JP4414098B2 - 多工程硫黄除去プロセス - Google Patents

多工程硫黄除去プロセス Download PDF

Info

Publication number
JP4414098B2
JP4414098B2 JP2000568930A JP2000568930A JP4414098B2 JP 4414098 B2 JP4414098 B2 JP 4414098B2 JP 2000568930 A JP2000568930 A JP 2000568930A JP 2000568930 A JP2000568930 A JP 2000568930A JP 4414098 B2 JP4414098 B2 JP 4414098B2
Authority
JP
Japan
Prior art keywords
sulfur
alkylation
feedstock
stage
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000568930A
Other languages
English (en)
Other versions
JP2002524607A (ja
Inventor
アレグザンダー,ブルース・ディー
ハフ,ジョージ・エイ
プラドハン,ヴィヴェク・アール
リーガン,ウィリアム・ジェイ
キャントン,ロジャー・エイチ
Original Assignee
ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド filed Critical ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド
Publication of JP2002524607A publication Critical patent/JP2002524607A/ja
Application granted granted Critical
Publication of JP4414098B2 publication Critical patent/JP4414098B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Amplifiers (AREA)

Description

【0001】
発明の属する技術分野
本発明は、炭化水素類の混合物から構成され、不都合な不純物として硫黄含有芳香族化合物(例えば、チオフェン性化合物及びベンゾチオフェン性化合物)を含む供給原料から硫黄含有量の低い生成物を製造するプロセスに関する。特に本発明は、これらの不純物をアルキル化により高沸点生成物に転換し、次いで分別蒸留により高沸点生成物を除去することに関する多工程プロセスに関する。
発明の背景
流動接触分解プロセス(fluidized catalytic cracking process)は、石油を所望の燃料(例えば、ガソリン及びディーゼル燃料)に転換するのに常用される主たる精製プロセスのひとつである。このプロセスでは、高分子量炭化水素供給原料を流動状態または分散状態で熱微粉砕固体触媒粒子と接触させて低分子量生成物に転換する。好適な炭化水素供給原料を通常約205℃〜約650℃の範囲で沸騰させ、約450℃〜約650℃の範囲の温度で触媒と接触させる。好適な供給原料としては、種々の鉱物油画分[例えば、軽質ガス油、重質ガス油、ワイドカットガス油(wide-cut gas oil)、真空ガス油、灯油類、デカント油(decanted oil)、残渣画分、還元原油及びこれらの任意のものから誘導されるサイクル油(cycle oil)]並びに、シェール油、オイル・サンド(tar sand)処理、及び石炭液化から誘導された画分が挙げられる。流動接触分解プロセスからの生成物は、通常沸点をベースとし、軽質ナフサ(約10℃〜約221℃の間で沸騰)、重質ナフサ(約10℃〜約249℃の間で沸騰)、灯油(約180℃〜約300℃の間で沸騰)、軽質サイクル油(約221℃〜約345℃の間で沸騰)、及び重質サイクル油(約345℃を超える温度で沸騰)が挙げられる。
【0002】
流動接触分解プロセスは合衆国においてガソリン・プールの重要な役割を提供するだけでなく、このプールで出現する硫黄の大部分も提供する。このプロセスからの液体生成物中の硫黄は有機硫黄化合物の状態であり、これらの生成物を燃料として使用する際に硫黄酸化物に転換する不都合な不純物である。これらの硫黄酸化物は不快な大気汚染物質である。さらに、これらの硫黄酸化物は、有害なエンジン燃焼放出物をより不快でないガスに転換するのを触媒するために自動車で用いられる触媒コンバーター用に開発された多くの触媒を失活させてしまう。従って、接触分解生成物の硫黄含有量をできるだけ低いレベルに減らすことが望ましい。
【0003】
単に原油を蒸留することによって製造する直留ガソリン中の硫黄含有不純物は、通常、分解ガソリン中に存在するものとは大きく異なる。直留ガソリン中の硫黄含有不純物は主としてメルカプタン類及び硫化物を含むのに対し、分解ガソリン中に存在する硫黄含有不純物はチオフェン、ベンゾチオフェンと、チオフェン及びベンゾチオフェンの誘導体が多い。
【0004】
低硫黄生成物(low sulfur product)は、プロセスの供給原料またはプロセスの生成物のいずれかを水素化処理する接触分解プロセスから慣用的に得られる。水素化処理プロセスは触媒の存在下での水素による処理を包含し、硫黄含有不純物中の硫黄を硫化水素に転換し、これを分離して元素硫黄に転換することができる。あいにく、このタイプの処理には酸素供給源、高圧プロセス装置、高価な水素化処理触媒、及び得られた硫化水素を元素硫黄に転換するための硫黄回収プラントが必要なため、通常、非常に高価である。さらに、水素化処理プロセスは、水素化によってこれらを飽和炭化水素に転換することにより供給原料中のオレフィン類を分解してしまうので都合が悪い。水素化処理によるオレフィン類の分解は高価な水素を消費し、オレフィン類はガソリンのハイオクタン成分と同様に貴重なので、水素化処理によるオレフィン類の分解は通常望ましくない。例えば、接触分解プロセス由来のガソリン沸点範囲のナフサは、オレフィン含有量が高いため比較的オクタン価が高い。このような原料を水素化処理すると所望の脱硫に加えてオレフィン含有量が減少し、脱硫の程度が増加するに連れて水素化処理生成物のオクタン価が低下してしまう。
【0005】
米国特許第2,448,211号(Caesarら)は、触媒(例えば、活性天然クレーまたはシリカの合成吸着コンポジット)及び少なくとも1種の両性金属酸化物の存在下、約140℃〜約400℃の温度でオレフィン性炭化水素類との反応によりチオフェン及びその誘導体をアルキル化することができると開示する。好適な活性天然クレー触媒としては、その上に塩化亜鉛またはリン酸が沈澱したクレー触媒が挙げられる。好適なシリカ-両性金属酸化物触媒としては、シリカと物質(例えば、アルミナ、ジルコニア、セリア、及びトリア)との組合せが挙げられる。米国特許第2,469,823号(Hansfordら)は、三フッ化硼素を使用してチオフェン及びアルキルチオフェン類をアルキル化剤(例えば、オレフィン性炭化水素類、ハロゲン化アルキル、アルコール及びメルカプタン)でアルキル化するのを触媒することができると示唆する。さらに、米国特許第2,921,081号(Zimmerschiedら)は、二酸化ジルコニウム及びジルコニウムのハロゲン化物からなる群から選択されるジルコニウム化合物と、オルトリン酸、ピロリン酸、及びトリリン酸からなる群から選択される酸とを混合することにより酸性固体触媒を製造することができると開示する。Zimmerschiedらの特許は、そのような触媒の存在下、227℃の温度でチオフェンをプロピレンでアルキル化することができるとも示唆する。
【0006】
米国特許第2,563,087号(Vesely)は、チオフェンを選択的にアルキル化し、次いで得られたチオフェンアルキレートを蒸留分離することにより、芳香族炭化水素類からチオフェンを除去することができると開示する。選択的アルキル化は、チオフェン-汚染芳香族炭化水素とアルキル化剤とを混合し、次いで約−20℃〜約85℃の慎重に制御した温度で該混合物をアルキル化触媒と接触させることにより実施する。好適なアルキル化剤としては、オレフィン類、メルカプタン類、鉱酸エステル類、及びアルコキシ化合物(例えば、脂肪アルコール類、エーテル類及びカルボン酸のエステル類)が挙げられている。好適なアルキル化触媒としては、以下の(1)無水形で使用するのが好ましいフリーデル-クラフツハロゲン化金属;(2)リン酸、好ましくはピロリン酸、またはそのような物質と硫酸との混合物(硫酸対リン酸の容積比は約4:1未満である);及び(3)リン酸(オルトリン酸またはピロリン酸)と、約400℃〜約500℃の温度でカ焼して、固体リン酸触媒と通常称されるシリコ-リン酸結合物(silico-phosphoric acid combination)を形成した珪酸を含む吸着材(例えば、珪藻土または珪酸を含むクレー)との混合物が挙げられる。
【0007】
米国特許第5,171,916号(Leら)は、(1)結晶質メタロシリケート触媒を使用して少なくとも1個のオレフィン性二重結合を有する脂肪族炭化水素でサイクル油のヘテロ原子含有芳香族成分をアルキル化し;次いで(2)分別蒸留により高沸点アルキル化生成物を分離する、ことによる軽質サイクル油の品質向上プロセスに関する。未転換軽質サイクル油は硫黄及び窒素含有量が少なく、高沸点アルキル化生成物は合成アルキル化芳香族官能性流体ベースストック(base stock)として有用であることが開示されている。
【0008】
米国特許第5,599,441号(Collinsら)は、(1)アルキル化領域でナフサと酸触媒とを接触させてアルキル化剤としてナフサ中に存在するオレフィン類を使用してチオフェン性化合物をアルキル化し;(2)アルキル化領域から廃液流を取り出し;次いで(3)分別蒸留によりアルキル化領域廃液流からアルキル化チオフェン性化合物を分離する、ことにより分解ナフサからチオフェン性硫黄化合物を除去するプロセスを開示する。該特許は、さらにオレフィン類を分解ナフサに添加してプロセス用の追加のアルキル化剤とすることも開示する。
発明の概要
約10℃〜約345℃の広範囲の温度または狭い範囲の温度で沸騰する炭化水素液体を本明細書中、「炭化水素蒸留液(distillate hydrocarbon liquid)」と呼ぶ。そのような流体は石油精製並びに、石炭液化及び油頁岩またはオイル・サンド処理由来の生成物の精製に含まれることが多く、これらの液体は通常、炭化水素類の複合混合物から構成される。例えば、軽質ナフサ、重質ナフサ、ガソリン、灯油及び軽質サイクル油は全て炭化水素蒸留液である。
【0009】
精油所の炭化水素蒸留液には不都合な硫黄含有不純物が含まれることが多く、これらは少なくとも部分的に除去しなければならない。水素化処理方法は効果的であり、炭化水素蒸留液由来の硫黄含有不純物を除去するのに通常使用される。あいにく、水素化処理は高価なプロセスであり、高オレフィン性炭化水素蒸留液で使用するのには通常十分ではない。従って、炭化水素蒸留液から硫黄含有不純物を効果的に除去するための安価な方法が必要である。高オレフィン性であり、不都合な不純物としてチオフェン性化合物及びベンゾチオフェン性化合物のいずれをも含有する、流動接触分解プロセス由来の生成物などの炭化水素蒸留液から硫黄含有不純物を除去するのに使用できるプロセスも必要である。
【0010】
有機硫黄化合物は、(1)アルキル化により硫黄化合物を高沸点生成物に転換し;次いで(2)分別蒸留により該高沸点生成物を除去する、ことにより炭化水素蒸留液から除去することができる。この種の硫黄除去プロセスを、本明細書中、「アルキル化/分別脱硫プロセス」と呼ぶ。かかるプロセスは非常に有効であるが、他のものよりも幾つかの供給原料について都合がよい。例えば、多量の芳香族炭化水素類(例えば、接触分解プロセス由来のナフサ)を含有する供給原料に適用する場合、ナフサ中の芳香族炭化水素のアルキル化は硫黄含有不純物の所望のアルキル化と競合する反応である。アルキル化芳香族炭化水素生成物のかなりの部分が都合の悪いことに高沸点であり、高沸点アルキル化硫黄含有不純物と一緒にプロセスにより除去されるため、芳香族炭化水素類のこの競合アルキル化は通常望ましくない。幸い、多くの典型的な硫黄含有不純物は芳香族炭化水素類よりもより迅速にアルキル化される。従って、硫黄含有不純物は限られてはいるが選択的にアルキル化することができる。しかしながら、芳香族炭化水素類の競合アルキル化のため、かなりの量の芳香族炭化水素類を同時且つ不都合に取り除くことなく、硫黄含有不純物を実質的に完全除去することは本質的に不可能である。
【0011】
アルキル化/分別脱硫プロセスの実施においてアルキル化剤としてオレフィンまたはオレフィン類の混合物を使用する場合、硫黄含有不純物の所望のアルキル化と共に不都合な副反応としてオレフィン重合も競合する。副反応のため、オレフィン性アルキル化剤をポリマー副生成物に殆ど転換させずに硫黄含有不純物をアルキル化生成物に高転換率で転換することは実行できないことが多い。ガソリン沸点範囲のオレフィン性ナフサを脱硫し、得られた生成物をガソリンブレンド用原料として使用する場合、このようなオレフィン類を失うことは非常に都合が悪い。この例では、ハイオクタンであり、ガソリン沸点範囲にあるC6〜C10オレフィン類を過酷なアルキル化条件下で高-沸点ポリマー副生成物に転換し、それからガソリン成分として取り除く。
【0012】
本出願人は、アルキル化/分別脱硫プロセスによる硫黄含有芳香族不純物の除去に暴露される供給原料由来の芳香族炭化水素の損失は、本プロセスを2つ以上の一連の工程(stage)で実施することにより最小化し得ることを知見した。本出願人は、不都合な副反応への転換によるC6〜C10オレフィン類の損失は一連の2つ以上の工程を使用することによって最小化し得ることも知見した。本発明は、供給原料を第1工程のアルキル化/分別脱硫プロセスにかけることによって(1)硫黄含有量の低い低沸点画分と;(2)不純物として、供給原料由来の非アルキル化で反応性の低い硫黄含有芳香族化合物を幾らか含む高沸点画分とを得ることを含む。次のそれぞれの工程は、先の工程由来の高沸点画分をアルキル化/分別脱硫プロセスにかけて、低沸点画分及び高沸点画分を得ることを含む。多工程プロセスからの硫黄含有量の低い生成物は、種々の工程からの低沸点画分から構成される。
【0013】
本発明の一態様は、供給原料から硫黄含有量の低い生成物を製造するプロセスであって、前記供給原料はオレフィン類を含有する炭化水素類の混合物から構成され、前記供給原料は不純物として硫黄含有芳香族化合物を含み;前記プロセスは、
(a)第1の接触段階では、前記不純物の一部をオレフィン類のアルキル化により高沸点硫黄含有物質に転換するのに有効な条件下で供給原料と酸性触媒とを接触させ;
(b)第1の分別段階では、沸点をベースとして前記第1の接触段階の生成物を
(i)炭化水素類から構成され、前記供給原料に対して硫黄含有量が少ない第1の画分と;
(ii)炭化水素類から構成され、前記第1の画分よりも沸点が高く、不純物として硫黄含有芳香族化合物を含む第2の画分と
を含む少なくとも2つの画分に分別し;
(c)硫黄含有量の低い第1の生成物流として該プロセスから前記第1の画分を回収し;
(d)アルコール類及びオレフィン類からなる群から選択される少なくとも1種の物質から構成され、第2の画分中に任意のオレフィン類に加えて存在する二次アルキル化剤と前記第2の画分とを混合することにより二次プロセス流を製造し;
(e)第2の接触段階では、二次プロセス流の硫黄含有芳香族化合物の少なくとも一部を高沸点硫黄含有物質に転換するのに効果的な条件下で二次プロセス流と酸性触媒とを接触させ;
(f)第2の分別段階では、沸点をベースとして前記第2の接触段階の生成物を分別して、高沸点画分中の高沸点硫黄含有物質を除去して低沸点画分を生成し;次いで
(g)硫黄含有量の少ない第2の生成物流として第2の分別段階からの低沸点画分を回収する
ことを含む。
【0014】
本発明の目的は、副生成物の形成を最小化する改良アルキル化/分別脱硫プロセスを提供することである。
【0015】
本発明の目的は、オレフィン性アルキル化剤の重合由来の不都合なオリゴマー類及びポリマー類の形成を最小化する改良アルキル化/分別脱硫プロセスを提供することである。
【0016】
本発明の目的は、揮発性芳香族炭化水素類を顕著に損失することなく該炭化水素類を含む供給原料に適用し得る改良アルキル化/分別脱硫プロセスを提供することである。
【0017】
本発明の別の目的は、オレフィン性分解ナフサ由来のチオフェン性不純物及びベンゾチオフェン性不純物を効率的に除去する改良法であって、ナフサのオクタンを顕著に減らさない該方法を提供することである。
【0018】
本発明のさらに別の目的は、炭化水素供給原料由来のチオフェン性不純物及びベンゾチオフェン性不純物を効率的に除去するための安価な方法を提供することである。
発明の詳細な説明
本出願人は、炭化水素類の混合物から構成され、不都合な不純物としてチオフェン性化合物及びベンゾチオフェン性化合物などの硫黄含有芳香族化合物を含む供給原料から硫黄含有量の低い生成物を製造するプロセスを知見した。本発明は、少なくとも2つの一連のアルキル化/分別脱硫工程の使用を含む。揮発性の高い硫黄含有芳香族不純物の殆どを第1工程で除去し、次いで少なくとも1つの次の工程で揮発性の低い硫黄含有芳香族不純物を除去する。
【0019】
本明細書中、「硫黄含有芳香族化合物」及び「硫黄含有芳香族不純物」なる用語は、その芳香族環系に少なくとも1個の硫黄原子を含有する任意の芳香族有機化合物を指す。かかる物質としては、チオフェン性化合物及びベンゾチオフェン性化合物が挙げられ、かかる物質の例としては、チオフェン、2-メチルチオフェン、3-メチルチオフェン、2,3-ジメチルチオフェン、2,5-ジメチルチオフェン、2-エチルチオフェン、3-エチルチオフェン、ベンゾチオフェン、2-メチルベンゾチオフェン、2,3-ジメチルベンゾチオフェン、及び3-エチルベンゾチオフェンが挙げられるが、これらに限定されない。
【0020】
本発明の第1工程では、(1)不純物の一部を高沸点硫黄含有生成物に転換するのに効果的なアルキル化条件に供給原料を暴露し、次いで;(2)分別蒸留により得られた生成物を低沸点画分と高沸点画分とに分離する、ことを含む。低沸点画分は炭化水素類から構成され、供給原料に対し硫黄含有量が低い。高沸点画分は炭化水素類から構成され、非アルキル化硫黄含有芳香族不純物と高沸点硫黄含有生成物も含む。第1工程のアルキル化段階では、反応性の高い不純物を分別蒸留により分離し得る高沸点硫黄含有生成物に転換するのに効果的なアルキル化条件に供給原料を暴露する。本出願人は、反応性の高い不純物は通常、チオフェン及び種々の低分子量アルキル-置換チオフェン類などの揮発性の高い不純物であることを知見した。第1工程のアルキル化段階でのアルキル化条件は、これらが芳香族炭化水素類の顕著なアルキル化や不都合なオレフィン重合を引き起こさずに揮発性硫黄含有芳香族不純物の実質的なアルキル化を実施するのに十分に温和であるように選択することができる。
【0021】
第1工程のアルキル化生成物中の任意の低沸点芳香族炭化水素類及びオレフィン性炭化水素類は低沸点画分中で分別蒸留することにより除去される。供給原料中の反応性の高い硫黄含有芳香族不純物は通常、揮発性が高いため、これらの揮発性の高い不純物の殆どは第1工程のアルキル化段階で高沸点物質に転換し、低沸点画分は供給原料に対して硫黄含有芳香族不純物濃度が実質的に低い。高沸点画分はアルキル化硫黄含有芳香族不純物と、第1工程のアルキル化段階でアルキル化を受けなかった反応性の低い大部分の硫黄含有芳香族不純物も含む。非アルキル化不純物としては通常、多置換チオフェン類、ベンゾチオフェン及び置換ベンゾチオフェン類が挙げられる。
【0022】
本明細書中、第2工程と参照する本発明の次のそれぞれの工程は、(1)硫黄含有芳香族化合物のその含有量の少なくとも一部を高沸点硫黄含有生成物に転換するのに効果的なアルキル化条件に先の工程からの高沸点画分を暴露し、次いで(2)得られた生成物を低沸点画分と高沸点画分とに分別蒸留により分離する、ことを含む。本発明の好ましい態様では、第2工程を1回だけ使用する。第2工程からの低沸点画分は炭化水素類から構成され、供給原料に対して硫黄含有量が低い。第2工程からの高沸点画分は先のアルキル化段階からの高沸点硫黄含有生成物から構成される。第2工程のアルキル化段階では、この工程への供給原料中の硫黄含有芳香族不純物の少なくとも一部を分別蒸留により分離し得る高沸点硫黄含有生成物に転換するのに効果的なアルキル化条件を使用する。第2工程への供給原料中の硫黄含有芳香族不純物としては、先の単数または複数の工程からの非アルキル化硫黄含有芳香族不純物と、先の単数または複数の工程からのアルキル化硫黄含有芳香族不純物も挙げられる。先の単数または複数の工程からのアルキル化不純物は揮発性が十分に高いこともあり、分別蒸留で除去するのに十分に沸点を上昇させるのにさらにアルキル化が必要であろう。さらに、非アルキル化不純物のアルキル化は分別蒸留によって除去するのに必要である。
【0023】
本発明のプロセスの一態様では、第1工程への供給原料は硫黄含有芳香族不純物の一つとしてベンゾチオフェンを含み、第2工程でアルキル化条件にかける前記第1工程からの高沸点画分は前記ベンゾチオフェンを多量に含むだろう。
【0024】
本発明のプロセスからの全生成物はプロセスの種々の工程からの低沸点画分の混合物から構成され、全生成物はプロセスへの供給原料に対して硫黄含有量が低い。しかしながら、本プロセスの各工程からの低沸点画分は本プロセスの他の全ての生成物流と独立して使用することができる別個の生成物流である。
【0025】
本発明の第1工程からの低沸点供給原料画分の蒸留終点は、相当量のベンゾチオフェンを蒸留する温度より低いように選択するのが望ましい。ベンゾチオフェンの沸点は221℃であるため、通常この低沸点画分の蒸留終点は約221℃未満であるように選択する。しかしながら、本出願人は、ベンゾチオフェンは不純物として通常存在する炭化水素蒸留液の幾つかの成分と低沸点共沸混合物を形成し得ることを知見した。そのような共沸混合物が形成するため、第1工程の画分の蒸留終点は約199℃未満であるのが好ましく、約190℃未満であるのがより好ましい。ベンゾチオフェン性化合物や、アルキル化するのが通常難しい特定の2,5-ジアルキルチオフェン類などの数種の多置換チオフェン類を取り除くのに役立つため、低沸点の第1工程の画分に望ましい蒸留終点は約135℃〜約221℃の範囲である。低沸点の第1工程画分の非常に望ましい蒸留終点は、約150℃〜約190℃の範囲であろう。
【0026】
本発明の実施において、硫黄含有芳香族不純物の高沸点生成物への転換の主なメカニズムは、これらの不純物のアルキル化剤によるアルキル化を含むと考えられる。例えば、チオフェンなどの硫黄含有芳香族化合物の単純アルキル化によりアルキル-置換チオフェンが得られる。このタイプの反応は、アルキル化剤としてプロペンを使用するチオフェンの2-イソプロピルチオフェンへの転換を示す以下の等式に説明されている。
【0027】
【化1】
Figure 0004414098
【0028】
むろん、チオフェンのモノアルキル化は硫黄原子に対してαまたはβのいずれかで起きるが、ポリアルキル化も起きるものと考えられる。アルキル化プロセスにより硫黄含有出発物質の水素原子をアルキル基と置換し、出発物質の分子量を対応する分だけ増加させる。かかるアルキル化生成物の高分子量は、出発物質に対し沸点をより高くするように影響する。
【0029】
本出願人は、揮発性の高い硫黄含有芳香族不純物の多くは、接触分解プロセス由来のオレフィン性ナフサなどの在来型の精製所プロセス流で知見される揮発性の低い硫黄含有芳香族不純物の多くと比較して、アルキル化基質としてずっと反応性であることを知見した。実施例VIに記載するように、本出願人は、固体リン酸触媒上204℃で1-ヘプテンによる酸触媒化アルキル化に対する相対的反応性が以下の如く:チオフェン(84℃)>2-メチルチオフェン(113℃)>>ベンゾチオフェン(221℃)>2,5-ジメチルチオフェン(137℃)>トルエン(111℃)>ベンゼン(80℃)(但し、それぞれの化合物の沸点は丸括弧内に示す)であることを知見した。チオフェン性化合物のアルキル化は、硫黄に対して直近のチオフェン環位置のひとつ(位置2及び5と識別される)で優先的に起きると考えられる。従って、2位置も5位置も置換されている2,5-ジメチルチオフェンのようなチオフェンは、これらの位置の少なくとも一カ所が置換されてないチオフェン類よりも反応性が低いものと予測される。しかしながら、2位置または5位置のいずれかが非置換の殆どのチオフェン性化合物は、ベンゾチオフェンまたはアルキル-置換ベンゾチオフェン類よりもずっと反応性であると考えられる。従って、本発明の段階的なプロセスは、揮発性の高い硫黄含有芳香族化合物が典型的により高い反応性であることをうまく利用する。
【0030】
本発明の各工程のアルキル化段階でのアルキル化条件は、硫黄含有芳香族不純物の所望のアルキル化を実施し、芳香族炭化水素類のアルキル化及びオレフィン重合などの不都合な副反応を最小化するために最適化することができる。非常に好ましい態様では、この最適化では第1工程のアルキル化段階での温和なアルキル化条件と第2工程でのアルキル化段階でのより強いアルキル化条件を使用する。アルキル化プロセスの過酷さ(severity)を制御するために調節し得るパラメーターとしては、温度、触媒の選択、アルキル化剤のタイプ、及びアルキル化剤の濃度が挙げられるが、これらに限定されない。
【0031】
例えば、第2工程のアルキル化段階で高温に対し第1工程のアルキル化段階で低温を使用することにより、第2工程のアルキル化段階よりも第1工程のアルキル化段階で温和なアルキル化条件を実施することができる。さらに、第2工程でのアルキル化段階のアルキル化条件の過酷さを強める非常に望ましい方法としては、低分子量アルキル化剤を添加することがある。例えば、3〜5個の炭素原子を含有するオレフィン類は、添加するアルキル化剤として使用するのに非常に好ましい。そのような低分子量オレフィンは重合を受けるが、その重合により生成する副生成物の大部分はガソリン沸点範囲である揮発性オリゴマーを含むであろう。即ち、生成物がガソリンブレンド用原料を目的とするものである場合、これらのオリゴマーは生成物の所望のハイオクタン成分であり、これは高沸点硫黄含有アルキル化生成物を分別により除去する際でも失われないであろう。本発明のこの態様において、第2工程のアルキル化段階でのアルキル化条件に暴露されるプロセス流は、3〜5個の炭素原子のオレフィン類からなる群から選択される少なくとも1種の物質から構成される添加アルキル化剤を約1〜約50容積%、好ましくは約10〜約50容積%含むのが望ましい。
【0032】
第1工程のアルキル化段階でのアルキル化条件は反応性が高く、通常揮発性の高い硫黄含有芳香族不純物を高沸点硫黄含有生成物に転換するためのものであるので、この工程で温和なアルキル化条件を使用することは可能である。これらの温和な反応条件により、芳香族炭化水素のアルキル化及びオレフィン重合などの副反応は最小化する。従って、供給流中の揮発性芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン及びクメン)はこの第1工程では殆ど転換しない。さらに、重合しても、貴重なオレフィン類は比較的殆ど失われない。
【0033】
揮発性芳香族炭化水素類は、本発明の以下の第2工程への供給原料として使用される第1工程の高沸点画分から実質的に除去される。これらの物質が存在しないため、第2工程のアルキル化段階に好ましいより強力なアルキル化段階に暴露されることはない。
【0034】
本発明の実施で使用するのに好適なアルキル化剤としては、オレフィン類及びアルコール類のいずれもが挙げられ、これらのアルキル化剤は3〜約20個の炭素原子を含むのが好ましい。しかしながら、オレフィン類はアルコール類よりも通常反応性が高く、より温和な反応条件下、主プロセスで使用することができるため、オレフィン類が通常好ましい。エチレン、メタノール及びエタノール等の物質は、これらの反応性が比較的低いため、本発明の実施でアルキル化剤として大抵の他のオレフィン類及びアルコール類よりも有用でない。
【0035】
アルキル化剤として使用するのに好適なオレフィン類としては、環式オレフィン類、置換された環式オレフィン類、及び式I(式中、R1はヒドロカルビル基であり、R2はそれぞれ独立して、水素及びヒドロカルビル基からなる群から選択される)のオレフィン類が挙げられる。好ましくはR1はアルキル基であり、R2はそれぞれ独立して水素及びアルキル基からなる群から選択される。
【0036】
【化2】
Figure 0004414098
【0037】
好適な環式オレフィン類及び置換された環式オレフィン類の例としては、シクロペンテン、1-メチルシクロペンテン、シクロヘキセン、1-メチルシクロヘキセン、3-メチルシクロヘキセン、4-メチルシクロヘキセン、シクロヘプテン、シクロオクテン、及び4-メチルシクロオクテンが挙げられる。式Iのタイプの好適なオレフィン類の例としては、プロペン、2-メチルプロペン、1-ブテン、2-ブテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテン、2,3-ジメチル-1-ブテン、3,3-ジメチル-1-ブテン、2,3-ジメチル-2-ブテン、2-エチル-1-ブテン、2-エチル-3-メチル-1-ブテン、2,3,3-トリメチル-1-ブテン、1-ペンテン、2-ペンテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、2,4-ジメチル-1-ペンテン、1-ヘキセン、2-ヘキセン、3-ヘキセン、1,3-ヘキサジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,4-ヘキサジエン、1-ヘプテン、2-ヘプテン、3-ヘプテン、1-オクテン、2-オクテン、3-オクテン、及び4-オクテンが挙げられる。本出願人は、低分子量オレフィン類は、チオフェン性化合物及びベンゾチオフェン性化合物のアルキル化で使用するのに対し反応性の高いアルキル化剤である傾向があることを知見した。例えば、約10℃〜約249℃の沸騰範囲を有する接触分解プロセス由来の重質ナフサにアルキル化/分別脱硫プロセスを適用する場合、本出願人は、ナフサの成分として存在するオレフィン類、低分子量C5及びC6オレフィン類が高分子量C7+オレフィン類よりも反応性であることを知見した。本出願人は、3〜5個の炭素原子を含むオレフィン類は、本発明の第2工程のアルキル化段階でアルキル化剤として使用するのに非常に満足できるものであることも知見した。これら3〜5個の炭素原子のオレフィン類はアルキル化剤として非常に反応性であるだけでなく、重合副生成物も与えるが、これらは高分子量オレフィン類によってできる副生成物よりも通常それほど不都合ではない。上述の如く、3〜5個の炭素原子のオレフィン類の重合によりできた副生成物は、少なくとも一部は6〜10個の炭素原子を含み、ガソリン沸点範囲である揮発性の二量体及び三量体を含む。従って、生成物をガソリンブレンド用原料として使用する場合には、これらの揮発性オリゴマーは生成物の望ましいハイオクタン成分であり、十分に沸点が低いので高沸点硫黄含有アルキル化生成物を分別により除去する際に失われない。
【0038】
本発明の実施において第1工程のアルキル化段階でアルキル化剤として使用するのに好ましいオレフィン類としては、約7〜約15個の炭素原子を含むオレフィン類が挙げられる。上述の如く、これらのオレフィン類は3〜6個の炭素原子を含む低分子量オレフィン類よりも幾分反応性が低いという傾向がある。従って、これらは第1工程のアルキル化段階で非常に反応性の高い硫黄含有芳香族不純物と混合して使用するアルキル化剤として用いるのに非常に適している。さらに、多数の炭素原子を含むアルキル化剤は、通常、より少数の炭素原子を含むアルキル化剤よりも高沸点のアルキル化生成物を与えるであろう。
【0039】
モノアルキル化チオフェン側鎖のそれぞれの炭素原子毎にチオフェンの沸点84℃が約25℃高くなると大まかに見積もることができる。例えば、2-オクチルチオフェンの沸点は259℃であるが、これは8個の炭素アルキル基のそれぞれの炭素原子についてチオフェンの沸点を23℃上昇させることに相当する。従って、本発明の第1のアルキル化工程でのC7〜C15オレフィンによるチオフェンのモノアルキル化により、通常、約210℃の初留点を有する高沸点画分の成分として分別蒸留により容易に除去し得る十分に高い沸点を有する硫黄含有アルキル化生成物が得られる。対照的に、4個の炭素のオレフィンである2-メチルプロペンをアルキル化剤として使用する場合、モノアルキル化によりチオフェンを2-t-ブチルチオフェン(沸点164℃)に転換し、ジアルキル化によりジ-t-ブチルチオフェン(沸点約224℃)を与える。従って、4個の炭素原子のオレフィンによるジアルキル化は、約210℃の初留点を有する高沸点画分の成分として分別蒸留により除去し得る高沸点アルキル化物質にチオフェンを転換するのに必要である。
【0040】
本発明の実施においてアルコールまたはアルコール類の混合物をアルキル化剤として使用する場合、第2及び第3アルコール類は第1アルコール類よりも通常より反応性であり、より温和な反応条件で使用することができるため、第1アルコール類よりも非常に好ましい。3〜5個の炭素原子を含むアルコール類が通常好ましい。
【0041】
本発明の実施で使用し得る供給原料は、炭化水素類の混合物から構成され、例えば、チオフェン性化合物及びベンゾチオフェン性化合物などの硫黄含有芳香族不純物を少量含む。さらに、供給原料は液体から構成され、約345℃以下、好ましくは約249℃以下の蒸留終点であるのが望ましい。所望により、供給原料は約221℃以下の蒸留終点であってもよい。好ましくは、供給原料は約79℃未満の初留点を有する。好適な供給原料としては、例えば、天然ガス液体、ナフサ、軽質ガス油、重質ガス油、及びワイド-カットガス油などの石油精製時に通常含まれる炭化水素類並びに、石炭液化及びオイル・シェールまたはオイル・サンドの処理から誘導される炭化水素画分の種々の複合混合物のいずれをも含み得る。好ましい供給原料としては、炭化水素供給原料の接触分解またはコーキングから得られるオレイン性ナフサが挙げられる。
【0042】
接触分解生成物は本発明の目的で使用するのに非常に好ましい供給原料である。この種の好ましい供給原料としては、例えば、軽質ナフサ、重質ナフサ及び軽質サイクル油などの約345℃未満で沸騰する液体が挙げられる。しかしながら、接触分解プロセスからの揮発性生成物の全産出分を本発明の供給原料として使用し得ると考えられる。接触分解生成物はオレフィン含有量が比較的高く、通常、本発明の第1のアルキル化工程で任意の追加のアルキル化剤を添加する必要がないので、望ましい供給原料である。さらに、硫黄含有芳香族化合物(例えば、チオフェン性化合物及びベンゾチオフェン性化合物)は接触分解生成物の硫黄含有不純物の主成分であることが多いので、これらの不純物は本発明の手段により容易に除去される。例えば、石油から誘導したガス油の流動接触分解からの典型的な軽質ナフサは約60重量%以下のオレフィン類と約0.5重量%以下の硫黄を含むことができ、大部分の硫黄はチオフェン性化合物及びベンゾチオフェン性化合物の形態である。本発明の実施で使用するための好ましい供給原料は接触分解生成物から構成され、さらに少なくとも1重量パーセントのオレフィン類から構成される。非常に好ましい供給原料は接触分解生成物から構成され、さらに少なくとも5重量パーセントのオレフィン類から構成される。かかる供給原料は蒸留により単離される接触分解プロセス由来の揮発性生成物の一部であってもよい。
【0043】
本発明の実施において、供給原料は不純物として硫黄含有芳香族化合物を含む。本発明の一態様において、供給原料は不純物としてチオフェン性化合物及びベンゾチオフェン性化合物のいずれをも含む。所望によりこれらの硫黄含有芳香族化合物の少なくとも約50%以上を本発明の実施において高沸点硫黄含有物質に転換することができる。本発明の一態様において、供給原料はベンゾチオフェンを含み、ベンゾチオフェンの少なくとも約50%をアルキル化により高沸点硫黄含有物質に転換し、分別により除去する。
【0044】
オレフィン類またはアルコール類により硫黄含有芳香族化合物のアルキル化を触媒作用し得る任意の酸性物質を、本発明の実施において触媒として使用することができる。液体酸(例えば、硫酸)を使用することができるが、固体酸触媒が特に望ましく、そのような固体酸触媒としては固体支持体上に担持された液体酸が挙げられる。固体酸触媒は、通常、そのような物質と供給原料とを接触させ易いので、液体触媒よりも好ましい。例えば、供給流は、好適な温度で固体粒状酸性触媒の1つ以上の固定床内を簡単に通過させることができる。所望により異なる酸性触媒を本発明の種々のアルキル化工程で使用することができる。例えば、アルキル化条件の過酷さは活性のやや弱い触媒を使用することによって第1工程のアルキル化段階で加減することができ、活性のやや強い触媒を第2工程のアルキル化段階で使用することもできる。
【0045】
本発明の一態様では、本発明の工程の少なくともひとつで蒸留カラム反応器を使用する。例えば、固体酸触媒の1つ以上の粒状固定床を蒸留カラム中のカラムパッキンとして使用することができる。触媒を蒸留カラムに挿入することにより、カラムは蒸留カラム反応器になる。結果として、本発明の工程の酸触媒アルキル化段階は、蒸留カラム内の好適な反応条件下でその工程への供給流を触媒と接触させることにより得られた生成物を分別蒸留するのと同時に実施することができる。
【0046】
本発明の実施で使用するのが好適な触媒は、酸性ポリマー樹脂、担持された酸、及び酸性無機酸化物などの物質から構成することができる。好適な酸性ポリマー樹脂の例としては、当業者に公知で市販されているポリマー性スルホン酸樹脂が挙げられる。Amberlyst(登録商標)35(Rohm and Haas製)はかかる物質の典型例である。
【0047】
触媒として有用な担持酸としては、固体(例えば、シリカ、アルミナ、シリカ-アルミナ、酸化ジルコニウムまたはクレー)上に担持されているブロンステッド酸(例えば、リン酸、硫酸、硼酸、HF、フルオロスルホン酸、トリフルオロメタンスルホン酸、及びジヒドロキシフルオロ硼酸)及びルイス酸(例えば、BF3、BCl3、AlCl3、AlBr3、FeCl2、FeCl3、ZnCl2、SbF5、SbCl5及びAlCl3とHClとの組合せ)が挙げられるが、これらに限定されない。担持された液体酸を使用する場合には、担持触媒は、通常、所望の液体酸と所望の担体とを混合し、次いで乾燥することにより製造する。リン酸と担体とを混合することにより製造する担持触媒が非常に好ましく、本明細書中、固体リン酸触媒と呼ぶ。これらの触媒は非常に効果的でコストが安いため好ましい。本明細書中、その全体が参照として含まれる米国特許第2,921,081号(Zimmerschiedら)は、酸化ジルコニウム及びジルコニウムのハロゲン化物からなる群から選択されるジルコニウム化合物と、オルトリン酸、ピロリン酸及びトリリン酸からなる群から選択される酸とを混合することによる固体リン酸触媒の製造を開示する。本明細書中、その全体が参照として含まれる米国特許第2,120,702号(Ipatieffら)は、リン酸と珪酸含有物質とを混合することによる固体リン酸触媒の製造を開示する。最後に、本明細書中、その全体が参照として含まれる英国特許第863,539号は、珪藻土(diatomaceous earthまたはkieselguhr)などの固体珪酸含有物質上にリン酸を付着させることによる固体リン酸触媒の製造も開示する。
【0048】
珪藻土上にリン酸を付着させることによって製造する固体リン酸に関しては、触媒は(1)珪藻土上に担持された1種以上の遊離リン酸(例えば、オルトリン酸、ピロリン酸及びトリリン酸)と;(2)単数または複数種類の酸と珪藻土との化学反応から誘導されるリン酸珪素(silicon phosphate)とを含むものと考えられる。無水リン酸珪素はアルキル化触媒として不活性であると考えられるが、触媒的に活性であるオルトリン酸とポリリン酸との混合物を製造するためにこれらを加水分解することができるとも考えられる。この混合物の詳細な組成は、触媒が暴露される水の量に依存する。実質的に無水炭化水素供給原料と共に使用する際に固体リン酸アルキル化触媒を満足できる活性レベルに保持するためには、イソプロピルアルコールなどの少量のアルコールを供給原料に添加して触媒を十分な水和レベルに保持すると都合がよい。アルコールは触媒との接触により脱水され、生成した水が触媒を水和すると考えられる。触媒が殆ど水を含まなければ、コーキングの結果直ちに失活してしまうような非常に高い酸性度である傾向があり、さらに触媒は良好な物理的結着性を持たないであろう。さらに触媒を水和すると、その酸性度が低下し、コークス形成により直ちに失活する傾向が減少する。しかしながら、そのような触媒を過度に水和すると触媒が軟化し、物理的に凝集して固定床反応器中で大きな圧力低下を引き起こす。従って、固体リン酸触媒には最適水和レベルがあり、この水和レベルは、反応条件、基質、及びアルキル化剤の関数である。本発明は固体リン酸触媒に限定されるものではないが、本出願人は供給原料中の水の濃度が約50〜約1,000ppmの範囲であると通常十分であり、この水はイソプロピルアルコールなどのアルコールの形態で都合良く提供できることを知見した。
【0049】
触媒として有用な酸性無機酸化物としては、アルミナ、シリカ-アルミナ、天然及び合成ピラークレー(pillared clay)、並びに天然及び合成ゼオライト(例えば、ファウジャサイト;faujasites、モルデナイト、L、オメガ、X、Y、ベータ、及びZSMゼオライト)が挙げられるが、これらに限定されない。非常に好適なゼオライトとしては、ベータ、Y、ZSM-3、ZSM-4、ZSM-5、ZSM-18及びZSM-20が挙げられる。所望によりゼオライトは無機酸化物マトリックス物質(例えば、シリカ-アルミナ)中に含ませることができる。実際、平衡分解触媒(equilibrium cracking catalyst)は、本発明の実施における酸触媒として使用することができる。
【0050】
触媒は、種々の物質、例えば、ルイス酸(例えば、BF3、BCl3、SbF5及びAlCl3)、非ゼオライト固体無機酸化物(例えば、シリカ、アルミナ及びシリカ-アルミナ)、並びに大孔(large pore)結晶質モレキュラーシーブ(例えば、ゼオライト、ピラークレー及びアルミノリン酸塩)の混合物を含むことができる。
【0051】
固体触媒を使用する場合には、使用するプロセス工程で反応体と迅速且つ効果的に接触できる物理的形態であるのが望ましい。本発明はこれに限定されるものではないが、固体触媒は粒子の最大直径が約0.1mm〜約2cmの範囲の平均値を有する粒状形であるのが好ましい。例えば、約0.1mm〜約2cmの平均直径を有する触媒の実質的に球状ビーズを使用することができる。或いは、触媒は約0.1mm〜約1cmの範囲の直径及び約0.2mm〜約2cmの範囲の長さを有する棒状で使用することができる。
【0052】
本発明の実施で使用する供給原料は、硫黄含有芳香族不純物に加えて、不純物として窒素-含有有機化合物を含むことがある。典型的な窒素-含有不純物の多くは有機塩基であり、場合により本発明の単数または複数種類の酸性触媒を失活させることがある。そのような失活が知見される場合には、酸性触媒と接触する前に塩基性窒素-含有不純物を除去することによって失活しないようにすることができる。これらの塩基性不純物を本発明の実施で使用する前に供給原料から除去すると最も都合がよい。本発明で使用するのに非常に好ましい供給原料は、接触分解プロセスにより生成したナフサから塩基性窒素-含有不純物を除去することにより製造した処理済みナフサから構成される。
【0053】
塩基性窒素-含有不純物は、任意の慣用法により除去することができる。かかる方法は通常酸性物質との処理を含み、慣用法としては、酸の水溶液による洗浄及び酸性触媒に先だって配置される保護床の使用などの方法が挙げられる。効果的な保護床の例としては、A-ゼオライト、Y-ゼオライト、L-ゼオライト、モルデナイト、フッ化アルミナ(fluorided alumina)、新しい分解触媒、平衡分解触媒及び酸性ポリマー樹脂が挙げられるが、これらに限定されない。保護床方法を使用する場合、保護床を再生することができるような方法で2つの保護床を使用するのが望ましいが、供給原料を予備加熱し、酸性触媒を保護するために他のものも使用される。分解触媒を使用して塩基性窒素-含有不純物を除去する場合、かかる不純物を除去する触媒能力が失活したら、かかる物質を接触分解装置の再生装置で再生することができる。酸性洗浄液を使用して塩基性窒素-含有化合物を除去する場合、供給原料を好適な酸の水溶液で処理する。そのような使用に好適な酸としては、塩酸、硫酸及び酢酸が挙げられるが、これらに限定されない。水溶液中の酸の濃度は重要ではないが、約0.5〜約30重量%の範囲を好都合に選択する。例えば、2重量%硫酸水溶液を使用して、接触分解プロセス由来の重質ナフサから塩基性窒素含有化合物を除去することができる。
【0054】
本発明の実施において、硫黄含有芳香族不純物を高沸点硫黄含有物質へ所望の転換率で転換するのに効果的な温度及び時間で、それぞれの工程のアルキル化段階への供給原料を酸性触媒と接触させる。しかしながら、本発明の第1工程のアルキル化段階のアルキル化条件が単数または複数の第2工程でのアルキル化条件よりも温和であり、これによって第1工程のアルキル化段階でより低い温度及び/またはより短い接触時間を使用することができるような方法で、温度及び接触時間を選択することができると考えられる。本発明の特定のアルキル化段階の如何に拘わらず、接触温度は約50℃を超え、好ましくは100℃を超え、より好ましくは125℃を超える。接触は、約50℃〜約350℃、好ましくは約100℃〜約350℃、より好ましくは約125℃〜約250℃の範囲の温度で通常実施する。むろん、最適温度は使用する酸性触媒、選択した単数または複数種類のアルキル化剤、単数または複数種類のアルキル化剤の濃度、及び除去すべき硫黄含有芳香族不純物の性質の関数である。
【0055】
プロセスの工程を蒸留カラム反応器で実施する場合、蒸留カラム反応器を操作する圧力によって、蒸留カラム反応器中で酸性触媒と反応体とを接触させる温度と蒸留温度のいずれをも制御することができる。圧力が上昇するにつれて、蒸留カラム反応器中で分別蒸留を実施するためには高温が必要である。
【0056】
任意の所望量のアルキル化剤を本発明の実施で使用することができる。しかしながら、アルキル化段階での硫黄含有不純物量に対して多量のアルキル化剤を使用すると、アルキル化条件の過酷さを強め、酸性触媒との接触時に硫黄含有芳香族不純物の高沸点硫黄含有生成物へのより迅速且つ完全な転換を促進することができる。従って、アルキル化剤の濃度は、本発明の種々の工程でのアルキル化段階でのアルキル化条件の過酷さを制御するのに使用し得る変数のひとつである。しかしながら、任意の特定のアルキル化段階への供給流は、該供給流中の硫黄含有芳香族不純物の量に対してモルベースで少なくとも等しいアルキル化剤量を含むのが望ましい。所望により、アルキル化剤対硫黄含有芳香族不純物のモル比は少なくとも5以上であることができる。例えば、過酷なアルキル化条件が望ましい第2工程のアルキル化段階では、供給流は3〜5個の炭素原子を含むオレフィン類約10〜約50容積%から構成されていてもよい。好ましい態様では、オレフィン性アルキル化剤を使用し、第1工程のアルキル化段階への供給流中のオレフィン類のモル濃度は第2工程のアルキル化段階への供給流中のオレフィン類のモル濃度よりも少ない。
【0057】
本発明の実施において、アルキル化段階への供給流は任意の好適な圧力で酸性触媒と接触させることができる。しかしながら、約0.01〜200気圧の範囲の圧力が望ましく、約1〜約100気圧の範囲の圧力が好ましい。供給流を単に触媒床を通して流す場合、供給流が液体である圧力を使用するのが通常好ましい。しかしながら、本発明の工程を蒸留カラム反応器で実施する場合、蒸留カラム反応器中で固体酸触媒と供給流とが接触する温度及び圧力は、(1)問題となるアルキル化段階に対して過酷さが好適である反応条件を提供するのに温度が十分に高く;且つ(2)所望の分別蒸留が起きるように選択する。
【0058】
蒸留カラム反応器を本発明のひとつ以上の工程で使用する場合、固体酸触媒は任意の慣用の方法で蒸留カラム反応器内に設置し、反応器の単数または複数の接触領域中に配置することができる。例えば、触媒は慣用の蒸留カラムのトレー上または、蒸留カラム反応器内のひとつの領域から別の領域へ液体流路を提供する少なくとも1つの水路内に配置することができる。それぞれが接近可能であり、蒸留カラム反応器を停止することなく酸性固体触媒を置換する仕事を独立して実施することができるように、所望により蒸留カラム反応器の主構造の外部にそのような水路を配置することができる。記載の如く、ひとつの水路内で失活即ち消費された触媒を置換若しくは再生し、また、追加の単数若しくは複数の水路により蒸留カラム反応器の連続操作をすることができるように、触媒を含むそのような水路を少なくとも2つ使用するのが通常望ましい。或いは、水路は、隣接するトレーに接続し、慣用の蒸留カラム内の液体流路を提供する降水管の形態をとることができる。蒸留カラム反応器内に触媒を保持するための降水管の使用については、本明細書中、その全体が参照として含まれる米国特許第3,629,478号(Haunschild)及び同第3,634,534号(Haunschild)に記載されている。好ましい態様では、固体酸触媒を蒸留カラム用のパッキンとして使用し、分別を触媒の存在下で少なくとも一部実施する。例えば、固体酸触媒は、ペレット、ロッド、リング、サドル、ボール、不規則片、シート、チューブ、螺旋の形態を取ることができ、バッグ内に包装、または網若しくは金網上に付着させることができる。蒸留カラム反応器内のパッキン物質としての触媒の使用は、本明細書中、その全体が参照として含まれる米国特許第4,232,177号(Smith)、同第4,242,530号(Smith)、同第4,307,254号(Smith)及び同第4,336,407号(Smith)に記載されている。
【0059】
本発明は、炭化水素供給原料の硫黄含有芳香族不純物を比較的少容積の高沸点物質に濃縮する方法を示す。濃縮することにより、硫黄をより容易且つ低コストで処分することができ、この処分には任意の慣用法を使用することができる。例えば硫黄含有量があまり望ましくない場合にこの物質を重油にブレンドすることができる。あるいは、元の供給原料の容積に対して少ないため、比較的低コストで効率的に水素化処理することができる。
【0060】
本発明の非常に好ましい態様は、硫黄含有不純物を含む炭化水素供給原料の流動接触分解から得られる炭化水素生成物由来の硫黄含有芳香族化合物を除去するために使用することを含む。流動接触分解プロセスでは、高分子量炭化水素流体または蒸気を通常、流動床反応器または長い垂直パイプ(riser)反応器中の熱微粉砕触媒粒子と接触させて、この触媒-炭化水素混合物を自動車用ガソリン及び蒸留燃料(distillate fuel)中に通常存在する種類の低分子量炭化水素類への分解が所望の程度で起きるのに十分な時間及び温度で、流動状態または分散状態で保持する。
【0061】
流動接触分解プロセスにおける選択炭化水素供給原料の転換は、転換時間をせいぜい約10秒間に限定する転換温度及び流動速度で反応領域において分解触媒との接触により実施する。転換温度は約430℃〜約700℃が望ましく、約450℃〜約650℃が好ましい。次いで、炭素質物質またはコークスの失活量を含む分解触媒と炭化水素蒸気とを含む、反応領域からの流出液(effluent)を分離領域に移す。炭化水素蒸気は分離領域で消費された分解触媒から取り出され、沸点をベースとしてこれらの物質分離用の分離器(fractionator)に運ばれる。これらの揮発性炭化水素生成物は、通常、約430℃〜約650℃の範囲の温度で分離器に入り、分離に必要な熱を全て供給する。
【0062】
炭化水素類の接触分解では、非揮発性炭素質物質またはコークスが幾らか触媒粒子上に付着する。コークスが分解触媒上に蓄積するに連れて、分解触媒の活性及びガソリンブレンド用原料を製造するための触媒の選択性が低下する。しかしながら、触媒からコークスを殆ど除去することによってその元の触媒活性の大部分を取り戻すことができる。これは、再生領域または再生装置中で空気などの分子酸素-含有再生ガスで、触媒のコークス付着物を燃焼し尽くすことにより実施する。
【0063】
広範囲のプロセス条件を流動接触分解プロセスの実施で使用することができる。ガス油供給原料を使用する通常の場合では、処理比(throughput ratio)即ち、全供給流対新しい供給流の容積比は、約1.0〜約3.0を変動し得る。軽質物質またはコークスの形成により大気圧で約221℃を超える沸点の炭化水素の百分率の減少として転換率が定義される場合、転換率レベルは約40%〜約100%を変動し得る。反応器中の触媒対油の重量比は、流動分散液が約15〜約320キログラム/m3の範囲の密度を有するように約2〜約20の範囲を変動し得る。流動速度は、約3.0〜約30メートル/秒の範囲を変動し得る。
【0064】
流動接触分解プロセスで使用するのに好適な炭化水素供給原料は、有機硫黄化合物の状態で約0.2〜約6.0重量パーセントの硫黄を含むことができる。好適な供給原料としては、例えば、軽質ガス油、重質ガス油、ワイドカットガス油、真空ガス油、ナフサ類、デカント油、残渣画分及びこれらの任意のものから誘導されたサイクル油並びに、合成油、石炭液化、シェール油及びオイル・サンド処理から誘導された硫黄含有炭化水素画分などの硫黄含有石油画分が挙げられるが、これらに限定されない。これらの供給原料の任意のものを単独または任意の所望の組合せで使用することができる。
【0065】
本発明には多くの形態の態様が考えられようが、特定の態様を図1に示す。但し、この開示は例示される態様に本発明を限定するものではない。
【0066】
図1を参照して、不純物として有機硫黄化合物を含有するガス油を流動接触分解プロセスで触媒により分解し、このプロセスからの揮発性生成物をライン1から蒸留カラム2へ通す。約60℃〜約211℃の範囲で沸騰する供給原料をライン3経由で蒸留カラム2から回収する。この供給原料は、不純物としてチオフェン性化合物及びベンゾチオフェン性化合物のいずれをも含み、約5〜約25重量%の範囲のオレフィン含有量を有する。約60℃未満の沸点を有する低沸点物質を蒸留カラム2からライン4経由で回収し、約221℃を超える沸点を有する高沸点物質をライン5経由で回収する。
【0067】
供給原料をライン3に通し、酸性触媒を含むアルキル化反応器6に導入する。供給原料を反応器6に通し、そこで供給原料は該供給原料中のオレフィンによるアルキル化によってチオフェン性不純物及びベンゾチオフェン性不純物の少なくとも一部を高沸点硫黄含有物質に転換するのに効果的な反応条件下で酸性触媒と接触する。チオフェン性不純物及びベンゾチオフェン性不純物の中でも通常最も反応性である揮発性の高いチオフェン性不純物のかなりの部分が反応器6でアルキル化される。アルキル化反応器6からの生成物をライン7経由で排出し、蒸留カラム8に通してそこでこれらの生成物を分別蒸留する。約177℃の初留点を有し、非アルキル化硫黄含有不純物及びアルキル化硫黄含有不純物のいずれをも含有する炭化水素混合物をライン9経由で蒸留カラム8から回収する。第1の供給原料画分の硫黄含有量に対して硫黄含有量が低く、約177℃の蒸留終点を有する低沸点画分をライン10経由で蒸留カラム8から回収する。所望により、ライン10からのこの低沸点画分を低硫黄ガソリンブレンド用原料として使用することができる。
【0068】
蒸留カラム8からの高沸点画分をライン9に通し、ライン11を通して導入されるプロペン約10〜約50容積%と混合する。得られた混合物をライン13経由でアルキル化反応器12に導入する。
【0069】
アルキル化反応器12は酸性触媒を含み、ライン13から供給原料としてこの反応器に入る混合物は、その混合物中のオレフィンによるアルキル化によって混合物中のチオフェン性不純物及びベンゾチオフェン性不純物の一部を高沸点硫黄含有物質に転換するのに効果的な反応条件下で酸性触媒と接触する。アルキル化反応器12からの生成物をライン14経由で排出し、蒸留カラム15内を通し、そこでこれらの生成物を分別蒸留する。約221℃の初留点を有し、高沸点アルキル化チオフェン性生成物及びベンゾチオフェン性生成物を含有する高沸点画分を蒸留カラム15からライン16を通して回収する。所望により、この高沸点物質をその硫黄含有量の少なくとも一部を除去するための水素化処理装置に運搬する。ライン13を通して反応器12に導入された混合物に対して硫黄含有量が低い低沸点画分をライン17経由で蒸留カラム15から回収する。ライン17を通して排出された低沸点画分は約221℃の蒸留終点であり、過剰のプロペンを除去した後は、約177℃〜約221℃で沸騰する物質から主に構成され、これはガソリンブレンド用原料として使用することができる。
【0070】
以下の実施例は、本発明を説明するためのものであり、本発明を限定するものではない。
実施例 I
約61℃〜約226℃の範囲で沸騰するナフサ供給原料は、(1)硫黄含有不純物を含んでいたガス油供給原料の流動接触分解由来の生成物を分別蒸留し;次いで(2)ドラムミキサー中で流出物を2重量%硫酸水溶液で洗浄する、ことにより得た。マルチカラムガスクロマトグラフィー法を使用してナフサ供給原料を分析すると、重量ベースでパラフィン類12.67%、オレフィン類20.36%、ナフテン類11.93%、芳香族成分50.89%、及び未確認のC12+高沸点物質4.14%を含んでいることが判明した。蛍光X-線分光学により測定したナフサの全硫黄含有量は1,644ppmであり、この硫黄含有量の約90%(即ち、1,480ppm)はチオフェン、チオフェン誘導体、ベンゾチオフェン及びベンゾチオフェン誘導体(集合的にチオフェン性/ベンゾチオフェン性硫黄と言う)の形態であった。チオフェン性/ベンゾチオフェン性でなかった硫黄含有成分(例えば、メルカプタン類、スルフィド類及びジスルフィド類)は全て177℃未満の沸点であった。ナフサは全窒素含有量が8ppmであり、塩基性窒素含有量は5ppm未満であった。
【0071】
第1工程では、ナフサ供給原料をイソプロピルアルコール670ppmと混合し、得られた混合物を温度204℃、圧力34気圧、及び液体の1時間当たりの空間速度1.0/時間で、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。少量のイソプロピルアルコールを使用して触媒活性を保持し、触媒との接触時にアルコールが脱水されて、得られた水200ppmによって触媒の水和が十分なレベルに保持できた。さらに、イソプロピルアルコールはアルキル化剤として供給原料中のオレフィン類を補った。触媒床は20cm3の容積であり、1.58cm内径のチューブラステンレススチール製反応器中、不活性アルミナパッキンの2つの床の間に保持した。反応器の全内部加熱容積は約80cm3で、縦方向に保持した。得られた生成物を分別蒸留より2つの画分:(1)177℃の蒸留終点をもつ第1の画分として生成物の70%;及び(2)177℃の初留点を有する第2の画分として生成物の30%、とに分離した。本明細書中、第1の画分を「177℃-(−)第1工程生成物」と呼び、第2の画分を「177℃-(+)第1工程生成物」と呼ぶ。分析によって、177℃-(−)第1工程生成物はチオフェン性/ベンゾチオフェン性硫黄を約211ppmしか含んでいないことが判明した。対照的に、177℃-(+)第1工程生成物は、チオフェン性/ベンゾチオフェン性硫黄を約4,439ppm含み、このチオフェン性/ベンゾチオフェン性硫黄の約1,198ppmは177℃〜221℃の範囲の沸点を有する物質の状態であった。
【0072】
177℃-(+)第1工程生成物をプロペン10容積%及びイソプロピルアルコール670ppmと混合し、得られた混合物を第2工程の供給原料として使用した。第2工程では、第2工程の供給原料を第1工程について上述したのと同一反応条件及び反応器を使用して、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。得られた生成物をガスクロマトグラフィーにより沸点をベースとして分別し、硫黄化学ルミネセンス検出器を使用して画分の硫黄含有量を測定した。この分析法を使用して、生成物を2つの画分:(1)221℃の蒸留終点を有する第1の画分;及び(2)221℃の初留点を有する第2の画分、とに分離した。本明細書中、第1の画分を「221℃-(−)第2工程生成物」と呼び、第2の画分を「221℃-(+)第2工程生成物」と呼ぶ。221℃未満の沸点を有する第2工程の供給原料中のチオフェン性/ベンゾチオフェン性硫黄の約17%が、221℃-(+)第2工程生成物中にある高沸点物質に転換したことが知見された。221℃-(−)第2工程生成物は、チオフェン性/ベンゾチオフェン性硫黄を約994ppm含んでいた。対照的に221℃-(+)第2工程生成物はチオフェン性/ベンゾチオフェン性硫黄を約29,600ppm含んでいた。
【0073】
プロセスからの低硫黄生成物の全体は、177℃-(−)第1工程生成物と221℃-(−)第2工程生成物との混合物からなっていた。この低硫黄生成物は全体でチオフェン性/ベンゾチオフェン性硫黄425ppmを含み、これは元のナフサ供給原料中のチオフェン性/ベンゾチオフェン性硫黄の72%が除去されたことに対応する。さらに、低硫黄生成物の全体は元のナフサ供給原料の重量をベースとして96.4%の収率で得られた。従って、元のナフサ供給原料の3.6重量%が221℃-(+)第2工程生成物の形態で硫黄沸点且つ高硫黄含有量物質に転換したことになる。221℃-(+)第2工程生成物はチオフェン性/ベンゾチオフェン性硫黄2.96重量%を含んでいた。この実施例Iの結果を表Iにまとめた。
実施例 II
上記実施例Iに記載のナフサ供給原料のサンプルをイソプロピルアルコール670ppmと混合し、得られた混合物を実施例Iに記載のタイプの反応器中、温度204℃、圧力34気圧、及び液体の1時間当たりの空間速度1.0/時間で、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。得られた生成物をガスクロマトグラフィーにより沸点をベースとして分別し、硫黄化学ルミネセンス検出器を使用して画分の硫黄含有量を測定した。
【0074】
【表1】
Figure 0004414098
【0075】
この分析方法を使用して、生成物を2つの画分:(1)221℃以下で沸騰する第1の画分;及び(2)221℃を超えて沸騰する第2の画分、とに分離した。本明細書中、第1の画分を「221℃-(−)生成物」と呼び、第2の画分を「221℃-(+)生成物」と呼ぶ。ナフサ中のチオフェン性/ベンゾチオフェン性硫黄の約66.7重量%が、221℃-(+)生成物中に現れる高沸点物質に転換したことが知見された。221℃-(−)生成物は、チオフェン性/ベンゾチオフェン性硫黄を567ppm含み、221℃-(+)生成物はチオフェン性/ベンゾチオフェン性硫黄を1.75重量%含んでいた。さらに、低硫黄生成物の全体は元のナフサ供給原料の重量をベースとして94.0%の収率で得られた。従って、元のナフサ供給原料の6.0重量%が221℃-(+)生成物の状態で高沸点且つ高硫黄含有量物質に転換した。この実施例IIの結果を表Iにまとめる。
【0076】
この実施例IIのアルキル化方法は、ナフサ供給原料のチオフェン性成分及びベンゾチオフェン性成分の単一工程アルキル化を含み、該段階ではアルキル化剤はナフサ供給原料中に本質的に存在するオレフィン類からなる。この実施例IIの単一段階アルキル化方法と実施例Iの二工程アルキル化方法とを比較すると、(1)生成物はチオフェン性/ベンゾチオフェン性硫黄含有量が低いこと;及び(2)ナフサ出発物質を二工程プロセスにかけると重量損失が非常に少ないため、二工程方法は非常に満足できるものであることが解る。
実施例 III
上記実施例Iに記載のナフサ供給原料のサンプルをプロペン10容積%及びイソプロピルアルコール670ppmと混合し、得られた混合物を実施例Iに記載のタイプの反応器中、温度204℃、圧力34気圧、及び液体の1時間当たりの空間速度1.0/時間で、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。得られた生成物をガスクロマトグラフィーにより沸点をベースとして分別し、硫黄化学ルミネセンス検出器を使用して画分の硫黄含有量を測定した。この分析方法を使用して、生成物を2つの画分:(1)221℃以下で沸騰する第1の画分;及び(2)221℃を超えて沸騰する第2の画分、とに分離した。本明細書中、第1の画分を「221℃-(−)生成物」と呼び、第2の画分を「221℃-(+)生成物」と呼ぶ。ナフサ中のチオフェン性/ベンゾチオフェン性硫黄の約70.4重量%が、221℃-(+)生成物中に現れる高沸点物質に転換したことが知見された。221℃-(−)生成物は、チオフェン性/ベンゾチオフェン性硫黄を537ppm含み、221℃-(+)生成物はチオフェン性/ベンゾチオフェン性硫黄を1.22重量%含んでいた。221℃-(−)生成物は元のナフサ供給原料の重量をベースとして91.0%の収率で得られた。さらに、高沸点且つ高硫黄含有物質の9.0重量%が221℃-(+)生成物の状態で得られた。この実施例IIIの結果を表Iにまとめる。
【0077】
この実施例IIIのアルキル化方法は、ナフサ供給原料のチオフェン性及びベンゾチオフェン性成分の単一段階アルキル化を含み、該段階ではアルキル化剤はナフサ供給原料中に本質的に存在するオレフィン類と添加プロペンとからなる。この実施例IIIの単一段階アルキル化方法の結果と実施例Iの二工程アルキル化方法とを比較すると、(1)生成物はチオフェン性/ベンゾチオフェン性硫黄含有量が低いこと;及び(2)ナフサ出発物質を二工程プロセスにかけると所望の揮発性生成物の収量が多いため、二工程方法は非常に満足できるものであることが解る。
実施例 IV
流動接触分解プロセスにより製造した典型的な重質ナフサ中に知見される種々の有機化合物の濃度及びタイプの代表例として選択したモデル化合物をブレンドすることにより合成供給原料を製造した。合成供給原料の組成を表IIに示す。
【0078】
合成供給原料をイソプロピルアルコール1,730ppmと混合し、得られた混合物を、温度204℃、圧力54気圧、及び液体の1時間当たりの空間速度4.0/時間で、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。合成供給原料を使用して較正したキャピラリーガスクロマトグラフィーを使用して、得られた生成物を分析した。分析時、ベンゼン、トルエン、チオフェン、エチルチオフェン及びベンゾチオフェンが以下の量:ベンゼン(4.49重量%)、トルエン(0.68重量%)、チオフェン(89.83重量%)、エチルチオフェン(78.37重量%)及びベンゾチオフェン(34.34重量%)で高沸点物質に転換したことが知見された。これらの結果を図2に示す。
【0079】
【表2】
Figure 0004414098
【0080】
この実施例は、チオフェン及びエチルチオフェンがベンゾチオフェンよりもより容易にオレフィン類によりアルキル化されたことを示す。さらに、この実施例の結果は、チオフェン及びエチルチオフェンは、ベンゼン及びトルエンのアルキル化が殆ど起きないような十分に温和な条件下でオレフィン類により高収率でアルキル化され得ることを示す。
実施例 V
上記実施例VIに記載の合成供給原料をプロペン20容積%及びイソプロピルアルコール1,730ppmと混合し、得られた混合物を、温度204℃、圧力54気圧、及び液体の1時間当たりの空間速度4.0/時間で、珪藻土(UOP製、商品名SPA-2)上の12〜18メッシュの固体リン酸触媒の固定床と接触させた。キャピラリーガスクロマトグラフィーを使用して得られた生成物を分析すると、ベンゼン、トルエン、チオフェン、エチルチオフェン及びベンゾチオフェンが以下の量:ベンゼン(70.31重量%)、トルエン(61.13重量%)、チオフェン(96.51重量%)、エチルチオフェン(89.47重量%)及びベンゾチオフェン(84.06重量%)で高沸点物質に転換したことが知見された。これらの結果を図2に示す。
【0081】
この実施例Vで使用したオレフィンアルキル化剤は高濃度であったため、アルキル化条件は上記実施例IVで使用したアルキル化条件よりもずっと過酷であった。この実施例は、実施例Vのより過酷な反応条件下では、ベンゾチオフェンがオレフィン類により高収率でアルキル化され得たことを示す。しかしながら、より過酷なアルキル化条件ではベンゼン及びトルエン(芳香族炭化水素類)が高い転換率でアルキル化生成物になる。
実施例 VI
チオフェン0.499g、2-メチルチオフェン0.522g、2,5-ジメチルチオフェン0.501g、ベンゾチオフェン0.518g、ベンゼン0.509g、トルエン0.614g及び1-ヘプテン10.014gをデカン87.015gに溶解することにより合成供給原料を製造した。合成供給原料50gを、粉砕して10〜20メッシュサイズにふるった珪藻土(UOP製、商品名SPA-2)上の固体リン酸触媒25gと混合した。反応混合物のオンラインサンプリング用のディップレッグ(dip leg)を備えた100cm3撹拌オートクレーブ反応器に得られた混合物を設置し、この混合物を204℃及び54.4気圧、窒素下、500rpmで撹拌した。定期的に撹拌を停止して、触媒を沈澱させ、液体を約2g取り出すことによって、反応混合物をサンプリングした。それぞれのサンプルを種々の反応体の濃度変化を測定するためにガスクロマトグラフィーにより分析した。得られた分析データを使用して、供給原料中の種々の芳香族化合物の1-ヘプテンによるアルキル化に関して表IIIに記載したアルキル化速度定数を計算した。これらの速度定数を計算する際に、アルキル化反応は使用した大過剰のオレフィン性アルキル化剤のため芳香族基質において疑似-一次であると考えられた。それぞれの速度定数は、xが基質濃度である場合の時間の関数としてln(1−x)としてプロットした実験データの直線回帰により適合した直線の傾きから誘導した。合成供給原料の種々の芳香族成分の沸点を表IIIに示す。これらの結果は、揮発性チオフェン性化合物(例えば、チオフェン及び2-メチルチオフェン)は揮発性の低いベンゾチオフェンよりもずっと反応性であることを示す。
【0082】
【表3】
Figure 0004414098

【図面の簡単な説明】
【図1】 図1は、本発明の一態様の略図である。
【図2】 図2は、プロペンを添加した場合と添加しない場合の両方における、C5〜C8オレフィン類でのアルキル化によるベンゼン、トルエン、チオフェン、エチルチオフェン及びベンゾチオフェンの高沸点生成物への転換率の比較を示す図である。

Claims (19)

  1. 供給原料から硫黄含有量の低い生成物を製造するプロセスであって、前記供給原料はオレフィン類を含有する炭化水素類の混合物から構成され、前記供給原料は不純物として硫黄含有芳香族化合物を含み;前記プロセスは、
    (a)第1の接触段階では、50℃〜350℃の温度で、供給原料を、予め選択されたアルキル化活性を有する酸性アルキル化触媒と接触させて、前記不純物の一部を前記オレフィン類によるアルキル化により高沸点硫黄含有物質に転換させ
    (b)第1の分別段階では、沸点をベースとして前記第1の接触段階の生成物を
    (i)炭化水素類から構成され、前記供給原料に対して硫黄含有量が少ない第1の画分と;
    (ii)炭化水素類から構成され、前記第1の画分よりも沸点が高く、不純物として硫黄含有芳香族化合物を含む第2の画分と
    を含む少なくとも2つの画分に分別し;
    (c)硫黄含有量の低い第1の生成物流として該プロセスから前記第1の画分を回収し;
    (d)アルコール類及びオレフィン類からなる群から選択される少なくとも1種の物質から構成され、第2の画分中に任意のオレフィン類に加えて存在する二次アルキル化剤と前記第2の画分とを混合することにより二次プロセス流を製造し;
    (e)第2の接触段階では、50℃〜350℃の温度で、二次プロセス流を、予め選択されたアルキル化活性を有する酸性アルキル化触媒と接触させ、その際、第2の接触段階における該触媒の予め選択されたアルキル化活性及び該温度の少なくとも1が第1の接触段階におけるそれらよりも高い値であり、それにより、第1の接触段階で起こるアルキル化よりもより強いアルキル化を生じさせ、前記二次プロセス流内の硫黄含有芳香族化合物の少なくとも一部を高沸点硫黄含有物質に転換させ
    (f)第2の分別段階では、沸点をベースとして前記第2の接触段階の生成物を分別して、高沸点画分中の高沸点硫黄含有物質を除去して低沸点画分を生成し;次いで
    (g)硫黄含有量の少ない第2の生成物流として第2の分別段階からの低沸点画分を回収する
    ことを含む該プロセス。
  2. 前記供給原料のオレフィン含有量が硫黄含有芳香族化合物のオレフィン含有量に対してモルベースで少なくとも等しい、請求項1に記載のプロセス。
  3. 前記供給原料のオレフィン含有量が5〜25重量%である、請求項1に記載のプロセス。
  4. 前記供給原料が接触分解プロセス由来のナフサから構成される、請求項1に記載のプロセス。
  5. 前記供給原料が接触分解プロセスにより生成したナフサから塩基性-窒素含有不純物を除去することにより製造した処理済みナフサから構成される、請求項1に記載のプロセス。
  6. 前記第1の分別段階からの第1の画分が135℃〜221℃の範囲の蒸留終点を有する、請求項1に記載のプロセス。
  7. 前記第1の分別段階からの前記第1の画分は150℃〜190℃の範囲の蒸留終点を有する、請求項6に記載のプロセス。
  8. 前記供給原料は79℃未満の初留点を有し、249℃以下の蒸留終点を有する、請求項1に記載のプロセス。
  9. 前記供給原料は345℃以下の蒸留終点を有する、請求項1に記載のプロセス。
  10. 前記二次アルキル化剤が3〜5個の炭素原子を含むオレフィン類からなる群から選択される少なくとも1種の物質から構成される、請求項1に記載のプロセス。
  11. 前記供給原料中のオレフィン類のモル濃度は前記二次プロセス流よりも低い、請求項10に記載のプロセス。
  12. 前記二次プロセス流が3〜5個の炭素原子を含むオレフィン類10〜50容積%から構成される、請求項10に記載のプロセス。
  13. 前記二次アルキル化剤が3〜20個の炭素原子を含むアルコール類からなる群から選択される少なくとも1種の物質から構成される、請求項1に記載のプロセス。
  14. 前記第2の接触段階で使用する温度が前記第1の接触段階よりも高い、請求項1に記載のプロセス。
  15. 前記第1の接触段階の酸性触媒が前記第2の接触段階の酸性触媒と異なる、請求項1に記載のプロセス。
  16. 固体リン酸触媒を前記第1の接触段階及び前記第2の接触段階の少なくとも一方の酸性触媒として使用する、請求項1に記載のプロセス。
  17. 前記第1の接触段階及び前記第1の分別段階を蒸留カラム反応器中で実施する、請求項1に記載のプロセス。
  18. 前記第2の接触段階及び前記第2の分別段階を蒸留カラム反応器中で実施する、請求項1に記載のプロセス。
  19. 供給原料が前記硫黄含有芳香族化合物の1種としてベンゾチオフェンを含有し、前記第1の分別段階からの第2の画分が前記ベンゾチオフェンの少なくとも50%を包含する、請求項18に記載のプロセス。
JP2000568930A 1998-09-09 1999-09-03 多工程硫黄除去プロセス Expired - Fee Related JP4414098B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/150,451 US6059962A (en) 1998-09-09 1998-09-09 Multiple stage sulfur removal process
US09/150,451 1998-09-09
PCT/US1999/020265 WO2000014181A1 (en) 1998-09-09 1999-09-03 Multiple stage sulfur removal process

Publications (2)

Publication Number Publication Date
JP2002524607A JP2002524607A (ja) 2002-08-06
JP4414098B2 true JP4414098B2 (ja) 2010-02-10

Family

ID=22534592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000568930A Expired - Fee Related JP4414098B2 (ja) 1998-09-09 1999-09-03 多工程硫黄除去プロセス

Country Status (7)

Country Link
US (1) US6059962A (ja)
EP (1) EP1029024B1 (ja)
JP (1) JP4414098B2 (ja)
AT (1) ATE283330T1 (ja)
DE (1) DE69922145T2 (ja)
ES (1) ES2232174T3 (ja)
WO (1) WO2000014181A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2812654B1 (fr) * 2000-08-02 2003-11-07 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage, ou steemcraquage ou coking
FR2810334B1 (fr) * 2000-06-19 2006-10-13 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage
FR2810671B1 (fr) * 2000-06-22 2003-10-24 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage
WO2001096498A1 (fr) * 2000-06-13 2001-12-20 Institut Francais Du Petrole Procede de desulfuration d'un effluent de craquage ou vapocraquage
US6929702B1 (en) 2000-10-02 2005-08-16 Gregg Motsenbocker Compositions and methods for releasing adherent deposits from surfaces and substrates
US6579444B2 (en) 2000-12-28 2003-06-17 Exxonmobil Research And Engineering Company Removal of sulfur compounds from hydrocarbon feedstreams using cobalt containing adsorbents in the substantial absence of hydrogen
US20020084223A1 (en) * 2000-12-28 2002-07-04 Feimer Joseph L. Removal of sulfur from naphtha streams using high silica zeolites
US6736963B2 (en) * 2001-07-31 2004-05-18 Bp Corporation North America Inc. Multiple stage process for removal of sulfur from components for blending of transportation fuels
US6733660B2 (en) * 2001-07-31 2004-05-11 Bp Corporation North America Inc. Multistage process for removal of sulfur from components for blending of transportation fuels
GB0121871D0 (en) 2001-09-11 2001-10-31 Bp Plc Hydrogen production
UA77013C2 (en) * 2001-10-25 2006-10-16 Bp Corp North America Inc Method for producing the product with reduced sulfur content from liquid hydrocarbon feedstock (variants )
US7591944B2 (en) * 2002-01-23 2009-09-22 Johnson Matthey Plc Sulphided ion exchange resins
US6824676B1 (en) * 2002-03-08 2004-11-30 Catalytic Distillation Technologies Process for the selective desulfurization of a mid range gasoline cut
JP2005523370A (ja) * 2002-04-17 2005-08-04 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 精製方法
FR2843969B1 (fr) * 2002-09-04 2007-03-23 Inst Francais Du Petrole Procede de valorisation d'une charge d'hydrocarbures et de diminution de la tension de vapeur de ladite charge
US7122114B2 (en) * 2003-07-14 2006-10-17 Christopher Dean Desulfurization of a naphtha gasoline stream derived from a fluid catalytic cracking unit
WO2005019391A1 (en) * 2003-08-19 2005-03-03 Exxonmobil Research And Engineering Company Naphtha desulfurization with no octane loss and increased olefin retention
FR2884521B1 (fr) * 2005-04-19 2009-08-21 Inst Francais Du Petrole Nouveau procede de desulfuration des essences par alourdissement des composes soufres
FR2890077B1 (fr) * 2005-08-26 2012-03-23 Inst Francais Du Petrole Procede de desulfuration d'essences olefiniques par alourdissement des composes soufres avec regeneration du catalyseur
US20080093265A1 (en) * 2006-10-18 2008-04-24 Exxonmobil Research And Engineering Company Process for selective sulfur removal from FCC naphthas using zeolite catalysts
FR2913692B1 (fr) * 2007-03-14 2010-10-15 Inst Francais Du Petrole Procede de desulfuration de fractions hydrocarbonees issues d'effluents de vapocraquage
US8926825B2 (en) * 2010-03-19 2015-01-06 Mark Cullen Process for removing sulfur from hydrocarbon streams using hydrotreatment, fractionation and oxidation
US9150467B2 (en) 2013-07-23 2015-10-06 Uop Llc Processes and apparatuses for preparing aromatic compounds
JP2021013320A (ja) * 2019-07-11 2021-02-12 株式会社Mizkan Holdings 野菜加熱処理物含有食品及びその製造方法、並びに野菜の不快味の低減方法
US11214489B1 (en) 2020-11-28 2022-01-04 Ceres Technology, LLC Crossflow scrubbing method and apparatus to produce a product such as potassium thiosulfate or ammonium thiosulfate

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2448211A (en) * 1944-02-10 1948-08-31 Socony Vacuum Oil Co Inc Alkylation of thiophene
US2429575A (en) * 1944-09-16 1947-10-21 Shell Dev Synthesis of branched chain hydrocarbons
US2469823A (en) * 1944-11-29 1949-05-10 Socony Vacuum Oil Co Inc Alkylation of thiophene
US2529298A (en) * 1946-02-01 1950-11-07 Texas Co Sulfuric acid alkylation of thiophene compounds
US2482084A (en) * 1946-02-23 1949-09-20 Socony Vacuum Oil Co Inc Alkylating thiophene with sulfuric acid catalyst
US2531280A (en) * 1946-03-21 1950-11-21 Texas Co Alkylation of thiophene compounds
US2527794A (en) * 1946-06-01 1950-10-31 Socony Vacuum Oil Co Inc Fluoroboric alkylation of thiophene
US2563087A (en) * 1946-06-28 1951-08-07 Universal Oil Prod Co Separation of thiophene by selective alkylation
US2570542A (en) * 1947-03-12 1951-10-09 Universal Oil Prod Co Phosphoric acid catalyzed thiophene alkylation and gravity separation of resultant products
US2677648A (en) * 1951-11-17 1954-05-04 Standard Oil Co Desulfurization of light oils with hydrogen fluoride-activated alumina
US2843639A (en) * 1954-02-15 1958-07-15 California Research Corp Process for securing and maintaining catalyst activity of phosphoric acid type catalysts
US2921081A (en) * 1956-03-15 1960-01-12 Standard Oil Co Catalysis
US2943094A (en) * 1957-04-05 1960-06-28 British Petroleum Co Catalytic conversion process
US2999807A (en) * 1959-03-31 1961-09-12 Shell Oil Co Removal of nitrogen compounds from gasoline
US3629478A (en) * 1969-08-22 1971-12-21 Chevron Res Separation of linear olefins from tertiary olefins
US3634534A (en) * 1969-08-22 1972-01-11 Chevron Res Separation of chemicals using fractionation and heterogeneous catalysis
US4242530A (en) * 1978-07-27 1980-12-30 Chemical Research & Licensing Company Process for separating isobutene from C4 streams
US4232177A (en) * 1979-02-21 1980-11-04 Chemical Research & Licensing Company Catalytic distillation process
US4171260A (en) * 1978-08-28 1979-10-16 Mobil Oil Corporation Process for reducing thiophenic sulfur in heavy oil
US4307254A (en) * 1979-02-21 1981-12-22 Chemical Research & Licensing Company Catalytic distillation process
US4336407A (en) * 1980-02-25 1982-06-22 Chemical Research & Licensing Company Catalytic distillation process
US5321181A (en) * 1985-01-07 1994-06-14 Chemical Research & Licensing Company Alkylation of organic aromatic compounds
US5243115A (en) * 1986-03-31 1993-09-07 Chemical Research & Licensing Company Alkylation of organic aromatic compounds
US4775462A (en) * 1987-06-22 1988-10-04 Uop Inc. Non-oxidative method of sweetening a sour hydrocarbon fraction
DE3872392T2 (de) * 1988-09-20 1993-02-04 Uop Inc Katalytische nichtoxidatives verfahren fuer das suessen von kohlenwasserstofffraktionen.
US5120890A (en) * 1990-12-31 1992-06-09 Uop Process for reducing benzene content in gasoline
US5171916A (en) * 1991-06-14 1992-12-15 Mobil Oil Corp. Light cycle oil conversion
US5336820A (en) * 1993-08-11 1994-08-09 Mobil Oil Corporation Process for the alkylation of benzene-rich gasoline
US5510568A (en) * 1994-06-17 1996-04-23 Chemical Research & Licensing Company Process for the removal of mercaptans and hydrogen sulfide from hydrocarbon streams
US5599441A (en) * 1995-05-31 1997-02-04 Mobil Oil Corporation Alkylation process for desulfurization of gasoline
US5597476A (en) * 1995-08-28 1997-01-28 Chemical Research & Licensing Company Gasoline desulfurization process
US5837131A (en) * 1996-04-05 1998-11-17 University Technologies International Inc. Desulfurization process
US5863419A (en) * 1997-01-14 1999-01-26 Amoco Corporation Sulfur removal by catalytic distillation
US6048451A (en) * 1997-01-14 2000-04-11 Bp Amoco Corporation Sulfur removal process

Also Published As

Publication number Publication date
EP1029024B1 (en) 2004-11-24
DE69922145T2 (de) 2005-12-01
ATE283330T1 (de) 2004-12-15
US6059962A (en) 2000-05-09
AU5807499A (en) 2000-03-27
AU747037B2 (en) 2002-05-09
ES2232174T3 (es) 2005-05-16
WO2000014181A1 (en) 2000-03-16
EP1029024A1 (en) 2000-08-23
JP2002524607A (ja) 2002-08-06
DE69922145D1 (de) 2004-12-30

Similar Documents

Publication Publication Date Title
JP4414098B2 (ja) 多工程硫黄除去プロセス
JP4330271B2 (ja) 硫黄除去プロセス
JP4113590B2 (ja) 硫黄除去法
EP0938529B1 (en) Sulfur removal by catalytic distillation
JP4417105B2 (ja) 輸送燃料のブレンド用成分からの硫黄除去のための多重ステージプロセス
AU773888B2 (en) Sulfur removal process
AU2002310232A1 (en) Multiple stage process for removal of sulfur from components for blending of transportation fuels
US6602405B2 (en) Sulfur removal process
JP4417104B2 (ja) 輸送燃料のブレンド用成分からの硫黄除去のための多重ステージプロセス
US7473351B2 (en) Removal of nitrogen, sulfur, and alkylating agents from hydrocarbon streams
CA2581692C (en) Sulfur removal process
CA2248159C (en) Sulfur removal process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees