WO2012176787A1 - Wheel bearing device and preload-controlling method therefor - Google Patents

Wheel bearing device and preload-controlling method therefor Download PDF

Info

Publication number
WO2012176787A1
WO2012176787A1 PCT/JP2012/065690 JP2012065690W WO2012176787A1 WO 2012176787 A1 WO2012176787 A1 WO 2012176787A1 JP 2012065690 W JP2012065690 W JP 2012065690W WO 2012176787 A1 WO2012176787 A1 WO 2012176787A1
Authority
WO
WIPO (PCT)
Prior art keywords
spline
ring
wheel
hub
coupler ring
Prior art date
Application number
PCT/JP2012/065690
Other languages
French (fr)
Japanese (ja)
Inventor
小森 和雄
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011169077A external-priority patent/JP2013032093A/en
Priority claimed from JP2012130707A external-priority patent/JP5988713B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2012176787A1 publication Critical patent/WO2012176787A1/en
Priority to US14/136,333 priority Critical patent/US9315069B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0047Hubs characterised by functional integration of other elements
    • B60B27/0068Hubs characterised by functional integration of other elements the element being a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2900/00Purpose of invention
    • B60B2900/30Increase in
    • B60B2900/311Rigidity or stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/60Positive connections with threaded parts, e.g. bolt and nut connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2229/00Setting preload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Definitions

  • the present invention relates to a wheel bearing device for rotatably supporting a wheel of an automobile or the like, and more particularly to a wheel bearing device having a clutch function for switching a wheel between driving and non-driving and a preload management method thereof.
  • Some four-wheel drive vehicles allow front wheels or rear wheels to be selectively switched to driven wheels by the clutch function provided in the wheel bearing device.
  • a wheel bearing device 50 with a clutch function is fitted on a hub shaft 52 that is coaxially mounted on an axle 51 of a drive train, and is fitted on the center of the hub shaft 52 in the axial direction.
  • the wheel bearing device 50 is coaxially supported on the axle 51 by a deep groove ball bearing 55 and a needle roller bearing 56 disposed between the axle 51 and the hub shaft 52.
  • G is a gear ring that is slidable in the axial direction.
  • the hub shaft 52 includes a sleeve portion 57 formed coaxially with the axle 51, a flange portion 58 formed on one end side (wheel side) of the sleeve portion 57 and extending radially outward, and a sleeve And a bent portion 59 formed on the other end side (the vehicle body center side) of the portion 57 and bent outward in the radial direction. Further, a spline portion 60 in which a plurality of spline grooves (spline grooves) 60 a and a plurality of spline protrusions 60 b are alternately formed is formed on the outer peripheral surface of the sleeve portion 57 in the vicinity of the bent portion 59.
  • the spline portion 60 is configured to mesh with an inner peripheral side spline portion 61 formed on the inner peripheral surface of the coupler ring 54. Further, a through hole (fastening hole) 58a is formed in the flange portion 58, and a wheel of a wheel as a rotating body (see FIG. 5) is obtained by passing a fastening member BO such as a bolt through the through hole (fastening hole) 58a. (Not shown).
  • the double-row tapered roller bearing 53 includes an inner ring 62, an outer ring 63, and tapered rollers 64 and 65 as rolling elements that are interposed between the inner and outer rings 62 and 63 and are arranged in two rows in the axial direction.
  • the inner ring 62 is divided into a first inner ring member 66 having a first track portion 66a and a second inner ring member 67 having a second track portion 67a.
  • the first inner ring member 66 and the second inner ring member 67 are in contact with each other, and the end surface 66b on the first inner ring member 66 side is in contact with the root portion of the flange portion 58 of the hub shaft 52.
  • the end surface 67 b on the inner ring member 67 side of 2 is in contact with the end surface of the coupler ring 54. Therefore, the inner ring 62 (the first inner ring member 66 and the first inner ring member 66 and the double ring tapered roller bearing 53) is formed between the root portion of the flange portion 58 of the hub shaft 52 and the bent portion 59 of the hub shaft 52.
  • the second inner ring member 67) is fixed and is configured so as not to rotate with respect to the hub shaft 52.
  • the outer ring 63 has a first raceway portion 63a and a second raceway portion 63b, and a flange portion 63c extending outward in the radial direction.
  • the flange portion 63c is attached and fixed to a steering knuckle (suspension device) or the like of the vehicle body.
  • Reference numeral 68 denotes a seal member.
  • the coupler ring 54 is annular as a whole, and is arranged side by side in the axial direction so as to contact the other end side surface (end surface 67b on the second inner ring member 67 side) of the double row tapered roller bearing 53.
  • An outer peripheral side spline portion 69 in which a plurality of spline grooves (spline grooves) 69a and a plurality of spline protrusions 69b are alternately formed is formed on the outer peripheral surface of 54.
  • the outer peripheral side spline portion 69 is configured to mesh with the spline portion G1 of the gear ring G.
  • the inner peripheral edge portion of the inner peripheral side spline portion 61 of the coupler ring 54 on the other end side in the axial direction of the spline protrusion 61b is chamfered into a curved surface so that the other end side surface is chamfered.
  • the other end side chamfer 70 is formed so that the entirety thereof is positioned on the outer side in the axial direction than the spline part 60 of the hub shaft 52.
  • the distance from the side surface 71 on the other end side in the axial direction of the coupler ring 54 to the one end portion (on the spline portion 60 side of the hub shaft 52) 71a of the other end side chamfer 70 is L, and the axial direction of the coupler ring 54
  • the distance L is formed to be smaller than the distance X. Yes.
  • the root portion of the bent portion 59 has a shape along the shape of the side surface chamfered portion 70 of the coupler ring 54, and as shown by the broken line in the figure, the bent portion 59 is bent.
  • the root portion of the portion 59 has a V shape in which stress is easily concentrated. As a result, the strength of the bent portion 59 may not only fluctuate, but the caulking strength may decrease.
  • the present invention has been made in view of such circumstances, and caulking cracks or cracks occur during use at the root of the caulking portion (folded portion) of the hub wheel (hub shaft) during caulking.
  • An object of the present invention is to provide a wheel bearing device that effectively suppresses the above and improves durability.
  • Another object of the present invention is to provide a coupler ring that is soft to some extent, thereby preventing excessive stress from being generated in the coupler ring, increasing the strength of the coupler ring, suppressing variations, and maintaining stable preload management. It is providing the wheel bearing apparatus which can perform, and its preload management method.
  • the invention according to claim 1 of the present invention includes an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel attachment for attaching a wheel to one end.
  • a hub wheel having a flange integrally formed with a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and at least one inner ring press-fitted into the small-diameter step portion of the hub ring via a predetermined shimiro
  • An inner member having a double-row inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a cage between both rolling surfaces of the inner member and the outer member.
  • a coupler ring having an inner peripheral spline portion and an outer peripheral spline portion is externally fitted to an end portion of the small diameter step portion of the hub wheel,
  • the inner ring is formed by a caulking portion formed by plastically deforming the end of the step portion radially outward.
  • the inner peripheral spline portion of the coupler ring is formed with a plurality of spline concave stripes and a plurality of spline convex stripes alternately.
  • the hub spline formed by a plurality of spline ridges and a plurality of spline ridges alternately formed on the outer peripheral surface on the inner side of the small-diameter step portion meshes with the end surface of the spline ridge of the hub spline portion with a predetermined curvature.
  • a radius of curvature R is larger than a dimension A (R> A) from the inner side end face of the coupler ring to the edge of the spline ridge, and It is set to be larger than the height h of the spline ridge (R> h).
  • the coupler ring formed with the inner peripheral spline portion and the outer peripheral spline portion is fitted on the end portion of the small diameter step portion of the hub wheel, and the end portion of the small diameter step portion is plastically deformed radially outward.
  • the inner peripheral spline portion of the coupler ring is formed with a plurality of spline grooves and a plurality of spline protrusions alternately.
  • a hub spline portion composed of a plurality of spline ridges and a plurality of spline ridges formed alternately on the outer peripheral surface on the inner side of the small-diameter step portion of the hub wheel, and the spline ridges of the hub spline portion
  • the end face is formed by a single arc having a predetermined radius of curvature R, and this radius of curvature R is larger than the dimension A from the end face on the inner side of the coupler ring to the edge of the spline ridge. (R> A) and larger than the height h of the spline ridge (R> h), the root portion of the caulking portion after caulking is large and rounded.
  • a tapered surface is formed on at least the inner diameter of the inner end of the spline ridges in the inner peripheral spline of the coupler ring, and the starting point of the tapered surface
  • the caulking part can easily follow the inner diameter of the coupler ring during caulking. It is possible to prevent the portion from being V-shaped where stress is easily concentrated.
  • a tapered chamfered portion is formed on the inner diameter of at least the inner end of the both ends of the coupler ring, and a radial dimension H1 of the chamfered portion is: If the height of the spline ridge of the inner peripheral spline portion is set to be larger than H0 (H1 ⁇ H0), the coupler ring is engaged with the hub spline portion and the caulking portion It is difficult for the spline ridge to be formed due to the root portion entering, and even when a load is applied to the caulking portion, it is possible to prevent the stress from concentrating on the spline ridge and reducing the strength.
  • a tapered chamfered portion may be formed at least at the end on the inner side of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring.
  • an arc-shaped chamfered portion having a predetermined radius of curvature is provided at least at the inner side end portion of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring. It may be formed. Thereby, the volume of a spline protruding item
  • the spline groove on the inner peripheral spline portion of the coupler ring is stopped at the inner end to form a non-groove portion, Spline ridges are less likely to be formed at the base of the part, and stress concentration can be avoided.
  • the coupler ring is made of a steel material having a carbon content of medium carbon steel or less, and is hardened to the core portion by quenching, so that the outer peripheral spline portion and the inner peripheral spline portion are If the hardness is set to the same level, it is possible to prevent excessive stress from being generated in the coupler ring during the caulking process, thereby preventing deformation and microcracks, and the coupler ring is plastically deformed by caulking. Since it is difficult, the amount of elastic deformation can be measured with high accuracy, high accuracy, and stable preload management can be performed while suppressing variations.
  • the surface hardness of the coupler ring has a hardness difference of at least 130 HV with respect to the hub wheel, only the outer peripheral spline portion and the inner peripheral spline portion of the coupler ring.
  • the entire coupler ring can secure the desired strength, and when forming the crimped portion, the end of the small diameter step of the hub wheel can be plastically deformed radially outward, It is possible to prevent a caulking defect such as a micro crack from occurring.
  • the coupler ring when the coupler ring is contained in the range of 0.09 to 0.12 wt% Cr and the surface hardness is set in the range of 392 to 600 HV, the strength of the coupler ring is high. Thus, it is possible to prevent deformation and microcracks from occurring when excessive stress is generated in the caulking process.
  • the coupler ring is made of a steel material made of carbon of 0.15 to 0.45 wt%, a spline portion having an appropriate hardness can be obtained, and a desired value can be obtained. The strength of the coupler ring can be ensured.
  • the coupler ring when the coupler ring is made of chromium steel containing 0.12 to 0.2 wt% of Cr and is hardened by quenching and tempering, the strength of the coupler ring is increased. In the caulking step, it is possible to prevent deformation and micro cracks from being generated due to excessive stress in the coupler ring.
  • the coupler ring is formed of chromium molybdenum steel containing 0.15 to 0.3 wt% of Mo, brittleness can be suppressed, and caulking work can be performed. It is possible to reliably prevent occurrence of minute cracks.
  • the tooth bottom of the outer peripheral spline portion of the coupler ring is formed in an arc shape having a predetermined radius of curvature, the force during caulking is dispersed, and the tooth bottom Can be prevented.
  • an outer joint member constituting a constant velocity universal joint is coupled to the inner member, and the outer peripheral surface of the outer joint member is the same as the outer peripheral spline portion of the coupler ring.
  • An axle side spline portion having the same diameter and the same shape is formed, and the outer peripheral spline portion and the axle side spline portion are arranged coaxially with each other, and the drive side is slidable in the axial direction on the axle side spline portion.
  • the inner peripheral spline part of the gear ring may be engaged.
  • the hub wheel is made of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon, and is formed from the base portion on the inner side of the wheel mounting flange to the small diameter step portion. If a predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening, and the caulking portion is an unquenched portion with the surface hardness after forging, caulking is performed. This makes it easy to prevent the occurrence of microcracks during processing, and has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange, thereby improving the durability of the hub wheel.
  • the method invention according to claim 17 integrally has a vehicle body mounting flange to be attached to the knuckle constituting the suspension device on the outer periphery, and a double row outer rolling surface is integrated on the inner periphery.
  • the hub wheel includes: Addition formed by plastically deforming the end of the small diameter step part radially outward The inner ring is fixed in the axial direction with a predetermined bearing preload applied through a ring-shaped coupler ring by a portion, and the bearing clearance before caulking is measured, and the reference surface of the coupler ring before and after caul
  • the height from the reference surface of the coupler ring before and after caulking is measured, and the amount of change in the height is determined by a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction is confirmed in advance. Since the bearing clearance after caulking is calculated by subtracting this clearance reduction amount from the bearing clearance before caulking, even if the bearing clearance after caulking is negative, it is indirectly preloaded. The amount can be controlled stably.
  • the wheel bearing device integrally has an outer member integrally formed with a double row outer rolling surface on the inner periphery, and a wheel mounting flange for mounting the wheel on one end, and on the outer periphery.
  • the hub wheel is formed with a cylindrical small-diameter step portion extending in the axial direction, and at least one inner ring press-fitted into the small-diameter step portion of the hub ring through a predetermined shimoshiro.
  • a coupler ring formed with an inner peripheral spline portion and an outer peripheral spline portion is fitted on the end portion of the small diameter step portion of the hub wheel, and the end portion of the small diameter step portion is radially outward.
  • the inner ring passes through the coupler ring by a caulking portion formed by plastic deformation in the direction of In the wheel bearing device fixed in the direction, the inner peripheral spline portion of the coupler ring includes a plurality of spline concave stripes and a plurality of spline convex stripes alternately formed on the inner side of the small diameter step portion of the hub wheel.
  • a hub spline portion composed of a plurality of spline ridges and a plurality of spline ridges alternately formed on the outer peripheral surface meshes with each other, and the end surface of the spline ridge of the hub spline portion has a single radius of curvature R.
  • An arc is formed, and this radius of curvature R is larger than the dimension A (R> A) from the inner end surface of the coupler ring to the end edge of the spline ridge, and the height h of the spline ridge is h.
  • the preload management method for a wheel bearing device integrally has a vehicle body mounting flange for mounting on a knuckle that constitutes a suspension device on the outer periphery, and a double row outer rolling surface is integrated on the inner periphery.
  • the hub wheel includes: The end of the small diameter step was formed by plastic deformation radially outward.
  • the inner ring is fixed in the axial direction with a predetermined bearing preload applied via a ring-shaped coupler ring by a tightening portion, and the bearing clearance before caulking is measured, and the reference of the coupler ring before and after caulking Measure the height from the surface, and calculate the amount of change in the height using a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction has been confirmed in advance. Since the bearing clearance after caulking is calculated by subtracting the clearance reduction amount, the preload amount can be indirectly and stably managed even if the bearing clearance after caulking is negative.
  • FIG. 1 It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. It is a longitudinal cross-sectional view which shows the bearing part of FIG. (A) is a principal part enlarged view which shows the crimping part of FIG. 1, (b) is a principal part enlarged view which shows a caulking before the same as the above.
  • A) is sectional drawing which shows the modification of the coupler ring of FIG. 3
  • (b) is sectional drawing which shows another modification.
  • A)-(c) is sectional drawing which shows the other modification of the coupler ring of Fig.4 (a).
  • FIG. 1 It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. It is a principal part enlarged view which shows the crimping part of FIG. (A) is sectional drawing of the coupler ring which concerns on this invention, (b) is sectional drawing which shows the modification of (a). It is a longitudinal cross-sectional view which shows before the caulking of the wheel bearing apparatus which concerns on this invention. It is a longitudinal cross-sectional view which shows the conventional wheel bearing apparatus. It is a principal part enlarged view of FIG.
  • An outer member that integrally has a vehicle body mounting flange for attaching to a knuckle on the outer periphery, and has a tapered double-row outer rolling surface integrally formed on the inner periphery, and a wheel on one end
  • a hub wheel integrally having a wheel mounting flange for mounting a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and press-fitted into the small-diameter step portion of this hub ring via a predetermined shimiro
  • An inner member composed of a pair of inner rings having a tapered inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and between both rolling surfaces of the inner member and the outer member
  • the end of the small diameter step is plastically deformed radially outward.
  • the inner peripheral spline portion of the coupler ring has a plurality of spline grooves and a plurality of spline protrusions alternately.
  • a hub spline portion formed of a plurality of spline recesses and a plurality of spline projections formed alternately on the outer peripheral surface on the inner side of the small-diameter step portion of the hub wheel, and the spline of the hub spline portion
  • the end face of the ridge is formed by a single arc having a predetermined radius of curvature R, and this radius of curvature R is larger than the dimension A from the end face on the inner side of the coupler ring to the edge of the spline ridge ( R> A), set to be larger than the height h of the spline ridge (R> h), and the groove diameter of the spline groove of the hub spline portion Da, when the inner diameter of the spline ridge of the inner peripheral spline portion in the coupler ring is Db, the inner diameter Db of the spline ridge is larger than the groove diameter Da of the spline ridge of the hub
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention
  • FIG. 2 is a longitudinal sectional view showing a bearing portion of FIG. 1
  • FIG. Fig. 4 (b) is an enlarged view of the main part showing the fastening part
  • Fig. 4 (a) is a cross-sectional view showing a modification of the coupler ring of Fig. 3
  • Fig. 4 (b) is the same.
  • FIG. 5 is a cross-sectional view showing another modification
  • FIG. 5 is an enlarged view of a main part before caulking using the coupler ring of FIG. 4A
  • FIGS. 6A to 6C are FIG.
  • the wheel bearing device includes an inner member 1 and an outer member 2, and double row rolling elements (conical rollers) 3 and 3 accommodated between both members 1 and 2 so as to be freely rollable.
  • the inner member 1 includes a hub ring 4 and a pair of inner rings 5 and 7 plastically coupled to the hub ring 4.
  • the hub wheel 4 integrally has a wheel mounting flange 6 for mounting a wheel (not shown) at an end portion on the outer side, and has a cylindrical shape that extends in the axial direction from the wheel mounting flange 6 to the outer periphery via a shoulder portion 4a.
  • the small diameter step 4b is formed.
  • hub bolts 6 a for fixing the wheels at the circumferentially equidistant positions of the wheel mounting flange 6 are planted.
  • the pair of inner rings 5 and 7 each have a tapered inner rolling surface 5a formed on the outer periphery, and are press-fitted into the small-diameter step portion 4b of the hub ring 4 via a predetermined squeeze. Then, as shown in an enlarged view in FIG. 2, large collar portions 5b and 7b for guiding the rolling element 3 are formed on the large diameter side of the inner rolling surface 5a, and the rolling element 3 is formed on the small diameter side.
  • Conical roller bearings are configured.
  • the outer member 2 integrally has a vehicle body mounting flange 2b to be attached to a knuckle (not shown) constituting a suspension device on the outer periphery, and has a taper-shaped double-row outer roll that opens outward on the inner periphery.
  • the running surfaces 2a and 2a are integrally formed.
  • the double row rolling elements 3 and 3 are accommodated so that rolling is possible via the holder
  • An annular groove 9 is formed on the outer diameter surface fitted into the knuckle, and an elastic ring 10 such as an O-ring is attached to the annular groove 9. Thereby, the airtightness of the fitting part of a knuckle and the outward member 2 can be improved.
  • the hub wheel 4 is formed of medium-high carbon steel (carbon steel for SC system mechanical structure of JIS standard) containing carbon of 0.40 to 0.80 wt% such as S53C, and has a high frequency extending from the shoulder portion 4a to the small diameter step portion 4b.
  • a predetermined hardened layer having a surface hardness in the range of 50 to 64 HRC is formed by quenching.
  • the inner rings 5 and 7 and the rolling element 3 are made of high carbon chrome bearing steel such as SUJ2, and are hardened in the range of 58 to 64 HRC to the core part by quenching.
  • the caulking portion 11 described later is an unquenched portion with the surface hardness after forging. This facilitates caulking and prevents the occurrence of microcracks during processing, and has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 6, and the durability of the hub wheel 4. Improves.
  • the outer member 2 is formed of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, similar to the hub wheel 4, and at least the double row outer raceway surfaces 2a and 2a are formed on the surface by induction hardening. A predetermined curing process is performed in the range of 58 to 64 HRC. Seals 12 and 12 are attached to the opening of the annular space formed between the outer member 2 and the inner rings 5 and 7, leakage of the lubricating grease sealed inside the bearing, rainwater, dust, etc. from the outside Is prevented from entering the inside of the bearing.
  • the seal 12 is constituted by a so-called pack seal composed of a slinger 39 and an annular seal plate 40 arranged to face each other.
  • Slinger 39 is an austenitic stainless steel sheet (JIS standard SUS304 series, etc.), a ferritic stainless steel sheet (JIS standard SUS430 series, etc.), or a rust-proof cold rolled steel sheet (JIS standard SPCC system, etc.).
  • a cylindrical portion 39a having a substantially L-shaped cross section by press working and press-fitted into the large collar portion 7b (5b) of the inner rings 5, 7, and a standing plate portion extending radially outward from the cylindrical portion 39a 39b.
  • the seal plate 40 includes a cored bar 41 fitted into the end portion of the outer member 2 and a seal member 42 integrally joined to the cored bar 41 by vulcanization adhesion.
  • the cored bar 41 is formed in a substantially L-shaped cross section by press working from an austenitic stainless steel plate or a cold-rolled steel plate that has been rust-proofed.
  • the seal member 42 is made of a synthetic rubber such as NBR (acrylonitrile-butadiene rubber), and integrally includes a pair of side lips 42a and 42b extending obliquely outward in the radial direction and a grease lip 42c extending obliquely inward of the bearing.
  • NBR acrylonitrile-butadiene rubber
  • the side lips 42a and 42b are in sliding contact with the side surface of the standing plate portion 39b of the slinger 39 via a predetermined axial shimiro, and the grease lip 42c is slid onto the cylindrical portion 39a of the slinger 39 via a predetermined radial shimillo. It touches.
  • the material of the seal member 42 in addition to the exemplified NBR, for example, HNBR (hydrogenated acrylonitrile butadiene rubber), EPDM (ethylene propylene rubber), etc. having excellent heat resistance, heat resistance, chemical resistance, etc.
  • HNBR hydrogenated acrylonitrile butadiene rubber
  • EPDM ethylene propylene rubber
  • examples thereof include ACM (polyacrylic rubber), FKM (fluororubber), and silicon rubber, which are excellent in the above.
  • the rotational speed sensor 13 is inserted between the double row outer rolling surfaces 2a, 2a of the outer member 2 into a sensor insertion hole 14 formed so as to penetrate in the radial direction.
  • This rotational speed sensor 13 incorporates a magnetic detecting element such as a Hall element, a magnetoresistive element (MR element) or the like that changes its characteristics according to the flow direction of magnetic flux, and a waveform shaping circuit that adjusts the output waveform of this magnetic detecting element.
  • the synthetic resin is integrally molded by injection molding. And it has the shaft-shaped insertion part 13a inserted in the sensor insertion hole 14, and the non-insertion part 13b located in the exterior of the outer member 2. As shown in FIG.
  • An annular groove 15 is formed on the outer periphery of the insertion portion 13a, and an elastic ring 16 made of an O-ring or the like is attached to the annular groove 15. Moreover, the non-insertion part 13b is formed in the shape seated on the sensor attachment part 17 of the outer member 2, and is fastened via the attachment piece (not shown) extended to a side.
  • a pulsar ring 18 facing the rotational speed sensor 13 via a predetermined radial clearance (air gap) is fixed to the outer periphery of the outer ring inner ring 5 on the small flange portion 5c side.
  • the pulsar ring 18 is formed in the shape of a spur gear composed of an uneven portion 18a.
  • the integration of the hub wheel 4 and the inner rings 5 and 7 is achieved by pressing the pair of inner rings 5 and 7 into the small-diameter step portion 4b of the hub wheel 4 through a predetermined shimiro, This is performed by a caulking portion 11 formed by plastically deforming an end portion of the small diameter step portion 4b radially outward.
  • the double-row tapered roller bearing in which the rolling element 3 is a tapered roller is illustrated.
  • the wheel bearing device according to the present invention is not limited to this.
  • a ball is used for the rolling element. It may be composed of double row angular contact ball bearings.
  • a shaft portion of an outer joint member constituting a constant velocity universal joint (not shown) is rotatably supported through rolling bearings 19 and 20.
  • the outer side rolling bearing 19 is a deep groove ball bearing
  • the inner side rolling bearing 20 is a shell needle roller bearing.
  • a coupler ring 21 that is a ring-shaped member is provided. That is, the inner ring 7 is fixed to the hub ring 4 via a coupler ring (gear member) 21.
  • the coupler ring 21 is made of chromium steel such as SCr420, and is hardened in the range of 40 to 55 HRC (392 to 600 HV) to the core portion by quenching (quenching and tempering).
  • HRC high-chromium steel
  • the amount of Cr (chrome) is approximately 0.12 to 0.2 wt%
  • the amount of Cr in the coupler ring 21 is approximately 0.9 to 1.2 wt%.
  • the tenacity increases and a hardness difference of about 132 to 340 HV with respect to the surface hardness 260 HV of the crimped portion 11 can be obtained, and a desired strength can be ensured.
  • the material of the coupler ring 21 by using chromium molybdenum steel to which Mo (molybdenum) is added approximately 0.15 to 0.3 wt%, brittleness can be suppressed, and during the caulking process. Generation of micro cracks can be reliably prevented.
  • the coupler ring 21 is fixed in contact with the large end surface 7e of the inner ring 7 as shown in an enlarged view in FIG.
  • Both the inner peripheral surface and the outer peripheral surface of the coupler ring 21 are provided with spline portions, and among these, the inner peripheral spline portion 22 is formed with a plurality of spline recesses 22a and a plurality of spline protrusions 22b alternately.
  • the hub spline portion 23 is engaged with a hub spline portion 23 composed of a plurality of spline recesses 23a and a plurality of spline protrusions 23b formed alternately on the inner peripheral surface of the small-diameter step portion 4b of the hub wheel 4.
  • the coupler ring 21 is pressed toward the inner side inner ring 7 by the crimping pressure from the crimping portion 11 that contacts the inner side end surface 21a. Further, the coupler ring 21 is connected to the inner side inner ring 7 and the inner side inner ring 7. The adjacent outer ring 5 on the outer side is pressed toward the shoulder 4 a of the hub ring 4. In this way, the clamping ring 21 and the pair of inner ring members 5 and 7 are securely fixed to the hub ring 4 by the crimping pressure acting from the crimping portion 11.
  • an axle side spline portion (indicated by a two-dot chain line in the figure) 25 having the same diameter and the same shape as the outer peripheral spline portion 24 of the coupler ring 21 is provided. Yes.
  • the outer peripheral spline part 24 and the axle side spline part 25 are in a coaxial relationship with each other.
  • the axle-side spline portion 25 meshes with an inner peripheral spline portion 26a of a gear ring (indicated by a two-dot chain line in the figure) 26 that can slide in the axial direction.
  • the gear ring 26 moves to the outer side, it is engaged with both the axle-side spline portion 25 of the constant velocity universal joint and the outer peripheral spline portion 24 of the coupler ring 21, and thereby the driving force of the constant velocity universal joint is increased. It is transmitted to the hub wheel 4.
  • the gear ring 26 moves to the inner side, the gear ring 26 is engaged with the axle side spline portion 25 but is not engaged with the outer peripheral spline portion 24.
  • the gear ring 26 is slid in the axial direction, thereby enabling switching to intermittently drive the hub wheel 4.
  • the gear ring 26 is slid by a sliding mechanism using appropriate power means such as air or hydraulic pressure.
  • the end surface of the spline protrusion 23b of the hub spline portion 23, that is, the end edge B of the spline protrusion 23b of the hub spline portion 23, and the bottom C of the spline recess 23a, Is formed by a single arc having a predetermined radius of curvature R.
  • the root part of the caulking part 11 after the caulking process has a rounded shape, and it is possible to prevent a stress-concentrated V-shape.
  • the radius of curvature R is larger than the dimension A from the inner end surface 21a of the coupler ring 21 to the edge B of the spline protrusion 23b (R> A), and from the height h of the spline protrusion 23b. Is set to be larger (R> h). In this way, by increasing the radius of curvature R to some extent, it becomes possible to prevent the root portion of the crimped portion 11 after the crimping process from being rounded, and to prevent a V-shape that is more likely to concentrate stress. it can.
  • the dimension A is set in the range of 2.5 to 3.0 mm, and the radius of curvature R is set to R3 to 7.
  • the radius difference ⁇ D 0.90 mm and the curvature radius of the end surface of the spline protrusion 23b of the hub spline portion 23 is composed of R3 to 7.
  • the root portion of the caulking portion 11 was not V-shaped, there was no variation in caulking strength, and no decrease in strength was observed.
  • FIG. 4A shows a modification of the coupler ring 21 described above.
  • symbol is attached
  • the coupler ring 27 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and the inner peripheral spline portion 28 is formed with a plurality of spline grooves 28a and a plurality of spline protrusions 28b alternately.
  • the taper surface 29 is formed in the internal diameter of the both ends of this spline protruding item
  • FIG. 5 is an enlarged view of a main part before caulking using this coupler ring 27.
  • the starting point T of the tapered surface 29 is within the arc-shaped end surface of the spline ridge 23b of the hub spline part 23 described above. That is, it is arranged within the range of the edge B of the spline protrusion 23b of the hub spline portion 23 and the bottom C of the spline recess 23a.
  • FIG. 4B shows another modification of the coupler ring 21 described above.
  • the coupler ring 30 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and a tapered chamfered portion 31 is formed on the inner diameter of at least the inner end portion (the caulking portion side of the hub wheel). .
  • the radial dimension H1 of the chamfered portion 31 is set to be larger than the height H0 of the spline protrusion 22b of the inner peripheral spline portion 22 (H1 ⁇ H0).
  • the dimension H1 in the radial direction of the chamfered portion 31 is set to be larger than the height H0 of the spline protrusion 22b of the inner peripheral spline portion 22, so that the spline is formed at the root portion of the crimping portion 11. It is difficult to form the ridges, and stress concentration can be avoided.
  • FIGS. 6A to 6C show other modified examples of the coupler ring 21 described above.
  • the coupler ring 32 shown in (a) is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and a tapered chamfered portion 32a is formed at least on the inner end of the spline recess 33a of the inner peripheral spline portion 33. Is formed.
  • the coupler ring 34 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and at least a predetermined end portion on the inner side of the spline recess 35a of the inner peripheral spline portion 35 is provided.
  • An arc-shaped chamfer 34a having a radius of curvature r is formed.
  • the chamfered portions 32a and 34a are formed at least on the inner end of the spline concave stripes 33a and 35a, so that the volume of the spline convex stripes 22b can be increased, and stress concentration on these portions can be reduced. It can be avoided.
  • the coupler ring 36 shown in (c) is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and the spline recesses 37a of the inner peripheral spline portion 37 are stopped at the end on the inner side to form a non-groove portion 38.
  • This non-groove portion 38 makes it difficult for spline ridges to be formed at the root of the caulking portion 11 during caulking, and stress concentration can be avoided.
  • FIG. 7 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention
  • FIG. 8 is an enlarged view of a main part showing the caulking portion of FIG. 7,
  • FIG. 9A is the present invention.
  • Sectional drawing of the coupler ring which concerns on this (b) is sectional drawing which shows the modification of (a)
  • FIG. 10 is a longitudinal cross-sectional view which shows before caulking of the wheel bearing apparatus which concerns on this invention.
  • the present embodiment is basically the same as the above-described embodiment (FIG. 1) except that the configuration of the coupler ring is partially different, and other parts or parts having the same parts or the same functions as the above-described embodiments. Are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This wheel bearing device is used on the drive wheel side, and includes an inner member 1 and an outer member 2, and double-row tapered rollers 3 and 3 accommodated between both members 1 and 2 so as to roll freely. Yes.
  • the inner member 1 includes a hub ring 4 and a pair of inner rings 5 and 7 plastically coupled to the hub ring 4.
  • the outer member 2 integrally has a vehicle body mounting flange 2b on the outer periphery, and is integrally formed with tapered double-row outer rolling surfaces 2a and 2a that are opened outward on the inner periphery.
  • the double-row tapered rollers 3 and 3 are accommodated between the rolling surfaces via a cage 8 so as to freely roll.
  • the inner ring 7 is fixed to the hub wheel 4 in the axial direction by the caulking portion 11 via a ring-shaped coupler ring 43.
  • the coupler ring 43 is formed with an outer peripheral spline portion (gear portion) 43a and an inner peripheral spline portion 43b, and the inner peripheral spline portion 43b is formed on the outer peripheral surface on the inner side of the small-diameter step portion 4b of the hub wheel 4. Is engaged with the hub spline portion 23 formed.
  • the coupler ring 43 is pressed toward the inner ring 7 by the crimping pressure from the crimping portion 11 that abuts on the inner end surface thereof, and the coupler ring 43 and the coupler ring 43 are pressed by the crimping pressure acting from the crimping portion 11.
  • the pair of inner ring members 5 and 7 are securely fixed to the hub ring 4.
  • a ring-shaped gear ring (slide gear) 26 in which the outer peripheral spline portion 43a of the coupler ring 43 meshes with the gear portion 44 of the outer joint member (not shown) is selectively meshed by sliding in the axial direction.
  • the driving force is transmitted from the constant velocity universal joint to the wheel via the inner ring 7 and the hub wheel 4 in a state where the coupler ring 43 and the gear portion 44 of the outer joint member are connected via the gear ring 26. That is, at this time, the wheel supported by the hub wheel 4 is a driving wheel.
  • the coupler ring 43 is formed of a steel material having a carbon content of medium carbon steel or less. Specifically, it is formed from a steel material containing 0.15 to 0.45 wt% carbon, preferably 0.38 to 0.43 wt% carbon. Then, the core is hardened in the range of 40 to 55 HRC (392 to 600 HV) by submerged quenching (quenching and tempering).
  • the amount of Cr in the coupler ring 43 is increased to approximately 0.09 to 0.12 wt% with respect to the hub ring 4 made of medium and high carbon steel such as S53C, and the tenacity is increased.
  • the carbon amount is high-carbon steel, the hardness becomes about HRC60 (700HV).
  • the carbon content is hardened by sub-firing from a steel material having a medium carbon steel or less. A gear portion having an appropriate hardness can be obtained.
  • a hardness difference of approximately 132 to 340 HV can be made with respect to the surface hardness 260 HV of the crimped portion 11, and desired strength can be ensured as well as the outer peripheral spline portion 43 a and the inner peripheral spline portion 43 b. Therefore, in the caulking step, it is possible to prevent excessive stress from being generated in the coupler ring 43 and to cause deformation and micro cracks, and when the caulking portion 11 is formed, the small-diameter step portion 4b of the hub wheel 4 is formed. Can be plastically deformed outward in the radial direction, preventing a caulking defect such as a microcrack in the caulking portion 11 and preventing the bearing preload initially set over a long period of time. Can be maintained.
  • chromium molybdenum steel such as SCM440 or SCM430 to which Mo (molybdenum) is added approximately 0.15 to 0.3 wt% as the material of the coupler ring 43. It is possible to reliably prevent the occurrence of micro cracks during the caulking process and to ensure the strength when a driving force is applied.
  • the tooth bottom 43ab of the outer periphery spline part 43a may be formed in the single circular arc which consists of curvature radius R1, and also in (b)
  • the tooth bottom 43ab ′ of the outer peripheral spline portion 43a ′ may be formed in a shape having two curvature radii R1.
  • the bearing preload is managed in the caulking process.
  • the inner ring 7 and the coupler ring 43 are elastically deformed by the caulking process, and the bearing clearance is reduced by elastic deformation of these. Since there is a correlation between the elastic deformation amount and the clearance reduction amount, a regression equation is prepared in advance by conducting a test of the elastic deformation amount and the clearance reduction amount in a bearing having the same specifications.
  • the bearing clearance before caulking is measured, and the height W0 of the coupler ring 43 before caulking is measured. That is, the end portion of the small diameter step portion 4b of the hub wheel 4 'is formed in a cylindrical shape, and the inner spline portion 43b of the coupler ring 43 is in close contact with the large end surface 7e of the inner ring 7 in the hub spline portion 23.
  • the height W0 of the coupler ring 43 is measured.
  • a coupler ring that selectively switches between four wheels and two wheels is fixed to an inner member having a hub wheel and an inner ring fitted to the hub wheel. It can be applied to a wheel bearing device having a third generation structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

[Problem] To provide a wheel bearing device designed for improved durability that effectively limits swage cracking of the base of the swaged part of the hub ring during swaging and generation of cracks during use. [Solution] On the inner splined part (22) of a coupler ring (21), multiple spline flutes (22a) and spline ridges (22b) are alternately formed and mesh with a hub splined part (23) of the small diameter part (4b) of a hub ring (4), the hub splined part comprising multiple spline flutes (23a) and spline ridges (23b). The edge faces of the spline ridges (23b) are formed as a single arc having a prescribed radius of curvature (R). The radius of curvature (R) is set to be larger than a dimension (A) from the inner end face of the coupler ring (21) to the edge (B) of the spline ridge (R > A) and to be larger than the height (h) of the spline ridges (23b) (R > h). The internal diameter (Db) of the spline ridges (22b) is larger than the flute radius (Da) of the spline flutes (23a) and the difference in diameter ∆D is set to be 1.0 mm or less.

Description

車輪用軸受装置およびその予圧管理方法Wheel bearing device and preload management method thereof
 本発明は、自動車等の車輪を回転自在に支承する車輪用軸受装置、特に、車輪を駆動・非駆動に切り替えるクラッチ機能を備えた車輪用軸受装置およびその予圧管理方法に関するものである。 The present invention relates to a wheel bearing device for rotatably supporting a wheel of an automobile or the like, and more particularly to a wheel bearing device having a clutch function for switching a wheel between driving and non-driving and a preload management method thereof.
 4輪駆動の自動車には、前輪または後輪を、車輪用軸受装置に備えられたクラッチ機能で選択的に従動輪に切り替え可能としたものがある。このようなクラッチ機能付きの車輪用軸受装置50は、図11に示すように、駆動系の車軸51に同軸的に外装されたハブシャフト52と、このハブシャフト52の軸方向中央に外嵌された転がり軸受としての複列円錐ころ軸受53と、この複列円錐ころ軸受53に軸方向に並列して配置されたカプラーリング54とを備えて構成されている。そして、車輪用軸受装置50は、車軸51とハブシャフト52との間に配置された深溝玉軸受55および針状ころ軸受56によって、車軸51に同軸的に軸支されている。なお、Gは、軸方向に摺動可能なギヤリングである。 Some four-wheel drive vehicles allow front wheels or rear wheels to be selectively switched to driven wheels by the clutch function provided in the wheel bearing device. As shown in FIG. 11, such a wheel bearing device 50 with a clutch function is fitted on a hub shaft 52 that is coaxially mounted on an axle 51 of a drive train, and is fitted on the center of the hub shaft 52 in the axial direction. A double-row tapered roller bearing 53 as a rolling bearing, and a coupler ring 54 arranged in parallel with the double-row tapered roller bearing 53 in the axial direction. The wheel bearing device 50 is coaxially supported on the axle 51 by a deep groove ball bearing 55 and a needle roller bearing 56 disposed between the axle 51 and the hub shaft 52. Note that G is a gear ring that is slidable in the axial direction.
 ハブシャフト52は、車軸51と同軸的に形成されたスリーブ部57と、このスリーブ部57の一端側(車輪側)に形成され径方向外方に向かって延設されたフランジ部58と、スリーブ部57の他端側(車体中央側)に形成され径方向外方に向かって折り曲げて形成された折曲部59とを有している。さらに、折曲部59近傍のスリーブ部57の外周面には、複数のスプライン凹条(スプライン溝)60aと複数のスプライン凸条60bとが交互に形成されたスプライン部60が形成されている。このスプライン部60は、カプラーリング54の内周面に形成された内周側スプライン部61と噛合するよう構成されている。また、フランジ部58には貫通孔(締結孔)58aが形成されており、この貫通孔(締結孔)58aにボルトなどの締結部材BOを通過させることにより、回転体としての車輪のホイール(図示せず)に締結することができる。 The hub shaft 52 includes a sleeve portion 57 formed coaxially with the axle 51, a flange portion 58 formed on one end side (wheel side) of the sleeve portion 57 and extending radially outward, and a sleeve And a bent portion 59 formed on the other end side (the vehicle body center side) of the portion 57 and bent outward in the radial direction. Further, a spline portion 60 in which a plurality of spline grooves (spline grooves) 60 a and a plurality of spline protrusions 60 b are alternately formed is formed on the outer peripheral surface of the sleeve portion 57 in the vicinity of the bent portion 59. The spline portion 60 is configured to mesh with an inner peripheral side spline portion 61 formed on the inner peripheral surface of the coupler ring 54. Further, a through hole (fastening hole) 58a is formed in the flange portion 58, and a wheel of a wheel as a rotating body (see FIG. 5) is obtained by passing a fastening member BO such as a bolt through the through hole (fastening hole) 58a. (Not shown).
 複列円錐ころ軸受53は、内輪62と、外輪63と、内外輪62、63の間に介在され軸方向に二列に並んだ転動体としての円錐ころ64、65とを備えて構成されている。
 詳細には、内輪62は、第1の軌道部66aを有する第1の内輪部材66と、第2の軌道部67aを有する第2の内輪部材67とに分割されて構成されている。そして、第1の内輪部材66と第2の内輪部材67とは互いに接していると共に、第1の内輪部材66側の端面66bはハブシャフト52のフランジ部58の根元部分に当接し、また第2の内輪部材67側の端面67bはカプラーリング54の端面と当接している。このため、ハブシャフト52のフランジ部58の根元部分とハブシャフト52の折曲部59との間で、カプラーリング54と複列円錐ころ軸受53を構成する内輪62(第1の内輪部材66および第2の内輪部材67)とが固定され、これらがハブシャフト52に対して回転しないように構成されることとなる。
The double-row tapered roller bearing 53 includes an inner ring 62, an outer ring 63, and tapered rollers 64 and 65 as rolling elements that are interposed between the inner and outer rings 62 and 63 and are arranged in two rows in the axial direction. Yes.
Specifically, the inner ring 62 is divided into a first inner ring member 66 having a first track portion 66a and a second inner ring member 67 having a second track portion 67a. The first inner ring member 66 and the second inner ring member 67 are in contact with each other, and the end surface 66b on the first inner ring member 66 side is in contact with the root portion of the flange portion 58 of the hub shaft 52. The end surface 67 b on the inner ring member 67 side of 2 is in contact with the end surface of the coupler ring 54. Therefore, the inner ring 62 (the first inner ring member 66 and the first inner ring member 66 and the double ring tapered roller bearing 53) is formed between the root portion of the flange portion 58 of the hub shaft 52 and the bent portion 59 of the hub shaft 52. The second inner ring member 67) is fixed and is configured so as not to rotate with respect to the hub shaft 52.
 一方、外輪63は、第1の軌道部63aと第2の軌道部63bとを有すると共に、径方向外方に向かって延設されたフランジ部63cを有している。このフランジ部63cは、車体のステアリングナックル(懸架装置)等に取り付けられて固定される。なお、68はシール部材である。 On the other hand, the outer ring 63 has a first raceway portion 63a and a second raceway portion 63b, and a flange portion 63c extending outward in the radial direction. The flange portion 63c is attached and fixed to a steering knuckle (suspension device) or the like of the vehicle body. Reference numeral 68 denotes a seal member.
 カプラーリング54は、全体が環状であって、複列円錐ころ軸受53の他端側側面(第2の内輪部材67側の端面67b)に当接するよう軸方向に並べて配置されており、カプラーリング54の外周面には、複数のスプライン凹条(スプライン溝)69aと複数のスプライン凸条69bとが交互に形成された外周側スプライン部69が形成されている。この外周側スプライン部69は、ギヤリングGのスプライン部G1と噛合するよう構成されている。 The coupler ring 54 is annular as a whole, and is arranged side by side in the axial direction so as to contact the other end side surface (end surface 67b on the second inner ring member 67 side) of the double row tapered roller bearing 53. An outer peripheral side spline portion 69 in which a plurality of spline grooves (spline grooves) 69a and a plurality of spline protrusions 69b are alternately formed is formed on the outer peripheral surface of 54. The outer peripheral side spline portion 69 is configured to mesh with the spline portion G1 of the gear ring G.
 そして、図12も参照して、カプラーリング54の内周側スプライン部61のスプライン凸条61bの軸方向他端側における内周縁部は、曲面状に面取り加工が施されて、他端側面取り部70とされている。この他端側面取り部70は、その全体がハブシャフト52のスプライン部60よりも軸方向外側に位置するように形成されている。具体的には、カプラーリング54の軸方向他端側における側面71から他端側面取り部70の一端部(ハブシャフト52のスプライン部60側)71aまでの距離をL、カプラーリング54の軸方向他端側における側面71から、ハブシャフト52のスプライン部60のスプライン凹条(スプライン溝)60aの終点部60cまでの距離をXとすると、距離Lが距離Xよりも小さくなるように形成されている。これにより、ハブシャフト52の軸方向他端部を折り曲げて押しつける際にその折曲部分の曲げ半径を大きくすることができ、そのため折曲部59の根元部分に割れ(加締割れ)が生じてしまうのを有効に抑制することができる(例えば、特許文献1参照。)。 Then, referring also to FIG. 12, the inner peripheral edge portion of the inner peripheral side spline portion 61 of the coupler ring 54 on the other end side in the axial direction of the spline protrusion 61b is chamfered into a curved surface so that the other end side surface is chamfered. Part 70. The other end side chamfer 70 is formed so that the entirety thereof is positioned on the outer side in the axial direction than the spline part 60 of the hub shaft 52. Specifically, the distance from the side surface 71 on the other end side in the axial direction of the coupler ring 54 to the one end portion (on the spline portion 60 side of the hub shaft 52) 71a of the other end side chamfer 70 is L, and the axial direction of the coupler ring 54 When the distance from the side surface 71 on the other end side to the end point portion 60c of the spline groove (spline groove) 60a of the spline portion 60 of the hub shaft 52 is X, the distance L is formed to be smaller than the distance X. Yes. As a result, when the other axial end of the hub shaft 52 is bent and pressed, the bending radius of the bent portion can be increased, so that a crack (caulking crack) occurs in the root portion of the bent portion 59. Can be effectively suppressed (see, for example, Patent Document 1).
特許第4466302号公報Japanese Patent No. 4466302
 この従来の車輪用軸受装置50では、ハブシャフト52の軸方向他端部を折り曲げて押しつける際、その折曲部分の曲げ半径を大きくすることができ、そのため折曲部59の根元部分に割れが生じてしまうのを有効に抑制することができるとある。然しながら、実際に加締加工を行う場合、この折曲部59の根元部はカプラーリング54の他端側面取り部70の形状に沿った形状になり、図中破線にて示すように、折曲部59の根元部が応力集中し易いV字状になる。その結果、折曲部59の強度が変動するだけでなく加締強度が低下する恐れがある。 In this conventional wheel bearing device 50, when the other axial end portion of the hub shaft 52 is bent and pressed, the bending radius of the bent portion can be increased, so that the root portion of the bent portion 59 is cracked. It is said that the occurrence can be effectively suppressed. However, when the caulking process is actually performed, the root portion of the bent portion 59 has a shape along the shape of the side surface chamfered portion 70 of the coupler ring 54, and as shown by the broken line in the figure, the bent portion 59 is bent. The root portion of the portion 59 has a V shape in which stress is easily concentrated. As a result, the strength of the bent portion 59 may not only fluctuate, but the caulking strength may decrease.
 本発明は、このような事情に鑑みてなされたもので、加締加工時にハブ輪(ハブシャフト)の加締部(折曲部)の根元部に加締割れや使用時にクラックが発生するのを効果的に抑制し、耐久性の向上を図った車輪用軸受装置を提供することを目的としている。 The present invention has been made in view of such circumstances, and caulking cracks or cracks occur during use at the root of the caulking portion (folded portion) of the hub wheel (hub shaft) during caulking. An object of the present invention is to provide a wheel bearing device that effectively suppresses the above and improves durability.
 また、本発明の他の目的は、ある程度柔らかいカプラーリングを提供することにより、カプラーリングに過大な応力が発生するのを防止すると共に、カプラーリングの強度を高め、バラツキを抑えて安定した予圧管理を行うことができる車輪用軸受装置およびその予圧管理方法を提供することである。 Another object of the present invention is to provide a coupler ring that is soft to some extent, thereby preventing excessive stress from being generated in the coupler ring, increasing the strength of the coupler ring, suppressing variations, and maintaining stable preload management. It is providing the wheel bearing apparatus which can perform, and its preload management method.
 係る目的を達成すべく、本発明のうち請求項1記載の発明は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記ハブ輪の小径段部の端部に、内周スプライン部と外周スプライン部が形成されたカプラーリングが外嵌され、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が前記カプラーリングを介して軸方向に固定された車輪用軸受装置において、前記カプラーリングの内周スプライン部は、複数のスプライン凹条と複数のスプライン凸条とが交互に形成され、前記ハブ輪の小径段部のインナー側の外周面に交互に形成された複数のスプライン凹条と複数のスプライン凸条とからなるハブスプライン部と噛み合うと共に、当該ハブスプライン部のスプライン凸条の端面が所定の曲率半径Rからなる単一の円弧で形成され、この曲率半径Rが、前記カプラーリングのインナー側の端面から前記スプライン凸条の端縁までの寸法Aよりも大きく(R>A)、かつ、前記スプライン凸条の高さhよりも大きく(R>h)なるように設定されている。 In order to achieve such an object, the invention according to claim 1 of the present invention includes an outer member in which a double row outer rolling surface is integrally formed on the inner periphery, and a wheel attachment for attaching a wheel to one end. A hub wheel having a flange integrally formed with a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and at least one inner ring press-fitted into the small-diameter step portion of the hub ring via a predetermined shimiro An inner member having a double-row inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a cage between both rolling surfaces of the inner member and the outer member. A coupler ring having an inner peripheral spline portion and an outer peripheral spline portion is externally fitted to an end portion of the small diameter step portion of the hub wheel, The inner ring is formed by a caulking portion formed by plastically deforming the end of the step portion radially outward. In the wheel bearing device fixed in the axial direction via the coupler ring, the inner peripheral spline portion of the coupler ring is formed with a plurality of spline concave stripes and a plurality of spline convex stripes alternately. The hub spline formed by a plurality of spline ridges and a plurality of spline ridges alternately formed on the outer peripheral surface on the inner side of the small-diameter step portion meshes with the end surface of the spline ridge of the hub spline portion with a predetermined curvature. A radius of curvature R is larger than a dimension A (R> A) from the inner side end face of the coupler ring to the edge of the spline ridge, and It is set to be larger than the height h of the spline ridge (R> h).
 このように、ハブ輪の小径段部の端部に、内周スプライン部と外周スプライン部が形成されたカプラーリングが外嵌され、小径段部の端部を径方向外方に塑性変形させて形成した加締部により内輪がカプラーリングを介して軸方向に固定された車輪用軸受装置において、カプラーリングの内周スプライン部は、複数のスプライン凹条と複数のスプライン凸条とが交互に形成され、ハブ輪の小径段部のインナー側の外周面に交互に形成された複数のスプライン凹条と複数のスプライン凸条とからなるハブスプライン部と噛み合うと共に、当該ハブスプライン部のスプライン凸条の端面が所定の曲率半径Rからなる単一の円弧で形成され、この曲率半径Rが、カプラーリングのインナー側の端面からスプライン凸条の端縁までの寸法Aよりも大きく(R>A)、かつ、スプライン凸条の高さhよりも大きく(R>h)なるように設定されているので、加締加工後の加締部の根元部が大きく丸みを有する形状になり、応力集中し易いV字状になるのを防止することができる。したがって、加締加工時にハブ輪の加締部の根元部に加締割れや使用時にクラックが発生するのを効果的に抑制し、耐久性の向上を図った車輪用軸受装置を提供することができる。 Thus, the coupler ring formed with the inner peripheral spline portion and the outer peripheral spline portion is fitted on the end portion of the small diameter step portion of the hub wheel, and the end portion of the small diameter step portion is plastically deformed radially outward. In the wheel bearing device in which the inner ring is fixed in the axial direction via the coupler ring by the formed caulking portion, the inner peripheral spline portion of the coupler ring is formed with a plurality of spline grooves and a plurality of spline protrusions alternately. Meshed with a hub spline portion composed of a plurality of spline ridges and a plurality of spline ridges formed alternately on the outer peripheral surface on the inner side of the small-diameter step portion of the hub wheel, and the spline ridges of the hub spline portion The end face is formed by a single arc having a predetermined radius of curvature R, and this radius of curvature R is larger than the dimension A from the end face on the inner side of the coupler ring to the edge of the spline ridge. (R> A) and larger than the height h of the spline ridge (R> h), the root portion of the caulking portion after caulking is large and rounded. Therefore, it is possible to prevent a V shape from being easily concentrated in stress. Therefore, it is possible to provide a wheel bearing device that effectively suppresses the occurrence of caulking cracks or cracks during use at the base of the caulking portion of the hub wheel during caulking, and improves durability. it can.
 好ましくは、請求項2に記載の発明のように、前記ハブスプライン部のスプライン凹条の溝径をDa、前記カプラーリングにおける内周スプライン部のスプライン凸条の内径をDbとした時、このスプライン凸条の内径Dbが前記ハブスプライン部のスプライン凹条の溝径Daよりも大径で、その径差ΔD=(Db-Da)が1.0mm以下になるように設定されていれば、加締強度の変動もなく、また、加締部の強度の低下を防止することができる。 Preferably, when the groove diameter of the spline groove of the hub spline part is Da and the inner diameter of the spline protrusion of the inner peripheral spline part in the coupler ring is Db as in the invention described in claim 2, this spline If the inner diameter Db of the ridge is larger than the groove diameter Da of the spline groove of the hub spline portion, the difference ΔD = (Db−Da) is set to be 1.0 mm or less. There is no fluctuation in the tightening strength, and a decrease in the strength of the crimped portion can be prevented.
 また、請求項3に記載の発明のように、前記カプラーリングの内周スプライン部におけるスプライン凸条の両端部のうち少なくともインナー側の端部内径にテーパ面が形成され、このテーパ面の開始点が、前記ハブスプライン部のスプライン凸条の端縁と、前記スプライン凹条の底部との範囲内に配置されていれば、加締加工時に加締部がカプラーリングの内径に沿い易くなり、根元部が応力集中し易いV字状になるのを防止することができる。 According to a third aspect of the present invention, a tapered surface is formed on at least the inner diameter of the inner end of the spline ridges in the inner peripheral spline of the coupler ring, and the starting point of the tapered surface However, if it is arranged within the range of the edge of the spline ridge of the hub spline part and the bottom of the spline ridge, the caulking part can easily follow the inner diameter of the coupler ring during caulking. It is possible to prevent the portion from being V-shaped where stress is easily concentrated.
 また、請求項4に記載の発明のように、前記カプラーリングの両端部のうち少なくともインナー側の端部の内径にテーパ状の面取り部が形成され、この面取り部の径方向の寸法H1が、前記内周スプライン部のスプライン凸条の高さH0よりも大きく(H1≧H0)なるように設定されていれば、カプラーリングがハブスプライン部に噛合した状態で、スプライン凹条に加締部の根元部が入り込んでスプライン凸条が形成され難くなり、加締部に荷重が負荷された場合でも、このスプライン凸条に応力が集中して強度が低下するのを回避することができる。 Further, as in the invention according to claim 4, a tapered chamfered portion is formed on the inner diameter of at least the inner end of the both ends of the coupler ring, and a radial dimension H1 of the chamfered portion is: If the height of the spline ridge of the inner peripheral spline portion is set to be larger than H0 (H1 ≧ H0), the coupler ring is engaged with the hub spline portion and the caulking portion It is difficult for the spline ridge to be formed due to the root portion entering, and even when a load is applied to the caulking portion, it is possible to prevent the stress from concentrating on the spline ridge and reducing the strength.
 また、請求項5に記載の発明のように、前記カプラーリングの内周スプライン部におけるスプライン凹条の両端部のうち少なくともインナー側の端部にテーパ状の面取り部が形成されていても良いし、また、請求項6に記載の発明のように、前記カプラーリングの内周スプライン部におけるスプライン凹条の両端部のうち少なくともインナー側の端部に所定の曲率半径からなる円弧状の面取り部が形成されていても良い。これにより、スプライン凸条の体積を大きくすることができ、この部分への応力集中を回避することができる。 Further, as in the fifth aspect of the invention, a tapered chamfered portion may be formed at least at the end on the inner side of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring. Further, as in the invention described in claim 6, an arc-shaped chamfered portion having a predetermined radius of curvature is provided at least at the inner side end portion of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring. It may be formed. Thereby, the volume of a spline protruding item | line can be enlarged and the stress concentration to this part can be avoided.
 また、請求項7に記載の発明のように、前記カプラーリングの内周スプライン部におけるスプライン凹条がインナー側の端部で止められて非溝部が形成されていれば、加締加工時に加締部の根元部にスプライン凸条が形成され難くなり、応力集中を回避することができる。 Further, as in the seventh aspect of the present invention, if the spline groove on the inner peripheral spline portion of the coupler ring is stopped at the inner end to form a non-groove portion, Spline ridges are less likely to be formed at the base of the part, and stress concentration can be avoided.
 また、請求項8に記載の発明のように、前記カプラーリングが、炭素量が中炭素鋼以下の鋼材からなり、ズブ焼入れにより芯部まで硬化処理され、前記外周スプライン部と内周スプライン部が同じ硬さに設定されていれば、加締工程において、カプラーリングに過大な応力が発生して変形や微小クラックが生じるのを防止することができると共に、カプラーリングが加締加工によって塑性変形し難いため、精度良く弾性変形量を測定することができ、精度が高く、バラツキを抑えて安定した予圧管理を行うことができる。 Further, as in the invention according to claim 8, the coupler ring is made of a steel material having a carbon content of medium carbon steel or less, and is hardened to the core portion by quenching, so that the outer peripheral spline portion and the inner peripheral spline portion are If the hardness is set to the same level, it is possible to prevent excessive stress from being generated in the coupler ring during the caulking process, thereby preventing deformation and microcracks, and the coupler ring is plastically deformed by caulking. Since it is difficult, the amount of elastic deformation can be measured with high accuracy, high accuracy, and stable preload management can be performed while suppressing variations.
 好ましくは、請求項9に記載の発明のように、前記カプラーリングの表面硬さが前記ハブ輪と少なくとも130HVの硬度差を有していれば、カプラーリングの外周スプライン部や内周スプライン部だけでなくカプラーリング全体が所望の強度を確保することができると共に、加締部を形成する時、ハブ輪の小径段の端部を径方向外方に塑性変形させることができ、加締部に微小クラック等の加締不具合が発生するのを防止することができる。 Preferably, as in the invention according to claim 9, if the surface hardness of the coupler ring has a hardness difference of at least 130 HV with respect to the hub wheel, only the outer peripheral spline portion and the inner peripheral spline portion of the coupler ring. In addition, the entire coupler ring can secure the desired strength, and when forming the crimped portion, the end of the small diameter step of the hub wheel can be plastically deformed radially outward, It is possible to prevent a caulking defect such as a micro crack from occurring.
 また、請求項10に記載の発明のように、前記カプラーリングがCr0.09~0.12wt%含有され、表面硬さが392~600HVの範囲に設定されていれば、カプラーリングの強度が高くなり、加締工程において過大な応力が発生した際の変形や微小クラックが生じるのを防止することができる。 Further, as in the invention described in claim 10, when the coupler ring is contained in the range of 0.09 to 0.12 wt% Cr and the surface hardness is set in the range of 392 to 600 HV, the strength of the coupler ring is high. Thus, it is possible to prevent deformation and microcracks from occurring when excessive stress is generated in the caulking process.
 また、請求項11に記載の発明のように、前記カプラーリングが炭素0.15~0.45wt%からなる鋼材で形成されていれば、適度な硬度のスプライン部を得ることができ、所望のカプラーリングの強度を確保することができる。 Further, as in the invention described in claim 11, if the coupler ring is made of a steel material made of carbon of 0.15 to 0.45 wt%, a spline portion having an appropriate hardness can be obtained, and a desired value can be obtained. The strength of the coupler ring can be ensured.
 また、請求項12に記載の発明のように、前記カプラーリングがCr0.12~0.2wt%含有されたクロム鋼からなり、焼入れ焼戻しにより硬化処理されていれば、カプラーリングの強度が高くなり、加締工程において、カプラーリングに過大な応力が発生して変形や微小クラックが生じるのを防止することができる。 Further, as in the invention described in claim 12, when the coupler ring is made of chromium steel containing 0.12 to 0.2 wt% of Cr and is hardened by quenching and tempering, the strength of the coupler ring is increased. In the caulking step, it is possible to prevent deformation and micro cracks from being generated due to excessive stress in the coupler ring.
 また、請求項13に記載の発明のように、前記カプラーリングがMo0.15~0.3wt%含有されたクロムモリブデン鋼で形成されていれば、脆さを抑制することができ、加締加工時の微小クラックの発生を確実に防止することができる。 Further, as in the invention described in claim 13, if the coupler ring is formed of chromium molybdenum steel containing 0.15 to 0.3 wt% of Mo, brittleness can be suppressed, and caulking work can be performed. It is possible to reliably prevent occurrence of minute cracks.
 また、請求項14に記載の発明のように、前記カプラーリングの外周スプライン部の歯底が所定の曲率半径からなる円弧状に形成されていれば、加締時の力が分散され、歯底に発生するクラックを防止することができる。 Further, as in the invention described in claim 14, if the tooth bottom of the outer peripheral spline portion of the coupler ring is formed in an arc shape having a predetermined radius of curvature, the force during caulking is dispersed, and the tooth bottom Can be prevented.
 また、請求項15に記載の発明のように、前記内方部材に等速自在継手を構成する外側継手部材が結合され、この外側継手部材の外周面に、前記カプラーリングの外周スプライン部と同径かつ同形状の車軸側スプライン部が形成されると共に、これら外周スプライン部と車軸側スプライン部とが互いに同軸上に配置され、前記車軸側スプライン部に、軸方向に摺動可能な駆動切替用ギヤリングの内周スプライン部が噛合されていても良い。 Further, as in the invention described in claim 15, an outer joint member constituting a constant velocity universal joint is coupled to the inner member, and the outer peripheral surface of the outer joint member is the same as the outer peripheral spline portion of the coupler ring. An axle side spline portion having the same diameter and the same shape is formed, and the outer peripheral spline portion and the axle side spline portion are arranged coaxially with each other, and the drive side is slidable in the axial direction on the axle side spline portion. The inner peripheral spline part of the gear ring may be engaged.
 また、請求項16に記載の発明のように、前記ハブ輪が炭素0.40~0.80wt%を含む中高炭素鋼で形成され、前記車輪取付フランジのインナー側の基部から前記小径段部に亙って高周波焼入れによって表面硬さが58~64HRCの範囲に所定の硬化層が形成され、前記加締部が鍛造後の表面硬さのままの未焼入れ部とされていれば、加締加工が容易となり、加工時の微小クラックの発生を防止すると共に、車輪取付フランジに負荷される回転曲げ荷重に対して充分な機械的強度を有し、ハブ輪の耐久性が向上する。 Further, as in the invention described in claim 16, the hub wheel is made of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon, and is formed from the base portion on the inner side of the wheel mounting flange to the small diameter step portion. If a predetermined hardened layer is formed in the range of 58 to 64 HRC by induction hardening, and the caulking portion is an unquenched portion with the surface hardness after forging, caulking is performed. This makes it easy to prevent the occurrence of microcracks during processing, and has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange, thereby improving the durability of the hub wheel.
 また、本発明のうち請求項17に記載の方法発明は、外周に懸架装置を構成するナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置の予圧管理方法において、前記ハブ輪の小径段部の端部を径方向外方に塑性変形させて形成した加締部によって前記内輪がリング状のカプラーリングを介して所定の軸受予圧が付与された状態で軸方向に固定され、加締前の軸受すきまを測定すると共に、加締前後の前記カプラーリングの基準面からの高さを測定し、この高さ変化量を、予め弾性変形量とすきま減少量との関係が確認されている回帰式によってすきま減少量を算出し、前記加締前の軸受すきまからこのすきま減少量を差し引いて加締後の軸受すきまを算出する。 According to a seventeenth aspect of the present invention, the method invention according to claim 17 integrally has a vehicle body mounting flange to be attached to the knuckle constituting the suspension device on the outer periphery, and a double row outer rolling surface is integrated on the inner periphery. An outer member formed integrally with a wheel mounting flange for attaching a wheel to one end, and a hub wheel having a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and the hub wheel An inner member formed of at least one inner ring press-fitted into the small-diameter step portion through a predetermined scissors, and formed with a double-row inner rolling surface facing the double-row outer rolling surface on the outer periphery; and In a preload management method for a wheel bearing device comprising a double row rolling element that is rotatably accommodated between a rolling surface of an inner member and the outer member via a cage, the hub wheel includes: Addition formed by plastically deforming the end of the small diameter step part radially outward The inner ring is fixed in the axial direction with a predetermined bearing preload applied through a ring-shaped coupler ring by a portion, and the bearing clearance before caulking is measured, and the reference surface of the coupler ring before and after caulking , Measure the amount of change in height from the bearing clearance before caulking, and calculate the amount of change in height using a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction has been confirmed in advance. Subtract the clearance reduction amount to calculate the bearing clearance after crimping.
 このように、加締前後のカプラーリングの基準面からの高さを測定し、この高さ変化量を、予め弾性変形量とすきま減少量との関係が確認されている回帰式によってすきま減少量を算出し、加締前の軸受すきまからこのすきま減少量を差し引いて加締後の軸受すきまを算出するようにしたので、加締後の軸受すきまが負すきまであっても、間接的に予圧量を安定して管理することができる。 In this way, the height from the reference surface of the coupler ring before and after caulking is measured, and the amount of change in the height is determined by a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction is confirmed in advance. Since the bearing clearance after caulking is calculated by subtracting this clearance reduction amount from the bearing clearance before caulking, even if the bearing clearance after caulking is negative, it is indirectly preloaded. The amount can be controlled stably.
 本発明に係る車輪用軸受装置は、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、前記ハブ輪の小径段部の端部に、内周スプライン部と外周スプライン部が形成されたカプラーリングが外嵌され、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が前記カプラーリングを介して軸方向に固定された車輪用軸受装置において、前記カプラーリングの内周スプライン部は、複数のスプライン凹条と複数のスプライン凸条とが交互に形成され、前記ハブ輪の小径段部のインナー側の外周面に交互に形成された複数のスプライン凹条と複数のスプライン凸条とからなるハブスプライン部と噛み合うと共に、当該ハブスプライン部のスプライン凸条の端面が所定の曲率半径Rからなる単一の円弧で形成され、この曲率半径Rが、前記カプラーリングのインナー側の端面から前記スプライン凸条の端縁までの寸法Aよりも大きく(R>A)、かつ、前記スプライン凸条の高さhよりも大きく(R>h)なるように設定されているので、加締加工後の加締部の根元部が大きく丸みを有する形状になり、応力集中し易いV字状になるのを防止することができる。したがって、加締加工時にハブ輪の加締部の根元部に加締割れや使用時にクラックが発生するのを効果的に抑制し、耐久性の向上を図った車輪用軸受装置を提供することができる。 The wheel bearing device according to the present invention integrally has an outer member integrally formed with a double row outer rolling surface on the inner periphery, and a wheel mounting flange for mounting the wheel on one end, and on the outer periphery. The hub wheel is formed with a cylindrical small-diameter step portion extending in the axial direction, and at least one inner ring press-fitted into the small-diameter step portion of the hub ring through a predetermined shimoshiro. An inner member in which a double row of inner rolling surfaces facing the running surface is formed, and a compound member that is rotatably accommodated via a cage between both rolling surfaces of the inner member and the outer member. A coupler ring formed with an inner peripheral spline portion and an outer peripheral spline portion is fitted on the end portion of the small diameter step portion of the hub wheel, and the end portion of the small diameter step portion is radially outward. The inner ring passes through the coupler ring by a caulking portion formed by plastic deformation in the direction of In the wheel bearing device fixed in the direction, the inner peripheral spline portion of the coupler ring includes a plurality of spline concave stripes and a plurality of spline convex stripes alternately formed on the inner side of the small diameter step portion of the hub wheel. A hub spline portion composed of a plurality of spline ridges and a plurality of spline ridges alternately formed on the outer peripheral surface meshes with each other, and the end surface of the spline ridge of the hub spline portion has a single radius of curvature R. An arc is formed, and this radius of curvature R is larger than the dimension A (R> A) from the inner end surface of the coupler ring to the end edge of the spline ridge, and the height h of the spline ridge is h. Is set so as to be larger (R> h), so that the root portion of the crimped portion after crimping has a large rounded shape, and a V-shape that easily concentrates stress. It is possible to prevent. Therefore, it is possible to provide a wheel bearing device that effectively suppresses the occurrence of caulking cracks or cracks during use at the base of the caulking portion of the hub wheel during caulking, and improves durability. it can.
 また、本発明に係る車輪用軸受装置の予圧管理方法は、外周に懸架装置を構成するナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置の予圧管理方法において、前記ハブ輪の小径段部の端部を径方向外方に塑性変形させて形成した加締部によって前記内輪がリング状のカプラーリングを介して所定の軸受予圧が付与された状態で軸方向に固定され、加締前の軸受すきまを測定すると共に、加締前後の前記カプラーリングの基準面からの高さを測定し、この高さ変化量を、予め弾性変形量とすきま減少量との関係が確認されている回帰式によってすきま減少量を算出し、前記加締前の軸受すきまからこのすきま減少量を差し引いて加締後の軸受すきまを算出するようにしたので、加締後の軸受すきまが負すきまであっても、間接的に予圧量を安定して管理することができる。 Further, the preload management method for a wheel bearing device according to the present invention integrally has a vehicle body mounting flange for mounting on a knuckle that constitutes a suspension device on the outer periphery, and a double row outer rolling surface is integrated on the inner periphery. An outer member formed integrally with a wheel mounting flange for attaching a wheel to one end, and a hub wheel having a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and the hub wheel An inner member formed of at least one inner ring press-fitted into the small-diameter step portion through a predetermined scissors, and formed with a double-row inner rolling surface facing the double-row outer rolling surface on the outer periphery; and In a preload management method for a wheel bearing device comprising a double row rolling element that is rotatably accommodated between a rolling surface of an inner member and the outer member via a cage, the hub wheel includes: The end of the small diameter step was formed by plastic deformation radially outward. The inner ring is fixed in the axial direction with a predetermined bearing preload applied via a ring-shaped coupler ring by a tightening portion, and the bearing clearance before caulking is measured, and the reference of the coupler ring before and after caulking Measure the height from the surface, and calculate the amount of change in the height using a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction has been confirmed in advance. Since the bearing clearance after caulking is calculated by subtracting the clearance reduction amount, the preload amount can be indirectly and stably managed even if the bearing clearance after caulking is negative.
本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a bearing device for wheels concerning the present invention. 図1の軸受部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the bearing part of FIG. (a)は、図1の加締部を示す要部拡大図、(b)は、同上、加締前を示す要部拡大図である。(A) is a principal part enlarged view which shows the crimping part of FIG. 1, (b) is a principal part enlarged view which shows a caulking before the same as the above. (a)は、図3のカプラーリングの変形例を示す断面図、(b)は、他の変形例を示す断面図である。(A) is sectional drawing which shows the modification of the coupler ring of FIG. 3, (b) is sectional drawing which shows another modification. 図4(a)のカプラーリングを使用した加締前を示す要部拡大図である。It is a principal part enlarged view which shows before caulking using the coupler ring of Fig.4 (a). (a)~(c)は、図4(a)のカプラーリングの他の変形例を示す断面図である。(A)-(c) is sectional drawing which shows the other modification of the coupler ring of Fig.4 (a). 本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the wheel bearing apparatus which concerns on this invention. 図7の加締部を示す要部拡大図である。It is a principal part enlarged view which shows the crimping part of FIG. (a)は、本発明に係るカプラーリングの断面図、(b)は、(a)の変形例を示す断面図である。(A) is sectional drawing of the coupler ring which concerns on this invention, (b) is sectional drawing which shows the modification of (a). 本発明に係る車輪用軸受装置の加締前を示す縦断面図である。It is a longitudinal cross-sectional view which shows before the caulking of the wheel bearing apparatus which concerns on this invention. 従来の車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional wheel bearing apparatus. 図11の要部拡大図である。It is a principal part enlarged view of FIG.
 外周にナックルに取り付けられるための車体取付フランジを一体に有し、内周に外向きに開いたテーパ状の複列の外側転走面が一体に形成された外方部材と、一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入され、外周に前記複列の外側転走面に対向するテーパ状の内側転走面が形成された一対の内輪からなる内方部材と、この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の円錐ころとを備え、前記ハブ輪の小径段部の端部に、内周スプライン部と外周スプライン部が形成されたカプラーリングが外嵌され、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が前記カプラーリングを介して軸方向に固定された車輪用軸受装置において、前記カプラーリングの内周スプライン部は、複数のスプライン凹条と複数のスプライン凸条とが交互に形成され、前記ハブ輪の小径段部のインナー側の外周面に交互に形成された複数のスプライン凹条と複数のスプライン凸条とからなるハブスプライン部と噛み合うと共に、当該ハブスプライン部のスプライン凸条の端面が所定の曲率半径Rからなる単一の円弧で形成され、この曲率半径Rが、前記カプラーリングのインナー側の端面から前記スプライン凸条の端縁までの寸法Aよりも大きく(R>A)、前記スプライン凸条の高さhよりも大きく(R>h)なるように設定され、かつ、前記ハブスプライン部のスプライン凹条の溝径をDa、前記カプラーリングにおける内周スプライン部のスプライン凸条の内径をDbとした時、このスプライン凸条の内径Dbが前記ハブスプライン部のスプライン凹条の溝径Daよりも大径で、その径差ΔD=(Db-Da)が1.0mm以下になるように設定されている。 An outer member that integrally has a vehicle body mounting flange for attaching to a knuckle on the outer periphery, and has a tapered double-row outer rolling surface integrally formed on the inner periphery, and a wheel on one end A hub wheel integrally having a wheel mounting flange for mounting a cylindrical small-diameter step portion extending in the axial direction on the outer periphery, and press-fitted into the small-diameter step portion of this hub ring via a predetermined shimiro, An inner member composed of a pair of inner rings having a tapered inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and between both rolling surfaces of the inner member and the outer member A double-row tapered roller accommodated in a rollable manner via a cage, and a coupler ring having an inner peripheral spline portion and an outer peripheral spline portion formed on the end of the small-diameter step portion of the hub wheel is externally fitted. The end of the small diameter step is plastically deformed radially outward. In the wheel bearing device in which the inner ring is fixed in the axial direction through the coupler ring by the crimped portion, the inner peripheral spline portion of the coupler ring has a plurality of spline grooves and a plurality of spline protrusions alternately. And a hub spline portion formed of a plurality of spline recesses and a plurality of spline projections formed alternately on the outer peripheral surface on the inner side of the small-diameter step portion of the hub wheel, and the spline of the hub spline portion The end face of the ridge is formed by a single arc having a predetermined radius of curvature R, and this radius of curvature R is larger than the dimension A from the end face on the inner side of the coupler ring to the edge of the spline ridge ( R> A), set to be larger than the height h of the spline ridge (R> h), and the groove diameter of the spline groove of the hub spline portion Da, when the inner diameter of the spline ridge of the inner peripheral spline portion in the coupler ring is Db, the inner diameter Db of the spline ridge is larger than the groove diameter Da of the spline ridge of the hub spline portion. The difference ΔD = (Db−Da) is set to be 1.0 mm or less.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、本発明に係る車輪用軸受装置の第1の実施形態を示す縦断面図、図2は、図1の軸受部を示す縦断面図、図3(a)は、図1の加締部を示す要部拡大図、(b)は、同上、加締前を示す要部拡大図、図4(a)は、図3のカプラーリングの変形例を示す断面図、(b)は、他の変形例を示す断面図、図5は、図4(a)のカプラーリングを使用した加締前を示す要部拡大図、図6(a)~(c)は、図4(a)のカプラーリングの他の変形例を示す断面図である。なお、以下の説明では、車両に組み付けた状態で車両の外側寄りとなる側をアウター側(図1の左側)、中央寄り側をインナー側(図1の右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a wheel bearing device according to the present invention, FIG. 2 is a longitudinal sectional view showing a bearing portion of FIG. 1, and FIG. Fig. 4 (b) is an enlarged view of the main part showing the fastening part, Fig. 4 (a) is a cross-sectional view showing a modification of the coupler ring of Fig. 3, and Fig. 4 (b) is the same. FIG. 5 is a cross-sectional view showing another modification, FIG. 5 is an enlarged view of a main part before caulking using the coupler ring of FIG. 4A, and FIGS. 6A to 6C are FIG. It is sectional drawing which shows the other modification of the coupler ring of). In the following description, the side closer to the outer side of the vehicle when assembled to the vehicle is referred to as the outer side (left side in FIG. 1), and the side closer to the center is referred to as the inner side (right side in FIG. 1).
 この車輪用軸受装置は、内方部材1と外方部材2、および両部材1、2間に転動自在に収容された複列の転動体(円錐ころ)3、3とを備えている。内方部材1は、ハブ輪4と、このハブ輪4に塑性結合された一対の内輪5、7とからなる。 The wheel bearing device includes an inner member 1 and an outer member 2, and double row rolling elements (conical rollers) 3 and 3 accommodated between both members 1 and 2 so as to be freely rollable. The inner member 1 includes a hub ring 4 and a pair of inner rings 5 and 7 plastically coupled to the hub ring 4.
 ハブ輪4は、アウター側の端部に車輪(図示せず)を取り付けるための車輪取付フランジ6を一体に有し、外周に車輪取付フランジ6から肩部4aを介して軸方向に延びる円筒状の小径段部4bが形成されている。また、車輪取付フランジ6の周方向等配位置に車輪を固定するハブボルト6aが植設されている。 The hub wheel 4 integrally has a wheel mounting flange 6 for mounting a wheel (not shown) at an end portion on the outer side, and has a cylindrical shape that extends in the axial direction from the wheel mounting flange 6 to the outer periphery via a shoulder portion 4a. The small diameter step 4b is formed. Further, hub bolts 6 a for fixing the wheels at the circumferentially equidistant positions of the wheel mounting flange 6 are planted.
 一対の内輪5、7は、外周にテーパ状の内側転走面5aがそれぞれ形成され、ハブ輪4の小径段部4bに所定のシメシロを介して圧入されている。そして、図2に拡大して示すように、この内側転走面5aの大径側に転動体3を案内するための大鍔部5b、7bが形成されると共に、小径側には転動体3の脱落を防止するための小鍔部5c、7cが形成され、内輪5、7の小端面5d、7d(正面側端面)同士が突き合された状態でセットされた背面合せタイプの複列の円錐ころ軸受を構成している。 The pair of inner rings 5 and 7 each have a tapered inner rolling surface 5a formed on the outer periphery, and are press-fitted into the small-diameter step portion 4b of the hub ring 4 via a predetermined squeeze. Then, as shown in an enlarged view in FIG. 2, large collar portions 5b and 7b for guiding the rolling element 3 are formed on the large diameter side of the inner rolling surface 5a, and the rolling element 3 is formed on the small diameter side. Of the back-to-back type that is set in a state in which the small edge portions 5c and 7c are formed to prevent the falling off of the inner ring 5 and the small end surfaces 5d and 7d (front end surfaces) of the inner rings 5 and 7 are abutted with each other. Conical roller bearings are configured.
 外方部材2は、外周に懸架装置を構成するナックル(図示せず)に取り付けられるための車体取付フランジ2bを一体に有し、内周に外向きに開いたテーパ状の複列の外側転走面2a、2aが一体に形成されている。そして、複列の転動体3、3は両転走面間に保持器8を介して転動自在に収容されている。また、ナックルに内嵌される外径面に環状溝9が形成され、この環状溝9にOリング等の弾性リング10が装着されている。これにより、ナックルと外方部材2との嵌合部の気密性を向上させることができる。 The outer member 2 integrally has a vehicle body mounting flange 2b to be attached to a knuckle (not shown) constituting a suspension device on the outer periphery, and has a taper-shaped double-row outer roll that opens outward on the inner periphery. The running surfaces 2a and 2a are integrally formed. And the double row rolling elements 3 and 3 are accommodated so that rolling is possible via the holder | retainer 8 between both rolling surfaces. An annular groove 9 is formed on the outer diameter surface fitted into the knuckle, and an elastic ring 10 such as an O-ring is attached to the annular groove 9. Thereby, the airtightness of the fitting part of a knuckle and the outward member 2 can be improved.
 ハブ輪4はS53C等の炭素0.40~0.80wt%を含む中高炭素鋼(JIS規格のSC系機械構造用炭素鋼)で形成され、肩部4aから小径段部4bに亙って高周波焼入れによって表面硬さが50~64HRCの範囲に所定の硬化層が形成されている。また、内輪5、7および転動体3はSUJ2等の高炭素クロム軸受鋼で形成され、ズブ焼入れにより芯部まで58~64HRCの範囲で硬化処理されている。なお、後述する加締部11は鍛造後の表面硬さのままの未焼入れ部とされている。これにより、加締加工が容易となり、加工時の微小クラックの発生を防止すると共に、車輪取付フランジ6に負荷される回転曲げ荷重に対して充分な機械的強度を有し、ハブ輪4の耐久性が向上する。 The hub wheel 4 is formed of medium-high carbon steel (carbon steel for SC system mechanical structure of JIS standard) containing carbon of 0.40 to 0.80 wt% such as S53C, and has a high frequency extending from the shoulder portion 4a to the small diameter step portion 4b. A predetermined hardened layer having a surface hardness in the range of 50 to 64 HRC is formed by quenching. Further, the inner rings 5 and 7 and the rolling element 3 are made of high carbon chrome bearing steel such as SUJ2, and are hardened in the range of 58 to 64 HRC to the core part by quenching. The caulking portion 11 described later is an unquenched portion with the surface hardness after forging. This facilitates caulking and prevents the occurrence of microcracks during processing, and has sufficient mechanical strength against the rotational bending load applied to the wheel mounting flange 6, and the durability of the hub wheel 4. Improves.
 外方部材2は、ハブ輪4と同様、S53C等の炭素0.40~0.80wt%を含む中高炭素鋼で形成し、少なくとも複列の外側転走面2a、2aが高周波焼入れによって表面に58~64HRCの範囲に所定の硬化処理が施されている。そして、外方部材2と内輪5、7との間に形成される環状空間の開口部にはシール12、12が装着され、軸受内部に封入した潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。 The outer member 2 is formed of medium-high carbon steel containing 0.40 to 0.80 wt% of carbon such as S53C, similar to the hub wheel 4, and at least the double row outer raceway surfaces 2a and 2a are formed on the surface by induction hardening. A predetermined curing process is performed in the range of 58 to 64 HRC. Seals 12 and 12 are attached to the opening of the annular space formed between the outer member 2 and the inner rings 5 and 7, leakage of the lubricating grease sealed inside the bearing, rainwater, dust, etc. from the outside Is prevented from entering the inside of the bearing.
 シール12は、互いに対向配置されたスリンガ39と環状のシール板40とからなる、所謂パックシールで構成されている。スリンガ39は、オーステナイト系ステンレス鋼板(JIS規格のSUS304系等)やフェライト系のステンレス鋼板(JIS規格のSUS430系等)、あるいは、防錆処理された冷間圧延鋼板(JIS規格のSPCC系等)からプレス加工にて断面が略L字状に形成され、内輪5、7の大鍔部7b(5b)に圧入される円筒部39aと、この円筒部39aから径方向外方に延びる立板部39bとからなる。 The seal 12 is constituted by a so-called pack seal composed of a slinger 39 and an annular seal plate 40 arranged to face each other. Slinger 39 is an austenitic stainless steel sheet (JIS standard SUS304 series, etc.), a ferritic stainless steel sheet (JIS standard SUS430 series, etc.), or a rust-proof cold rolled steel sheet (JIS standard SPCC system, etc.). And a cylindrical portion 39a having a substantially L-shaped cross section by press working and press-fitted into the large collar portion 7b (5b) of the inner rings 5, 7, and a standing plate portion extending radially outward from the cylindrical portion 39a 39b.
 一方、シール板40は、外方部材2の端部に内嵌される芯金41と、この芯金41に加硫接着により一体に接合されたシール部材42とからなる。芯金41は、オーステナイト系ステンレス鋼板、あるいは、防錆処理された冷間圧延鋼板からプレス加工にて断面略L字状に形成されている。 On the other hand, the seal plate 40 includes a cored bar 41 fitted into the end portion of the outer member 2 and a seal member 42 integrally joined to the cored bar 41 by vulcanization adhesion. The cored bar 41 is formed in a substantially L-shaped cross section by press working from an austenitic stainless steel plate or a cold-rolled steel plate that has been rust-proofed.
 シール部材42はNBR(アクリロニトリル-ブタジエンゴム)等の合成ゴムからなり、径方向外方に傾斜して延びる一対のサイドリップ42a、42bと、軸受内方側に傾斜して延びるグリースリップ42cを一体に有している。そして、サイドリップ42a、42bはスリンガ39の立板部39bの側面に所定の軸方向シメシロを介して摺接すると共に、グリースリップ42cはスリンガ39の円筒部39aに所定の径方向シメシロを介して摺接している。なお、シール部材42の材質としては、例示したNBR以外にも、例えば、耐熱性に優れたHNBR(水素化アクリロニトリル・ブタジエンゴム)、EPDM(エチレンプロピレンゴム)等をはじめ、耐熱性、耐薬品性に優れたACM(ポリアクリルゴム)、FKM(フッ素ゴム)、あるいはシリコンゴム等を例示することができる。 The seal member 42 is made of a synthetic rubber such as NBR (acrylonitrile-butadiene rubber), and integrally includes a pair of side lips 42a and 42b extending obliquely outward in the radial direction and a grease lip 42c extending obliquely inward of the bearing. Have. The side lips 42a and 42b are in sliding contact with the side surface of the standing plate portion 39b of the slinger 39 via a predetermined axial shimiro, and the grease lip 42c is slid onto the cylindrical portion 39a of the slinger 39 via a predetermined radial shimillo. It touches. As the material of the seal member 42, in addition to the exemplified NBR, for example, HNBR (hydrogenated acrylonitrile butadiene rubber), EPDM (ethylene propylene rubber), etc. having excellent heat resistance, heat resistance, chemical resistance, etc. Examples thereof include ACM (polyacrylic rubber), FKM (fluororubber), and silicon rubber, which are excellent in the above.
 本実施形態では、回転速度センサ13は、外方部材2の複列の外側転走面2a、2a間に、径方向に貫通して形成されたセンサ挿入孔14に挿入されている。この回転速度センサ13は、ホール素子、磁気抵抗素子(MR素子)等、磁束の流れ方向に応じて特性を変化させる磁気検出素子と、この磁気検出素子の出力波形を整える波形成形回路が組み込まれたICとからなり、合成樹脂を射出成形によって一体にモールドされている。そして、センサ挿入孔14に挿入される軸状の挿入部13aと、外方部材2の外部に位置する非挿入部13bとを有している。また、挿入部13aの外周には環状溝15が形成され、この環状溝15にOリング等からなる弾性リング16が装着されている。また、非挿入部13bは、外方部材2のセンサ取付部17に着座する形状に形成され、側方に延びる取付片(図示せず)を介して締結されている。 In this embodiment, the rotational speed sensor 13 is inserted between the double row outer rolling surfaces 2a, 2a of the outer member 2 into a sensor insertion hole 14 formed so as to penetrate in the radial direction. This rotational speed sensor 13 incorporates a magnetic detecting element such as a Hall element, a magnetoresistive element (MR element) or the like that changes its characteristics according to the flow direction of magnetic flux, and a waveform shaping circuit that adjusts the output waveform of this magnetic detecting element. The synthetic resin is integrally molded by injection molding. And it has the shaft-shaped insertion part 13a inserted in the sensor insertion hole 14, and the non-insertion part 13b located in the exterior of the outer member 2. As shown in FIG. An annular groove 15 is formed on the outer periphery of the insertion portion 13a, and an elastic ring 16 made of an O-ring or the like is attached to the annular groove 15. Moreover, the non-insertion part 13b is formed in the shape seated on the sensor attachment part 17 of the outer member 2, and is fastened via the attachment piece (not shown) extended to a side.
 一方、回転速度センサ13に所定の径方向すきま(エアギャップ)を介して対峙するパルサリング18がアウター側の内輪5の小鍔部5c側の外周に固定されている。このパルサリング18は、凹凸部18aからなる平歯車状に形成されている。これにより、ハブ輪4の回転に伴い円周上交互に磁界の方向が変化し、回転速度センサ13を介して車輪の回転速度を検出することができる。 On the other hand, a pulsar ring 18 facing the rotational speed sensor 13 via a predetermined radial clearance (air gap) is fixed to the outer periphery of the outer ring inner ring 5 on the small flange portion 5c side. The pulsar ring 18 is formed in the shape of a spur gear composed of an uneven portion 18a. Thereby, the direction of the magnetic field alternately changes on the circumference along with the rotation of the hub wheel 4, and the rotational speed of the wheel can be detected via the rotational speed sensor 13.
 また、図1に示すように、ハブ輪4と内輪5、7との一体化は、ハブ輪4の小径段部4bに一対の内輪5、7が所定のシメシロを介して圧入されると共に、小径段部4bの端部を径方向外方に塑性変形させて形成した加締部11によって行なわれている。なお、ここでは、転動体3が円錐ころからなる複列円錐ころ軸受を例示したが、本発明に係る車輪用軸受装置はこれに限らず、例えば、図示はしないが、転動体にボールを用いた複列アンギュラ玉軸受で構成されていても良い。 Further, as shown in FIG. 1, the integration of the hub wheel 4 and the inner rings 5 and 7 is achieved by pressing the pair of inner rings 5 and 7 into the small-diameter step portion 4b of the hub wheel 4 through a predetermined shimiro, This is performed by a caulking portion 11 formed by plastically deforming an end portion of the small diameter step portion 4b radially outward. Here, the double-row tapered roller bearing in which the rolling element 3 is a tapered roller is illustrated. However, the wheel bearing device according to the present invention is not limited to this. For example, although not illustrated, a ball is used for the rolling element. It may be composed of double row angular contact ball bearings.
 また、ハブ輪4の内周には、図示しない等速自在継手を構成する外側継手部材の軸部が転がり軸受19、20を介して回転自在に支持されている。これらの転がり軸受19、20のうち、アウター側の転がり軸受19は深溝玉軸受からなり、インナー側の転がり軸受20はシェル形の針状ころ軸受からなる。 Further, on the inner periphery of the hub wheel 4, a shaft portion of an outer joint member constituting a constant velocity universal joint (not shown) is rotatably supported through rolling bearings 19 and 20. Out of these rolling bearings 19 and 20, the outer side rolling bearing 19 is a deep groove ball bearing, and the inner side rolling bearing 20 is a shell needle roller bearing.
 インナー側の内輪7と、ハブ輪4の加締部11との間には、リング状部材であるカプラーリング21が設けられている。すなわち、内輪7は、カプラーリング(ギヤ部材)21を介してハブ輪4に固定されている。カプラーリング21はSCr420等のクロム鋼からなり、ズブ焼入れ(焼入焼戻し)により芯部まで40~55HRC(392~600HV)の範囲で硬化処理されている。このように、S53C等からなるハブ輪4に比べ、Cr(クロム)の量が略0.12~0.2wt%に対しカプラーリング21のCrの量が略0.9~1.2wt%と増大し、粘り強さが高くなると共に、加締部11の表面硬さ260HVに対して略132~340HVの硬度差ができ、所望の強度を確保することができる。なお、カプラーリング21の材質として、さらに、Mo(モリブデン)を略0.15~0.3wt%添加したクロムモリブデン鋼を採用することにより、脆さを抑制することができ、加締加工時の微小クラックの発生を確実に防止することができる。 Between the inner ring 7 on the inner side and the caulking portion 11 of the hub ring 4, a coupler ring 21 that is a ring-shaped member is provided. That is, the inner ring 7 is fixed to the hub ring 4 via a coupler ring (gear member) 21. The coupler ring 21 is made of chromium steel such as SCr420, and is hardened in the range of 40 to 55 HRC (392 to 600 HV) to the core portion by quenching (quenching and tempering). Thus, compared to the hub wheel 4 made of S53C or the like, the amount of Cr (chrome) is approximately 0.12 to 0.2 wt%, whereas the amount of Cr in the coupler ring 21 is approximately 0.9 to 1.2 wt%. As a result, the tenacity increases and a hardness difference of about 132 to 340 HV with respect to the surface hardness 260 HV of the crimped portion 11 can be obtained, and a desired strength can be ensured. In addition, as the material of the coupler ring 21, by using chromium molybdenum steel to which Mo (molybdenum) is added approximately 0.15 to 0.3 wt%, brittleness can be suppressed, and during the caulking process. Generation of micro cracks can be reliably prevented.
 カプラーリング21は、図3(a)に拡大して示すように、内輪7の大端面7eに当接して固定されている。このカプラーリング21の内周面および外周面にはいずれもスプライン部が設けられており、このうち内周スプライン部22は、複数のスプライン凹条22aと複数のスプライン凸条22bとが交互に形成され、ハブ輪4の小径段部4bのインナー側の外周面に交互に形成された複数のスプライン凹条23aと複数のスプライン凸条23bとからなるハブスプライン部23と噛み合っている。 The coupler ring 21 is fixed in contact with the large end surface 7e of the inner ring 7 as shown in an enlarged view in FIG. Both the inner peripheral surface and the outer peripheral surface of the coupler ring 21 are provided with spline portions, and among these, the inner peripheral spline portion 22 is formed with a plurality of spline recesses 22a and a plurality of spline protrusions 22b alternately. In addition, the hub spline portion 23 is engaged with a hub spline portion 23 composed of a plurality of spline recesses 23a and a plurality of spline protrusions 23b formed alternately on the inner peripheral surface of the small-diameter step portion 4b of the hub wheel 4.
 カプラーリング21は、そのインナー側の端面21aに当接する加締部11からの加締圧力によりインナー側の内輪7側に向かって押し付けられており、さらに、カプラーリング21がインナー側の内輪7と隣接するアウター側の内輪5を、ハブ輪4の肩部4aに向かって押し付けている。このように、加締部11より作用する加締圧力により、カプラーリング21および一対の内輪部材5、7のハブ輪4に対する固定が確実なものとされている。 The coupler ring 21 is pressed toward the inner side inner ring 7 by the crimping pressure from the crimping portion 11 that contacts the inner side end surface 21a. Further, the coupler ring 21 is connected to the inner side inner ring 7 and the inner side inner ring 7. The adjacent outer ring 5 on the outer side is pressed toward the shoulder 4 a of the hub ring 4. In this way, the clamping ring 21 and the pair of inner ring members 5 and 7 are securely fixed to the hub ring 4 by the crimping pressure acting from the crimping portion 11.
 カプラーリング21の近傍における等速自在継手の外周面には、カプラーリング21の外周スプライン部24と同径かつ同形状の車軸側スプライン部(図中2点鎖線にて示す)25が設けられている。これら外周スプライン部24と車軸側スプライン部25とは、互いに同軸の関係にある。そして、車軸側スプライン部25には、軸方向に摺動可能なギヤリング(図中2点鎖線にて示す)26の内周スプライン部26aが噛み合わされている。ここで、ギヤリング26がアウター側に移動すると、等速自在継手の車軸側スプライン部25とカプラーリング21の外周スプライン部24との両者に噛み合った状態となり、これにより等速自在継手の駆動力がハブ輪4に伝達される。一方、ギヤリング26がインナー側に移動すると、ギヤリング26は、車軸側スプライン部25とは噛み合っているが外周スプライン部24には噛み合っていない状態となる。このように、ギヤリング26を軸方向に摺動させることにより、ハブ輪4への駆動力を断続する切換えを可能としている。なお、特に図示しないが、ギヤリング26の摺動は、エアや油圧など適宜の動力手段を用いた摺動機構によりなされる。 On the outer peripheral surface of the constant velocity universal joint in the vicinity of the coupler ring 21, an axle side spline portion (indicated by a two-dot chain line in the figure) 25 having the same diameter and the same shape as the outer peripheral spline portion 24 of the coupler ring 21 is provided. Yes. The outer peripheral spline part 24 and the axle side spline part 25 are in a coaxial relationship with each other. The axle-side spline portion 25 meshes with an inner peripheral spline portion 26a of a gear ring (indicated by a two-dot chain line in the figure) 26 that can slide in the axial direction. Here, when the gear ring 26 moves to the outer side, it is engaged with both the axle-side spline portion 25 of the constant velocity universal joint and the outer peripheral spline portion 24 of the coupler ring 21, and thereby the driving force of the constant velocity universal joint is increased. It is transmitted to the hub wheel 4. On the other hand, when the gear ring 26 moves to the inner side, the gear ring 26 is engaged with the axle side spline portion 25 but is not engaged with the outer peripheral spline portion 24. As described above, the gear ring 26 is slid in the axial direction, thereby enabling switching to intermittently drive the hub wheel 4. Although not specifically shown, the gear ring 26 is slid by a sliding mechanism using appropriate power means such as air or hydraulic pressure.
 ここで、図3(b)に示すように、ハブスプライン部23のスプライン凸条23bの端面、すなわち、ハブスプライン部23のスプライン凸条23bの端縁Bと、スプライン凹条23aの底部Cとの範囲が所定の曲率半径Rからなる単一の円弧で形成されている。このため、加締加工後の加締部11の根元部が丸みを有する形状になり、応力集中し易いV字状になるのを防止することができる。また、この曲率半径Rは、カプラーリング21のインナー側の端面21aからスプライン凸条23bの端縁Bまでの寸法Aよりも大きく(R>A)、また、スプライン凸条23bの高さhよりも大きくなるように設定されている(R>h)。このように、曲率半径Rをある程度大きくすることにより、加締加工後の加締部11の根元部の丸みが大きくなる形状となり、いっそう応力集中し易いV字状になるのを防止することができる。さらに、ハブスプライン部23のスプライン凹条23aの溝径をDa、カプラーリング21における内周スプライン部22のスプライン凸条22bの内径をDbとした時、スプライン凸条22bの内径Dbはスプライン凹条23aの溝径Daよりも大径で、その径差ΔDが1.0mm以下になるように設定されている(ΔD=(Db-Da)≦1.0mm)。これにより、加締加工後の加締部11の根元部の肉厚を確保すると共に、応力集中し易いV字状になるのを防止することができる。したがって、加締加工時にハブ輪4の加締部11の根元部に加締割れや使用時にクラックが発生するのを効果的に抑制し、耐久性の向上を図った車輪用軸受装置を提供することができる。 Here, as shown in FIG. 3B, the end surface of the spline protrusion 23b of the hub spline portion 23, that is, the end edge B of the spline protrusion 23b of the hub spline portion 23, and the bottom C of the spline recess 23a, Is formed by a single arc having a predetermined radius of curvature R. For this reason, the root part of the caulking part 11 after the caulking process has a rounded shape, and it is possible to prevent a stress-concentrated V-shape. The radius of curvature R is larger than the dimension A from the inner end surface 21a of the coupler ring 21 to the edge B of the spline protrusion 23b (R> A), and from the height h of the spline protrusion 23b. Is set to be larger (R> h). In this way, by increasing the radius of curvature R to some extent, it becomes possible to prevent the root portion of the crimped portion 11 after the crimping process from being rounded, and to prevent a V-shape that is more likely to concentrate stress. it can. Further, when the groove diameter of the spline groove 23a of the hub spline portion 23 is Da and the inner diameter of the spline protrusion 22b of the inner peripheral spline portion 22 of the coupler ring 21 is Db, the inner diameter Db of the spline protrusion 22b is the spline groove. It is larger than the groove diameter Da of 23a, and the diameter difference ΔD is set to be 1.0 mm or less (ΔD = (Db−Da) ≦ 1.0 mm). Thereby, while ensuring the thickness of the base part of the caulking part 11 after caulking, it can prevent that it becomes V shape which is easy to concentrate stress. Therefore, it is possible to provide a wheel bearing device that effectively suppresses the occurrence of caulking cracks and cracks during use at the base portion of the caulking portion 11 of the hub wheel 4 during caulking, and improves durability. be able to.
 本実施形態では、寸法Aは2.5~3.0mmの範囲に設定されると共に、曲率半径RがR3~7に設定されている。因みに、本出願人が行った加締試験では、径差ΔD=0.90mmで、ハブスプライン部23のスプライン凸条23bの端面の曲率半径がR3~7からなる試供品では、加締加工後の加締部11の根元部がV字状にはならず、加締強度の変動もなく、また、強度の低下も認められなかった。一方、径差ΔD=1.70mmで、ハブスプライン部23のスプライン凸条23bの端面の曲率半径がR0.8からなる試供品では加締強度の変動や強度低下があった。 In this embodiment, the dimension A is set in the range of 2.5 to 3.0 mm, and the radius of curvature R is set to R3 to 7. Incidentally, in the caulking test conducted by the present applicant, in the sample sample in which the radius difference ΔD = 0.90 mm and the curvature radius of the end surface of the spline protrusion 23b of the hub spline portion 23 is composed of R3 to 7, The root portion of the caulking portion 11 was not V-shaped, there was no variation in caulking strength, and no decrease in strength was observed. On the other hand, in the sample product in which the diameter difference ΔD = 1.70 mm and the curvature radius of the end surface of the spline protrusion 23b of the hub spline portion 23 is R0.8, the crimping strength fluctuated and the strength decreased.
 図4(a)は、前述したカプラーリング21の変形例である。なお、前述した実施形態と同一部位あるいは同様の機能を有する部位には同じ符号を付して詳細な説明を省略する。このカプラーリング27は、内周面および外周面にスプライン部が設けられており、内周スプライン部28には複数のスプライン凹条28aと複数のスプライン凸条28bとが交互に形成されている。そして、このスプライン凸条28bの両端部、少なくともインナー側の端部(ハブ輪の加締部側)の内径にテーパ面29が形成されている。 FIG. 4A shows a modification of the coupler ring 21 described above. In addition, the same code | symbol is attached | subjected to the site | part which has the same site | part or the same function as embodiment mentioned above, and detailed description is abbreviate | omitted. The coupler ring 27 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and the inner peripheral spline portion 28 is formed with a plurality of spline grooves 28a and a plurality of spline protrusions 28b alternately. And the taper surface 29 is formed in the internal diameter of the both ends of this spline protruding item | line 28b, and the edge part (caulking part side of a hub ring) at least on the inner side.
 図5は、このカプラーリング27を使用した加締前を示す要部拡大図であるが、テーパ面29の開始点Tが、前述したハブスプライン部23のスプライン凸条23bの円弧状の端面内、すなわち、ハブスプライン部23のスプライン凸条23bの端縁Bと、スプライン凹条23aの底部Cとの範囲内に配置されている。これにより、加締加工時に加締部11がカプラーリング27の内径に沿い易くなり、根元部が応力集中し易いV字状になるのを防止することができる。 FIG. 5 is an enlarged view of a main part before caulking using this coupler ring 27. The starting point T of the tapered surface 29 is within the arc-shaped end surface of the spline ridge 23b of the hub spline part 23 described above. That is, it is arranged within the range of the edge B of the spline protrusion 23b of the hub spline portion 23 and the bottom C of the spline recess 23a. As a result, the caulking portion 11 can easily follow the inner diameter of the coupler ring 27 during caulking processing, and the root portion can be prevented from becoming a V shape in which stress is easily concentrated.
 図4(b)は、前述したカプラーリング21の他の変形例である。このカプラーリング30は、内周面および外周面にスプライン部が設けられており、少なくともインナー側の端部(ハブ輪の加締部側)の内径にテーパ状の面取り部31が形成されている。そして、この面取り部31の径方向の寸法H1が、内周スプライン部22のスプライン凸条22bの高さH0よりも大きくなるように設定されている(H1≧H0)。カプラーリング30がハブスプライン部23に噛合した状態では、スプライン凹条22aに加締部11の根元部が入り込んでスプライン凸条が形成され、加締部11に荷重が負荷された場合、このスプライン凸条に応力が集中して強度が低下する恐れがあるが、本実施形態のように、カプラーリング30のハブ輪4の加締部側となるインナー側の端部内径にテーパ状の面取り部31が形成され、この面取り部31の径方向の寸法H1が、内周スプライン部22のスプライン凸条22bの高さH0よりも大きく設定されていることにより、加締部11の根元部にスプライン凸条が形成され難くなり、応力集中を回避することができる。 FIG. 4B shows another modification of the coupler ring 21 described above. The coupler ring 30 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and a tapered chamfered portion 31 is formed on the inner diameter of at least the inner end portion (the caulking portion side of the hub wheel). . The radial dimension H1 of the chamfered portion 31 is set to be larger than the height H0 of the spline protrusion 22b of the inner peripheral spline portion 22 (H1 ≧ H0). In a state where the coupler ring 30 is engaged with the hub spline portion 23, when the root portion of the caulking portion 11 enters the spline recess 22a to form a spline protrusion, and when a load is applied to the caulking portion 11, this spline There is a possibility that stress is concentrated on the ridges and the strength is lowered. However, as in the present embodiment, a tapered chamfered portion is formed on the inner diameter of the inner end of the coupler ring 30 on the side of the caulking portion of the hub ring 4. 31 is formed, and the dimension H1 in the radial direction of the chamfered portion 31 is set to be larger than the height H0 of the spline protrusion 22b of the inner peripheral spline portion 22, so that the spline is formed at the root portion of the crimping portion 11. It is difficult to form the ridges, and stress concentration can be avoided.
 図6(a)~(c)は、前述したカプラーリング21の他の変形例である。(a)に示すカプラーリング32は、内周面および外周面にスプライン部が設けられており、内周スプライン部33のスプライン凹条33aの少なくともインナー側の端部にテーパ状の面取り部32aが形成されている。また、(b)に示すこれにより、カプラーリング34は、内周面および外周面にスプライン部が設けられており、内周スプライン部35のスプライン凹条35aの少なくともインナー側の端部に所定の曲率半径rからなる円弧状の面取り部34aが形成されている。このように、スプライン凹条33a、35aの少なくともインナー側の端部に面取り部32a、34aが形成されることにより、スプライン凸条22bの体積を大きくすることができ、この部分への応力集中を回避することができる。 FIGS. 6A to 6C show other modified examples of the coupler ring 21 described above. The coupler ring 32 shown in (a) is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and a tapered chamfered portion 32a is formed at least on the inner end of the spline recess 33a of the inner peripheral spline portion 33. Is formed. As a result, the coupler ring 34 is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and at least a predetermined end portion on the inner side of the spline recess 35a of the inner peripheral spline portion 35 is provided. An arc-shaped chamfer 34a having a radius of curvature r is formed. As described above, the chamfered portions 32a and 34a are formed at least on the inner end of the spline concave stripes 33a and 35a, so that the volume of the spline convex stripes 22b can be increased, and stress concentration on these portions can be reduced. It can be avoided.
 (c)に示すカプラーリング36は、内周面および外周面にスプライン部が設けられており、内周スプライン部37のスプライン凹条37aがインナー側の端部で止められ、非溝部38が形成されている。この非溝部38によって、加締加工時に加締部11の根元部にスプライン凸条が形成され難くなり、応力集中を回避することができる。 The coupler ring 36 shown in (c) is provided with spline portions on the inner peripheral surface and the outer peripheral surface, and the spline recesses 37a of the inner peripheral spline portion 37 are stopped at the end on the inner side to form a non-groove portion 38. Has been. This non-groove portion 38 makes it difficult for spline ridges to be formed at the root of the caulking portion 11 during caulking, and stress concentration can be avoided.
 図7は、本発明に係る車輪用軸受装置の第2の実施形態を示す縦断面図、図8は、図7の加締部を示す要部拡大図、図9(a)は、本発明に係るカプラーリングの断面図、(b)は、(a)の変形例を示す断面図、図10は、本発明に係る車輪用軸受装置の加締前を示す縦断面図である。なお、本実施形態は、前述した実施形態(図1)と基本的にはカプラーリングの構成が一部異なるだけで、その他前述した実施形態と同一部品同一部位あるいは同様の機能を有する部品や部位には同じ符号を付して詳細な説明を省略する。 FIG. 7 is a longitudinal sectional view showing a second embodiment of the wheel bearing device according to the present invention, FIG. 8 is an enlarged view of a main part showing the caulking portion of FIG. 7, and FIG. 9A is the present invention. Sectional drawing of the coupler ring which concerns on this, (b) is sectional drawing which shows the modification of (a), FIG. 10 is a longitudinal cross-sectional view which shows before caulking of the wheel bearing apparatus which concerns on this invention. The present embodiment is basically the same as the above-described embodiment (FIG. 1) except that the configuration of the coupler ring is partially different, and other parts or parts having the same parts or the same functions as the above-described embodiments. Are denoted by the same reference numerals, and detailed description thereof is omitted.
 この車輪用軸受装置は駆動輪側に用いられ、内方部材1と外方部材2、および両部材1、2間に転動自在に収容された複列の円錐ころ3、3とを備えている。内方部材1は、ハブ輪4と、このハブ輪4に塑性結合された一対の内輪5、7とからなる。 This wheel bearing device is used on the drive wheel side, and includes an inner member 1 and an outer member 2, and double-row tapered rollers 3 and 3 accommodated between both members 1 and 2 so as to roll freely. Yes. The inner member 1 includes a hub ring 4 and a pair of inner rings 5 and 7 plastically coupled to the hub ring 4.
 外方部材2は、外周に車体取付フランジ2bを一体に有し、内周に外向きに開いたテーパ状の複列の外側転走面2a、2aが一体に形成されている。そして、複列の円錐ころ3、3は両転走面間に保持器8を介して転動自在に収容されている。 The outer member 2 integrally has a vehicle body mounting flange 2b on the outer periphery, and is integrally formed with tapered double-row outer rolling surfaces 2a and 2a that are opened outward on the inner periphery. The double-row tapered rollers 3 and 3 are accommodated between the rolling surfaces via a cage 8 so as to freely roll.
 ここで、図8に拡大して示すように、内輪7はハブ輪4に対してリング状のカプラーリング43を介して加締部11によって軸方向に固定されている。このカプラーリング43は、外周スプライン部(ギヤ部)43aと、内周スプライン部43bが形成され、このうち内周スプライン部43bは、ハブ輪4の小径段部4bのインナー側の外周面に形成されたハブスプライン部23と噛み合っている。カプラーリング43は、そのインナー側の端面に当接する加締部11からの加締圧力により内輪7側に向かって押し付けられており、加締部11より作用する加締圧力により、カプラーリング43および一対の内輪部材5、7のハブ輪4に対する固定が確実なものとされている。 Here, as shown in an enlarged view in FIG. 8, the inner ring 7 is fixed to the hub wheel 4 in the axial direction by the caulking portion 11 via a ring-shaped coupler ring 43. The coupler ring 43 is formed with an outer peripheral spline portion (gear portion) 43a and an inner peripheral spline portion 43b, and the inner peripheral spline portion 43b is formed on the outer peripheral surface on the inner side of the small-diameter step portion 4b of the hub wheel 4. Is engaged with the hub spline portion 23 formed. The coupler ring 43 is pressed toward the inner ring 7 by the crimping pressure from the crimping portion 11 that abuts on the inner end surface thereof, and the coupler ring 43 and the coupler ring 43 are pressed by the crimping pressure acting from the crimping portion 11. The pair of inner ring members 5 and 7 are securely fixed to the hub ring 4.
 そして、カプラーリング43の外周スプライン部43aが、外側継手部材(図示せず)のギヤ部44と噛み合うリング状のギヤリング(スライドギヤ)26が、軸方向へのスライドによって選択的に噛み合う。このギヤリング26を介して、カプラーリング43と外側継手部材のギヤ部44が連結された状態で、駆動力が等速自在継手から内輪7およびハブ輪4を介して車輪に伝達される。すなわち、この時、ハブ輪4に支持される車輪は駆動輪となる。また、ギヤリング26がカプラーリング43に噛み合わない状態では、駆動力が車輪に伝達されず、この時、ハブ輪4に支持される車輪は従動輪となり、4輪/2輪の切替が選択的に行われる。 Then, a ring-shaped gear ring (slide gear) 26 in which the outer peripheral spline portion 43a of the coupler ring 43 meshes with the gear portion 44 of the outer joint member (not shown) is selectively meshed by sliding in the axial direction. The driving force is transmitted from the constant velocity universal joint to the wheel via the inner ring 7 and the hub wheel 4 in a state where the coupler ring 43 and the gear portion 44 of the outer joint member are connected via the gear ring 26. That is, at this time, the wheel supported by the hub wheel 4 is a driving wheel. In the state where the gear ring 26 is not engaged with the coupler ring 43, the driving force is not transmitted to the wheel, and at this time, the wheel supported by the hub wheel 4 becomes a driven wheel, and switching between four wheels and two wheels is selectively performed. Done.
 本実施形態では、カプラーリング43が、炭素量が中炭素鋼以下の鋼材から形成されている。具体的には、炭素0.15~0.45wt%、好ましくは、炭素0.38~0.43wt%の鋼材から形成されている。そして、ズブ焼入れ(焼入焼戻し)により芯部まで40~55HRC(392~600HV)の範囲で硬化処理されている。 In the present embodiment, the coupler ring 43 is formed of a steel material having a carbon content of medium carbon steel or less. Specifically, it is formed from a steel material containing 0.15 to 0.45 wt% carbon, preferably 0.38 to 0.43 wt% carbon. Then, the core is hardened in the range of 40 to 55 HRC (392 to 600 HV) by submerged quenching (quenching and tempering).
 このように、S53C等の中高炭素鋼からなるハブ輪4に対し、カプラーリング43のCrの量が略0.09~0.12wt%と増大し、粘り強さが高くなる。また、炭素量が高炭素鋼のものを用いてズブ焼きするとHRC60(700HV)程度の硬さとなるが、本発明では、炭素量が中炭素鋼以下の鋼材からズブ焼きにより硬化処理されているので、適度な硬度のギヤ部を得ることができる。すなわち、加締部11の表面硬さ260HVに対して略132~340HVの硬度差ができ、外周スプライン部43aや内周スプライン部43bだけでなく所望の強度を確保することができる。したがって、加締工程において、カプラーリング43に過大な応力が発生して変形や微小クラックが生じるのを防止することができると共に、加締部11を形成する時、ハブ輪4の小径段部4bの端部を径方向外方に塑性変形させることができ、加締部11に微小クラック等の加締不具合が発生するのを防止し、長期間に亙って初期に設定された軸受予圧を維持することができる。 Thus, the amount of Cr in the coupler ring 43 is increased to approximately 0.09 to 0.12 wt% with respect to the hub ring 4 made of medium and high carbon steel such as S53C, and the tenacity is increased. In addition, when the carbon amount is high-carbon steel, the hardness becomes about HRC60 (700HV). However, in the present invention, the carbon content is hardened by sub-firing from a steel material having a medium carbon steel or less. A gear portion having an appropriate hardness can be obtained. That is, a hardness difference of approximately 132 to 340 HV can be made with respect to the surface hardness 260 HV of the crimped portion 11, and desired strength can be ensured as well as the outer peripheral spline portion 43 a and the inner peripheral spline portion 43 b. Therefore, in the caulking step, it is possible to prevent excessive stress from being generated in the coupler ring 43 and to cause deformation and micro cracks, and when the caulking portion 11 is formed, the small-diameter step portion 4b of the hub wheel 4 is formed. Can be plastically deformed outward in the radial direction, preventing a caulking defect such as a microcrack in the caulking portion 11 and preventing the bearing preload initially set over a long period of time. Can be maintained.
 なお、カプラーリング43の材質として、さらに、Mo(モリブデン)を略0.15~0.3wt%添加したSCM440やSCM430等のクロムモリブデン鋼を採用することにより、脆さを抑制することができ、加締加工時の微小クラックの発生を確実に防止することや駆動力が負荷された際の強度を確保することができる。 By adopting chromium molybdenum steel such as SCM440 or SCM430 to which Mo (molybdenum) is added approximately 0.15 to 0.3 wt% as the material of the coupler ring 43, brittleness can be suppressed. It is possible to reliably prevent the occurrence of micro cracks during the caulking process and to ensure the strength when a driving force is applied.
 また、本実施形態では、図9(a)に示すように、外周スプライン部43aの歯底43abが曲率半径R1からなる単一の円弧に形成されていても良いし、また、(b)に示すように、外周スプライン部43a’の歯底43ab’が二つの曲率半径R1からなる形状に形成されていても良い。これにより、加締時の力が分散され、歯底43ab、43ab’に発生するクラックを防止することができる。複合Rは、相手の歯車と接触する部分にはRは付けられないため、単一Rでは対応できない場合に実施する。 Moreover, in this embodiment, as shown to Fig.9 (a), the tooth bottom 43ab of the outer periphery spline part 43a may be formed in the single circular arc which consists of curvature radius R1, and also in (b) As shown, the tooth bottom 43ab ′ of the outer peripheral spline portion 43a ′ may be formed in a shape having two curvature radii R1. Thereby, the force at the time of caulking is disperse | distributed and the crack which generate | occur | produces in the tooth bottom 43ab, 43ab 'can be prevented. The compound R is carried out when a single R cannot cope with the R because no R is attached to the portion that contacts the other gear.
 また、本実施形態では、加締加工の工程において、軸受予圧が管理されている。加締加工によって内輪7およびカプラーリング43が弾性変形するが、これらが弾性変形することにより、軸受すきまが減少することになる。この弾性変形量とすきま減少量には相関関係があるため、予め、同様の仕様からなる軸受において、弾性変形量とすきま減少量の試験を実施し、回帰式を作成しておく。 In this embodiment, the bearing preload is managed in the caulking process. The inner ring 7 and the coupler ring 43 are elastically deformed by the caulking process, and the bearing clearance is reduced by elastic deformation of these. Since there is a correlation between the elastic deformation amount and the clearance reduction amount, a regression equation is prepared in advance by conducting a test of the elastic deformation amount and the clearance reduction amount in a bearing having the same specifications.
 そして、図10に示すように、加締前の軸受すきまを測定すると共に、加締前でのカプラーリング43の高さW0を測定する。すなわち、ハブ輪4’の小径段部4bの端部が円筒状に形成され、そのハブスプライン部23にカプラーリング43の内周スプライン部43bを、内輪7の大端面7eに密着させた状態で、カプラーリング43の高さW0を測定する。その後、加締加工後のカプラーリング43の高さW1を測定し、高さ変化量(弾性変形量)ΔW=W0-W1を、予め確認されている回帰式によってすきま減少量を算出し、加締前の軸受すきまからこのすきま減少量を差し引き、加締後の軸受すきまを最終的に算出する。 Then, as shown in FIG. 10, the bearing clearance before caulking is measured, and the height W0 of the coupler ring 43 before caulking is measured. That is, the end portion of the small diameter step portion 4b of the hub wheel 4 'is formed in a cylindrical shape, and the inner spline portion 43b of the coupler ring 43 is in close contact with the large end surface 7e of the inner ring 7 in the hub spline portion 23. The height W0 of the coupler ring 43 is measured. After that, the height W1 of the coupler ring 43 after caulking is measured, and the amount of change in height (elastic deformation amount) ΔW = W0−W1 is calculated by calculating the clearance reduction amount using a regression equation confirmed in advance. Subtract this clearance reduction from the bearing clearance before tightening to finally calculate the bearing clearance after crimping.
 予圧により加締後の軸受すきまは負すきまに設定されているため、直接測定することはできない。このように、加締前後のカプラーリング43の高さを測定し、内輪7とカプラーリング43の弾性変形量を算出すると共に、この弾性変形量から間接的に予圧量を管理することができる。本発明では、カプラーリング43が加締加工によって塑性変形し難いため、精度良く弾性変形量を測定することができ、精度が高く、バラツキを抑えて安定した予圧管理を行うことができる。 ∙ Bearing clearance after tightening due to preload is set to negative clearance, so it cannot be measured directly. In this way, the height of the coupler ring 43 before and after caulking can be measured to calculate the elastic deformation amount of the inner ring 7 and the coupler ring 43, and the preload amount can be indirectly managed from the elastic deformation amount. In the present invention, since the coupler ring 43 is difficult to be plastically deformed by caulking, the amount of elastic deformation can be measured with high accuracy, high accuracy, and stable preload management can be performed while suppressing variation.
 以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.
 本発明に係る車輪用軸受装置は、ハブ輪とこのハブ輪に嵌合された内輪を備えた内方部材に、4輪/2輪の切替が選択的に行うカプラーリングが固定された第1乃至第3世代構造の車輪用軸受装置に適用することができる。 In the wheel bearing device according to the present invention, a coupler ring that selectively switches between four wheels and two wheels is fixed to an inner member having a hub wheel and an inner ring fitted to the hub wheel. It can be applied to a wheel bearing device having a third generation structure.
1 内方部材
2 外方部材
2a 外側転走面
2b 車体取付フランジ
3 転動体
4、4’ ハブ輪
4a 肩部
4b 小径段部
5、7 内輪
5a 内側転走面
5b、7b 大鍔部
5c、7c 小鍔部
5d、7d 小端面
6 車輪取付フランジ
6a ハブボルト
7e 内輪の大端面
8 保持器
9、15 環状溝
10、16 弾性リング
11 加締部
12 シール
13 回転速度センサ
13a 挿入部
13b 非挿入部
14 センサ挿入孔
17 センサ取付部
18 パルサリング
18a 凹凸部
19、20 転がり軸受
21、27、30、32、34、36、43、43’ カプラーリング
21a カプラーリングのインナー側の端面
22、26a、28、33、35、37、43b 内周スプライン部
22a、23a、24a、28a、33a、35a、37a スプライン凹条
22b、23b、24b、28b、37b スプライン凸条
23 ハブスプライン部
24、43a、43a’ 外周スプライン部
25 車軸側スプライン部
26 ギヤリング
29 テーパ面
31、32a、34a 面取り部
38 非溝部
43ab、43ab’ 外周スプライン部の歯底
44 外側継手部材のギヤ部
50 車輪用軸受装置
51 車軸
52 ハブシャフト
53 複列円錐ころ軸受
54 カプラーリング
55 深溝玉軸受
56 針状ころ軸受
57 スリーブ部
58 フランジ部
58a 貫通孔
59 折曲部
60 スプライン部
60a ハブシャフトのスプライン凹条
60b ハブシャフトのスプライン凸条
60c ハブシャフトのスプライン凹条の終点部
61 内周側スプライン部
61a スプライン凹条
61b スプライン凸条
62 内輪
63 外輪
63a 外輪の第1の軌道部
63b 外輪の第2の軌道部
63c フランジ部
64、65 円錐ころ
66 第1の内輪部材
66a 内輪の第1の軌道部
66b 第1の内輪部材の端面
67 第2の内輪部材
67a 内輪の第2の軌道部
67b 第2の内輪部材の端面
68 シール部材
69 外周側スプライン部
69a カプラーリングのスプライン凹条
69b カプラーリングのスプライン凸条
70 他端側面取り部
71 カプラーリングの側面
71a 他端側面取り部の一端部
A カプラーリングのインナー側の端面からスプライン凸条の端縁までの寸法
B ハブスプライン部のスプライン凸条の端縁
BO 締結部材
C ハブスプライン部のスプライン凹条の底部
ΔD ハブスプライン部とカプラーリングの内周スプライン部との径差
Da ハブスプライン部のスプライン凹条の溝径
Db カプラーリングの内周スプライン部の内径
h ハブスプライン部のスプライン凸条の高さ
L カプラーリングの側面から他端側面取り部の一端部までの距離
R ハブスプライン部のスプライン凸条の端面の曲率半径
R1 外周スプライン部の歯底の曲率半径
r カプラーリングの面取り部の曲率半径
G ギヤリング
G1 スプライン部
H0 カプラーリングのスプライン凸条の高さ
H1 カプラーリングの面取り部の径方向寸法
T テーパ面の開始点
X カプラーリングの側面からハブシャフトのスプライン凹条の終点部までの距離
W0 加締前でのカプラーリングの高さ
W1 加締後でのカプラーリングの高さ
ΔW 高さ変化量
DESCRIPTION OF SYMBOLS 1 Inner member 2 Outer member 2a Outer rolling surface 2b Car body mounting flange 3 Rolling body 4, 4 'Hub wheel 4a Shoulder part 4b Small diameter step part 5, 7 Inner ring 5a Inner rolling surface 5b, 7b Large collar part 5c, 7c Small flange portion 5d, 7d Small end surface 6 Wheel mounting flange 6a Hub bolt 7e Large end surface 8 of inner ring Cage 9, 15 Annular groove 10, 16 Elastic ring 11 Clamping portion 12 Seal 13 Rotational speed sensor 13a Insertion portion 13b Non-insertion portion 14 Sensor insertion hole 17 Sensor mounting portion 18 Pulsar ring 18a Uneven portion 19, 20 Rolling bearing 21, 27, 30, 32, 34, 36, 43, 43 'Coupler ring 21a End surface 22, 26a, 28 on the inner side of the coupler ring 33, 35, 37, 43b Inner peripheral spline portions 22a, 23a, 24a, 28a, 33a, 35a, 37a Spline grooves 22b, 23b, 4b, 28b, 37b Spline ridge 23 Hub spline part 24, 43a, 43a 'Outer peripheral spline part 25 Axle side spline part 26 Gear ring 29 Tapered surface 31, 32a, 34a Chamfered part 38 Non-grooved part 43ab, 43ab' Peripheral spline part tooth Bottom 44 Gear portion 50 of outer joint member Wheel bearing device 51 Axle 52 Hub shaft 53 Double row tapered roller bearing 54 Coupler ring 55 Deep groove ball bearing 56 Needle roller bearing 57 Sleeve portion 58 Flange portion 58a Through hole 59 Bent portion 60 Spline portion 60a Spline groove 60b of hub shaft Spline protrusion 60c of hub shaft End point portion 61 of spline groove of hub shaft Inner circumferential side spline portion 61a Spline groove 61b Spline protrusion 62 Inner ring 63 Outer ring 63a First outer ring 63a Track part 63b No. of outer ring Track part 63c Flange part 64, 65 Tapered roller 66 First inner ring member 66a First race part 66b of inner ring End surface 67 of first inner ring member Second inner ring member 67a Second race part 67b of inner ring End face 68 of inner ring member of seal ring 69 Outer peripheral side spline part 69a Spline concave line 69b of coupler ring Spline convex part 70 of coupler ring Other side chamfered part 71 Side face 71a of coupler ring One end part A of the other side side chamfered part A Coupler ring Dimension B from the end face on the inner side to the edge of the spline ridge BO of the spline ridge BO of the hub spline part Fastening member C Bottom of the spline ridge of the hub spline part ΔD Hub spline part and coupler inner ring spline Diameter difference from the groove Da Groove diameter Db of the spline groove of the hub spline part Inner splice of the coupler ring Inner diameter h The height of the spline ridge of the hub spline section L The distance from the side surface of the coupler ring to one end of the chamfer of the other end side The radius of curvature R1 of the end surface of the spline ridge of the hub spline section R1 of the outer spline section Radius of curvature r of the root radius of curvature G of the chamfered portion of the coupler ring Gearing G1 Spline portion H0 Height of the spline ridge of the coupler ring H1 Radial dimension of the chamfered portion of the coupler ring T Starting point X of the tapered surface Side surface of the coupler ring Distance W0 to end point of hub shaft spline groove W0 Coupler height before caulking W1 Coupler height after caulking ΔW Height change

Claims (17)

  1.  内周に複列の外側転走面が一体に形成された外方部材と、
     一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、
     この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備え、
     前記ハブ輪の小径段部の端部に、内周スプライン部と外周スプライン部が形成されたカプラーリングが外嵌され、前記小径段部の端部を径方向外方に塑性変形させて形成した加締部により前記内輪が前記カプラーリングを介して軸方向に固定された車輪用軸受装置において、
     前記カプラーリングの内周スプライン部は、複数のスプライン凹条と複数のスプライン凸条とが交互に形成され、前記ハブ輪の小径段部のインナー側の外周面に交互に形成された複数のスプライン凹条と複数のスプライン凸条とからなるハブスプライン部と噛み合うと共に、当該ハブスプライン部のスプライン凸条の端面が所定の曲率半径Rからなる単一の円弧で形成され、この曲率半径Rが、前記カプラーリングのインナー側の端面から前記スプライン凸条の端縁までの寸法Aよりも大きく(R>A)、かつ、前記スプライン凸条の高さhよりも大きく(R>h)なるように設定されていることを特徴とする車輪用軸受装置。
    An outer member in which a double row outer rolling surface is integrally formed on the inner periphery;
    A hub wheel integrally having a wheel mounting flange for mounting a wheel at one end and having a cylindrical small-diameter stepped portion extending in the axial direction on the outer periphery, and a small diameter stepped portion of the hub wheel via a predetermined squeezing An inner member formed of at least one inner ring press-fitted and formed with a double-row inner rolling surface facing the double-row outer rolling surface on the outer periphery;
    A double row rolling element that is accommodated so as to roll freely between the rolling surfaces of the inner member and the outer member via a cage,
    A coupler ring in which an inner peripheral spline portion and an outer peripheral spline portion are formed is fitted to the end portion of the small-diameter step portion of the hub wheel, and the end portion of the small-diameter step portion is formed by plastic deformation radially outward. In the wheel bearing device in which the inner ring is fixed in the axial direction via the coupler ring by a caulking portion,
    The inner peripheral spline portion of the coupler ring includes a plurality of spline grooves and a plurality of spline protrusions alternately formed, and a plurality of splines formed alternately on the outer peripheral surface on the inner side of the small diameter step portion of the hub wheel. The hub spline part which consists of a concave line and a plurality of spline convex lines meshes with each other, and the end surface of the spline convex line of the hub spline part is formed by a single arc having a predetermined radius of curvature R. It is larger than the dimension A (R> A) from the end surface of the inner side of the coupler ring to the edge of the spline ridge, and larger than the height h of the spline ridge (R> h). A wheel bearing device characterized by being set.
  2.  前記ハブスプライン部のスプライン凹条の溝径をDa、前記カプラーリングにおける内周スプラインのスプライン凸条の内径をDbとした時、このスプライン凸条の内径Dbが前記ハブスプライン部のスプライン凹条の溝径Daよりも大径で、その径差ΔD=(Db-Da)が1.0mm以下になるように設定されている請求項1に記載の車輪用軸受装置。 When the groove diameter of the spline groove of the hub spline part is Da and the inner diameter of the spline protrusion of the inner peripheral spline in the coupler ring is Db, the inner diameter Db of the spline protrusion is the diameter of the spline groove of the hub spline part. The wheel bearing device according to claim 1, wherein the wheel bearing device is larger than the groove diameter Da and has a diameter difference ΔD = (Db-Da) of 1.0 mm or less.
  3.  前記カプラーリングの内周スプライン部におけるスプライン凸条の両端部のうち少なくともインナー側の端部内径にテーパ面が形成され、このテーパ面の開始点が、前記ハブスプライン部のスプライン凸条の端縁と、前記スプライン凹条の底部との範囲内に配置されている請求項1または2に記載の車輪用軸受装置。 A tapered surface is formed at the inner diameter of at least the inner end of the spline ridges at the inner peripheral spline portion of the coupler ring, and the starting point of the tapered surface is the edge of the spline ridge of the hub spline portion. And the bearing apparatus for wheels of Claim 1 or 2 arrange | positioned in the range with the bottom part of the said spline groove.
  4.  前記カプラーリングの両端部のうち少なくともインナー側の端部の内径にテーパ状の面取り部が形成され、この面取り部の径方向の寸法H1が、前記内周スプライン部のスプライン凸条の高さH0よりも大きく(H1≧H0)なるように設定されている請求項1乃至3いずれかに記載の車輪用軸受装置。 A tapered chamfered portion is formed at the inner diameter of at least the inner end of the both ends of the coupler ring, and the radial dimension H1 of the chamfered portion is the height H0 of the spline protrusion of the inner peripheral spline portion. 4. The wheel bearing device according to claim 1, wherein the wheel bearing device is set to be larger (H1 ≧ H0).
  5.  前記カプラーリングの内周スプライン部におけるスプライン凹条の両端部のうち少なくともインナー側の端部にテーパ状の面取り部が形成されている請求項1乃至4いずれかに記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 4, wherein a tapered chamfered portion is formed at least at an end on the inner side of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring.
  6.  前記カプラーリングの内周スプライン部におけるスプライン凹条の両端部のうち少なくともインナー側の端部に所定の曲率半径からなる円弧状の面取り部が形成されている請求項1乃至4いずれかに記載の車輪用軸受装置。 5. The arc-shaped chamfered portion having a predetermined radius of curvature is formed at least at the end on the inner side of both end portions of the spline recess in the inner peripheral spline portion of the coupler ring. Wheel bearing device.
  7.  前記カプラーリングの内周スプライン部におけるスプライン凹条がインナー側の端部で止められて非溝部が形成されている請求項1乃至4いずれかに記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 4, wherein a spline groove in an inner peripheral spline portion of the coupler ring is stopped at an inner end portion to form a non-groove portion.
  8.  前記カプラーリングが、炭素量が中炭素鋼以下の鋼材からなり、ズブ焼入れにより芯部まで硬化処理され、外周に形成された外周スプライン部と前記内周スプライン部が同じ硬さに設定されている請求項1乃至7いずれかに記載の車輪用軸受装置。 The coupler ring is made of a steel material having a carbon amount of medium carbon steel or less, and is hardened to the core by quenching, and the outer peripheral spline portion formed on the outer periphery and the inner peripheral spline portion are set to the same hardness. The wheel bearing device according to any one of claims 1 to 7.
  9.  前記カプラーリングの表面硬さが前記ハブ輪と少なくとも130HVの硬度差を有している請求項1に記載の車輪用軸受装置。 The wheel bearing device according to claim 1, wherein the surface hardness of the coupler ring has a hardness difference of at least 130 HV from the hub wheel.
  10.  前記カプラーリングがCr0.09~0.12wt%含有され、表面硬さが392~600HVの範囲に設定されている請求項1乃至9いずれかに記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 9, wherein the coupler ring is contained in 0.09 to 0.12 wt% of Cr, and the surface hardness is set in a range of 392 to 600 HV.
  11.  前記カプラーリングが炭素0.15~0.45wt%からなる鋼材で形成されている請求項1乃至9いずれかに記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 9, wherein the coupler ring is made of a steel material made of 0.15 to 0.45 wt% carbon.
  12.  前記カプラーリングがCr0.12~0.2wt%含有されたクロム鋼からなり、焼入れ焼戻しにより硬化処理されている請求項1乃至9いずれかに記載の車輪用軸受装置。 10. The wheel bearing device according to claim 1, wherein the coupler ring is made of chromium steel containing 0.12 to 0.2 wt% of Cr, and is hardened by quenching and tempering.
  13.  前記カプラーリングがMo0.15~0.3wt%含有されたクロムモリブデン鋼で形成されている請求項12に記載の車輪用軸受装置。 The wheel bearing device according to claim 12, wherein the coupler ring is made of chromium molybdenum steel containing 0.15 to 0.3 wt% of Mo.
  14.  前記カプラーリングの外周スプライン部の歯底が所定の曲率半径からなる円弧状に形成されている請求項1乃至13いずれかに記載の車輪用軸受装置。 The wheel bearing device according to any one of claims 1 to 13, wherein a tooth bottom of an outer peripheral spline portion of the coupler ring is formed in an arc shape having a predetermined radius of curvature.
  15.  前記内方部材に等速自在継手を構成する外側継手部材が結合され、この外側継手部材の外周面に、前記カプラーリングの外周スプライン部と同径かつ同形状の車軸側スプライン部が形成されると共に、これら外周スプライン部と車軸側スプライン部とが互いに同軸上に配置され、前記車軸側スプライン部に、軸方向に摺動可能な駆動切替用ギアリングの内周スプライン部が噛合されている請求項1に記載の車輪用軸受装置。 An outer joint member constituting a constant velocity universal joint is coupled to the inner member, and an axle side spline portion having the same diameter and the same shape as the outer peripheral spline portion of the coupler ring is formed on the outer peripheral surface of the outer joint member. In addition, the outer peripheral spline portion and the axle side spline portion are arranged coaxially with each other, and the inner side spline portion of the drive switching gear ring slidable in the axial direction is meshed with the axle side spline portion. Item 2. A wheel bearing device according to Item 1.
  16.  前記ハブ輪が炭素0.40~0.80wt%を含む中高炭素鋼で形成され、前記車輪取付フランジのインナー側の基部から前記小径段部に亙って高周波焼入れによって表面硬さが58~64HRCの範囲に所定の硬化層が形成され、前記加締部が鍛造後の表面硬さのままの未焼入れ部とされている請求項1に記載の車輪用軸受装置。 The hub wheel is made of medium and high carbon steel containing carbon of 0.40 to 0.80 wt%, and the surface hardness is 58 to 64 HRC by induction quenching from the inner side base of the wheel mounting flange to the small diameter step. 2. The wheel bearing device according to claim 1, wherein a predetermined hardened layer is formed in the range, and the caulking portion is an unquenched portion having the surface hardness after forging.
  17.  外周に懸架装置を構成するナックルに取り付けられるための車体取付フランジを一体に有し、内周に複列の外側転走面が一体に形成された外方部材と、
     一端部に車輪を取り付けるための車輪取付フランジを一体に有し、外周に軸方向に延びる円筒状の小径段部が形成されたハブ輪、およびこのハブ輪の小径段部に所定のシメシロを介して圧入された少なくとも一つの内輪からなり、外周に前記複列の外側転走面に対向する複列の内側転走面が形成された内方部材と、
     この内方部材と前記外方部材の両転走面間に保持器を介して転動自在に収容された複列の転動体とを備えた車輪用軸受装置の予圧管理方法において、
     前記ハブ輪の小径段部の端部を径方向外方に塑性変形させて形成した加締部によって前記内輪がリング状のカプラーリングを介して所定の軸受予圧が付与された状態で軸方向に固定され、加締前の軸受すきまを測定すると共に、
     加締前後の前記カプラーリングの基準面からの高さを測定し、この高さ変化量を、予め弾性変形量とすきま減少量との関係が確認されている回帰式によってすきま減少量を算出し、前記加締前の軸受すきまからこのすきま減少量を差し引いて加締後の軸受すきまを算出することを特徴とする車輪用軸受装置の予圧管理方法。
    An outer member integrally having a vehicle body mounting flange for being attached to a knuckle constituting a suspension device on the outer periphery, and an outer rolling surface of a double row integrally formed on the inner periphery;
    A hub wheel integrally having a wheel mounting flange for mounting a wheel at one end and having a cylindrical small-diameter stepped portion extending in the axial direction on the outer periphery, and a small diameter stepped portion of the hub wheel via a predetermined squeezing An inner member formed of at least one inner ring press-fitted and formed with a double-row inner rolling surface facing the double-row outer rolling surface on the outer periphery;
    In the preload management method for a wheel bearing device comprising a double row rolling element that is rotatably accommodated between both rolling surfaces of the inner member and the outer member via a cage,
    In a state where a predetermined bearing preload is applied to the inner ring through a ring-shaped coupler ring by a caulking portion formed by plastically deforming an end portion of the small-diameter step portion of the hub ring radially outward. Measure the bearing clearance before tightening,
    The height from the reference surface of the coupler ring before and after caulking is measured, and the amount of change in the height is calculated by a regression equation in which the relationship between the amount of elastic deformation and the amount of clearance reduction is confirmed in advance. A preload management method for a wheel bearing device, wherein the bearing clearance after caulking is calculated by subtracting the clearance reduction amount from the bearing clearance before caulking.
PCT/JP2012/065690 2011-06-20 2012-06-20 Wheel bearing device and preload-controlling method therefor WO2012176787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/136,333 US9315069B2 (en) 2011-06-20 2013-12-20 Wheel bearing apparatus and its pre-pressure managing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011135958 2011-06-20
JP2011-135958 2011-06-20
JP2011169077A JP2013032093A (en) 2011-08-02 2011-08-02 Bearing device for wheel and preload management method thereof
JP2011-169077 2011-08-02
JP2012130707A JP5988713B2 (en) 2011-06-20 2012-06-08 Wheel bearing device
JP2012-130707 2012-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/136,333 Continuation US9315069B2 (en) 2011-06-20 2013-12-20 Wheel bearing apparatus and its pre-pressure managing method

Publications (1)

Publication Number Publication Date
WO2012176787A1 true WO2012176787A1 (en) 2012-12-27

Family

ID=47422619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065690 WO2012176787A1 (en) 2011-06-20 2012-06-20 Wheel bearing device and preload-controlling method therefor

Country Status (1)

Country Link
WO (1) WO2012176787A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2810789A4 (en) * 2012-02-01 2015-12-02 Ntn Toyo Bearing Co Ltd Bearing device for wheel
US20220325751A1 (en) * 2019-09-06 2022-10-13 Nsk Ltd. Hub unit bearing and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081453A (en) * 2000-09-04 2002-03-22 Ntn Corp Caulking method of wheel bearing device
JP2002139060A (en) * 2000-08-24 2002-05-17 Ntn Corp Wheel bearing device
JP2006062437A (en) * 2004-08-25 2006-03-09 Jtekt Corp Wheel supporting device and manufacturing method thereof
JP2006077830A (en) * 2004-09-08 2006-03-23 Ntn Corp Bearing clearance measuring method for wheel bearing device
WO2006035836A1 (en) * 2004-09-30 2006-04-06 Jtekt Corporation Hub unit, rolling bearing device, producing method for rolling bearing device, and assembling device and assembling method for rolling bearing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139060A (en) * 2000-08-24 2002-05-17 Ntn Corp Wheel bearing device
JP2002081453A (en) * 2000-09-04 2002-03-22 Ntn Corp Caulking method of wheel bearing device
JP2006062437A (en) * 2004-08-25 2006-03-09 Jtekt Corp Wheel supporting device and manufacturing method thereof
JP2006077830A (en) * 2004-09-08 2006-03-23 Ntn Corp Bearing clearance measuring method for wheel bearing device
WO2006035836A1 (en) * 2004-09-30 2006-04-06 Jtekt Corporation Hub unit, rolling bearing device, producing method for rolling bearing device, and assembling device and assembling method for rolling bearing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2810789A4 (en) * 2012-02-01 2015-12-02 Ntn Toyo Bearing Co Ltd Bearing device for wheel
US9434209B2 (en) 2012-02-01 2016-09-06 Ntn Corporation Wheel bearing apparatus
US20220325751A1 (en) * 2019-09-06 2022-10-13 Nsk Ltd. Hub unit bearing and method for manufacturing same
US11852198B2 (en) * 2019-09-06 2023-12-26 Nsk, Ltd. Hub unit bearing and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP6228756B2 (en) Wheel bearing device
JP2005003061A (en) Wheel bearing device
WO2006080209A1 (en) Bearing device for wheel and method of assembling the same
WO2013115319A1 (en) Bearing device for wheel
JP5641705B2 (en) Wheel bearing device
US7931409B2 (en) Wheel bearing apparatus
JP2006329320A (en) Wheel bearing device
US9315069B2 (en) Wheel bearing apparatus and its pre-pressure managing method
JP5057553B2 (en) Wheel bearing device
WO2012176787A1 (en) Wheel bearing device and preload-controlling method therefor
JP5417239B2 (en) Wheel bearing device and manufacturing method thereof
JP2014020404A (en) Wheel bearing device
JP6309228B2 (en) Manufacturing method of wheel bearing device
JP5166757B2 (en) Wheel bearing and wheel bearing device provided with the same
JP5988713B2 (en) Wheel bearing device
JP5097479B2 (en) Wheel bearing and wheel bearing device provided with the same
JP6444716B2 (en) Wheel bearing device and mounting structure thereof
JP2023037318A (en) Wheel bearing device
JP2012056528A (en) Bearing device for wheel
JP2013032093A (en) Bearing device for wheel and preload management method thereof
JP2012158253A (en) Bearing device for wheel
JP5166754B2 (en) Wheel bearing device
JP2014189192A (en) Bearing device for wheel
JP5476178B2 (en) Wheel bearing device
WO2013018868A1 (en) Wheel bearing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802386

Country of ref document: EP

Kind code of ref document: A1