JP4407233B2 - 非水系電解液及びそれを用いる非水系電解液二次電池 - Google Patents

非水系電解液及びそれを用いる非水系電解液二次電池 Download PDF

Info

Publication number
JP4407233B2
JP4407233B2 JP2003361115A JP2003361115A JP4407233B2 JP 4407233 B2 JP4407233 B2 JP 4407233B2 JP 2003361115 A JP2003361115 A JP 2003361115A JP 2003361115 A JP2003361115 A JP 2003361115A JP 4407233 B2 JP4407233 B2 JP 4407233B2
Authority
JP
Japan
Prior art keywords
secondary battery
weight
acid
ethyl
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003361115A
Other languages
English (en)
Other versions
JP2004363077A (ja
Inventor
大介 野田
正道 大貫
邦久 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003361115A priority Critical patent/JP4407233B2/ja
Publication of JP2004363077A publication Critical patent/JP2004363077A/ja
Application granted granted Critical
Publication of JP4407233B2 publication Critical patent/JP4407233B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池用非水系電解液及びそれを用いる非水系電解液二次電池に関する。詳しくは、高温連続充電時および高温保存を行っても劣化が少ない、信頼性の高い非水系電解液二次電池及びそれを提供するための二次電池用非水系電解液に関する。
近年、電気製品の軽量化、小型化にともない、高いエネルギー密度を持つリチウム二次電池が注目されている。
リチウム二次電池用の電解液は、リチウム塩などの溶質と、有機溶媒とからなる。有機溶媒は、高い誘電率を有すること、酸化電位が高いこと、及び電池中で安定であることが要求される。これらの要求を一つの溶媒で達成するのは困難なので、リチウム二次電池の電解液の有機溶媒としては、例えば炭酸エチレン、炭酸プロピレン等の環状炭酸エステル類またはγ−ブチロラクトン等の環状カルボン酸エステル類などの高誘電率溶媒と、炭酸ジエチル、炭酸ジメチル等の鎖状炭酸エステル類またはジメトキシエタン等のエーテル類などの低粘度溶媒を組み合わせて使用している。
また、初期容量、サイクル特性、高温保存特性、連続充電特性などを改良するために、種々の化合物を電解液に含有させることが提案されている。
例えば、連続充電特性を向上させる方法として、特許文献1には、電解液中にリン酸エステルを含有させることが記載されている。
また、特許文献2及び特許文献3には、特定のホスホン酸エステル、ホスフィン酸エステルを有機溶媒中に5〜100重量%含有させることにより、電池の性能に悪影響を及ぼすことなく電解液に難燃性を持たせることが記載されている。そして、実施例によれば、炭酸エステル類あるいは鎖状エーテルとこれらのリン酸化合物とを重量比で2:1又は1:1で混合した有機溶媒に、LiPF6を溶解してなる電解液を用いた二次電池は、10
0サイクル目の容量維持率が数%〜十数%の低下に止まることが示されているが、電池の高温特性に関しては記載がない。
特開平11−233140号公報 特開平10−228928号公報 特開平11−233141号公報
リチウム二次電池がノートパソコンや携帯電話などの携帯機器に適用されることが急速に拡大するのに伴い、高性能化への要求は高まっている。特に高温連続充電特性、高温保存特性などの高温時の電池特性の改良である。
例えば、ノートパソコンは、ほとんどの場合、ACアダプターを介して電源に接続した状態で使用されており、使用中も、パソコン中の二次電池は絶えず充電されている。このような連続充電状態では、本体の発熱の影響もあって、電解液の分解が起こり、電池性能が著しく低下するという問題がある。また、電解液の分解は、多くの場合にガスの発生を伴うが、ガスの発生量が多い場合には、電池の変形や破裂が起こり、電池自体が使用不能になるという問題もある。
また、これらの携帯機器は、日中の自動車内など高温下に放置されることがある。この場合にも、二次電池は高温にさらされることになり、電解液の分解による電池特性の低下や、ガスの発生による電池缶の変形・破裂が起こるという問題がある。
従って、本発明は、高温連続充電時、高温保存時における分解が抑えられた電解液、およびこれを用いた高温特性に優れた二次電池の提供を目的とする。
本発明者らは上記課題を解決すべく鋭意検討した結果、一般式(1)で表されるホスフィン酸エステルを非水系電解液中に特定の濃度で含有させることにより、高温連続充電特性や、高温保存特性が著しく改善されることを見出し、本発明を完成した。
即ち、本発明の要旨は、溶質、下記一般式(1)で表される化合物及びこれらを溶解する非水系有機溶媒を含有する非水系電解液であって、下記一般式(1)で表される化合物の含有量が、非水系電解液の全重量に対して、0.01重量%以上、4.5重量%以下であることを特徴とする二次電池用非水系電解液に存する。
(式中R1〜R3は、各々独立して、ハロゲン原子で置換されていても良い炭素数1〜8の鎖状アルキル基を表す
また、本発明の別の要旨は、リチウムを吸蔵・放出可能な負極及び正極、上記二次電池用非水電解液からなることを特徴とする非水系電解液二次電池に存する。
(式中R1〜R3は、各々独立して、(i)ハロゲン原子で置換されていても良い炭素数1〜8の鎖状もしくは環状アルキル基、(ii)ハロゲン原子で置換されていても良いフェニル基、(iii)炭素数1〜4のアルキル基で置換されていても良いフェニル基および(iv)ハロゲン原子及び炭素数1〜4のアルキル基で置換されていても良いフェニル基からなる群から選ばれるいずれかを表す。なお、R1とR2又はR2とR3がいずれもアルキル基である場合には、互いに結合して環構造を形成していても良い。)
また、本発明の別の要旨は、リチウムを吸蔵・放出可能な負極及び正極、上記二次電池用非水電解液からなることを特徴とする非水系電解液二次電池に存する。
本発明によれば、高温保存時、高温連続充電時の電池性能劣化が抑制された電解液および二次電池を提供できる。
以下、本発明を詳細に説明する。
本発明に係る二次電池用非水系電解液の主成分は、常用の二次電池用非水系電解液と同じく、溶質およびこれを溶解する非水系有機溶媒である。
溶質としてはリチウム塩を用いる。リチウム塩としては、この用途に用い得ることができるものであれば特に制限はないが、例えば、以下のものが挙げられる。
1)無機リチウム塩:LiAsF6、LiPF6、LiBF4等の無機フッ化物塩、LiC
lO4、LiBrO4、LiIO4等の過ハロゲン酸塩。
2)有機リチウム塩:LiB(C654等の有機ホウ酸リチウム塩、LiCH3SO3
のアルカンスルホン酸塩、LiN(SO2CF32、LiN(SO2252等のパーフ
ルオロアルカンスルホン酸イミド塩、LiCF3SO3等のパーフルオロアルカンスルホン酸塩。
なかでも好ましいのは、LiBF4及びLiPF6である。リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。
非水系電解液中のリチウム塩の濃度は、通常0.5モル/リットル以上、好ましくは0
.75モル/リットル以上であり、通常2.5モル/リットル以下、好ましく1.5モル/リットル以下である。リチウム塩の濃度が高すぎても低すぎても電導度の低下が起き、電池特性が低下する恐れがある。
非水系有機溶媒としても、従来から非水系電解液の溶媒として提案されているものの中から適宜選択して用いることができる。例えば、環状カーボネート(環状炭酸エステル)類、鎖状カーボネート(鎖状炭酸エステル)類、環状エステル(環状カルボン酸エステル)類、鎖状エステル(鎖状カルボン酸エステル)類、環状エーテル類及び鎖状エーテル類等が挙げられる。
電解液の非水系有機溶媒としては、鎖状カーボネートと環状エステルからなる群から選ばれるものと環状カーボネートの混合溶媒が好ましい。
電解液の非水系有機溶媒に環状カーボネートが含まれる場合、好ましい比率は、5体積%から55体積%、さらに好ましくは15体積%から50体積%である。
電解液の非水系有機溶媒に鎖状カーボネートが含まれる場合、好ましい比率は、2体積%から85体積%、さらに好ましくは5体積%から85体積%である。
また、電解液の非水系有機溶媒に環状エステルが含まれる場合、好ましい比率は、40体積%から100体積%、さらに好ましくは50体積%から98体積%である。
好ましい有機溶媒の組合せとその体積比率としては、以下のものが挙げられる。
1.環状カーボネート+鎖状カーボネート(15〜40:60〜85)
2.環状カーボネート+環状エステル (20〜50:50〜80)
3.環状カーボネート+環状エステル+鎖状カーボネート (20〜50:50〜80:2〜20)
4.環状エステル+鎖状カーボネート (70〜98:2〜30)
5.環状エステル (単一溶媒)
環状カーボネート類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。鎖状カーボネート類としては、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が挙げられる。環状エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。鎖状エーテル類としては、ジメトキシエタン、ジエトキシエタン等が挙げられる。環状エステル類としては、γ-ブチロラクトン、γ−バレロラクトン等が挙げられ
る。鎖状エステル類としては、酢酸メチル、プロピオン酸メチル等が挙げられる。
これらの非水系有機溶媒は、単独で用いても、2種以上を混合して用いてもよいが、通常、適切な物性が発現するように2種以上が混合して使用される。例えば、環状カーボネート類、鎖状カーボネート類、環状エステル類から選択した2種以上を混合した溶媒が挙げられる。特に好ましいのは、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン等から2種以上を混合したものである。
本発明に係る非水系電解液は、上記の溶質と非水系有機溶媒を主成分とするが、これに更に下記一般式(1)で表される化合物を含有する。
Figure 0004407233
式中、R1〜R3は、各々独立して、(i)ハロゲン原子で置換されていても良い炭素数1〜8の鎖状もしくは環状アルキル基、(ii)ハロゲン原子で置換されていても良いフェニル基、(iii)炭素数1〜4のアルキル基で置換されていても良いフェニル基および(iv)ハロゲン原子及び炭素数1〜4のアルキル基で置換されていても良いフェニル基からなる群から選ばれるいずれかを表す。なかでも好ましいのは、(i)ハロゲン原子で置換されていても良い炭素数1〜8の鎖状アルキル基、(ii)ハロゲン原子で置換されていても良いフェニル基、(iii)炭素数1〜4のアルキル基で置換されていても良いフェニル基および(iv)ハロゲン原子及び炭素数1〜4のアルキル基で置換されていても良いフェニル基から選ばれるいずれかである。
1〜R3が表す置換基のいくつかを例示する。
ハロゲン原子で置換されていても良い鎖状アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec-ブチル基、tert-
ブチル基、n−ペンチル基、2-メチルブチル基、3-メチルブチル基、4-メチルブチル
基、2,2−ジメチルプロピル基、2,3-ジメチルプロピル基、3,3-ジメチルプロピル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2-エチルヘキシル基、トリ
フルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基等が挙
げられる。なかでも好ましいのは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、トリフルオロメチル
基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基等のハロゲン原子で置
換されていても良い炭素数1〜4の鎖状アルキル基である。炭素数が1〜3であると更に好ましい。
ハロゲン原子で置換されていても良い環状アルキル基としては、シクロペンチル基、シクロヘキシル基、2−フルオロシクロヘキシル基、3−フルオロシクロヘキシル基、4−フルオロシクロヘキシル基等の炭素数4〜6、好ましくは炭素数5〜6のものが挙げられる。
ハロゲン原子で置換されていても良いフェニル基、炭素数1〜4のアルキル基で置換されていても良いフェニル基、ハロゲン原子及び炭素数1〜4のアルキル基で置換されていても良いフェニル基としては、フェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−
ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、4,5−ジフルオロフェニル基、2−フルオロ−3−トリル基、2−フルオロ−4−トリル基、2−フルオロ−5−トリル基、2−フルオロ−6−トリル基、3−フルオロ−2−トリル基、3−フルオロ−4−トリル基、3−フルオロ−5−トリル基、3−フルオロ−6−トリル基、4−フルオロ−2−トリル基、4−フルオロ−3−トリル基等が挙げられる。置換するアルキル基の炭素数が1〜2であると更に好ましい。なかでも好ましいのはフェニル基、2−トリル基、3−トリル基、4−トリル基である。
なお、アルキル基やフェニル基に置換するハロゲン原子としては、上述のようにフッ素原子が好ましいが、塩素原子、臭素原子、ヨウ素原子などであってもよい。
1とR2又はR2とR3がいずれもアルキル基の場合、これらは互いに結合して環構造を
形成していても良い。その具体例としては、R1とR2とが連結して、P原子を含む5〜6員環を形成している場合、すなわちP原子がn−ブチレン基の1位及び4位、又はn−ペンチレン基の1位及び5位と結合して環を形成している場合、及び、R2とR3とが連結して、P原子及びO原子を含む5〜6員環を形成する場合等が挙げられる。
一般式(1)で表される化合物の具体例としては、以下のものが挙げられる。
ジアルキルホスフィン酸メチル類:ジメチルホスフィン酸メチル、エチルメチルホスフィン酸メチル、メチル−n−プロピルホスフィン酸メチル、n−ブチルメチルホスフィン酸メチル、ジエチルホスフィン酸メチル、エチル−n−プロピルホスフィン酸メチル、n−ブチルエチルホスフィン酸メチル、ジ−n−プロピルホスフィン酸メチル、n−ブチル−n−プロピルホスフィン酸メチル、ジ−n−ブチルホスフィン酸メチル、ビス−(トリフルオロメチル)ホスフィン酸メチル、ビス−(トリフルオロメチル)ホスフィン酸トリフルオロメチル、ビス−(2,2,2−トリフルオロエチル)ホスフィン酸メチル、ビス−(2,2,2−トリフルオロエチル)ホスフィン酸トリフルオロメチル、ビス−(ペンタフルオロエチル)ホスフィン酸メチル、ビス−(ペンタフルオロエチル)ホスフィン酸トリフルオロメチル等が挙げられる。
ジアルキルホスフィン酸エチル類:ジメチルホスフィン酸エチル、エチルメチルホスフィン酸エチル、メチル−n−プロピルホスフィン酸エチル、n−ブチルメチルホスフィン酸エチル、ジエチルホスフィン酸エチル、エチル−n−プロピルホスフィン酸エチル、n−ブチルエチルホスフィン酸エチル、ジ−n−プロピルホスフィン酸エチル、n−ブチル−n−プロピルホスフィン酸エチル、ジ−n−ブチルホスフィン酸エチル、ビス−(トリフルオロメチル)ホスフィン酸エチル、ビス−(トリフルオロメチル)ホスフィン酸−2,2,2−トリフルオロエチル、ビス−(トリフルオロメチル)ホスフィン酸ペンタフルオロエチル、ビス−(2,2,2−トリフルオロエチル)ホスフィン酸エチル、ビス−(2,2,2−トリフルオロエチル)ホスフィン酸−2,2,2−トリフルオロエチル、ビス−(2,2,2−トリフルオロエチル)ホスフィン酸ペンタフルオロエチル、ビス−(ペンタフルオロエチル)ホスフィン酸エチル、ビス−(ペンタフルオロエチル)ホスフィン酸−2,2,2−トリフルオロエチル、ビス−(ペンタフルオロエチル)ホスフィン酸ペンタフルオロエチルが挙げられる。
ジアルキルホスフィン酸プロピル類:ジメチルホスフィン酸−n−プロピル、エチルメチルホスフィン酸−n−プロピル、メチル−n−プロピルホスフィン酸−n−プロピル、n−ブチルメチルホスフィン酸−n−プロピル、ジエチルホスフィン酸−n−プロピル、エチル−n−プロピルホスフィン酸−n−プロピル、n−ブチルエチルホスフィン酸−n−プロピル、ジ−n−プロピルホスフィン酸−n−プロピル、n−ブチル−n−プロピルホスフィン酸−n−プロピル、ジ−n−ブチルホスフィン酸−n−プロピル等が挙げられる。
ジアルキルホスフィン酸ブチル類:ジメチルホスフィン酸−n−ブチル、エチルメチルホスフィン酸−n−ブチル、メチル−n−プロピルホスフィン酸−n−ブチル、n−ブチルメチルホスフィン酸−n−ブチル、ジエチルホスフィン酸−n−ブチル、エチル−n−プロピルホスフィン酸−n−ブチル、n−ブチルエチルホスフィン酸−n−ブチル、ジ−n−プロピルホスフィン酸−n−ブチル、n−ブチル−n−プロピルホスフィン酸−n−ブチル、ジ−n−ブチルホスフィン酸−n−ブチル等が挙げられる。
ジアリールホスフィン酸アルキル類:ジフェニルホスフィン酸メチル、ジフェニルホスフィン酸エチル、ジフェニルホスフィン酸−n−プロピル、ジフェニルホスフィン酸−n−ブチル、ビス(2−トリル)ホスフィン酸メチル、ビス(2−トリル)ホスフィン酸エチル、ビス(2−トリル)ホスフィン酸−n−プロピル、ビス(2−トリル)ホスフィン酸−n−ブチル、ビス(3−トリル)ホスフィン酸メチル、ビス(3−トリル)ホスフィ
ン酸エチル、ビス(3−トリル)ホスフィン酸−n−プロピル、ビス(3−トリル)ホスフィン酸−n−ブチル、ビス(4−トリル)ホスフィン酸メチル、ビス(4−トリル)ホスフィン酸エチル、ビス(4−トリル)ホスフィン酸−n−プロピル、ビス(4−トリル)ホスフィン酸−n−ブチル等が挙げられる。
アルキルアリールホスフィン酸アルキル類:メチルフェニルホスフィン酸メチル、エチルフェニルホスフィン酸メチル、n−プロピルフェニルホスフィン酸メチル、n−ブチルフェニルホスフィン酸メチル、メチルフェニルホスフィン酸エチル、エチルフェニルホスフィン酸エチル、n−プロピルフェニルホスフィン酸エチル、n−ブチルフェニルホスフィン酸エチル、メチルフェニルホスフィン酸n−プロピル、エチルフェニルホスフィン酸n−プロピル、n−プロピルフェニルホスフィン酸n−プロピル、n−ブチルフェニルホスフィン酸n−プロピル、メチルフェニルホスフィン酸n−ブチル、エチルフェニルホスフィン酸n−ブチル、n−プロピルフェニルホスフィン酸n−ブチル、n−ブチルフェニルホスフィン酸n−ブチル、メチル−2−トリルホスフィン酸メチル、エチル−2−トリルホスフィン酸メチル、n−プロピル−2−トリルホスフィン酸メチル、n−ブチル−2−トリルホスフィン酸メチル、メチル−2−トリルホスフィン酸エチル、エチル−2−トリルホスフィン酸エチル、n−プロピル−2−トリルホスフィン酸エチル、n−ブチル−2−トリルホスフィン酸エチル、メチル−2−トリルホスフィン酸n−プロピル、エチル−2−トリルホスフィン酸n−プロピル、n−プロピル−2−トリルホスフィン酸n−プロピル、n−ブチル−2−トリルホスフィン酸n−プロピル、メチル−2−トリルホスフィン酸n−ブチル、エチル−2−トリルホスフィン酸n−ブチル、n−プロピル−2−トリルホスフィン酸n−ブチル、n−ブチル−2−トリルホスフィン酸n−ブチル、メチル−3−トリルホスフィン酸メチル、エチル−3−トリルホスフィン酸メチル、n−プロピル−3−トリルホスフィン酸メチル、n−ブチル−3−トリルホスフィン酸メチル、メチル−3−トリルホスフィン酸エチル、エチル−3−トリルホスフィン酸エチル、n−プロピル−3−トリルホスフィン酸エチル、n−ブチル−3−トリルホスフィン酸エチル、メチル−3−トリルホスフィン酸n−プロピル、エチル−3−トリルホスフィン酸n−プロピル、n−プロピル−3−トリルホスフィン酸n−プロピル、n−ブチル−3−トリルホスフィン酸n−プロピル、メチル−3−トリルホスフィン酸n−ブチル、エチル−3−トリルホスフィン酸n−ブチル、n−プロピル−3−トリルホスフィン酸n−ブチル、n−ブチル−3−トリルホスフィン酸n−ブチル、メチル−4−トリルホスフィン酸メチル、エチル−4−トリルホスフィン酸メチル、n−プロピル−4−トリルホスフィン酸メチル、n−ブチル−4−トリルホスフィン酸メチル、メチル−4−トリルホスフィン酸エチル、エチル−4−トリルホスフィン酸エチル、n−プロピル−4−トリルホスフィン酸エチル、n−ブチル−4−トリルホスフィン酸エチル、メチル−4−トリルホスフィン酸n−プロピル、エチル−4−トリルホスフィン酸n−プロピル、n−プロピル−4−トリルホスフィン酸n−プロピル、n−ブチル−4−トリルホスフィン酸n−プロピル、メチル−4−トリルホスフィン酸n−ブチル、エチル−4−トリルホスフィン酸n−ブチル、n−プロピル−4−トリルホスフィン酸n−ブチル、n−ブチル−4−トリルホスフィン酸n−ブチル等が挙げられる。
ジアルキルホスフィン酸アリール類:ジメチルホスフィン酸フェニル、エチルメチルホスフィン酸フェニル、ジエチルホスフィン酸フェニル、メチル−n−プロピルホスフィン酸フェニル、メチル−n−ブチルホスフィン酸フェニル、エチル−n−プロピルホスフィン酸フェニル、エチル−n−ブチルホスフィン酸フェニル、ジ−n−プロピルホスフィン酸フェニル、n−ブチル−n−プロピルホスフィン酸フェニル、ジ−n−ブチルホスフィン酸フェニル、ジメチルホスフィン酸−2−トリル、エチルメチルホスフィン酸−2−トリル、ジエチルホスフィン酸−2−トリル、メチル−n−プロピルホスフィン酸−2−トリル、メチル−n−ブチルホスフィン酸−2−トリル、エチル−n−プロピルホスフィン酸−2−トリル、エチル−n−ブチルホスフィン酸−2−トリル、ジ−n−プロピルホスフィン酸−2−トリル、n−ブチル−n−プロピルホスフィン酸−2−トリル、ジ−n−ブチルホスフィン酸−2−トリル、ジメチルホスフィン酸−3−トリル、エチルメチルホ
スフィン酸−3−トリル、ジエチルホスフィン酸−3−トリル、メチル−n−プロピルホスフィン酸−3−トリル、メチル−n−ブチルホスフィン酸−3−トリル、エチル−n−プロピルホスフィン酸−3−トリル、エチル−n−ブチルホスフィン酸−3−トリル、ジ−n−プロピルホスフィン酸−3−トリル、n−ブチル−n−プロピルホスフィン酸−3−トリル、ジ−n−ブチルホスフィン酸−3−トリル、ジメチルホスフィン酸−4−トリル、エチルメチルホスフィン酸−4−トリル、ジエチルホスフィン酸−4−トリル、メチル−n−プロピルホスフィン酸−4−トリル、メチル−n−ブチルホスフィン酸−4−トリル、エチル−n−プロピルホスフィン酸−4−トリル、エチル−n−ブチルホスフィン酸−4−トリル、ジ−n−プロピルホスフィン酸−4−トリル、n−ブチル−n−プロピルホスフィン酸−4−トリル、ジ−n−ブチルホスフィン酸−4−トリル等が挙げられる。
一般式(1)で表される化合物の分子量は、通常500以下、好ましくは400以下、より好ましくは350以下である。分子量が大きすぎると電解液に対する溶解性が悪くなり、本発明の効果を十分に発現できない恐れがある。一般式(1)で表される化合物は、単独で用いても、2種以上を混合して用いてもよい。また、本発明を満たす限りにおいて、一般式(1)以外のホスフィン酸エステル化合物と混合して用いても良い。
非水系電解液に占める一般式(1)で表される化合物の含有量は、非水系電解液の全重量に対して、通常0.01重量%以上、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、通常4.5重量%以下、好ましくは3重量%以下、より好ましくは2.5重量%以下である。一般式(1)で表される化合物の濃度が低すぎると十分な効果が得られず、また高すぎるとレート特性などの電池特性が低下する。
本発明に係る非水系電解液は、必要に応じて、常用の他の助剤、例えば、過充電防止剤、電池の活物質表面に被膜(SEI)を形成させるための被膜形成剤等を含有していてもよい。過充電防止剤としては、ビフェニル及びその誘導体、シクロヘキシルベンゼン及びその誘導体、ジベンゾフラン及びその誘導体、ターフェニル及びその誘導体、ジフェニルエーテル及びその誘導体等が挙げられる。被膜形成剤としては、ビニレンカーボネート、ビニルエチレンカーボネート等が挙げられる。
非水系電解液に占める助剤の各々の濃度としては、非水系電解液の全重量に対して、通常0.1重量%以上、好ましくは0.5重量%以上、さらに好ましくは1重量%以上、通常10重量%以下、好ましくは8重量%以下、さらに好ましくは6重量%以下である。また、複数の助剤を併用する場合の濃度も同様である。
本発明に係る二次電池用非水系電解液は、前述の非水系有機溶媒に、溶質、一般式(1)で表される化合物、及び必要に応じて他の助剤を溶解することにより調製することができる。非水系電解液の調製に際しては、非水系電解液の各原料は、予め脱水しておくのが好ましい。通常は、50ppm以下、好ましくは30ppm以下まで脱水する。非水系電解液に水が存在すると、水の電気分解、水と溶質との反応による、溶質の加水分解などが起こる可能性がある。脱水の手段は特に制限はないが、溶媒などの液体の場合はモレキュラーシーブ等で水を吸着除去すればよい。また、溶質などの固体の場合は分解が起きる温度以下で乾燥すればよい。
本発明に係る二次電池用非水系電解液は、リチウム二次電池用の電解液として用いるのに好適である。以下、この電解液を用いた本発明に係るリチウム二次電池について説明する。
本発明に係るリチウム二次電池は、電解液以外は従来公知のリチウム二次電池と同様であり、通常、正極と負極とが本発明の非水系電解液を含んでいるセパレーターを介してケースに収納されている。従って、本発明に係る二次電池の形状は特に限定されるものではなく、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極
及びセパレータを積層したコインタイプのいずれであってもよい。
正極活物質としては、遷移金属の酸化物、遷移金属とリチウムとの複合酸化物、遷移金属の硫化物、金属酸化物等の無機化合物、リチウム金属、リチウム合金が挙げられる。具体的には、MnO、V25、V613、TiO2等の遷移金属酸化物、基本組成がLiCoO2であるリチウムコバルト複合酸化物、LiNiO2であるリチウムニッケル複合酸化物、LiMn24またはLiMnO2であるリチウムマンガン複合酸化物等のリチウム遷移
金属複合酸化物、TiS、FeS等の遷移金属硫化物、SnO2、SiO2等の金属酸化物が挙げられる。中でもリチウム遷移金属複合酸化物、特にリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムコバルトニッケル複合酸化物は、高容量と高サイクル特性とを両立させ得るので好適に用いられる。また、リチウム遷移金属複合酸化物は、コバルト、ニッケルまたはマンガンの一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr等の他の金属で置き換えることにより、その構造を安定化させることができるので好ましい。正極活物質は、単独で用いても、2種以上を混合して用いてもよい。
負極活物質としては、リチウムを吸蔵及び放出し得る物質であればよく、リチウム金属、リチウム合金などを用いることができるが、サイクル特性及び安全性が良好な点で、炭素質材料が好ましい。炭素質材料としては、天然ないし人造の黒鉛、ピッチの炭化物、フェノール樹脂やセルロース等の炭化物、ピッチ系炭素繊維、PAN系炭素繊維、メソフェーズ小球体などの黒鉛化したもの、更にはファーネスブラック、アセチレンブラックやその黒鉛化物などが挙げられる。また、これらの炭素質材料をピッチ等の有機物で被覆した後、焼成し、表面にこれらの炭素質材料に比べて非晶質の炭素を形成したものも好適に用いることができる。
これらの炭素質材料は、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が0.335〜0.340nmであるものが好ましく、0.335〜0.337nmであるものがより好ましい。灰分は1重量%以下であるのが好ましく、0.5重量%以下であるのがより好ましく、0.1重量%以下であるのが特に好ましい。また、学振法によるX線回折で求めた結晶子サイズ(Lc)は30nm以上であるのが好ましく、50nm以上であるのがより好ましく、100nm以上であるのが特に好ましい。
活物質を結着する結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、スチレン・ブタジエンゴム、イソプレンゴム、ブダジエンゴム、ポリ酢酸ビニル、ポリエチルメタクリレート、ポリエチレン、ニトロセルロース等を挙げることができる。
結着剤の使用量は、活物質100重量部に対して通常0.1重量部以上、好ましくは1重量部以上であり、通常30重量部以下、好ましくは20重量部以下である。結着剤の量が少なすぎると電極の強度が低下する傾向にあり、逆に多すぎるとイオン伝導度が低下する傾向にある。
電極中には、電気伝導度や機械的強度を向上させるために、導電性材料、補強材などの各種の機能を発現する助剤、粉体、充填材、増粘剤を含有させてもよい。導電性材料としては、上記活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、銅、ニッケル等の各種金属の繊維や箔、グラファイト、カーボンブラック等の炭素質材料が挙げられる。特に正極には、導電材を含有させるのが好ましい。増粘剤としては、カルボキシエチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
電極は、活物質に結着剤及び導電材その他を配合したものをそのままロール成形することによりシート電極としたり、圧縮成形によりペレット電極とすることもできるが、通常は活物質に結着剤及び導電材その他を配合したものを溶剤でスラリー化し、これを、集電体に塗布、乾燥することによって形成する。
塗布により形成される活物質層の乾燥厚さは、通常1μm以上、好ましくは10μm以上、さらに好ましくは20μm以上、最も好ましくは40μm以上であり、通常200μm以下、好ましくは150μm以下、さらに好ましくは100μm以下である。薄すぎると均一塗布が困難になるだけでなく、電池の容量が小さくなる。一方、厚すぎるとレート特性が低下する。
集電体としては、通常は金属や合金が用いられる。具体的には、負極集電体としては、銅およびその合金、ニッケルおよびその合金、ステンレス等が挙げられ、なかでも銅およびその合金が好ましい。正極集電体としては、アルミニウム、チタン、タンタルおよびこれらの合金等が挙げられ、なかでもアルミニウムおよびその合金が好ましい。表面に形成される活物質層との結着効果を向上させるため、これら集電体の表面は予め粗面化処理しておくのが好ましい。表面の粗面化方法としては、ブラスト処理、粗面ロールによる圧延、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法等が挙げられる。
また、集電体の重量を低減させて電池の重量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。このタイプの集電体は、その開口率を変更することで、重量も自在に変更可能である。また、このタイプの集電体の両面に活物質層を形成させた場合、この穴を通してのリベット効果により活物質層の剥離がさらに起こりにくくなる。しかし、開口率があまりに高くなった場合には、活物質層と集電体との接触面積が小さくなるため、かえって接着強度は低くなることがある。
集電体の厚さは、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。厚すぎると、電池全体の容量が低下しすぎることになり、逆に薄すぎると取り扱いが困難になることがある。
非水系電解液は、これを高分子などのゲル化剤でゲル化して半固体状にして用いてもよい。半固体状電解質における上記非水系電解液の占める比率は、半固体状電解質の総量に対して、通常30重量%以上、好ましくは50重量%以上、さらに好ましくは75重量%以上であり、通常99.95重量%以下、好ましくは99重量%以下、さらに好ましくは98重量%以下である。電解液の比率が大きすぎると、電解液の保持が困難となり液漏れが生じやすくなり、逆に少なすぎると充放電効率や容量の点で不十分となることがある。
正極と負極の間には、短絡を防止するために、セパレーターを介在させる。この場合、電解液は、セパレーターに含浸させて用いる。セパレーターの材料や形状については、特に限定されないが、電解液に対して安定な材料で形成された保液性に優れた多孔性シート又は不織布等を用いるのが好ましい。セパレータの材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリエーテルスルホン等を用いることができるが、好ましくはポリオレフィンである。
セパレーターの厚さは、通常1μm以上、好ましくは5μm以上、さらに好ましくは10μm以上であり、通常50μm以下、好ましくは40μm以下、さらに好ましくは30μm以下である。セパレーターが薄すぎると、絶縁性や機械的強度が悪化することがあり、厚すぎるとレート特性等の電池性能が悪化するばかりでなく、電池全体としてのエネルギー密度が低下する。
セパレーターの空孔率は、通常20%以上、好ましくは35%以上、さらに好ましくは45%以上であり、通常90%以下、好ましくは85%以下、さらに好ましくは75%以下である。空孔率が小さすぎると膜抵抗が大きくなり、レート特性が悪化する傾向にある。また、大きすぎるとセパレーターの機械的強度が低下し、絶縁性が低下する傾向にある。
セパレーターの平均孔径は、通常0.5μm以下、好ましくは0.2μm以下であり、通常0.05μm以上である。平均孔径が大きすぎると短絡が生じやすくなり、小さすぎると膜抵抗が大きくなりレート特性が悪化することがある。
以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。
(正極の製造)
コバルト酸リチウム(LiCoO2)90重量部、アセチレンブラック5重量部及びポ
リフッ化ビニリデン(以下「PVdF」ということがある)5重量部を混合し、N−エチルピロリドンを加えてスラリー状にした。これを厚さ20μmのアルミニウム箔の片面に塗布、乾燥し、さらにプレス機で圧延した。これからポンチで直径12mmの円板に打ち抜き、正極とした。
(負極の製造)
黒鉛(面間隔0.336nm)95重量部とPVdF5重量部とを混合し、N−エチルピロリドンを加えてスラリー状にした。これを厚さ20μmの銅箔の片面に塗布、乾燥し、さらにプレス機で圧延した。これから直径12mmの円板を打ち抜き、負極とした。
(リチウム二次電池の製造)
アルゴン雰囲気のドライボックス内で、CR2032型コインセルを使用して、リチウム二次電池を作成した。即ち、コイン型セル(正極缶)に正極を置き、その上に厚さ25μmの多孔性ポリエチレンフィルム(セパレーター)を置き、ポリプロピレン製ガスケットで押さえた。ガスケット上に負極を置き、更に厚み調整用のスペーサーを置いた。電解液を加え電池内に十分しみこませた後、コイン型セル(負極缶)を載せ、封口して電池とした。
なお、以下の実施例および比較例において、電池の容量は、充電上限4.2V、放電下限3.0Vで約4.0mAhになるように設計した。
正極活物質重量W(c)と負極の活物質重量W(a)の比率は、負極と正極との容量比Rqが1.1≦Rq≦1.2となるように、その重量を決定した。なお、容量比Rqは次式で求めた。
Figure 0004407233
ここで、Q(c)(mAh/g)は電池の初期充電条件に対応する条件下での正極活物質の重量当たりの電気容量、Q(a)(mAh/g)はリチウム金属が析出することなしにリチウムを最大限に吸蔵しうる負極活物質の重量当たりの電気容量である。
なお、Q(c)及びQ(a)は、正極または負極を作用極に、対極にリチウム金属を用い、上記の電池を組み立てるのに用いたのと同じ電解液を使用し、作用極と対極の間にセ
パレータを介した試験セルを作成して、可能な限り低い電流密度で初期充電条件(正極の上限電位あるいは負極の下限電位)まで、正極が充電(正極からのリチウムイオンの放出)できる容量をQ(c)、負極が放電(負極へのリチウムイオンの吸蔵)できる容量をQ(a)として求めた。
(電池の評価)
(1)高温保存試験
得られたリチウム二次電池を室温下、1C(4.0mA)、4.2V上限の定電流定電圧法により充電し、電流値が0.05mAになった時点で充電を終了した。次いで、0.2Cで3.0Vまで放電した。
ここで、1Cとは1時間で満充電できる電流値を表し、本実施例及び比較例で用いる二次電池においては、1C=4.0mAである。従って、0.2Cは0.8mAとなる。
次いで、室温下、1C、4.2V上限の定電流定電圧法により充電し、電流値が0.05mAとなった時点で充電を終了した。この充電された電池を60℃で7日間保持したのち、室温まで冷却して放電容量を測定した。高温保存後の放電容量は数値が大きいほど高温保存における劣化が小さく、熱安定性が高いことを表す。
(2)高温連続充電試験
得られたリチウム二次電池を、1C、4.2V上限の定電流定電圧法により充電し、電流値が0.05mAとなった時点で充電を終了した。次いで、0.2Cの定電流で3.0Vまで放電した。さらに、室温下、1C、4.2V上限の定電流定電圧法により充電し、電流値が0.05mAとなった時点で充電を終了した。この充電した電池に、60℃で7日間、4.2Vの定電圧充電(高温連続充電)を行い、充電容量を測定した。また、充電終了後、室温まで冷却して放電容量を測定した。
高温連続充電後の充電容量は、電解液の分解により低下した電圧を補うために充電される電流の量であり、この数値が小さい方が電解液の分解が抑制されていることを表す。また、高温連続充電後の放電容量は、数値が大きい方が、高温連続充電中の劣化が小さく、熱安定性が大きいことを表す。
(実施例1)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の体積比3:7の混合溶媒に、1モル/リットルの濃度となるように六フッ化リン酸リチウム(LiPF6
を溶解させてベース電解液とし、これにジエチルホスフィン酸エチルを1重量%となるように加えて電解液とした。
得られた電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2、3に示す。
(実施例2)
ベース電解液にジエチルホスフィン酸エチルを1重量%、ビニレンカーボネートを2重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例3)
ベース電解液にジエチルホスフィン酸エチルを1重量%、ビニレンカーボネートを2重量%、シクロヘキシルベンゼンを2重量%となるように添加した電解液を用いてリチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例4)
ベース電解液にジ−n−ブチルホスフィン酸−n−ブチルを1重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行
った。結果を表−1、2に示す。
(実施例5)
ベース電解液にジ−n−ブチルホスフィン酸−n−ブチルを1重量%、ビニレンカーボネートを2重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例6)
ベース電解液にn−ブチルメチルホスフィン酸メチルを1重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例7)
ベース電解液にn−ブチルメチルホスフィン酸メチルを1重量%、ビニレンカーボネートを2重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例8)
ベース電解液にメチルフェニルホスフィン酸メチルを1重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例9)
ベース電解液にメチルフェニルホスフィン酸メチルを1重量%、ビニレンカーボネートを2重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(実施例10)
ベース電解液にジエチルホスフィン酸エチルを0.1重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験を行った。結果を表−3に示す。(実施例11)
ベース電解液にジエチルホスフィン酸エチルを0.25重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験を行った。結果を表−3に示す。
(実施例12)
ベース電解液にジエチルホスフィン酸エチルを0.5重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験を行った。結果を表−3に示す。(実施例13)
ベース電解液にジエチルホスフィン酸エチルを4重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験を行った。結果を表−3に示す。
(比較例1)
ベース電解液そのものを用いリチウム二次電池を作製し、高温保存試験と高温充電試験を行った。結果を表−1、2、3に示す。
(比較例2)
ベース電解液にビニレンカーボネートを2重量%となるように添加した電解液を用いてリチウム二次電池を作製し、高温保存試験と高温充電試験を行った。結果を表−1、2に示す。
(比較例3)
ベース電解液にビニレンカーボネートを2重量%、シクロヘキシルベンゼンを2重量%となるように添加した電解液を用いてリチウム二次電池を作製し、高温保存試験と高温連続充電試験を行った。結果を表−1、2に示す。
(比較例4)
ベース電解液にジエチルホスフィン酸エチルを5重量%となるように添加した電解液を用いて、リチウム二次電池を作製し、高温保存試験を行った。結果を表−3に示す。
Figure 0004407233
表−1より、電解液中に少量のホスフィン酸エステルを含有させることにより、高温保存時の電池の劣化を抑制することができることがわかる。また、この劣化を抑制する効果は、公知の被膜形成剤(ビニレンカーボネート)や、過充電防止剤(シクロヘキシルベンゼン)を併用した場合でも発現することがわかる。
Figure 0004407233
表−2より、電解液中にホスフィン酸エステルを少量含有させることにより、高温連続充電時の電解液の分解を抑制し、電池の劣化を防止することができることがわかる。また、公知の被膜形成剤や過充電防止剤(シクロヘキシルベンゼン)を併用した場合でも発現することがわかる。
Figure 0004407233
表−3より、電解液中のホスフィン酸エステルの濃度が0.01重量%以上、4.5重量%以下であれば、高温保存時の電池の劣化を抑制することができることがわかる。
本発明の二次電池用非水電解液は、高温連続充電時、高温保存時における分解が抑えられ、リチウム二次電池用電解液として、ノートパソコンや携帯電話などの携帯機器の二次電池用途に用いることができるので、その工業的価値は極めて大きい。

Claims (5)

  1. 溶質、下記一般式(1)で表される化合物及びこれらを溶解する非水系有機溶媒を含有する非水系電解液であって、下記一般式(1)で表される化合物の含有量が、非水系電解液の全重量に対して、0.01重量%以上、4.5重量%以下であることを特徴とする二次電池用非水系電解液。
    Figure 0004407233
    (式中R1〜R3は、各々独立して、ハロゲン原子で置換されていても良い炭素数1〜8の鎖状アルキル基を表す
  2. 非水系電解液の非水系有機溶媒が、鎖状カーボネートと環状エステルからなる群から選ばれるものと環状カーボネートの混合溶媒であることを特徴とする請求項1に記載の二次電池用非水系電解液。
  3. リチウムを吸蔵・放出可能な負極及び正極並びに請求項1又は2に記載の二次電池用非水電解液とからなることを特徴とする非水系電解液二次電池。
  4. 正極が、リチウム遷移金属複合酸化物を含有することを特徴とする請求項に記載の非水系電解液二次電池。
  5. 負極が、X線回折における格子面(002面)のd値が0.335〜0.340nmの炭素材料を主体とすることを特徴とする請求項またはに記載の非水系電解液二次電池。
JP2003361115A 2002-10-22 2003-10-21 非水系電解液及びそれを用いる非水系電解液二次電池 Expired - Lifetime JP4407233B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361115A JP4407233B2 (ja) 2002-10-22 2003-10-21 非水系電解液及びそれを用いる非水系電解液二次電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002306901 2002-10-22
JP2003136322 2003-05-14
JP2003361115A JP4407233B2 (ja) 2002-10-22 2003-10-21 非水系電解液及びそれを用いる非水系電解液二次電池

Publications (2)

Publication Number Publication Date
JP2004363077A JP2004363077A (ja) 2004-12-24
JP4407233B2 true JP4407233B2 (ja) 2010-02-03

Family

ID=34068867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361115A Expired - Lifetime JP4407233B2 (ja) 2002-10-22 2003-10-21 非水系電解液及びそれを用いる非水系電解液二次電池

Country Status (1)

Country Link
JP (1) JP4407233B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005099023A1 (ja) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
EP1739784B1 (en) 2004-04-19 2012-01-18 Bridgestone Corporation Non-aqueous electrolyte solution for battery and non-aqueous electrolyte battery using the same
KR101531483B1 (ko) 2007-03-19 2015-06-25 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 전지
KR102561875B1 (ko) * 2007-04-05 2023-07-31 미쯔비시 케미컬 주식회사 이차 전지용 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
JP5367301B2 (ja) * 2008-04-25 2013-12-11 三井化学株式会社 非水電解液、及びそれを用いたリチウム二次電池
DE102009034799A1 (de) * 2009-07-25 2011-01-27 Evonik Degussa Gmbh Beschichtungsverfahren zur Herstellung von Elektroden für elektrische Energiespeicher

Also Published As

Publication number Publication date
JP2004363077A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
US7169511B2 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery employing the same
JP4407205B2 (ja) リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP5792610B2 (ja) 非水系電解液及び非水系電解液二次電池
EP3972024A1 (en) Secondary lithium-ion battery electrolyte for reducing battery resistance and secondary lithium-ion battery thereof
CN110176630B (zh) 电解液和使用其的电化学装置
CN111527636A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
WO2021017709A1 (en) Electrolyte, and electrochemical device and electronic device comprising same
JP7268796B2 (ja) リチウムイオン二次電池
JP4797403B2 (ja) 非水系電解液二次電池及び非水系電解液二次電池用電解液
JP7295232B2 (ja) 電気化学装置及びそれを含む電子装置
JP5235405B2 (ja) 非水電解質二次電池
CN109390629B (zh) 一种电解液以及电池
JPWO2016068033A1 (ja) リチウムイオン二次電池
JP2011096462A (ja) 非水系電解液、それを用いた電池及びリン酸エステル化合物
JP4407233B2 (ja) 非水系電解液及びそれを用いる非水系電解液二次電池
JP5070759B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP5050416B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5110057B2 (ja) リチウム二次電池
WO2023123464A1 (zh) 电解液、包含该电解液的电化学装置及电子装置
JP4872207B2 (ja) 非水系電解液二次電池及び非水系電解液二次電池用電解液
JP4407237B2 (ja) 非水系電解液及びそれを用いる非水系電解液二次電池
JP4581501B2 (ja) 二次電池用非水電解液及びそれを用いる非水電解液二次電池
JP2009283473A5 (ja)
CN117199532B (zh) 钠离子电池及其电解液
CN116435601B (zh) 一种电解液及其应用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term