JP4407742B2 - Inspection method of refractive index distribution of glass base material - Google Patents

Inspection method of refractive index distribution of glass base material Download PDF

Info

Publication number
JP4407742B2
JP4407742B2 JP2007309915A JP2007309915A JP4407742B2 JP 4407742 B2 JP4407742 B2 JP 4407742B2 JP 2007309915 A JP2007309915 A JP 2007309915A JP 2007309915 A JP2007309915 A JP 2007309915A JP 4407742 B2 JP4407742 B2 JP 4407742B2
Authority
JP
Japan
Prior art keywords
glass
refractive index
base material
index distribution
glass base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007309915A
Other languages
Japanese (ja)
Other versions
JP2009132562A (en
Inventor
幹太 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007309915A priority Critical patent/JP4407742B2/en
Publication of JP2009132562A publication Critical patent/JP2009132562A/en
Application granted granted Critical
Publication of JP4407742B2 publication Critical patent/JP4407742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of determining the distribution of refractive indexes of a glass preform by which the quality is reliably guaranteed only with a few points of measurement. <P>SOLUTION: A glass preform is obtained by vitrifying a glass particulate deposit by heat to obtain transparent glass. The method of determining the distribution of refractive indexes of a glass preform is characterized in that the distribution of the refractive indexes is determined on the glass preform after the vitrification step at the positions corresponding to the maximum and minimum points of the temperature distribution in the central axis direction of the glass particulate deposit. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、例えば光ファイバ等の製造に用いられるガラス母材の屈折率分布の検査方法に関する。   The present invention relates to a method for inspecting a refractive index distribution of a glass base material used for manufacturing, for example, an optical fiber.

光ファイバ等の製造に用いるガラス母材の製造方法において、ガラス原料ガスを火炎加水分解させてガラス微粒子を生成し、これを出発ガラスロッド等に堆積させてガラス微粒子堆積体とし、これを脱水、焼結して透明ガラス化することが知られている。また、ガラス微粒子堆積体の製造には、VAD法(気相軸付法)、OVD法(外付け気相蒸着法)等が知られている。   In the method of manufacturing a glass base material used for manufacturing an optical fiber or the like, glass raw material gas is flame-hydrolyzed to generate glass fine particles, and this is deposited on a starting glass rod or the like to form a glass fine particle deposit, which is dehydrated, It is known to sinter and form a transparent glass. In addition, a VAD method (vapor phase axis attaching method), an OVD method (external vapor phase vapor deposition method), and the like are known for producing a glass fine particle deposit.

OVD法は、例えば、反応容器内で回転する出発ガラスロッドの外周に、SiCl等のガラス原料ガスを、Hガス,Oガス等の燃焼用ガスとともにバーナで吹き付け、火炎加水分解反応によりガラス微粒子を生成して堆積させ、ガラス微粒子堆積体を作製している。VAD法は、回転する出発ガラスロッドの下方にバーナを配して、ガラス原料ガスと燃焼用ガスを吹き付け、火炎加水分解反応により生成されるガラス微粒子を軸方向に堆積させてガラス微粒子堆積体を作製している。
上記で作成されたガラス微粒子堆積体は、この後、加熱炉内で脱水・焼結されて、透明ガラス体になる(例えば特許文献1参照)。
In the OVD method, for example, a glass raw material gas such as SiCl 4 is blown together with a combustion gas such as H 2 gas and O 2 gas on the outer periphery of a starting glass rod that rotates in a reaction vessel, and a flame hydrolysis reaction is performed. Glass particulates are produced and deposited to produce a glass particulate deposit. In the VAD method, a burner is disposed below a rotating starting glass rod, glass raw material gas and combustion gas are sprayed, and glass fine particles generated by a flame hydrolysis reaction are deposited in the axial direction to form a glass fine particle deposit. I am making it.
Thereafter, the glass fine particle deposit produced as described above is dehydrated and sintered in a heating furnace to become a transparent glass body (see, for example, Patent Document 1).

しかしながら、製造される透明ガラス体は、加熱炉内での脱水・焼結時における加熱ムラ等によって、ガラス母材中心軸方向の屈折率分布の特性にばらつきが生じ、品質が不安定となることがある。   However, the quality of the produced transparent glass body becomes unstable due to variations in the refractive index distribution characteristics in the central axis direction of the glass base material due to uneven heating during dehydration and sintering in the heating furnace. There is.

上記のばらつきを抑制するために、例えば特許文献2では、出発母材の軸方向に光ファイバ多孔質母材を堆積した後、この光ファイバ多孔質母材を所定温度で加熱し、脱水、焼結することで光ファイバ用ガラス母材を製造し、この工程を繰返すようにした製造方法において、製造した光ファイバ用ガラス母材の屈折率(ここでいう屈折率とは、コア部とクラッド部との屈折率差)を測定し、この屈折率と目標の屈折率との差を求めて、この差を光ファイバ多孔質母材の加熱温度の補正値に変換するとともに、次回の製造工程における光ファイバ多孔質母材の加熱温度を前記補正値で補正するようにしたものである。   In order to suppress the above-mentioned variation, for example, in Patent Document 2, after depositing an optical fiber porous preform in the axial direction of the starting preform, the optical fiber porous preform is heated at a predetermined temperature to be dehydrated and baked. In the manufacturing method in which the glass base material for optical fiber is manufactured by repeating and this process is repeated, the refractive index of the manufactured glass base material for optical fiber (the refractive index here is the core portion and the cladding portion) And the difference between this refractive index and the target refractive index is calculated, and this difference is converted into a correction value for the heating temperature of the optical fiber porous preform, and in the next manufacturing process. The heating temperature of the optical fiber porous preform is corrected with the correction value.

また、特許文献3は、ガラス微粒子の堆積に先立って、予めコアロッドの屈折率分布を長手方向に沿って測定し、測定された前記屈折率分布に基づいて波長分散値が長手方向で所定値となるように長手方向で目標J倍率(ガラス母材外径/出発ガラスロッド外径)分布を算出し、目標J倍率となるようにガラス微粒子の堆積量を長手方向で調整するようにしたものである。   Further, Patent Document 3 measures the refractive index distribution of the core rod in advance along the longitudinal direction prior to the deposition of the glass fine particles, and based on the measured refractive index distribution, the chromatic dispersion value is a predetermined value in the longitudinal direction. The target J magnification (glass base material outer diameter / starting glass rod outer diameter) distribution is calculated in the longitudinal direction so that the deposition amount of the glass fine particles is adjusted in the longitudinal direction so as to achieve the target J magnification. is there.

特許文献4は、ガラス微粒子堆積体を真空加熱炉の炉心管内に収納し、焼結して、透明ガラス化するガラス母材の製造方法において、前回ガラス母材製造時に炉心管の側面に設けた開口を通してガラス微粒子堆積体又はガラス母材の母材表面温度と炉心管の温度を測定しておき、今回ガラス母材製造時に、炉心管の温度を制御し目標とする加熱温度と加熱時間とする加熱設定手段の設定を、前回の炉心管の温度と母材表面温度に基づいて変更し加熱温度を制御するものである。
特開昭63−206327号公報 特開2001−19456号公報 特開2003−321239号公報 特開2004−331414号公報
In Patent Document 4, a method for producing a glass base material in which a glass particulate deposit is housed in a furnace tube of a vacuum heating furnace, sintered, and turned into a transparent glass, provided on the side surface of the core tube at the time of the previous glass base material production. Measure the temperature of the base material surface of the glass particulate deposit or the glass base material and the core tube through the opening, and control the temperature of the core tube at the time of manufacturing the glass base material this time to the target heating temperature and heating time. The setting of the heating setting means is changed based on the previous temperature of the core tube and the base material surface temperature to control the heating temperature.
JP-A 63-206327 Japanese Patent Laid-Open No. 2001-19456 JP 2003-321239 A JP 2004-331414 A

しかしながら、例えば特許文献2のようにガラス母材の屈折率分布を検査する際、測定点を多くとると生産性が落ちてしまう問題があった。したがって、測定点をむやみに増やして生産性を落とすことなく、品質を確実に保証できるガラス母材の屈折率分布の検査方法が望まれていた。   However, for example, when inspecting the refractive index distribution of a glass base material as in Patent Document 2, if a large number of measurement points are taken, there is a problem that productivity is lowered. Therefore, there has been a demand for a method for inspecting the refractive index distribution of a glass base material that can reliably guarantee the quality without unnecessarily increasing the number of measurement points and reducing productivity.

本発明は、上記を鑑みなされたものであって、少ない測定点で品質を確実に保証できるガラス母材の屈折率分布の検査方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a method for inspecting the refractive index distribution of a glass base material that can reliably guarantee the quality with a small number of measurement points.

上記課題を解決することのできる本発明に係るガラス母材の屈折率分布の検査方法は、ガラス微粒子堆積体を加熱によって透明ガラス化してガラス母材とする透明ガラス化工程を行った後、前記透明ガラス化工程におけるガラス微粒子堆積体の中心軸方向の温度分布の極大点および極小点に相当する位置で前記ガラス化後ガラス母材の屈折率分布を測定することを特徴とする。   The method for inspecting the refractive index distribution of the glass base material according to the present invention, which can solve the above-mentioned problems, after performing the transparent vitrification step of converting the glass fine particle deposit into a transparent glass by heating to form a glass base material, The refractive index distribution of the glass base material after vitrification is measured at a position corresponding to the maximum point and the minimum point of the temperature distribution in the central axis direction of the glass fine particle deposit in the transparent vitrification step.

ガラス母材の屈折率分布は、特に、製造時の熱履歴による影響を受け易く、透明ガラス化工程時の加熱炉におけるガラス微粒子堆積体の中心軸方向(以下、「長手方向」ともいう)の温度分布の違いにより長手方向に屈折率分布が変動する。本発明者は、透明ガラス化工程におけるガラス微粒子堆積体長手方向の温度分布の極大点および極小点での屈折率分布において設定値とのずれ量が最大となることを見出し、上記本発明に至ったものである。
即ち、製造されるガラス母材において、透明ガラス化工程時におけるガラス微粒子堆積体長手方向の温度分布の極大点および極小点での屈折率分布を測定すれば、むやみに測定点を増やすことなく、少ない測定点で確実に品質を保証することが可能となる。
The refractive index distribution of the glass base material is particularly susceptible to the thermal history during production, and is in the direction of the central axis (hereinafter also referred to as “longitudinal direction”) of the glass particulate deposit in the heating furnace during the transparent vitrification process. The refractive index distribution varies in the longitudinal direction due to the difference in temperature distribution. The inventor has found that the amount of deviation from the set value is maximized in the refractive index distribution at the maximum point and the minimum point of the temperature distribution in the longitudinal direction of the glass fine particle deposit in the transparent vitrification step, leading to the present invention. It is a thing.
That is, in the manufactured glass base material, if the refractive index distribution at the maximum point and the minimum point of the temperature distribution in the longitudinal direction of the glass fine particle deposit during the transparent vitrification step is measured, without increasing the measurement points unnecessarily, It becomes possible to guarantee the quality reliably with a small number of measurement points.

本発明に係るガラス母材の屈折率分布の検査方法は、光ファイバの製造に用いられるガラス母材であって、中心部のコアガラス(コアガラスはコア部とクラッド部の一部を有してなる)の周囲に多孔質のクラッド部を合成して透明ガラス化したコアクラッドガラスや、その製造過程で製造されるコアガラスの検査等に適用できる。また、光ファイバ用ガラス母材に限らず、屈折率の安定性が要求されるガラス母材の検査にも有効である。   The method for inspecting the refractive index distribution of a glass base material according to the present invention is a glass base material used for manufacturing an optical fiber, which is a core glass in a central part (the core glass has a core part and a part of a clad part. It can be applied to inspection of core clad glass obtained by synthesizing a porous clad portion around a transparent glass, or core glass produced in the production process. Moreover, it is effective not only for inspection of glass base materials for optical fibers but also for inspection of glass base materials that require stability of the refractive index.

更に、本発明に係るガラス母材の屈折率分布の検査方法は、前記透明ガラス化工程が、複数の加熱ゾーンを有する加熱炉でガラス微粒子堆積体を加熱する工程である場合に好適である。即ち、前記透明ガラス化工程におけるガラス母材長手方向の温度分布の極大点および極小点が、それぞれ、前記複数の加熱ゾーンの各加熱ゾーンの中心部および端部に相当するため、測定点である極大点および極小点を特定し易く、屈折率分布の検査がより効率良く可能となる。   Furthermore, the method for inspecting the refractive index distribution of the glass base material according to the present invention is suitable when the transparent vitrification step is a step of heating the glass particulate deposit in a heating furnace having a plurality of heating zones. That is, the maximum point and the minimum point of the temperature distribution in the longitudinal direction of the glass base material in the transparent vitrification step correspond to the center part and the end part of each heating zone of the plurality of heating zones, respectively, and are measurement points. The maximum point and the minimum point can be easily specified, and the refractive index distribution can be inspected more efficiently.

本発明によれば、少ない測定点で品質を確実に保証できるガラス母材の屈折率分布の検査方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the inspection method of the refractive index distribution of the glass base material which can ensure quality reliably with few measurement points can be provided.

以下、本発明に係るガラス母材の屈折率分布の検査方法の実施形態の例について図面を参照して説明する。   Hereinafter, an example of an embodiment of an inspection method for a refractive index distribution of a glass base material according to the present invention will be described with reference to the drawings.

以下、透明ガラス化工程について詳細に説明する。
図1は、透明ガラス化工程において、ガラス微粒子堆積体の脱水、焼結を行う加熱炉の概略断面図である。
図1に示すように、加熱炉10は炉体11によって囲われた円筒状の炉心管12を備えている。炉心管12の周囲には、長手方向に配設された複数段の加熱ヒータ13a、13b、13c(総称して加熱ヒータ13ともいう)が設けられている。
本発明においては、個々の加熱ヒータ13によって加熱される領域を、それぞれ「加熱ゾーン」とする。
また、本実施態様では、温度分布の極大点・極小点を「加熱ヒータの温度」から特定するが、温度分布の極大点・極小点は「炉心管内の雰囲気温度」「母材表面温度」のいずれからも特定することができる。
尚、本実施の態様では加熱ヒータを3段としているが、これに限定されるものではない。
Hereinafter, the transparent vitrification step will be described in detail.
FIG. 1 is a schematic cross-sectional view of a heating furnace that performs dehydration and sintering of a glass particulate deposit in a transparent vitrification step.
As shown in FIG. 1, the heating furnace 10 includes a cylindrical furnace core tube 12 surrounded by a furnace body 11. Around the core tube 12, there are provided a plurality of stages of heaters 13a, 13b, 13c (collectively referred to as heaters 13) arranged in the longitudinal direction.
In the present invention, regions heated by the individual heaters 13 are referred to as “heating zones”.
In this embodiment, the maximum point / minimum point of the temperature distribution is specified from the “heater temperature”, and the maximum point / minimum point of the temperature distribution is the “atmosphere temperature in the core tube” or “base material surface temperature”. It can be specified from either.
In this embodiment, the heater is provided in three stages, but the present invention is not limited to this.

ヒータ13は、炉心管12の均熱性を持たせるため、または所望の温度分布を持たせるために、短いものを直列に配設しており、互いに隙間をあけて配置されている。
これら複数段に分けられたヒータ13は、制御装置21に接続されており、この制御装置21によって個別に加熱制御が可能とされている。つまり、制御装置21によって、各ヒータ13単位でオン・オフ及び加熱電力の調整を行なうことが可能とされている。ヒータ13は、例えば、抵抗加熱型のヒータであり、帯状の抵抗材を炉心管12の外周を囲う環状にした形状のものが用いられる。
The heaters 13 are shortly arranged in series in order to provide the thermal uniformity of the furnace core tube 12 or to have a desired temperature distribution, and are arranged with a gap therebetween.
The heaters 13 divided into a plurality of stages are connected to a control device 21, and the control device 21 can individually control heating. That is, the control device 21 can perform on / off and heating power adjustment for each heater 13. The heater 13 is, for example, a resistance heating type heater, and a strip-shaped resistance material having an annular shape surrounding the outer periphery of the core tube 12 is used.

炉心管12の上方には、支持装置14が設けられており、この支持装置14によって炉心管12内に、ガラスロッドG1(コア部とクラッド部の一部を有してなるコアガラス)にガラス微粒子を堆積させたガラス微粒子堆積体Gが吊り下げられる。
この加熱炉10は、炉体11で炉心管12を密封封止した真空または減圧加熱炉であり、炉心管12の内側に所望のガスを適宜供給及び排出することが可能であるとともに、加熱処理で使用されるガスが外部に漏出しないように構成されている。
A support device 14 is provided above the core tube 12, and the glass rod G <b> 1 (core glass having a core portion and a part of the clad portion) is formed in the core tube 12 by the support device 14. The glass particulate deposit G on which the particulates are deposited is suspended.
The heating furnace 10 is a vacuum or reduced pressure heating furnace in which a furnace core tube 12 is hermetically sealed with a furnace body 11. A desired gas can be appropriately supplied to and discharged from the inside of the furnace core tube 12, and heat treatment is performed. The gas used in is not configured to leak to the outside.

炉体11の外周側には、上下方向に間隔をあけて配設された複数の温度測定器22が各ヒータ13に向けて配設されている。これらの温度測定器22は、接触式または非接触式の温度センサであり、それぞれ制御装置21に接続され、この制御装置21に測定結果を送信する。   On the outer peripheral side of the furnace body 11, a plurality of temperature measuring devices 22 arranged at intervals in the vertical direction are arranged toward each heater 13. These temperature measuring devices 22 are contact-type or non-contact-type temperature sensors, and are connected to the control device 21 and transmit measurement results to the control device 21.

また、制御装置21は各ヒータ13へ供給する電力を調整する給電調整機能を備えており、各温度測定器22からの測定温度に基づいて、各ヒータ13の温度を独立して制御可能である。   Further, the control device 21 has a power supply adjustment function for adjusting the power supplied to each heater 13, and can control the temperature of each heater 13 independently based on the measured temperature from each temperature measuring device 22. .

次に、上記の加熱炉10によってガラス微粒子堆積体Gを焼結して透明ガラス化し、ガラス母材とする場合について説明する。
まず、ガラスロッドG1の周囲にOVD法等によってガラス微粒子を堆積させて形成したガラス微粒子堆積体Gを、図1に示すように、支持装置14によって炉心管12内に吊り下げて鉛直方向に支持する。
炉心管12の温度は、炉心管12内にガラス微粒子堆積体を挿入した後、ヒータ13a〜13cを一斉にオンして、予熱温度(800℃程度)から脱水温度(1250℃程度)になるように加熱して脱水処理を行なう。この後、各ヒータ13a〜13cは、所定の温度(1550℃程度)になるように順次加熱制御され、透明ガラス化される。
Next, the case where the glass particulate deposit G is sintered into a transparent glass by the heating furnace 10 to obtain a glass base material will be described.
First, a glass particulate deposit G formed by depositing glass particulates around the glass rod G1 by an OVD method or the like is suspended in a furnace core tube 12 by a support device 14 and supported in a vertical direction as shown in FIG. To do.
The temperature of the core tube 12 is set so that the heaters 13a to 13c are turned on all at once after inserting the glass particle deposit body into the core tube 12, and the temperature is changed from the preheating temperature (about 800 ° C.) to the dehydration temperature (about 1250 ° C.). To dehydration treatment. Thereafter, each of the heaters 13a to 13c is sequentially heated and controlled so as to become a predetermined temperature (about 1550 ° C.) to be transparent vitrified.

図1において、Lはガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13a中心までの距離である。「有効部」とは製品として使用できる部分であり、製品の状態等により任意で決定される。図1では加熱ヒータ13a上端と有効部上端を同位置とし、加熱ヒータ13c下端と有効部下端とを同位置としている。Lはガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13aと中部加熱ヒータ13bの境界までの距離である。Lはガラス微粒子堆積体Gの有効部上端から中部加熱ヒータ13b中心までの距離である。L4はガラス微粒子堆積体Gの有効部上端から中部加熱ヒータ13bと下部加熱ヒータ13cの境界までの距離である。Lはガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13c中心までの距離である。Lはガラス微粒子堆積体Gの有効部長(有後部上端から有後部下端までの距離)である。 In Figure 1, L 1 is the distance from the effective top end of the soot preform G to the upper heater 13a center. The “effective part” is a part that can be used as a product, and is arbitrarily determined depending on the state of the product. In FIG. 1, the upper end of the heater 13a and the upper end of the effective portion are at the same position, and the lower end of the heater 13c and the lower end of the effective portion are at the same position. L 2 is the distance from the effective top end of the soot preform G to the boundary of the upper heater 13a and central heater 13b. L 3 is the distance to central heater 13b from central effective part upper end of the glass particles deposit G. L 4 is the distance from the upper end of the effective portion of the glass particulate deposit G to the boundary between the middle heater 13b and the lower heater 13c. L 5 represents a distance from the effective top end of the soot preform G to the upper heater 13c center. Lw is the effective part length of the glass particulate deposit G (distance from the upper end of the rear part to the lower end of the rear part).

本実施態様において、加熱ヒータ13bの加熱ゾーンはL−L間であり、加熱ゾーンの中心部はLの位置、端部はLおよびLの位置である。
また、加熱ヒータ13aの加熱ゾーンは、加熱ヒータ13aの加熱ゾーン内に基点である有効部上端が存在するため、その加熱ゾーンはL間に相当し、加熱ゾーンの中心部はLの位置、端部はLの位置および有効部上端位置である。同様に、13cの加熱ゾーンはL−L間に相当し、加熱ゾーンの中心部はLの位置、端部はLの位置および有効部下端位置である。
通常、図1の各加熱ゾーンにおいて、加熱ヒータ13a、13b、13cの中心位置であるL、L、Lが加熱炉10内の長手方向の温度分布の極大点に相当する。また、各加熱ゾーンの端部、即ち、加熱ヒータ13a、13b、13cの境界位置(L、L)および有効部上端および有効部下端位置が、加熱炉10内の長手方向の温度分布の極小点に相当する。
尚、加熱ヒータ13が一体型の場合には加熱ヒータ13上端位置および加熱ヒータ13下端位置が加熱炉10内の長手方向の温度分布の極小点に相当する。
In the present embodiment, the heating zone of the heater 13b is between L 4 and L 2 , the center of the heating zone is the position of L 3 , and the ends are the positions of L 2 and L 4 .
The heating zone of the heater 13a is because of the presence of effective top end is the base point in the heating zone of the heater 13a, the heating zone is equivalent to between L 2, the center portion of the heating zone the position of L 1 , end is the position and effective top end position of L 2. Similarly, 13c are heating zones correspond to between L w -L 4, the central portion of the heating zone is located in L 5, the end portion is located and an effective section lower end position of L 4.
Usually, in each heating zone of FIG. 1, L 1 , L 3 , and L 5 that are the center positions of the heaters 13 a, 13 b, and 13 c correspond to the maximum points of the temperature distribution in the longitudinal direction in the heating furnace 10. Further, the end of each heating zone, that is, the boundary positions (L 2 , L 4 ) of the heaters 13 a, 13 b, 13 c and the upper and lower positions of the effective portion are the temperature distribution in the longitudinal direction in the heating furnace 10. It corresponds to the minimum point.
In the case where the heater 13 is an integrated type, the upper end position of the heater 13 and the lower end position of the heater 13 correspond to the minimum points of the temperature distribution in the longitudinal direction in the heating furnace 10.

図2は、ガラス微粒子堆積体Gの焼結前後の外観を表す模式図であり、図2(a)はガラス微粒子堆積体G、図2(b)は焼結後の透明ガラス体G2を表す。図2(b)において、lwは透明ガラス体G2の有効部長を表す。   2A and 2B are schematic views showing the appearance of the glass fine particle deposit G before and after sintering. FIG. 2A shows the glass fine particle deposit G, and FIG. 2B shows the sintered transparent glass G2. . In FIG.2 (b), lw represents the effective part length of the transparent glass body G2.

本実施態様では、焼結後の透明ガラス体G2の、透明ガラス化工程における前記加熱ヒータ13a、13b、13cの位置によって決定される長手方向の温度分布の極大点L、L、L、極小点L、L、有効部上端近傍、有効部下端近傍に相当する位置で屈折率分布を測定する。
即ち、本実施態様では、有効部上端部近傍、L×lw/Lw、L×lw/Lw、L×lw/Lw、L×lw/Lw、L×lw/Lw、有効部下端部近傍を測定すればよい。
In this embodiment, the maximum points L 1 , L 3 , L 5 of the longitudinal temperature distribution determined by the positions of the heaters 13a, 13b, 13c in the transparent vitrification step of the transparent glass body G2 after sintering. The refractive index distribution is measured at positions corresponding to the minimum points L 2 and L 4 , near the upper end of the effective portion, and near the lower end of the effective portion.
That is, in the present embodiment, the vicinity of the effective portion upper end, L 1 × lw / Lw, L 2 × lw / Lw, L 3 × lw / Lw, L 4 × lw / Lw, L 5 × lw / Lw, effective portion What is necessary is just to measure the lower end vicinity.

屈折率分布は、屈折率分布測定器で測定することができる。図3に、所定の測定点において屈折率分布測定器で測定した屈折率分布の一例を示す。屈折率分布測定器で測定された屈折率分布によって、コア径、クラッド径、コアクラッド外径比が算出される。図3において、20がコア径、21がクラッド外径を示す。   The refractive index distribution can be measured with a refractive index distribution measuring device. FIG. 3 shows an example of a refractive index distribution measured by a refractive index distribution measuring device at a predetermined measurement point. The core diameter, the cladding diameter, and the core cladding outer diameter ratio are calculated from the refractive index distribution measured by the refractive index distribution measuring device. In FIG. 3, 20 is a core diameter and 21 is a clad outer diameter.

本実施態様では、上記のコアクラッド外径比(コア径/クラッド外径)の測定値と、コアクラッド外径比の設計値との比(コアクラッド外径比の測定値/コアクラッド外径比の設計値)を算出して、製造されたガラス母材と設計値とのずれ量を検査する。係る検査結果に基いて次回のガラス母材の製造時に透明ガラス化工程の温度条件を調整し、より設計値に近いコアクラッド外径比のガラス母材の製造が可能となる。上記の検査方法を用いることで、製造されたガラス母材の特性を効率よく検査でき、測定点をむやみに増やして生産性を落とすことなく、品質を確実に保証できる。   In this embodiment, the ratio between the measured value of the above-mentioned core cladding outer diameter ratio (core diameter / cladding outer diameter) and the design value of the core cladding outer diameter ratio (measured value of the core cladding outer diameter ratio / core cladding outer diameter). (Design value of the ratio) is calculated, and a deviation amount between the manufactured glass base material and the design value is inspected. Based on the inspection result, the temperature condition of the transparent vitrification process is adjusted at the next production of the glass base material, and the glass base material having a core clad outer diameter ratio closer to the design value can be produced. By using the above inspection method, the characteristics of the manufactured glass base material can be efficiently inspected, and the quality can be reliably guaranteed without increasing the measurement points and reducing the productivity.

以上、本発明に係るガラス母材の屈折率分布の検査方法を、ガラス母材が光ファイバの製造等に用いられるコアクラッドガラスである場合を例に説明したが、本発明はこれに限定されるものではない。
本発明に係るガラス母材の屈折率分布の検査方法は、光ファイバ用ガラス母材製造過程で製造されるコアガラス(ガラスロッドG1)の屈折率分布の検査に使用する場合も上記と同様の方法により実施できる。この検査結果に基き、後のクラッド部の合成の際に、コアガラスに堆積させるガラス微粒子堆積量や、加熱炉10の加熱温度を補正することによって、屈折率分布が一定な光ファイバ用ガラス母材を製造することが可能である。
As described above, the method for inspecting the refractive index distribution of the glass base material according to the present invention has been described by taking as an example the case where the glass base material is a core clad glass used for optical fiber production or the like, but the present invention is not limited thereto. It is not something.
The method for inspecting the refractive index distribution of the glass base material according to the present invention is the same as described above when used for the inspection of the refractive index distribution of the core glass (glass rod G1) manufactured in the process of manufacturing the optical fiber glass base material. It can be implemented by a method. Based on the result of this inspection, by correcting the amount of glass fine particles deposited on the core glass and the heating temperature of the heating furnace 10 when synthesizing the clad portion later, the optical fiber glass mother with a constant refractive index distribution is corrected. It is possible to produce a material.

また、本発明に係るガラス母材の屈折率分布の検査方法は、光ファイバ用ガラス母材に限らず、屈折率の安定性が要求されるその他のガラス母材の検査にも有効である。   Moreover, the method for inspecting the refractive index distribution of the glass base material according to the present invention is not limited to the glass base material for optical fibers, but is also effective for inspection of other glass base materials that require stability of the refractive index.

(実施例1)
図1に示したように、長さ方向に3つの加熱ヒータ13(上から13a、13b、13c)を有する加熱炉10において、中心部のコアガラスの周囲に多孔質のクラッド部を合成したガラス微粒子堆積体Gの脱水・焼結を行った。各ヒータ13の長さは500mmであり、隣り合うヒータ13は50mmずつ離れた構成である。ガラス微粒子堆積体Gの有効部長Lwは1500mmであったが、透明ガラス化後の透明ガラス体G2の有効部長lwは1000mmとなった。この透明ガラス体G2について、ガラス微粒子堆積体Gの段階で加熱炉10のヒータ13中心部、および、ヒータ13の繋ぎ目に相当した部位をLwとlwの関係から算出し、その点において屈折率分布を測定した。表1に屈折率分布の各測定位置を示す。尚、本実施例では、測定点1および測定点7を、それぞれ有効部上端、有効部下端から加熱炉10中心部側にそれぞれ10mmずらした位置とした。
Example 1
As shown in FIG. 1, in a heating furnace 10 having three heaters 13 (13a, 13b, 13c from the top) in the length direction, a glass in which a porous clad portion is synthesized around a central core glass. The fine particle deposit G was dehydrated and sintered. Each heater 13 has a length of 500 mm, and adjacent heaters 13 are separated by 50 mm. The effective part length Lw of the glass fine particle deposit G was 1500 mm, but the effective part length lw of the transparent glass body G2 after transparent vitrification was 1000 mm. For this transparent glass body G2, the central portion of the heater 13 of the heating furnace 10 and the portion corresponding to the joint of the heater 13 are calculated from the relationship between Lw and lw at the stage of the glass particulate deposit G, and the refractive index at that point Distribution was measured. Table 1 shows each measurement position of the refractive index distribution. In this example, the measurement point 1 and the measurement point 7 were respectively shifted by 10 mm from the upper end of the effective portion and the lower end of the effective portion toward the center of the heating furnace 10.

図4に、透明ガラス体G2有効部上端からの距離におけるコアクラッド外径比のずれ量を示す(×印)。
図4におけるコアクラッド外径比のずれ量は、コアクラッド外径比(コア径/クラッド外径)の測定値と設計値とのずれ(コアクラッド外径比の実際の測定値/コアクラッド外径比の設計値)である。ガラス微粒子堆積体Gのガラス化時における温度分布の極大点は1400℃、極小点は1350℃であった。
FIG. 4 shows the shift amount of the core clad outer diameter ratio at a distance from the upper end of the effective portion of the transparent glass body G2 (x mark).
The deviation of the core clad outer diameter ratio in FIG. 4 is the difference between the measured value of the core clad outer diameter ratio (core diameter / cladding outer diameter) and the design value (actual measured value of the core clad outer diameter ratio / core clad outer). Design value of diameter ratio). The maximum point of the temperature distribution during vitrification of the glass particulate deposit G was 1400 ° C., and the minimum point was 1350 ° C.

(比較例1)
上記実施例1に記載した透明ガラス体G2について、有効部の長さ方向に100mm間隔で屈折率分布を測定したところ、図4の○印に示す結果となった。表1に屈折率分布の各測定位置を示す。
(Comparative Example 1)
For the transparent glass body G2 described in Example 1 above, the refractive index distribution was measured at 100 mm intervals in the length direction of the effective portion, and the results indicated by the circles in FIG. 4 were obtained. Table 1 shows each measurement position of the refractive index distribution.

図4に示す通り、上記実施例1で測定した箇所が屈折率分布の変化点となっており、本比較例の測定では、測定点が11点と多いにも関わらず、屈折率分布の変化点(極大・極小値)を捉えられない結果となった。   As shown in FIG. 4, the location measured in Example 1 is a change point of the refractive index distribution. In the measurement of this comparative example, the change in the refractive index distribution was performed although there were as many as 11 measurement points. The result was that the points (maximum and minimum values) could not be captured.

(実施例2)
予め加熱炉10内の温度分布を測定しておき、ガラス微粒子堆積体Gの段階で加熱炉10内の温度分布の極大点、極小点に相当した部位に相当する透明ガラス体G2の長手位置で屈折率分布を測定しても、実施例1と同様の結果を得た。
(Example 2)
The temperature distribution in the heating furnace 10 is measured in advance, and at the longitudinal position of the transparent glass body G2 corresponding to the maximum and minimum points of the temperature distribution in the heating furnace 10 at the stage of the glass particulate deposit G. Even when the refractive index distribution was measured, the same result as in Example 1 was obtained.

Figure 0004407742
Figure 0004407742

図1は、透明ガラス化工程において、ガラス微粒子堆積体G2の脱水、焼結を行う加熱炉10の概略断面図である。FIG. 1 is a schematic cross-sectional view of a heating furnace 10 that performs dehydration and sintering of the glass particulate deposit G2 in the transparent vitrification step. ガラス微粒子堆積体Gの焼結前後の外観を表す模式図であり、図2(a)がガラス微粒子堆積体G、図2(b)が透明ガラス体G2である。It is a schematic diagram showing the external appearance before and behind sintering of the glass fine particle deposit G, FIG. 2A is the glass fine particle deposit G, and FIG. 2B is the transparent glass G2. 所定の測定点において屈折率分布測定器で測定した屈折率分布の一例である。It is an example of the refractive index distribution measured with the refractive index distribution measuring device at a predetermined measurement point. 実施例1および比較例1において測定された透明ガラス体G2の有効長上端部からの距離におけるコアクラッド外径比のずれ量を示す図である。It is a figure which shows the deviation | shift amount of the core clad outer diameter ratio in the distance from the effective length upper end part of the transparent glass body G2 measured in Example 1 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

10 加熱炉、11 炉体、12 炉心管、13a、13b、13c 加熱ヒータ、G1 ガラスロッド、G ガラス微粒子堆積体、21 制御装置、14 支持装置、22 温度測定器、L ガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13a中心までの距離、L ガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13aと中部加熱ヒータ13bの境界までの距離 ガラス微粒子堆積体Gの有効部上端から中部加熱ヒータ13b中心までの距離、L4 ガラス微粒子堆積体Gの有効部上端から中部加熱ヒータ13bと下部加熱ヒータ13cの境界までの距離、L ガラス微粒子堆積体Gの有効部上端から上部加熱ヒータ13c中心までの距離、L ガラス微粒子堆積体Gの有効部長、lw 透明ガラス体G2の有効部長。 DESCRIPTION OF SYMBOLS 10 Heating furnace, 11 Furnace body, 12 Core tube, 13a, 13b, 13c Heating heater, G1 glass rod, G glass particle deposit body, 21 Control apparatus, 14 Support apparatus, 22 Temperature measuring device, L 1 Glass particle deposit body G distance from the effective top end to the upper heater 13a center, L 2 the distance from the effective top end of the soot preform G to the boundary of the upper heater 13a and central heater 13b, valid L 3 glass particles deposit G distance from part top to middle heater 13b around the effective top end of L 4 a distance from the effective top end of the soot preform G to the boundary of central heater 13b and the lower heater 13c, L 5 glass particles deposit G To the center of the upper heater 13c, the effective part length of the Lw glass particulate deposit G, and the effective part length of the lw transparent glass body G2.

Claims (3)

ガラス母材の屈折率分布の検査方法であって、
ガラス微粒子堆積体を加熱によって透明ガラス化してガラス母材とする透明ガラス化工程を行った後、
前記透明ガラス化工程における前記ガラス微粒子堆積体の中心軸方向の温度分布の極大点および極小点に相当する位置で前記透明ガラス化後ガラス母材の屈折率分布を測定することを特徴とする、ガラス母材の屈折率分布の検査方法。
A method for inspecting the refractive index distribution of a glass base material,
After carrying out the transparent vitrification process which turns the glass particulate deposits into a transparent glass by heating to make a glass base material,
The refractive index distribution of the glass base material after the transparent vitrification is measured at a position corresponding to the maximum point and the minimum point of the temperature distribution in the central axis direction of the glass fine particle deposit in the transparent vitrification step, Inspection method of refractive index distribution of glass base material.
前記透明ガラス化工程が、複数の加熱ゾーンを有する加熱炉でガラス微粒子堆積体を加熱する工程であることを特徴とする、請求項1記載のガラス母材の屈折率分布の検査方法。   The method for inspecting a refractive index distribution of a glass base material according to claim 1, wherein the transparent vitrification step is a step of heating the glass fine particle deposit body in a heating furnace having a plurality of heating zones. 前記透明ガラス化工程におけるガラス微粒子堆積体の中心軸方向の温度分布の極大点および極小点が、それぞれ、前記複数の加熱ゾーンの各加熱ゾーンの中心部および端部であることを特徴とする、請求項2記載のガラス母材の屈折率分布の検査方法。   The maximum point and the minimum point of the temperature distribution in the central axis direction of the glass fine particle deposit in the transparent vitrification step are respectively a center part and an end part of each heating zone of the plurality of heating zones, The method for inspecting the refractive index distribution of the glass base material according to claim 2.
JP2007309915A 2007-11-30 2007-11-30 Inspection method of refractive index distribution of glass base material Active JP4407742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309915A JP4407742B2 (en) 2007-11-30 2007-11-30 Inspection method of refractive index distribution of glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309915A JP4407742B2 (en) 2007-11-30 2007-11-30 Inspection method of refractive index distribution of glass base material

Publications (2)

Publication Number Publication Date
JP2009132562A JP2009132562A (en) 2009-06-18
JP4407742B2 true JP4407742B2 (en) 2010-02-03

Family

ID=40864844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309915A Active JP4407742B2 (en) 2007-11-30 2007-11-30 Inspection method of refractive index distribution of glass base material

Country Status (1)

Country Link
JP (1) JP4407742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560313B2 (en) * 2012-11-12 2014-07-23 株式会社フジクラ Manufacturing method of optical fiber preform
JP7336475B2 (en) * 2021-01-28 2023-08-31 信越化学工業株式会社 Method for sintering porous glass base material for optical fiber

Also Published As

Publication number Publication date
JP2009132562A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
US20160130173A1 (en) Optical fiber glass base material manufacturing apparatus and sintering method
JP6864641B2 (en) Sintering method of porous glass base material for optical fiber
JP5578024B2 (en) Manufacturing method of glass base material
CN101987778B (en) A method for manufacturing a primary preform for optical fibres
KR101426158B1 (en) Apparatus for fabricating optical fiber preform
JP4407742B2 (en) Inspection method of refractive index distribution of glass base material
US6827883B2 (en) Optical fiber preform and the method of producing the same
KR102196000B1 (en) Optical fiber base material manufacturing apparatus and manufacturing method thereof
JP4348341B2 (en) Optical fiber preform manufacturing method
KR101655271B1 (en) Method for producing optical fiber preform having good production efficiency
US20060179889A1 (en) Method for dehydrating and consolidating a porous optical fiber preform
JP4495070B2 (en) Method for producing porous preform for optical fiber
JP2008069023A (en) Method of manufacturing optical fiber preform
JP6979000B2 (en) Manufacturing method of glass base material for optical fiber
JP5793843B2 (en) Manufacturing method of glass base material
JP2004339014A (en) Method and apparatus for producing glass preform
JP4239667B2 (en) Manufacturing method of glass base material
JP2018118887A (en) Method for manufacturing porous quartz glass preform
JP7024489B2 (en) Manufacturing method of base material for optical fiber
JP3994840B2 (en) Glass base material manufacturing method and manufacturing apparatus
JP2004210615A (en) Method and apparatus for manufacturing glass preform
JPH0986948A (en) Production of porous glass base material for optical fiber
JP2003277069A (en) Method for manufacturing porous preform
JP2005320197A (en) Apparatus for manufacturing optical fiber preform, and method of manufacturing optical fiber preform
JP2012087033A (en) Method for manufacturing glass perform

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4407742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250