 (en) * 2001-10-30 2005-01-18 Mcguire, Jr. James P. Reducing aberration in optical systems comprising cubic crystalline optical elements
US6970232B2 (en) * 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
DE10162796B4 (de) * 2001-12-20 2007-10-31 Carl Zeiss Smt Ag Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
US7292388B2 (en) * 2002-05-08 2007-11-06 Carl Zeiss Smt Ag Lens made of a crystalline material
US7072102B2 (en) 2002-08-22 2006-07-04 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
DE10355725A1 (de) * 2003-11-28 2005-06-30 Carl Zeiss Smt Ag Optisches System sowie Verfahren zur mikrolithographischen Herstellung mikrostrukturierter Bauteile
JP5102492B2 (ja) * 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US8270077B2 (en) 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8279524B2 (en) 2004-01-16 2012-10-02 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
TWI395068B (zh) 2004-01-27 2013-05-01 尼康股份有限公司 光學系統、曝光裝置以及曝光方法
WO2005081030A1 (en) * 2004-02-18 2005-09-01 Corning Incorporated Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US8605257B2 (en) * 2004-06-04 2013-12-10 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
US7423727B2 (en) * 2005-01-25 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20080198455A1 (en) * 2005-02-25 2008-08-21 Carl Zeiss Smt Ag Optical System, In Particular Objective Or Illumination System For A Microlithographic Projection Exposure Apparatus
US20060198029A1 (en) * 2005-03-01 2006-09-07 Karl-Heinz Schuster Microlithography projection objective and projection exposure apparatus
US7764427B2 (en) * 2006-02-21 2010-07-27 Carl Zeiss Smt Ag Microlithography optical system
WO2007096250A1 (de) * 2006-02-21 2007-08-30 Carl Zeiss Smt Ag Beleuchtungseinrichtung einer mikrolithographischen projektionsbelichtungsanlage
US7633689B2 (en) * 2007-07-18 2009-12-15 Asml Holding N.V. Catadioptric optical system for scatterometry
DE102012223230A1 (de) * 2012-12-14 2014-02-13 Carl Zeiss Smt Gmbh Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
US9805454B2 (en) * 2014-07-15 2017-10-31 Microsoft Technology Licensing, Llc Wide field-of-view depth imaging

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154411A (ja) * 1987-12-09 1989-06-16 Mitsubishi Cable Ind Ltd 絶縁された電線、ケーブルの製造方法
US5717518A (en) * 1996-07-22 1998-02-10 Kla Instruments Corporation Broad spectrum ultraviolet catadioptric imaging system
US6829041B2 (en) * 1997-07-29 2004-12-07 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus having the same
DE19807120A1 (de) * 1998-02-20 1999-08-26 Zeiss Carl Fa Optisches System mit Polarisationskompensator
JP2000331927A (ja) * 1999-03-12 2000-11-30 Canon Inc 投影光学系及びそれを用いた投影露光装置
US6630117B2 (en) 1999-06-04 2003-10-07 Corning Incorporated Making a dispersion managing crystal
JP3927753B2 (ja) * 2000-03-31 2007-06-13 キヤノン株式会社 露光装置及びデバイス製造方法
US6278549B1 (en) * 2000-04-17 2001-08-21 Ciena Corporation Optical filter having a quartz substrate
EP1780570A3 (en) * 2001-06-01 2008-01-02 ASML Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
JP3639807B2 (ja) * 2001-06-27 2005-04-20 キヤノン株式会社 光学素子及び製造方法

Also Published As

Publication number Publication date
WO2003076978A2 (en) 2003-09-18
US7075721B2 (en) 2006-07-11
AU2003230595A1 (en) 2003-09-22
AU2003230595A8 (en) 2003-09-22
EP1521990A2 (en) 2005-04-13
US20030168597A1 (en) 2003-09-11
EP1521990A4 (en) 2008-03-19
JP2005530333A (ja) 2005-10-06
WO2003076978A3 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4414234B2 (ja) 放射対称複屈折のための補償器
EP2212729B1 (en) Polarizer enabling the compensation of time-dependent distribution changes in the illumination
KR100689190B1 (ko) 편광보정기를가진광학시스템및그제조방법
US7564633B2 (en) Catadioptric imaging system for high numerical aperture imaging with deep ultraviolet light
US8031326B2 (en) Illumination system or projection lens of a microlithographic exposure system
US7483121B2 (en) Microlithograph system
JP2004535603A (ja) 結晶レンズを備えた対物レンズにおける複屈折の補正
US20010024330A1 (en) Catadioptric reduction projection optical system
US20070019301A1 (en) Very-high aperture projection objective
WO2009013230A1 (en) Optical system of a microlithographic projection exposure apparatus
KR101085737B1 (ko) 분극 분배 방해 보상 교정 장치 및 이를 이용한 마이크로석판 인쇄 투영 렌즈
US20040004757A1 (en) Very-high aperture projection objective
US20040218271A1 (en) Retardation element made from cubic crystal and an optical system therewith
JP2001154094A (ja) 物理的ビームスプリッタを備えたカタジオプトリック対物レンズ
JP2005509184A (ja) 立方晶により製作されるリターデーション素子と該素子を有する光学系
US7450300B2 (en) High resolution objective lens assembly
US7697198B2 (en) Catadioptric projection objective
US20050190446A1 (en) Catadioptric reduction objective
US20040150877A1 (en) Optical arrangement having a lens of single-axis, double-refracting material
US20080013165A1 (en) Deep UV telecentric imaging system with axisymmetric birefringent element and polar-orthogonal polarization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090518

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090525

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees