JP4408251B2 - Bearing clearance measurement method for wheel bearing device - Google Patents

Bearing clearance measurement method for wheel bearing device Download PDF

Info

Publication number
JP4408251B2
JP4408251B2 JP2004260573A JP2004260573A JP4408251B2 JP 4408251 B2 JP4408251 B2 JP 4408251B2 JP 2004260573 A JP2004260573 A JP 2004260573A JP 2004260573 A JP2004260573 A JP 2004260573A JP 4408251 B2 JP4408251 B2 JP 4408251B2
Authority
JP
Japan
Prior art keywords
bearing
wheel
clearance
hub
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004260573A
Other languages
Japanese (ja)
Other versions
JP2006077830A (en
Inventor
清茂 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004260573A priority Critical patent/JP4408251B2/en
Publication of JP2006077830A publication Critical patent/JP2006077830A/en
Application granted granted Critical
Publication of JP4408251B2 publication Critical patent/JP4408251B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/187Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with all four raceways integrated on parts other than race rings, e.g. fourth generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Support Of The Bearing (AREA)

Description

本発明は、自動車等の車輪を回転自在に支承する車輪用軸受装置における軸受すきまの測定方法に関するものである。   The present invention relates to a bearing clearance measuring method in a wheel bearing device for rotatably supporting a wheel of an automobile or the like.

従来から自動車等の車輪を回転自在に支承する車輪用軸受装置は、所望の軸受剛性を確保するため所定の軸受予圧が付与されている。軸受予圧量の管理は、例えば、車輪取付フランジを一体に有し、外周に直接内側転走面が形成されたハブ輪、およびこのハブ輪に圧入された内輪とを備えた、所謂第3世代と呼称される車輪用軸受装置においては、ハブ輪と内輪との突き合せ面を精度良く管理すると共に、ハブ輪と等速自在継手の外側継手部材とを固定ナットによって締結する際、この固定ナットの締付トルク(軸力)を所定値に設定することにより行われている。   2. Description of the Related Art Conventionally, a wheel bearing device that rotatably supports a wheel of an automobile or the like is provided with a predetermined bearing preload in order to ensure a desired bearing rigidity. The management of the bearing preload amount is, for example, a so-called third generation, which includes a hub wheel integrally having a wheel mounting flange and an inner ring surface formed directly on the outer periphery, and an inner ring press-fitted into the hub wheel. In a wheel bearing device referred to as “a”, the abutment surface between the hub ring and the inner ring is accurately controlled, and when the hub ring and the outer joint member of the constant velocity universal joint are fastened by a fixing nut, the fixing nut The tightening torque (axial force) is set to a predetermined value.

当然、軸受予圧量は軸受寿命に影響するものであるが、それだけでなく、車両の安全走行や燃費向上等の環境問題に対して、この軸受予圧量は大きく関わってくる。すなわち、軸受予圧量は、軸受の回転トルクと比例関係にあり、予圧量を低下させれば回転トルクが軽減でき燃費向上へ貢献することがきる。一方、軸受の剛性の主要因となる軸受傾き角と軸受予圧量との関係は反比例関係にあるため、予圧量を大きくすれば軸受剛性が向上して軸受傾き角は減少し、車両旋回時に発生するブレーキロータの傾きを抑制することができる。したがって、このような軸受の予圧量を最適に設定することにより、軸受の寿命だけでなく、車両の安全性や燃費向上の面で優れた車輪用軸受装置を提供することができる。   Naturally, the bearing preload amount affects the bearing life, but this bearing preload amount is greatly related to environmental problems such as safe driving of the vehicle and improvement of fuel consumption. That is, the bearing preload amount is proportional to the rotational torque of the bearing, and if the preload amount is reduced, the rotational torque can be reduced and the fuel consumption can be improved. On the other hand, the relationship between the bearing tilt angle, which is the main factor of bearing rigidity, and the bearing preload amount is inversely proportional, so if the preload amount is increased, the bearing stiffness improves and the bearing tilt angle decreases, which occurs when the vehicle turns. The inclination of the brake rotor can be suppressed. Therefore, by setting the preload amount of such a bearing optimally, it is possible to provide a wheel bearing device that is excellent not only in terms of bearing life but also in terms of vehicle safety and fuel efficiency.

このような車輪用軸受装置の代表的な一例を、本発明の第1の実施形態を示す図1によって説明する。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウトボード側(図面左側)、中央寄り側をインボード側(図面右側)という。
この車輪用軸受装置は、内方部材1と外方部材10、および両部材1、10間に転動自在に収容された複列の転動体(ボール)6、6とを備えている。内方部材1は、ハブ輪2と、このハブ輪2に圧入された別体の内輪3とからなる。
A typical example of such a wheel bearing device will be described with reference to FIG. 1 showing a first embodiment of the present invention. In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outboard side (left side in the drawing), and the side closer to the center is referred to as the inboard side (right side in the drawing).
The wheel bearing device includes an inner member 1, an outer member 10, and double-row rolling elements (balls) 6, 6 accommodated between the members 1, 10 so as to roll freely. The inner member 1 includes a hub ring 2 and a separate inner ring 3 that is press-fitted into the hub ring 2.

ハブ輪2は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、アウトボード側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ4を一体に有し、この車輪取付フランジ4の円周等配位置には車輪(図示せず)を固定するためのハブボルト5が植設されている。また、ハブ輪2の外周には内側転走面2aと、この内側転走面2aから軸方向に延びる円筒状の小径段部2bが形成され、内周にはトルク伝達用のセレーション(またはスプライン)2cが形成されている。   The hub wheel 2 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has a wheel mounting flange 4 for mounting a wheel (not shown) at the end on the outboard side. A hub bolt 5 for fixing a wheel (not shown) is implanted at a circumferentially equidistant position of the wheel mounting flange 4. Further, an inner rolling surface 2a and a cylindrical small-diameter step portion 2b extending in the axial direction from the inner rolling surface 2a are formed on the outer periphery of the hub wheel 2, and a serration (or spline) for torque transmission is formed on the inner periphery. ) 2c is formed.

このハブ輪2のアウトボード側のシール8が摺接するシールランド部から内側転走面2aおよび小径段部2bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。なお、小径段部2bの端部は、鍛造後の素材表面硬さ25HRC以下の未焼入れ部としている。一方、内輪3は外周に内側転走面3aが形成され、ハブ輪2の小径段部2bに圧入されている。そして、小径段部2bの端部を径方向外方に塑性変形させて形成した加締部2dにより、ハブ輪2に対して内輪3が軸方向へ抜けるのを防止している。なお、内輪3はSUJ2等の高炭素クロム軸受鋼からなり、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されている。   A hardened layer having a surface hardness of 58 to 64 HRC is formed by induction quenching from the seal land where the seal 8 on the outboard side of the hub wheel 2 is in sliding contact to the inner rolling surface 2a and the small diameter step 2b. ing. In addition, the edge part of the small diameter step part 2b is made into the unhardened part of the raw material surface hardness 25HRC or less after forging. On the other hand, the inner ring 3 has an inner rolling surface 3 a formed on the outer periphery, and is press-fitted into the small diameter step 2 b of the hub ring 2. The inner ring 3 is prevented from coming off in the axial direction with respect to the hub wheel 2 by a crimping part 2d formed by plastically deforming the end of the small diameter step part 2b radially outward. The inner ring 3 is made of high carbon chrome bearing steel such as SUJ2, and is hardened in the range of 58 to 64 HRC up to the core part by quenching.

外方部材10は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼で形成され、外周に車体(図示せず)に取り付けるための車体取付フランジ10bを一体に有し、内周には複列の外側転走面10a、10aが形成されている。この複列の外側転走面10a、10aには高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。そして、それぞれの転走面10a、2aと10a、3a間に複列の転動体6、6が収容され、保持器7、7によりこれら複列の転動体6、6が転動自在に保持されている。また、外方部材10の両端部にはシール8、9が装着され、軸受内部に封入した潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。   The outer member 10 is formed of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and integrally includes a vehicle body mounting flange 10b for mounting on a vehicle body (not shown) on the outer periphery. Double rows of outer rolling surfaces 10a and 10a are formed around the circumference. A hardened layer having a surface hardness in the range of 58 to 64 HRC is formed on the double row outer raceway surfaces 10a and 10a by induction hardening. And the double row rolling elements 6 and 6 are accommodated between each rolling surface 10a, 2a and 10a, 3a, and these double row rolling elements 6 and 6 are rollably hold | maintained by the holder | retainers 7 and 7. ing. Further, seals 8 and 9 are attached to both ends of the outer member 10 to prevent leakage of the lubricating grease sealed inside the bearing and intrusion of rainwater, dust and the like from the outside into the bearing.

この種の車輪用軸受装置では、ハブ輪2の小径段部2bの端部を径方向外方に塑性変形させて形成した加締部2dにより内輪3を固定する、所謂セルフリテイン構造を採用しているので、従来のようにナット等で強固に緊締して予圧量を管理する必要がないため、車両への組込性を簡便にすることができると共に、かつ長期間その予圧量を維持することができる。ところが、この種の車輪用軸受装置はこうした特徴を有している反面、加締加工による内輪3の変形あるいは加締荷重のバラツキ等によって軸受すきまが変動する恐れがあり、組立を完了した後に予圧量を測定してみないと、その予圧量が適正であるか判らなかった。   This type of wheel bearing device employs a so-called self-retaining structure in which the inner ring 3 is fixed by a crimping portion 2d formed by plastically deforming the end of the small-diameter stepped portion 2b of the hub wheel 2 radially outward. Therefore, it is not necessary to control the preload by tightening firmly with a nut or the like as in the prior art, so that the ease of incorporation into the vehicle can be simplified and the preload is maintained for a long time. be able to. However, this type of wheel bearing device has such a feature, but there is a risk that the bearing clearance may fluctuate due to deformation of the inner ring 3 due to caulking, or variations in caulking load. Without measuring the amount, it was not known whether the amount of preload was appropriate.

こうした問題を解決したものとして、図11に示すように、車輪用軸受装置の組立加工時に軸受を回転させてトルクを測定し、予圧設定を行う技術が知られている。
図11(a)は、車輪用軸受装置50に取り付けられた予圧モニター装置51の構成を示した概略図である。この予圧モニター装置51は、外方部材52における車体取付フランジ52aのインボード側の外周面と接触するゴム部材が取り付けられた歯車53と、この歯車53と噛合する駆動用歯車54と、この駆動歯車54を回転駆動するモータ55と、このモータ55の回転トルクを検出する電力計からなるトルク検出器56と、検出された回転トルクを予め設定された所定値と比較する判定器57とを備えている。
As a solution to such a problem, as shown in FIG. 11, a technique is known in which a preload setting is performed by measuring a torque by rotating a bearing during assembly of a wheel bearing device.
FIG. 11A is a schematic diagram showing a configuration of a preload monitoring device 51 attached to the wheel bearing device 50. The preload monitoring device 51 includes a gear 53 to which a rubber member that comes into contact with the outer peripheral surface on the inboard side of the vehicle body mounting flange 52a in the outer member 52, a drive gear 54 that meshes with the gear 53, and the drive A motor 55 that rotationally drives the gear 54, a torque detector 56 that includes a power meter that detects the rotational torque of the motor 55, and a determiner 57 that compares the detected rotational torque with a predetermined value set in advance. ing.

予圧モニター装置51では、モータ55を駆動し、歯車54、53を介して外方部材52を回転させ、外方部材52の回転トルクをトルク検出器56で検出する。そして、検出された回転トルクに基き予圧量を求め、この予圧量が予め設定された所定値、つまり車輪用軸受装置50に適した予圧量に達した場合、揺動型加締装置58を後退させる。さらに、揺動型加締装置58による加締加工を終了した後も回転トルクを監視し、その予圧量が適正であることを確認する。   In the preload monitoring device 51, the motor 55 is driven to rotate the outer member 52 through the gears 54 and 53, and the rotational torque of the outer member 52 is detected by the torque detector 56. Then, a preload amount is obtained based on the detected rotational torque, and when the preload amount reaches a predetermined value set in advance, that is, a preload amount suitable for the wheel bearing device 50, the swing type caulking device 58 is moved backward. Let Further, the rotational torque is monitored even after finishing the caulking process by the swing caulking device 58 to confirm that the preload amount is appropriate.

図11(b)は、加締加工時間t(横軸)に対する揺動型加締装置58における加締型58aの位置Aおよび回転トルクT(縦軸)の変化を示すグラフである。加締型58aの位置Aを徐々に降下させて加締加工を開始すると、ある時点t0から車輪用軸受装置50に予圧が加わり、回転トルクTが変動し始める。その変動幅が予め設定された所定値Δにまで達すると(t1)、車輪用軸受装置50に適した予圧が加わったと判断して加締加工を終了する。その後、加締型58aの位置Aを原点に復帰させる。こうした予圧モニター装置51により、車輪用軸受装置50の組立加工時に軸受を回転させて回転トルクを測定し、この回転トルクを媒体として予圧量の設定を行うことができる。
特開平11−44319号公報
FIG. 11B is a graph showing changes in the position A and the rotational torque T (vertical axis) of the caulking die 58a in the swing type caulking device 58 with respect to the caulking processing time t (horizontal axis). When the caulking process is started by gradually lowering the position A of the caulking die 58a, a preload is applied to the wheel bearing device 50 from a certain time t0, and the rotational torque T starts to fluctuate. When the fluctuation range reaches a predetermined value Δ set in advance (t1), it is determined that a preload suitable for the wheel bearing device 50 has been applied, and the caulking process is terminated. Thereafter, the position A of the caulking die 58a is returned to the origin. With such a preload monitor device 51, the rotational torque can be measured by rotating the bearing during assembly of the wheel bearing device 50, and the preload amount can be set using this rotational torque as a medium.
JP 11-44319 A

しかしながら、こうした従来の技術では、軸受の回転トルクは、軸受内部に封入された潤滑グリースの攪拌抵抗および外方部材52の両端部に装着されたシール59、60の回転トルクが支配的であるため、こうした軸受の回転トルクを実測し、この回転トルクを媒体として軸受の予圧量を精度良く、かつ安定して管理することは難しい。   However, in such a conventional technique, the rotational torque of the bearing is dominated by the stirring resistance of the lubricating grease enclosed in the bearing and the rotational torque of the seals 59 and 60 attached to both ends of the outer member 52. It is difficult to measure the rotational torque of such a bearing and to manage the preload amount of the bearing accurately and stably using this rotational torque as a medium.

本発明は、このような事情に鑑みてなされたもので、塑性結合による軸受の軸方向すきま減少量と相関関係にある外方部材の端面移動量を測定して負すきまの管理を行えるようにした車輪用軸受装置の軸受すきま測定方法を提供することを目的としている。   The present invention has been made in view of such circumstances, so that the negative clearance can be managed by measuring the amount of end face movement of the outer member that is correlated with the axial clearance reduction amount of the bearing due to plastic coupling. An object of the present invention is to provide a bearing clearance measuring method for a wheel bearing device.

係る目的を達成すべく、本発明のうち請求項1記載の方法発明は、外周に車体取付フランジを一体に有し、内周に複列の外側転走面が形成された外方部材と、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面の一方に対向する内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪なる内方部材と、この内方部材と前記外方部材間に転動自在に収容された複列の転動体を備え、前記ハブ輪の小径段部の端部を径方向に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置の軸受すきま測定方法において、前記ハブ輪に前記内輪を圧入する際に、すきまが正の状態で圧入を一旦止め、この状態における前記ハブ輪と前記内輪の基準面間の軸方向寸法T0と初期軸方向すきまδ0を実測し、さらに圧入を続行して圧入が完了した後、前記ハブ輪と前記内輪の基準面間の軸方向寸法T1を実測し、この状態における軸方向すきまδ1を式δ1=δ0−(T0−T1)に基いて求めると共に、前記内方部材の塑性結合前後に実測された前記外方部材の端面位置の差からその端面移動量が算出され、この外方部材の端面移動量を、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求め、この軸受の軸方向すきま減少量Δδを、前記内方部材を塑性結合する前に実測された前記軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδを求めるようにした。
In order to achieve the object, the method invention according to claim 1 of the present invention includes an outer member integrally having a vehicle body mounting flange on the outer periphery, and a double row outer rolling surface formed on the inner periphery. A wheel mounting flange is integrally formed at one end, and an inner rolling surface facing one of the double row outer rolling surfaces and a small-diameter step portion extending in the axial direction from the inner rolling surface are formed on the outer periphery. A hub ring, an inner member that is an inner ring that is press-fitted into a small-diameter step portion of the hub ring, and has an inner rolling surface that is opposed to the other of the outer circumferential rolling surfaces of the double row ; The inner ring is axially formed by a crimping portion formed by plastically deforming the end of the small-diameter step portion of the hub wheel in a radial direction, including a double row rolling element that is rotatably accommodated between the outer members. in fixed bearing clearance measuring method for a wheel bearing device, when the press-fitting said annulus to said wheel hub, Once stopped press-fitting in the state of Kimagasei, actually measured axial dimension T0 the initial axial clearance δ0 between the reference surface of the inner wheel and the hub wheel in this state, the press-fitting is completed to continue the further press-fitting after the actually measured axial dimension T1 between the reference surface of the hub wheel and the inner wheel, the axial clearance .delta.1 with determined based formula .delta.1 = the δ0- (T0-T1) in this state, the inner member The end face movement amount is calculated from the difference in the end face position of the outer member measured before and after the plastic coupling of the outer member, and the end face movement amount of the outer member is set to the preset axial clearance reduction amount and the outer direction. By applying the relationship to the end face movement amount of the member, the axial clearance reduction amount Δδ of the bearing due to plastic coupling is obtained, and the axial clearance reduction amount Δδ of the bearing is measured before the inner member is plastically coupled. Reduced from the axial clearance δ1 And to determine the axial clearance δ of the bearing after the plastic binding by.

このように、ハブ輪の小径段部の端部を径方向に塑性変形させて形成した加締部により内輪が軸方向に固定された車輪用軸受装置の軸受すきま測定方法において、ハブ輪に内輪を圧入する際に、すきまが正の状態で圧入を一旦止め、この状態におけるハブ輪と内輪の基準面間の軸方向寸法T0と初期軸方向すきまδ0を実測し、さらに圧入を続行して圧入が完了した後、ハブ輪と内輪の基準面間の軸方向寸法T1を実測し、この状態における軸方向すきまδ1を式δ1=δ0−(T0−T1)に基いて求めると共に、内方部材の塑性結合前後に実測された外方部材の端面位置の差からその端面移動量が算出され、この外方部材の端面移動量を、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求め、この軸受の軸方向すきま減少量Δδを、内方部材を塑性結合する前に実測された軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδを求めるようにしたので、加締加工による内輪の変形あるいは加締荷重のバラツキ等によって変動する軸受すきまを管理しつつ軸受すきまを測定することができると共に、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、軸受すきまが負であっても実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。
As described above, in the bearing clearance measuring method of the wheel bearing device in which the inner ring is fixed in the axial direction by the caulking portion formed by plastically deforming the end of the small-diameter step portion of the hub ring in the radial direction , when press-fitting the wheel, a gap is temporarily stopped press-fitting a positive state, actually measured axial dimension T0 the initial axial clearance δ0 between the reference surface of the hub wheel and the inner wheel in this state, and continue with the further press-fitting after the press-fitting Te is complete, the actually measured axial dimension T1 between the reference surface of the hub wheel and the inner wheel, determine based on the axial gap .delta.1 in this state equation δ1 = δ0- (T0-T1) , the inner The end face movement amount is calculated from the difference in the end face position of the outer member measured before and after the plastic coupling of the outer member, and the end face movement amount of the outer member is calculated from the preset axial clearance reduction amount of the bearing and the outside. By applying to the relational expression of the end face movement amount of the side member The axial clearance reduction amount Δδ of the bearing due to the plastic coupling is obtained, and the axial clearance reduction amount Δδ of the bearing is subtracted from the axial clearance δ1 measured before the inner member is plastically coupled. Since the axial clearance δ of the bearing is obtained, it is possible to measure the bearing clearance while managing the bearing clearance that fluctuates due to deformation of the inner ring due to caulking, or variations in the caulking load, etc. Even if the bearing clearance is negative, the bearing clearance can be set accurately and stably without using the rotational torque inherent in the dispersion factors, such as the stirring resistance of the lubricated grease and the seal squealing, as the medium. can do.

また、請求項に記載の発明は、前記外方部材の端面移動量が、前記内方部材の塑性結合前後における前記外方部材の基準面から前記ハブ輪の基準面までの軸方向寸法の差としたので、軸受の回転トルク等を媒体とする従来の軸受すきま測定方法に比べ、軸受の予圧量を精度良く、かつ安定して管理することができる。
In the invention according to claim 2 , the movement amount of the end surface of the outer member is an axial dimension from the reference surface of the outer member to the reference surface of the hub wheel before and after plastic coupling of the inner member. Since the difference is used, the preload amount of the bearing can be accurately and stably managed as compared with the conventional bearing clearance measuring method using the rotational torque of the bearing as a medium.

また、請求項に記載の発明は、前記外方部材の端面位置が、定盤に前記ハブ輪の基準面が接触するように前記車輪用軸受装置を縦置きした状態で載置して測定されるので、軸受の角振れの影響を抑制することができ、精度よく、かつ安定して基準面からの軸方向位置を測定することができる。
According to a third aspect of the present invention, the position of the end face of the outer member is measured by placing the wheel bearing device in a vertical position so that the reference surface of the hub wheel contacts the surface plate. Therefore, the influence of the angular deflection of the bearing can be suppressed, and the axial position from the reference plane can be measured accurately and stably.

本発明に係る車輪用軸受装置の軸受すきま測定方法は、外周に車体取付フランジを一体に有し、内周に複列の外側転走面が形成された外方部材と、一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面の一方に対向する内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪なる内方部材と、この内方部材と前記外方部材間に転動自在に収容された複列の転動体を備え、前記ハブ輪の小径段部の端部を径方向に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置の軸受すきま測定方法において、前記ハブ輪に前記内輪を圧入する際に、すきまが正の状態で圧入を一旦止め、この状態における前記ハブ輪と前記内輪の基準面間の軸方向寸法T0と初期軸方向すきまδ0を実測し、さらに圧入を続行して圧入が完了した後、前記ハブ輪と前記内輪の基準面間の軸方向寸法T1を実測し、この状態における軸方向すきまδ1を式δ1=δ0−(T0−T1)に基いて求めると共に、前記内方部材の塑性結合前後に実測された前記外方部材の端面位置の差からその端面移動量が算出され、この外方部材の端面移動量を、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求め、この軸受の軸方向すきま減少量Δδを、前記内方部材を塑性結合する前に実測された前記軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδを求めるようにしたので、加締加工による内輪の変形あるいは加締荷重のバラツキ等によって変動する軸受すきまを管理しつつ軸受すきまを測定することができると共に、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、軸受すきまが負であっても実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。 A bearing clearance measuring method for a wheel bearing device according to the present invention includes an outer member integrally having a vehicle body mounting flange on the outer periphery and a double row outer raceway formed on the inner periphery, and a wheel mounting on one end. A hub wheel having a flange integrally formed on the outer periphery thereof and formed with an inner rolling surface facing one of the double row outer rolling surfaces, and a small-diameter step portion extending in an axial direction from the inner rolling surface, and An inner member that is an inner ring that is press-fitted into a small-diameter step portion of the hub wheel and has an inner rolling surface that faces the other of the outer rolling surfaces of the double row on the outer periphery, and between the inner member and the outer member A wheel in which the inner ring is fixed in the axial direction by a caulking portion formed by plastically deforming the end portion of the small diameter step portion of the hub wheel in a radial direction. in the bearing clearance measuring method of use bearing device, when the press-fitting said annulus to said hub wheel, a gap is positive Once stopped pressed in a state, after the said in the state actually measured axial dimension T0 the initial axial clearance δ0 between the reference surface of the hub wheel and the inner wheel, press-fitting is completed to continue the further press-fitting, said hub actually measuring the axial dimension T1 between the reference surface of the wheel and the inner wheel, the axial clearance .delta.1 in this state with determined based formula .delta.1 = the δ0- (T0-T1), plastic coupling front and rear of the inner member The end face movement amount is calculated from the difference in the end face position of the outer member actually measured, and the end face movement amount of the outer member is calculated from the preset axial clearance reduction amount of the bearing and the end face movement of the outer member. The amount of axial clearance reduction Δδ of the bearing due to plastic coupling is obtained by applying to the relational expression of the quantity, and the amount of axial clearance reduction Δδ of this bearing is measured in the axial direction measured before plastically coupling the inner member. Subtract from clearance δ1 Since so as to obtain a more axial clearance of the plastic binding post of the bearing [delta], it is possible to measure the bearing clearance while managing bearing clearance varies with variations in deformation or caulking load of the inner ring by caulking The bearing clearance is accurate based on the measured values even if the bearing clearance is negative, without using the rotational torque inherent in the dispersion factors, such as the stirring resistance of the lubricating grease sealed inside the bearing and the seal squeezing, as the medium. And can be set stably.

外周に車体取付フランジを一体に有し、内周に複列の外側転走面が形成された外方部材と、外周に前記複列の外側転走面に対向する複列の内側転走面が形成され、一端部に車輪取付フランジを一体に有するハブ輪、およびこのハブ輪に外嵌された内輪とからなり、これら両部材が一体に塑性結合された内方部材と、この内方部材と前記外方部材間に転動自在に収容された複列の転動体を備えた車輪用軸受装置の軸受すきま測定方法において、前記内方部材の塑性結合前後に実測された前記外方部材の端面位置の差からその端面移動量が算出され、この外方部材の端面移動量を、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求めると共に、この軸受の軸方向すきま減少量Δδを、前記内方部材を塑性結合する前に実測された軸受の軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδを求めるようにした。   An outer member integrally having a vehicle body mounting flange on the outer periphery and a double row outer rolling surface formed on the inner periphery, and a double row inner rolling surface facing the outer surface of the double row on the outer periphery And an inner member integrally formed with one end of a wheel mounting flange and an inner ring externally fitted to the hub wheel. And a bearing clearance measuring method for a wheel bearing device including a double row rolling element housed so as to be freely rollable between the outer member and the outer member, the outer member measured before and after the plastic coupling of the inner member. By calculating the end face movement amount from the difference in the end face position, and applying the end face movement amount of the outer member to a preset relational expression of the axial clearance reduction amount of the bearing and the end face movement amount of the outer member, While obtaining the axial clearance reduction amount Δδ of the bearing due to plastic coupling, The axial clearance reduction amount Δδ of the bearing is subtracted from the axial clearance δ1 of the bearing actually measured before plastically coupling the inner member, thereby obtaining the axial clearance δ of the bearing after plastic coupling. .

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2は、組立過程の軸受すきま測定方法を示す説明図、図3は、図1の加締加工前を示す縦断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, FIG. 2 is an explanatory view showing a bearing clearance measuring method in an assembly process, and FIG. 3 is a caulking process of FIG. It is a longitudinal cross-sectional view which shows the front.

図1に示すように、この車輪用軸受装置は、駆動輪側の第3世代と呼称される構成を備えており、従来の車輪用軸受装置の一例としてこの図1を用いて説明したので、構成に関する詳細な説明を省略して本発明に係る特徴部分のみを主体に説明する。   As shown in FIG. 1, this wheel bearing device has a configuration called the third generation on the drive wheel side, and has been described with reference to FIG. 1 as an example of a conventional wheel bearing device. A detailed description of the configuration will be omitted, and only the characteristic part according to the present invention will be mainly described.

まず、車輪用軸受装置の組立過程において、図2(a)に示すように、内輪3をハブ輪2の小径段部2bに圧入し、内輪3の小端面11がハブ輪2の肩部12に当接する手前で一旦止める。すなわち、この時点では内輪3の小端面11とハブ輪2の肩部12との間に所定の間隔Sが残り、軸受の軸方向すきまは正である。この状態で、内輪3の基準面13(大端面)からハブ輪2の基準面14(フランジ側面)までの軸方向寸法T0を測定し、さらに、内方部材1に対する外方部材10の軸方向移動量から軸受の初期軸方向すきまδ0を測定する。   First, in the assembly process of the wheel bearing device, as shown in FIG. 2A, the inner ring 3 is press-fitted into the small-diameter step portion 2 b of the hub ring 2, and the small end surface 11 of the inner ring 3 is the shoulder portion 12 of the hub ring 2. Stop immediately before coming into contact. That is, at this time, a predetermined distance S remains between the small end surface 11 of the inner ring 3 and the shoulder 12 of the hub ring 2, and the axial clearance of the bearing is positive. In this state, the axial dimension T0 from the reference surface 13 (large end surface) of the inner ring 3 to the reference surface 14 (flange side surface) of the hub wheel 2 is measured, and the axial direction of the outer member 10 relative to the inner member 1 is measured. The initial axial clearance δ0 of the bearing is measured from the amount of movement.

続いて、図2(b)に示すように、内輪3の小端面11がハブ輪2の肩部12に当接するまで内輪3を圧入し、内輪3の基準面13からハブ輪2の基準面14までの軸方向寸法T1を測定する。そして、ハブ輪2に内輪3が圧入された後の軸受の軸方向すきまδ1を式δ1=δ0−(T0−T1)より求める。なお、ここで、ハブ輪2の基準面14は車輪取付フランジ4の側面に限らず、ハブ輪2のアウトボード側の端面としても良い。   Subsequently, as shown in FIG. 2B, the inner ring 3 is press-fitted until the small end surface 11 of the inner ring 3 abuts against the shoulder 12 of the hub ring 2, and the reference surface 13 of the hub ring 2 is referred to from the reference surface 13 of the inner ring 3. An axial dimension T1 up to 14 is measured. Then, the axial clearance δ1 of the bearing after the inner ring 3 is press-fitted into the hub wheel 2 is obtained from the equation δ1 = δ0− (T0−T1). Here, the reference surface 14 of the hub wheel 2 is not limited to the side surface of the wheel mounting flange 4 but may be the end surface of the hub wheel 2 on the outboard side.

図3は、図1の車輪用軸受装置における加締加工前の車輪用軸受装置を示すが、ハブ輪2に内輪3が圧入された後(加締加工前)の外方部材10の端面位置、すなわち、外方部材10の基準面16からハブ輪2の基準面14までの軸方向寸法L1を測定する。この測定要領は、図5(a)に示すように、ハブ輪2のパイロット部15を収容する凹所17が形成された定盤B1にハブ輪2の基準面14が接触するように車輪用軸受装置を載置する。そして、基準面14から外方部材10の基準面16までの高さをダイヤルゲージ等の測定器によって測定する。このように、定盤B1にハブ輪2の基準面14が接触するように車輪用軸受装置を縦置きした状態で載置して測定器によって測定されるので、軸受の角振れの影響を抑制することができ、精度よく、かつ安定して基準面からの軸方向位置を測定することができる。なお、図5(b)に示すように、定盤B2にハブ輪2のアウトボード側の端面が接触するように車輪用軸受装置を載置し、この定盤B2から外方部材10の基準面16までの高さを測定しても良い。   FIG. 3 shows the wheel bearing device before the caulking process in the wheel bearing device of FIG. 1, but the end face position of the outer member 10 after the inner ring 3 is press-fitted into the hub wheel 2 (before the caulking process). That is, the axial dimension L1 from the reference surface 16 of the outer member 10 to the reference surface 14 of the hub wheel 2 is measured. As shown in FIG. 5A, the measuring procedure is such that the reference surface 14 of the hub wheel 2 comes into contact with the surface plate B1 in which the recess 17 that accommodates the pilot portion 15 of the hub wheel 2 is formed. Place the bearing device. Then, the height from the reference surface 14 to the reference surface 16 of the outer member 10 is measured by a measuring instrument such as a dial gauge. In this way, since the wheel bearing device is placed in a vertical position so that the reference surface 14 of the hub wheel 2 is in contact with the surface plate B1, and measured by the measuring instrument, the influence of angular deflection of the bearing is suppressed. It is possible to measure the position in the axial direction from the reference plane with high accuracy and stability. As shown in FIG. 5B, the wheel bearing device is placed so that the end surface on the outboard side of the hub wheel 2 is in contact with the surface plate B2, and the reference of the outer member 10 from the surface plate B2. The height up to the surface 16 may be measured.

その後、加締加工を行い、同じく、加締加工後の外方部材10の端面寸法L2(図1参照)を前述した要領で測定する(図5(a)参照)。そして、加締加工前後の外方部材10の端面移動量ΔLは、ΔL=L1−L2により求めることができる。なお、ここで、ハブ輪2の基準面14は車輪取付フランジ4の側面に限らず、ハブ輪2のアウトボード側の端面としても良い(図5(b)参照)。   Thereafter, caulking is performed, and similarly, the end face dimension L2 (see FIG. 1) of the outer member 10 after caulking is measured as described above (see FIG. 5A). And the end face movement amount ΔL of the outer member 10 before and after the caulking process can be obtained by ΔL = L1−L2. Here, the reference surface 14 of the hub wheel 2 is not limited to the side surface of the wheel mounting flange 4 but may be an end surface on the outboard side of the hub wheel 2 (see FIG. 5B).

ここで、本出願人が実施した実験から、軸受の軸方向すきま減少量Δδと外方部材の端面移動量ΔLとには高い相関関係があることが判った。図4は、軸受の軸方向すきま減少量Δδと外方部材の端面移動量ΔLとの関係を示す一例であるが、これらの関係を予め所定の関係式として設定し、この関係式を用いて加締加工による軸受の軸方向すきま減少量Δδを算出するようにした。すなわち、この加締加工による軸受の軸方向すきま減少量Δδと外方部材の端面移動量ΔLとの関係式に基き、実測した外方部材の端面移動量ΔLから軸受の軸方向すきま減少量Δδを算出した。さらに、この軸受の軸方向すきま減少量Δδと内輪3の圧入後における軸受の軸方向すきまδ1から加締加工後の軸受の軸方向すきま(負すきま)δ、すなわち、δ=δ1−Δδを求めることができる。   Here, it was found from experiments conducted by the present applicant that there is a high correlation between the axial clearance reduction amount Δδ of the bearing and the end face movement amount ΔL of the outer member. FIG. 4 is an example showing the relationship between the axial clearance reduction amount Δδ of the bearing and the end face movement amount ΔL of the outer member. These relationships are set as predetermined relational expressions in advance, and this relational expression is used. The bearing axial clearance reduction amount Δδ due to caulking was calculated. That is, based on the relational expression between the axial clearance reduction amount Δδ of the bearing and the end face movement amount ΔL of the outer member due to the caulking process, the axial clearance reduction amount Δδ of the bearing is calculated from the measured end face movement amount ΔL of the outer member. Was calculated. Further, the axial clearance (negative clearance) δ after caulking is obtained from the axial clearance reduction amount Δδ of the bearing and the axial clearance δ1 of the bearing after the inner ring 3 is press-fitted, that is, δ = δ1-Δδ. be able to.

本実施形態では、外方部材10の端面移動量ΔLが、内方部材1の塑性結合前後における外方部材10の基準面16からハブ輪2の基準面14までの軸方向寸法ΔL1、ΔL2の差としたので、軸受の回転トルク等を媒体とする従来の軸受すきま測定方法に比べ、軸受の予圧量を精度良く、かつ安定して管理することができる。   In this embodiment, the end face movement amount ΔL of the outer member 10 is such that the axial dimensions ΔL1 and ΔL2 from the reference surface 16 of the outer member 10 to the reference surface 14 of the hub wheel 2 before and after plastic coupling of the inner member 1 are set. Since the difference is used, the preload amount of the bearing can be accurately and stably managed as compared with the conventional bearing clearance measuring method using the rotational torque of the bearing as a medium.

一方、軸受の軸方向すきまδと軸受の予圧量とは高い相関関係があることが判っている。したがって、予め設定した軸受の軸方向すきまと軸受の予圧量との関係式に用いて、軸受の軸方向すきまδから軸受の予圧量を正確に求めることができる。   On the other hand, it has been found that there is a high correlation between the axial clearance δ of the bearing and the amount of preload of the bearing. Therefore, the preload amount of the bearing can be accurately obtained from the axial clearance δ of the bearing by using a relational expression between the preset axial clearance of the bearing and the preload amount of the bearing.

このように、本実施形態では、内方部材1の塑性結合前後に実測された外方部材10の端面位置L1、L2の差からその端面移動量ΔLが算出され、この外方部材10の端面移動量ΔLを、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求めると共に、この軸受の軸方向すきま減少量Δδを、内方部材1を塑性結合する前に実測された軸受の軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδ、すなわち、δ=δ1−Δδを求めるようにしたので、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。   Thus, in the present embodiment, the end face movement amount ΔL is calculated from the difference between the end face positions L1 and L2 of the outer member 10 measured before and after the plastic coupling of the inner member 1, and the end face of the outer member 10 is calculated. By applying the movement amount ΔL to a preset relational expression between the axial clearance reduction amount of the bearing and the end face movement amount of the outer member, the axial clearance reduction amount Δδ of the bearing due to the plastic coupling is obtained. By subtracting the axial clearance reduction amount Δδ from the axial clearance δ1 of the bearing actually measured before the inner member 1 is plastically coupled, the axial clearance δ of the bearing after plastic coupling, that is, δ = δ1−Δδ. Therefore, it is possible to accurately determine the bearing clearance based on the measured values without using as a medium the rotational torque inherent in the dispersion factors such as the stirring resistance of the lubricating grease sealed in the bearing and the seal squealing. It is possible to set a stable manner.

ここでは、第3世代構造について詳述したが、本発明に係る車輪用軸受装置における軸受のすきま測定方法は、図6に示す第4世代構造のものにも適用することができる。なお、前述した実施形態と同一部位、同一部品、あるいは同一の機能を有する部品、部位には同じ符号を付けて重複した説明を省略する。   Here, the third generation structure has been described in detail, but the bearing clearance measuring method in the wheel bearing device according to the present invention can also be applied to the fourth generation structure shown in FIG. In addition, the same site | part, the same component as the embodiment mentioned above, the part which has the same function, and a site | part are attached | subjected with the same code | symbol, and the overlapping description is abbreviate | omitted.

この車輪用軸受装置は、ハブ輪18と複列の転がり軸受19と等速自在継手20とがユニット化して構成されている。複列の転がり軸受19は、外方部材10と内方部材21と複列の転動体6、6とを備えている。   In this wheel bearing device, a hub wheel 18, a double row rolling bearing 19, and a constant velocity universal joint 20 are configured as a unit. The double-row rolling bearing 19 includes an outer member 10, an inner member 21, and double-row rolling elements 6 and 6.

内方部材21は、ハブ輪18と、このハブ輪18に内嵌された後述する外側継手部材22とを有している。ハブ輪18は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、その外周には、前記複列の外側転走面10a、10aに対向するアウトボード側の内側転走面18aと、この内側転走面18aから軸方向に延びる円筒状の小径段部18bが形成されている。そして、アウトボード側のシール8が摺接するシールランド部から内側転走面18aおよび小径段部18bに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。   The inner member 21 includes a hub wheel 18 and an outer joint member 22 to be described later that is fitted into the hub wheel 18. The hub wheel 18 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the outer periphery thereof has an inner rolling on the outboard side facing the double row outer rolling surfaces 10a and 10a. A running surface 18a and a cylindrical small diameter step portion 18b extending in the axial direction from the inner rolling surface 18a are formed. A hardened layer is formed with a surface hardness in the range of 58 to 64 HRC by induction hardening over the inner rolling surface 18a and the small diameter step portion 18b from the seal land portion in which the seal 8 on the outboard side is in sliding contact.

等速自在継手20は、外側継手部材22と継手内輪23、ケージ24、およびトルク伝達ボール25とからなる。外側継手部材22は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、カップ状のマウス部26と、このマウス部26の底部をなす肩部27と、この肩部27から軸方向に延びる円筒状の軸部28とを一体に有している。肩部27の外周には、前記外方部材10の複列の外側転走面10a、10aに対向するインボード側の内側転走面22aが形成されると共に、軸部28には、ハブ輪18の小径段部18bに所定のシメシロを介して円筒嵌合するインロウ部28aと、このインロウ部28aの端部に嵌合部28bがそれぞれ形成されている。そして、肩部27から内側転走面22aおよび軸部28に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。なお、軸部28の嵌合部28bは、鍛造後の素材表面硬さ25HRC以下の未焼入れ部としている。   The constant velocity universal joint 20 includes an outer joint member 22, a joint inner ring 23, a cage 24, and a torque transmission ball 25. The outer joint member 22 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has a cup-shaped mouth portion 26, a shoulder portion 27 that forms the bottom portion of the mouth portion 26, and the shoulder portion. A cylindrical shaft portion 28 extending in the axial direction from 27 is integrally provided. On the outer periphery of the shoulder portion 27, an inboard-side inner rolling surface 22 a facing the double row outer rolling surfaces 10 a, 10 a of the outer member 10 is formed, and a hub wheel is formed on the shaft portion 28. An in-row portion 28a that is cylindrically fitted to the 18 small-diameter step portions 18b through a predetermined shimiro is formed, and a fitting portion 28b is formed at the end of the in-row portion 28a. And the hardened layer is formed in the range of 58-64 HRC by surface hardening from the shoulder part 27 to the inner side rolling surface 22a and the axial part 28 by induction hardening. The fitting portion 28b of the shaft portion 28 is an unquenched portion having a material surface hardness of 25 HRC or less after forging.

ここで、ハブ輪18の内周には熱処理によって表面硬さが54〜64HRCの範囲に硬化された凹凸部29が形成されている。熱処理としては、局部加熱ができ、硬化層深さの設定が比較的容易にできる高周波誘導加熱による焼入れが好適である。この凹凸部29はアヤメローレット状に形成され、旋削等により独立して形成された複数の環状溝と、ブローチ加工等により形成された複数の軸方向溝とを略直交させて構成した交叉溝、あるいは、互いに傾斜した螺旋溝で構成した交叉溝からなる。また、凹凸部29の凸部は良好な食い込み性を確保するために、その先端部が三角形状等の尖塔形状に形成されている。   Here, on the inner periphery of the hub wheel 18, a concavo-convex portion 29 having a surface hardness of 54 to 64 HRC is formed by heat treatment. As the heat treatment, local heating is preferable, and quenching by high-frequency induction heating that can set the hardened layer depth relatively easily is preferable. The concavo-convex portion 29 is formed in the shape of a iris knurl, and a plurality of annular grooves formed independently by turning or the like and a plurality of axial grooves formed by broaching or the like are crossed grooves configured to be substantially orthogonal, Or it consists of the crossing groove | channel comprised by the helical groove | channel inclined mutually. Moreover, in order to ensure good biting property, the tip of the concavo-convex portion 29 is formed in a spire shape such as a triangular shape.

そして、外側継手部材22の肩部27にハブ輪18の小径段部18bの端面が衝合され、突合せ状態になるまでハブ輪18に軸部28が内嵌される。さらに、この軸部28における嵌合部28bの内径にマンドレル等の拡径治具を押し込んで嵌合部28bを拡径し、この嵌合部28bをハブ輪18の凹凸部29に食い込ませてハブ輪18と外側継手部材22とが一体に塑性結合(拡径加締)されている。   Then, the end surface of the small-diameter step portion 18b of the hub wheel 18 is abutted with the shoulder portion 27 of the outer joint member 22, and the shaft portion 28 is fitted into the hub wheel 18 until it comes into a butted state. Further, a diameter expanding jig such as a mandrel is pushed into the inner diameter of the fitting portion 28b in the shaft portion 28 to increase the diameter of the fitting portion 28b, and this fitting portion 28b is bitten into the uneven portion 29 of the hub wheel 18. The hub wheel 18 and the outer joint member 22 are integrally plastically bonded (expanded diameter caulking).

ここで、ハブ輪18に外側継手部材22を拡径加締する前に前述した方法で軸方向すきまδ1を実測する。すなわち、図7(a)に示すように、外側継手部材22をハブ輪18の小径段部18bに圧入し、外側継手部材22の肩部27がハブ輪18の小径段部18bの端面に当接する手前で一旦止める。すなわち、この時点では外側継手部材22の肩部27とハブ輪18の小径段部18bとの間に所定の間隔Sが残り、軸受の軸方向すきまは正である。この状態で、外側継手部材22の基準面30(インボード側の端面)からハブ輪18の基準面14(フランジ側面)までの軸方向寸法T0を測定し、さらに、内方部材21に対する外方部材10の軸方向移動量から軸受の初期軸方向すきまδ0を測定する。   Here, the axial clearance δ1 is measured by the method described above before the outer joint member 22 is diameter-enlarged and crimped to the hub wheel 18. That is, as shown in FIG. 7A, the outer joint member 22 is press-fitted into the small-diameter step portion 18b of the hub wheel 18, and the shoulder portion 27 of the outer joint member 22 contacts the end surface of the small-diameter step portion 18b of the hub wheel 18. Stop before touching. That is, at this time, a predetermined distance S remains between the shoulder portion 27 of the outer joint member 22 and the small diameter step portion 18b of the hub wheel 18, and the axial clearance of the bearing is positive. In this state, the axial dimension T0 from the reference surface 30 (end surface on the inboard side) of the outer joint member 22 to the reference surface 14 (flange side surface) of the hub wheel 18 is measured, and further outward with respect to the inner member 21. The initial axial clearance δ0 of the bearing is measured from the amount of axial movement of the member 10.

続いて、図7(b)に示すように、外側継手部材22の肩部27がハブ輪18の小径段部18bの端面に当接するまで外側継手部材22を圧入し、外側継手部材22の基準面30からハブ輪18の基準面14までの軸方向寸法T1を測定する。そして、ハブ輪18に外側継手部材22が圧入された後の軸受の軸方向すきまδ1を式δ1=δ0−(T0−T1)より求める。なお、ここで、ハブ輪18の基準面14は車輪取付フランジ4の側面に限らず、ハブ輪18のアウトボード側の端面としても良い。   Subsequently, as shown in FIG. 7B, the outer joint member 22 is press-fitted until the shoulder portion 27 of the outer joint member 22 abuts against the end surface of the small-diameter step portion 18 b of the hub wheel 18. An axial dimension T1 from the surface 30 to the reference surface 14 of the hub wheel 18 is measured. Then, the axial clearance δ1 of the bearing after the outer joint member 22 is press-fitted into the hub wheel 18 is obtained from the formula δ1 = δ0− (T0−T1). Here, the reference surface 14 of the hub wheel 18 is not limited to the side surface of the wheel mounting flange 4 but may be the end surface of the hub wheel 18 on the outboard side.

ここで、拡径加締による軸受の軸方向すきま減少量Δδと外方部材の端面移動量ΔLとの関係式に基き、軸受の軸方向すきま減少量Δδを算出する。さらに、この軸受の軸方向すきま減少量Δδと、前記した外側継手部材22の圧入後における軸受の軸方向すきまδ1から拡径加締後の軸受の軸方向すきま(負すきま)δ、すなわち、δ=δ1−Δδを求めることができる。また、この軸受の軸方向すきまδから軸受の予圧量を求めることができる。   Here, the axial clearance reduction amount Δδ of the bearing is calculated based on the relational expression between the axial clearance reduction amount Δδ of the bearing due to the diameter-enlarged caulking and the end face movement amount ΔL of the outer member. Further, the axial clearance reduction amount Δδ of the bearing and the axial clearance (negative clearance) δ of the bearing after diameter-enlarged caulking from the axial clearance δ1 of the bearing after the outer joint member 22 is press-fitted, that is, δ = Δ1-Δδ can be obtained. Further, the preload amount of the bearing can be obtained from the axial clearance δ of the bearing.

このように、本実施形態においても、実測された外側継手部材22圧入後の軸受の軸方向すきまδ1と、実測された拡径加締前後の外方部材10の端面移動量ΔLから算出された拡径加締による軸受の軸方向すきま減少量Δδ、および、この拡径加締による軸受の軸方向すきま減少量Δδと外側継手部材22圧入後の軸受の軸方向すきまδ1から拡径加締後の軸受の軸方向すきま(負すきま)δを求めるようにしたので、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。   Thus, also in this embodiment, the axial clearance δ1 of the bearing after the press fitting of the outer joint member 22 measured and the end face movement amount ΔL of the outer member 10 before and after the diameter expansion caulking are calculated. After the diameter expansion caulking from the axial clearance reduction amount Δδ of the bearing due to the expanded caulking, the axial clearance clearance amount Δδ of the bearing due to the enlarging caulking and the axial clearance δ1 of the bearing after the outer joint member 22 is press-fitted. The axial clearance (negative clearance) δ of the bearing is calculated so that the rotational torque in which the variation factors such as the agitation resistance of the lubricating grease sealed in the bearing and the squeeze of the seal are present is not used as a medium. The bearing clearance can be set accurately and stably based on the value.

図9は、本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。なお、この実施形態は前述した第2の実施形態(図6)の変形例で、前述した実施形態と同一部位、同一部品、あるいは同一の機能を有する部品、部位には同じ符号を付けて重複した説明を省略する。   FIG. 9 is a longitudinal sectional view showing a third embodiment of the wheel bearing device according to the present invention. This embodiment is a modification of the above-described second embodiment (FIG. 6), and the same parts, parts, parts having the same functions, and parts as those of the above-described embodiment are denoted by the same reference numerals and overlapped. The description that has been made will be omitted.

この車輪用軸受装置は、ハブ輪31と複列の転がり軸受32と等速自在継手33とがユニット化して構成されている。複列の転がり軸受32は、外方部材10と内方部材34と複列の転動体6、6とを備えている。内方部材34は、ハブ輪31と、このハブ輪31に外嵌された後述する外側継手部材36とを有している。   The wheel bearing device includes a hub wheel 31, a double row rolling bearing 32, and a constant velocity universal joint 33 that are unitized. The double row rolling bearing 32 includes an outer member 10, an inner member 34, and double row rolling elements 6 and 6. The inner member 34 includes a hub wheel 31 and an outer joint member 36 (described later) that is externally fitted to the hub wheel 31.

ハブ輪31は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、その外周には、前記複列の外側転走面10a、10aに対向するアウトボード側の内側転走面18aと、この内側転走面18aから軸方向に延びる円筒状の軸部35が形成されている。この軸部35には、インロウ部35aと、このインロウ部35aの端部に嵌合部35bがそれぞれ形成されている。そして、ハブ輪31のアウトボード側のシール8が摺接するシールランド部から内側転走面18aおよび軸部35に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。なお、軸部35の嵌合部35bは、鍛造後の素材表面硬さ25HRC以下の未焼入れ部としている。   The hub wheel 31 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and the outer periphery of the hub wheel 31 is on the outboard side on the outboard side facing the double row outer rolling surfaces 10a and 10a. A running surface 18a and a cylindrical shaft portion 35 extending in the axial direction from the inner rolling surface 18a are formed. The shaft portion 35 is formed with an in-row portion 35a and a fitting portion 35b at the end of the in-row portion 35a. Then, a hardened layer is formed with a surface hardness in the range of 58 to 64 HRC by induction hardening over the inner rolling surface 18a and the shaft portion 35 from the seal land portion where the seal 8 on the outboard side of the hub wheel 31 is in sliding contact. ing. The fitting portion 35b of the shaft portion 35 is an unquenched portion having a surface hardness of 25HRC or less after forging.

等速自在継手33は、外側継手部材36と継手内輪23、ケージ24、およびトルク伝達ボール25とからなる。外側継手部材36は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、カップ状のマウス部26と、このマウス部26の底部をなす肩部37と、この肩部37から軸方向に延びる小径段部37aとを一体に有している。肩部37の外周には、前記外方部材10の複列の外側転走面10a、10aに対向するインボード側の内側転走面22aが形成され、肩部37から内側転走面22aおよび小径段部37aに亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。また、小径段部37aは、前記ハブ輪31のインロウ部35aに所定のシメシロを介して円筒嵌合されている。ここで、外側継手部材36の内周には熱処理によって硬化された凹凸部29が形成されている。   The constant velocity universal joint 33 includes an outer joint member 36, a joint inner ring 23, a cage 24, and a torque transmission ball 25. The outer joint member 36 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has a cup-shaped mouth portion 26, a shoulder portion 37 that forms the bottom of the mouth portion 26, and the shoulder portion. A small-diameter step portion 37a extending in the axial direction from 37 is integrally provided. On the outer periphery of the shoulder portion 37, an inboard-side inner rolling surface 22 a facing the double row outer rolling surfaces 10 a, 10 a of the outer member 10 is formed. A hardened layer having a surface hardness in the range of 58 to 64 HRC is formed by induction hardening over the small diameter step portion 37a. The small-diameter step portion 37a is cylindrically fitted to the in-row portion 35a of the hub wheel 31 via a predetermined shimiro. Here, an uneven portion 29 cured by heat treatment is formed on the inner periphery of the outer joint member 36.

そして、ハブ輪31の肩部12に外側継手部材36の肩部37が衝合され、突合せ状態になるまでハブ輪31に外側継手部材36の小径段部37aが外嵌される。さらに、ハブ輪31の嵌合部35bの内径にマンドレル等の拡径治具を押し込んで嵌合部35bを拡径し、この嵌合部35bを外側継手部材36の凹凸部29に食い込ませてハブ輪31と外側継手部材36とが一体に塑性結合されている。   Then, the shoulder portion 37 of the outer joint member 36 is abutted against the shoulder portion 12 of the hub wheel 31, and the small-diameter step portion 37 a of the outer joint member 36 is externally fitted to the hub wheel 31 until the butt state is reached. Further, a diameter expansion jig such as a mandrel is pushed into the inner diameter of the fitting portion 35b of the hub wheel 31 to increase the diameter of the fitting portion 35b, and this fitting portion 35b is bitten into the uneven portion 29 of the outer joint member 36. The hub wheel 31 and the outer joint member 36 are integrally plastically coupled.

本実施形態においても、前述した実施形態と同様、実測されたハブ輪31圧入後の軸受の軸方向すきまδ1と、実測された拡径加締前後の外方部材10の端面移動量ΔLから算出された拡径加締による軸受の軸方向すきま減少量Δδ、および、この拡径加締による軸受の軸方向すきま減少量Δδと外側継手部材36圧入後の軸受の軸方向すきまδ1から拡径加締後の軸受の軸方向すきま(負すきま)δを求めるようにしたので、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。   Also in the present embodiment, similarly to the above-described embodiment, calculation is made from the measured axial clearance δ1 of the bearing after press-fitting the hub wheel 31 and the measured end face movement amount ΔL of the outer member 10 before and after the enlarged diameter caulking. The axial clearance reduction amount Δδ of the bearing due to the expanded diameter caulking, the axial clearance reduction amount Δδ of the bearing due to the expanded caulking and the axial clearance δ1 of the bearing after press fitting of the outer joint member 36 is increased. Since the axial clearance (negative clearance) δ of the bearing after tightening has been obtained, the rotational torque that contains variation factors such as the agitation resistance of the lubricating grease enclosed in the bearing and the squeeze of the seal is not used as a medium. The bearing clearance can be set accurately and stably based on the measured values.

図10は、本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。なお、前述した第1の実施形態(図1)の変形例で、この実施形態と同一部位、同一部品、あるいは同一の機能を有する部品、部位には同じ符号を付けて重複した説明を省略する。   FIG. 10 is a longitudinal sectional view showing a fourth embodiment of the wheel bearing device according to the present invention. In addition, in the modified example of the first embodiment (FIG. 1) described above, the same parts, parts, parts having the same functions, and parts as in this embodiment are denoted by the same reference numerals and redundant description is omitted. .

この車輪用軸受装置は、内方部材38と外方部材10、および両部材38、10間に転動自在に収容された複列の転動体6、6とを備えている。内方部材38は、ハブ輪39と、このハブ輪39に外嵌された別体の内輪40とからなる。   The wheel bearing device includes an inner member 38, an outer member 10, and double-row rolling elements 6 and 6 accommodated between the members 38 and 10 so as to be freely rollable. The inner member 38 includes a hub ring 39 and a separate inner ring 40 that is externally fitted to the hub ring 39.

ハブ輪39は、S53C等の炭素0.40〜0.80wt%を含む中炭素鋼からなり、外周には内側転走面2aと、この内側転走面2aから軸方向に延びる円筒状の小径段部39aが形成され、内周にはトルク伝達用のセレーション(またはスプライン)2cが形成されている。そして、アウトボード側のシール8が摺接するシールランド部から内側転走面2aおよび肩部12に亙って高周波焼入れによって表面硬さを58〜64HRCの範囲に硬化層が形成されている。なお、小径段部39aは、鍛造後の素材表面硬さ25HRC以下の未焼入れ部としている。   The hub wheel 39 is made of medium carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, and has an inner rolling surface 2a on the outer periphery and a small cylindrical diameter extending in the axial direction from the inner rolling surface 2a. A step 39a is formed, and a serration (or spline) 2c for torque transmission is formed on the inner periphery. A hardened layer is formed with a surface hardness in the range of 58 to 64 HRC by induction hardening over the inner rolling surface 2a and the shoulder 12 from the seal land portion where the seal 8 on the outboard side is in sliding contact. The small diameter step 39a is an unquenched portion having a surface hardness of 25HRC or less after forging.

一方、内輪40は外周に内側転走面3aが形成され、内周には熱処理によって表面硬さが54〜64HRCの範囲に硬化された凹凸部29が形成されている。なお、内輪40はSUJ2等の高炭素クロム軸受鋼からなり、ズブ焼入れにより芯部まで58〜64HRCの範囲で硬化処理されている。ここで、ハブ輪39の肩部12に内輪40の小端面11が衝合され、突合せ状態になるまでハブ輪39に内輪40が外嵌される。さらに、ハブ輪39の小径段部39aの内径にマンドレル等の拡径治具を押し込んで小径段部39aを拡径し、この小径段部39aを内輪40の凹凸部29に食い込ませてハブ輪39と内輪40とが一体に塑性結合されている。   On the other hand, the inner ring 40 has an inner raceway surface 3a on the outer periphery, and an uneven portion 29 having a surface hardness of 54 to 64 HRC by heat treatment is formed on the inner periphery. The inner ring 40 is made of a high carbon chrome bearing steel such as SUJ2, and is hardened in the range of 58 to 64 HRC up to the core portion by quenching. Here, the small end face 11 of the inner ring 40 is abutted against the shoulder 12 of the hub ring 39, and the inner ring 40 is externally fitted to the hub ring 39 until it comes into a butted state. Further, a diameter expanding jig such as a mandrel is pushed into the inner diameter of the small diameter step portion 39a of the hub wheel 39 to increase the diameter of the small diameter step portion 39a, and this small diameter step portion 39a is bitten into the uneven portion 29 of the inner ring 40. 39 and the inner ring 40 are integrally plastically coupled.

本実施形態では、等速自在継手41を構成する外側継手部材42が内方部材38にトルク伝達可能に内嵌され、サークリップ43を介して内方部材38と外側継手部材42とが着脱可能に軸方向に結合されている。   In this embodiment, the outer joint member 42 constituting the constant velocity universal joint 41 is fitted into the inner member 38 so as to be able to transmit torque, and the inner member 38 and the outer joint member 42 are detachable via the circlip 43. Are connected in the axial direction.

本実施形態においても、前述した実施形態と同様、実測された内輪40外嵌後の軸受の軸方向すきまδ1と、実測された拡径加締前後の外方部材10の端面移動量ΔLから算出された拡径加締による軸受の軸方向すきま減少量Δδ、および、この拡径加締による軸受の軸方向すきま減少量Δδと内輪40外嵌後の軸受の軸方向すきまδ1から拡径加締後の軸受の軸方向すきま(負すきま)δを求めるようにしたので、軸受内部に封入された潤滑グリースの攪拌抵抗やシールのシメシロ等、バラツキ要因が内在する回転トルクを媒体とすることなく、実測値に基き軸受すきまを精度良く、かつ安定して設定することができる。   Also in the present embodiment, similarly to the above-described embodiment, calculation is made from the measured axial clearance δ1 of the bearing after the inner ring 40 is fitted and the measured end face movement amount ΔL of the outer member 10 before and after the diameter expansion caulking. The axial clearance reduction amount Δδ of the bearing due to the increased diameter caulking, the axial clearance reduction amount Δδ of the bearing due to the increased diameter caulking, and the axial clearance δ1 of the bearing after the inner ring 40 is externally fitted is expanded caulking. Since the axial clearance (negative clearance) δ of the subsequent bearing is obtained, the rotational torque that causes the dispersion factors such as the stirring resistance of the lubricating grease enclosed in the bearing and the squeeze of the seal is not used as a medium. The bearing clearance can be set accurately and stably based on the measured values.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、軸受部を構成するハブ輪あるいは等速自在継手の外側継手部材を塑性変形させてユニット化したセルフリテイン構造の車輪用軸受装置に適用することができる。   The wheel bearing device according to the present invention can be applied to a wheel bearing device having a self-retaining structure in which a hub wheel or an outer joint member of a constant velocity universal joint constituting a bearing portion is plastically deformed to form a unit.

本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. 組立過程の軸受のすきま測定方法を示す説明図で、(a)は、ハブ輪に内輪を圧入する過程を示し、(b)は、ハブ輪に内輪を圧入完了した状態を示す。It is explanatory drawing which shows the clearance measuring method of the bearing of an assembly process, (a) shows the process of press-fitting an inner ring in a hub ring, (b) shows the state which press-fitted the inner ring in the hub ring. 図1の実施形態における加締加工前の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing apparatus before the crimping process in embodiment of FIG. 軸受の軸方向すきま減少量と外方部材の端面移動量との関係を示すグラフである。It is a graph which shows the relationship between the axial direction clearance reduction amount of a bearing, and the end surface movement amount of an outer member. (a)は、基準面から外方部材の端面までの軸方向寸法を測定する方法を示す説明図である。 (b)は、他の基準面から外方部材の端面までの軸方向寸法を測定する方法を示す説明図である。(A) is explanatory drawing which shows the method of measuring the axial direction dimension from a reference plane to the end surface of an outward member. (B) is explanatory drawing which shows the method of measuring the axial direction dimension from another reference surface to the end surface of an outer member. 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. 組立過程の軸受のすきま測定方法を示す説明図で、(a)は、ハブ輪に外側継手部材を圧入する過程を示し、(b)は、ハブ輪に外側継手部材を圧入完了した状態を示す。It is explanatory drawing which shows the clearance measuring method of the bearing of an assembly process, (a) shows the process of press-fitting an outer joint member in a hub ring, (b) shows the state which press-fitted the outer joint member in the hub ring. . 図6の実施形態における拡径加締前の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing apparatus before the diameter expansion caulking in embodiment of FIG. 本発明に係る車輪用軸受装置の第3の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the wheel bearing apparatus which concerns on this invention. 本発明に係る車輪用軸受装置の第4の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 4th Embodiment of the wheel bearing apparatus which concerns on this invention. (a)は、従来の技術を説明するための概略図である。 (b)は、加締加工時間に対する揺動型加締装置の加締位置および回転トルクの変化を示すグラフである。(A) is the schematic for demonstrating the prior art. (B) is a graph which shows the change of the crimping position and rotational torque of a rocking type crimping apparatus with respect to the crimping process time.

符号の説明Explanation of symbols

1、21、34、38・・・・・内方部材
2、18、31、39・・・・・ハブ輪
2a、3a、18a、22a・・内側転走面
2b、18b、37a、39a・小径段部
2c・・・・・・・・・・・・・セレーション
2d・・・・・・・・・・・・・加締部
3、40・・・・・・・・・・・内輪
4・・・・・・・・・・・・・・車輪取付フランジ
5・・・・・・・・・・・・・・ハブボルト
6・・・・・・・・・・・・・・転動体
7・・・・・・・・・・・・・・保持器
8、9・・・・・・・・・・・・シール
10・・・・・・・・・・・・・外方部材
10a・・・・・・・・・・・・外側転走面
10b・・・・・・・・・・・・車体取付フランジ
11・・・・・・・・・・・・・小端面
12、27、37・・・・・・・肩部
13・・・・・・・・・・・・・内輪の基準面
14・・・・・・・・・・・・・ハブ輪の基準面
15・・・・・・・・・・・・・パイロット部
16・・・・・・・・・・・・・外方部材の基準面
17・・・・・・・・・・・・・凹所
19、32・・・・・・・・・・複列の転がり軸受
20、33、41・・・・・・・等速自在継手
22、36、42・・・・・・・外側継手部材
23・・・・・・・・・・・・・継手内輪
24・・・・・・・・・・・・・ケージ
25・・・・・・・・・・・・・トルク伝達ボール
28、35・・・・・・・・・・軸部
28a、35a・・・・・・・・インロウ部
28b、35b・・・・・・・・嵌合部
29・・・・・・・・・・・・・凹凸部
30・・・・・・・・・・・・・外側継手部材の基準面
43・・・・・・・・・・・・・サークリップ
B1、B2・・・・・・・・・・定盤
L1、L2・・・・・・・・・・基準面から外方部材の端面までの軸方向寸法
S・・・・・・・・・・・ハブ輪の肩部と内輪の小端面又は外側継手部材の肩部との間隔
T0、T1・・・・・・・・・・基準面間の軸方向寸法
ΔL・・・・・・・・・・・・・外方部材の端面移動量
Δδ・・・・・・・・・・・・・軸受の軸方向すきま減少量
δ0、δ1・・・・・・・・・・軸受の軸方向すきま
50・・・・・・・・・・・・・車輪用軸受装置
51・・・・・・・・・・・・・予圧モニター装置
52・・・・・・・・・・・・・外方部材
52a・・・・・・・・・・・・車体取付フランジ
53・・・・・・・・・・・・・歯車
54・・・・・・・・・・・・・駆動用歯車
55・・・・・・・・・・・・・モータ
56・・・・・・・・・・・・・トルク検出器
57・・・・・・・・・・・・・判定器
58・・・・・・・・・・・・・揺動型加締装置
58a・・・・・・・・・・・・加締型
59、60・・・・・・・・・・シール
A・・・・・・・・・・・・・・加締型の位置
T・・・・・・・・・・・・・・回転トルク
t、t0、t1・・・・・・・・加締時間
Δ・・・・・・・・・・・・・・回転トルクの変動幅
1, 2, 34, 38... Inner members 2, 18, 31, 39... Hub wheels 2a, 3a, 18a, 22a .. Inner rolling surfaces 2b, 18b, 37a, 39a. Small diameter step 2c ········· Serration 2d ······················································ 4 ... Wheel mounting flange 5 ... Hub bolt 6 ... Roll Moving body 7 ... Cage 8, 9 ... Seal 10 ... Outside Member 10a ... Outer rolling surface 10b ... Car body mounting flange 11 ... Small end face 12, 27, 37 ... shoulder 13 ...・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Inner ring reference surface 14 ・ ・ ・ ・ ・ ・ ・ ・ Hub wheel reference surface 15 ・ ・ ・ ・ ・ ・ ・ ・ Pilot part 16 ・ ・ ・········ Reference surface 17 of outer member ········································································ 20, 33, 41 ... Constant velocity universal joints 22, 36, 42 ... Outer joint member 23 ... Inner joint ring 24 ... ····················································· Torque transmission balls 28, 35 ... In-row parts 28b and 35b ... Fitting part 29 ... Uneven part 30 ...・ Reference surface 43 of the outer joint member ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・・ Circlip B1, B2 ・ ・ ・ ・ ・ ・ Surface L1, L2 ・ ・ ・ ・ ・ ・ Axial dimension S from the reference surface to the end face of the outer member ········ Tap, T1 between the shoulder portion of the hub wheel and the small end surface of the inner ring or the shoulder portion of the outer joint member ··· An axial dimension ΔL between the reference surfaces・ ・ ・ ・ ・ ・ ・ ・ ・ ・ End face movement of outer member Δδ ・ ・ ・ ・ ・ ・ ・ ・ Axial clearance reduction amount δ0, δ1 ・ ・ ・ ・ ・ ・ ・ ・ ・・ Bearing axial clearance 50 ・ ・ ・ ・ ・ ・ ・ ・ Bearing bearing device 51 ・ ・ ・ ・ ・ ・ ・ ・ Preload monitoring device 52 ・ ・ ・ ・ ・ ・ ・ ・...... Outer member 52a ......... Car body mounting flange 53 ......... Gear 54 ... ... Drive gear 55 ...・ ・ ・ ・ Motor 56 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Torque detector 57 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Determinator 58 ・ ・ ・ ・ ・ ・..Oscillating type caulking device 58a ... caulking die 59, 60 ... seal A ... ... Positioning die position T ... Torque torque t, t0, t1 ... Clamping time Δ ... .... Rotational torque fluctuation range

Claims (3)

外周に車体取付フランジを一体に有し、内周に複列の外側転走面が形成された外方部材と、
一端部に車輪取付フランジを一体に有し、外周に前記複列の外側転走面の一方に対向する内側転走面と、この内側転走面から軸方向に延びる小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に圧入され、外周に前記複列の外側転走面の他方に対向する内側転走面が形成された内輪なる内方部材と、
この内方部材と前記外方部材間に転動自在に収容された複列の転動体を備え、前記ハブ輪の小径段部の端部を径方向に塑性変形させて形成した加締部により前記内輪が軸方向に固定された車輪用軸受装置の軸受すきま測定方法において、
前記ハブ輪に前記内輪を圧入する際に、すきまが正の状態で圧入を一旦止め、この状態における前記ハブ輪と前記内輪の基準面間の軸方向寸法T0と初期軸方向すきまδ0を実測し、さらに圧入を続行して圧入が完了した後、前記ハブ輪と前記内輪の基準面間の軸方向寸法T1を実測し、この状態における軸方向すきまδ1を式δ1=δ0−(T0−T1)に基いて求めると共に、前記内方部材の塑性結合前後に実測された前記外方部材の端面位置の差からその端面移動量が算出され、この外方部材の端面移動量を、予め設定された軸受の軸方向すきま減少量と外方部材の端面移動量の関係式に当てはめることにより、塑性結合による軸受の軸方向すきま減少量Δδを求め、この軸受の軸方向すきま減少量Δδを、前記内方部材を塑性結合する前に実測された前記軸方向すきまδ1から減算することにより塑性結合後の軸受の軸方向すきまδを求めることを特徴とする車輪用軸受装置の軸受すきま測定方法。
An outer member integrally having a vehicle body mounting flange on the outer periphery, and a double row outer rolling surface formed on the inner periphery;
A wheel mounting flange is integrally formed at one end, and an inner rolling surface facing one of the double row outer rolling surfaces and a small-diameter step portion extending in the axial direction from the inner rolling surface are formed on the outer periphery. A hub ring, and an inner member that is an inner ring that is press-fitted into a small-diameter step portion of the hub ring and has an inner rolling surface that is opposed to the other outer rolling surface of the double row on the outer periphery;
A double row rolling element that is rotatably accommodated between the inner member and the outer member, and a crimping portion that is formed by plastically deforming the end portion of the small diameter step portion of the hub wheel in the radial direction. In the bearing clearance measuring method of the wheel bearing device in which the inner ring is fixed in the axial direction ,
When press-fitting the annulus to the wheel hub, it stopped once the press-fit clearance is positive state, the axial dimension T0 the initial axial clearance δ0 between the reference surface of the inner wheel and the hub wheel in this state after the actually measured, is pressed to continue the further press-fitting has been completed, the actually measured axial dimension T1 between the reference surface of the hub wheel and the inner wheel, the axial clearance .delta.1 in this state equation δ1 = δ0- (T0 -T1), the end face movement amount is calculated from the difference in the end face position of the outer member measured before and after the plastic coupling of the inner member, and the end face movement amount of the outer member is calculated in advance. By applying the set relationship between the axial clearance reduction amount of the bearing and the end face movement amount of the outer member, the axial clearance reduction amount Δδ of the bearing due to plastic coupling is obtained, and the axial clearance reduction amount Δδ of this bearing is calculated. Before the inner member is plastically bonded A bearing clearance measuring method for a wheel bearing device, characterized in that an axial clearance δ of a bearing after plastic coupling is obtained by subtracting from the actually measured axial clearance δ1.
前記外方部材の端面移動量が、前記内方部材の塑性結合前後における前記外方部材の基準面から前記ハブ輪の基準面までの軸方向寸法の差とした請求項1に記載の車輪用軸受装置の軸受すきま測定方法。   2. The wheel use according to claim 1, wherein an end face movement amount of the outer member is a difference in axial dimension from a reference surface of the outer member to a reference surface of the hub wheel before and after plastic coupling of the inner member. Bearing clearance measurement method for bearing devices. 前記外方部材の端面位置が、定盤に前記ハブ輪の基準面が接触するように前記車輪用軸受装置を縦置きした状態で載置して測定される請求項1または2に記載の車輪用軸受装置の軸受すきま測定方法。
The wheel according to claim 1 or 2, wherein the position of the end surface of the outer member is measured by placing the wheel bearing device in a vertical state so that a reference surface of the hub wheel contacts a surface plate. For measuring bearing clearance of bearing equipment.
JP2004260573A 2004-09-08 2004-09-08 Bearing clearance measurement method for wheel bearing device Expired - Fee Related JP4408251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004260573A JP4408251B2 (en) 2004-09-08 2004-09-08 Bearing clearance measurement method for wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260573A JP4408251B2 (en) 2004-09-08 2004-09-08 Bearing clearance measurement method for wheel bearing device

Publications (2)

Publication Number Publication Date
JP2006077830A JP2006077830A (en) 2006-03-23
JP4408251B2 true JP4408251B2 (en) 2010-02-03

Family

ID=36157464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260573A Expired - Fee Related JP4408251B2 (en) 2004-09-08 2004-09-08 Bearing clearance measurement method for wheel bearing device

Country Status (1)

Country Link
JP (1) JP4408251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123833A (en) * 2016-06-12 2016-11-16 杭州电子科技大学 A kind of auto pump shaft connecting bearing end-play measures equipment
CN110285744A (en) * 2019-08-07 2019-09-27 重庆齿轮箱有限责任公司 The measuring device and its measurement method of power shift gear bearing axial play

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315069B2 (en) 2011-06-20 2016-04-19 Ntn Corporation Wheel bearing apparatus and its pre-pressure managing method
JP2013032093A (en) * 2011-08-02 2013-02-14 Ntn Corp Bearing device for wheel and preload management method thereof
WO2012176787A1 (en) * 2011-06-20 2012-12-27 Ntn株式会社 Wheel bearing device and preload-controlling method therefor
CN104713447A (en) * 2015-04-04 2015-06-17 宁波钜智自动化装备有限公司 Test tool for inner-high-pressure-shaped complicated automobile tube beams
CN107941630B (en) * 2017-11-28 2024-03-29 中车戚墅堰机车车辆工艺研究所股份有限公司 Test device and method for measuring limit torque
JP6806827B2 (en) * 2019-03-04 2021-01-06 Ntn株式会社 Preload inspection method and assembly method for wheel bearing equipment
JP7049297B2 (en) 2019-09-26 2022-04-06 Ntn株式会社 Preload inspection method for wheel bearing devices
CN110793487B (en) * 2019-12-11 2021-02-09 湖北新火炬科技有限公司 Method for detecting negative clearance of hub bearing
CN111272118B (en) * 2020-02-23 2021-04-30 杭州电子科技大学 Locking type rotating shaft-based joint optimal configuration method for coordinate measuring machine
CN111947612B (en) * 2020-09-02 2022-02-22 重庆长江轴承股份有限公司 Automobile wheel hub bearing outer flange axial groove position measuring device
CN116576756B (en) * 2023-07-14 2023-10-13 临清市万达轴承有限公司 Batch detection device for gap between inner rings of bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123833A (en) * 2016-06-12 2016-11-16 杭州电子科技大学 A kind of auto pump shaft connecting bearing end-play measures equipment
CN106123833B (en) * 2016-06-12 2018-11-02 杭州电子科技大学 A kind of auto pump shaft connecting bearing end-play measuring apparatus
CN110285744A (en) * 2019-08-07 2019-09-27 重庆齿轮箱有限责任公司 The measuring device and its measurement method of power shift gear bearing axial play
CN110285744B (en) * 2019-08-07 2021-05-28 重庆齿轮箱有限责任公司 Device and method for measuring axial clearance of gear shifting gear bearing

Also Published As

Publication number Publication date
JP2006077830A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4969980B2 (en) Assembly method for wheel bearing device
JP6009149B2 (en) Manufacturing method of wheel bearing device
JP4408251B2 (en) Bearing clearance measurement method for wheel bearing device
WO2002102608A1 (en) Bearing device for drive wheel and method of manufacturing the bearing device
JP2008002578A (en) Bearing unit for drive wheel
JP2009149183A (en) Bearing device for wheel
JP3930675B2 (en) Wheel bearing device and bearing clearance management method thereof
JP2001180210A (en) Wheel bearing device
JP4386349B2 (en) Wheel bearing device
JP2007069704A (en) Bearing device for driving wheel
JP4353870B2 (en) Method of measuring clearance of wheel bearing device
JP2006214506A (en) Method of measuring bearing preload amount of bearing device for wheel
JP4607081B2 (en) Drive axle bearing device
KR20160103564A (en) Wheel bearing
JP5331334B2 (en) Drive wheel bearing device
JP2006144949A (en) Bearing clearance measuring method of vehicle bearing device
JP2007192298A (en) Bearing device for wheel
JP2007139073A (en) Wheel bearing device and its assembling method
JP2008106904A (en) Manufacturing method for wheel bearing device
JP3930673B2 (en) Method for manufacturing drive wheel bearing device
JP2006052753A (en) Bearing device for wheel
JP2006349190A5 (en)
CN114364893A (en) Method for checking preload of wheel bearing device
JP2007211946A (en) Bearing device for wheel
JP2005319889A (en) Bearing device for driving wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees