JP4404786B2 - High strength and high conductivity copper alloy and method for producing the same - Google Patents

High strength and high conductivity copper alloy and method for producing the same Download PDF

Info

Publication number
JP4404786B2
JP4404786B2 JP2005067441A JP2005067441A JP4404786B2 JP 4404786 B2 JP4404786 B2 JP 4404786B2 JP 2005067441 A JP2005067441 A JP 2005067441A JP 2005067441 A JP2005067441 A JP 2005067441A JP 4404786 B2 JP4404786 B2 JP 4404786B2
Authority
JP
Japan
Prior art keywords
phase
rolling
strength
alloy
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005067441A
Other languages
Japanese (ja)
Other versions
JP2006249505A (en
Inventor
和樹 冠
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005067441A priority Critical patent/JP4404786B2/en
Publication of JP2006249505A publication Critical patent/JP2006249505A/en
Application granted granted Critical
Publication of JP4404786B2 publication Critical patent/JP4404786B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Forging (AREA)

Description

本発明は高強度高導電性銅合金及びその製造方法に関する。   The present invention relates to a high-strength and highly conductive copper alloy and a method for producing the same.

端子、コネクタ、スイッチ、リレー等の電気・電子機器用のばね材には優れたばね特性、曲げ加工性、導電性が要求され、従来はりん青銅等が用いられてきたが、近年では電子部品の一層の小型化の要請から高強度高導電性の合金が開発されている。
一般に、Cuに強化元素を添加して高強度化すると導電率が低下し、一方で導電率を上昇させるためCu純度を高めると低強度となる関係がある。そこで、Cu母相中に第二相を晶出させた合金系(複相合金)が開発された。この合金は、強加工することにより第二相がファイバ状に分散され、りん青銅と同等以上の強度を持ちつつ、母相はCuであるため、導電率が60%IACS(international annealed copper standard:焼鈍標準軟銅に対する電気伝導度の比)を超える高導電性が得られている。この複相合金系としては、Cu−Cr、Cu−Fe、Cu−Nb、Cu−W、Cu−Ta、Cu−Agなどが知られている(例えば、特許文献1〜8参照)。
Spring materials for electrical and electronic equipment such as terminals, connectors, switches, and relays are required to have excellent spring characteristics, bending workability, and electrical conductivity. Conventionally, phosphor bronze has been used. High-strength, high-conductivity alloys have been developed due to the demand for further miniaturization.
In general, when a strengthening element is added to Cu to increase the strength, the electrical conductivity decreases, while on the other hand, increasing the Cu purity to increase the electrical conductivity has a relationship of decreasing the strength. Therefore, an alloy system (double phase alloy) in which the second phase is crystallized in the Cu matrix has been developed. In this alloy, the second phase is dispersed in a fiber shape by strong processing and has a strength equal to or higher than that of phosphor bronze, and the parent phase is Cu. Therefore, the conductivity is 60% IACS (internationally annealed copper standard: High conductivity exceeding the ratio of electrical conductivity to annealed standard annealed copper is obtained. As this multiphase alloy system, Cu—Cr, Cu—Fe, Cu—Nb, Cu—W, Cu—Ta, Cu—Ag, and the like are known (for example, see Patent Documents 1 to 8).

上記従来技術の場合、第二相をファイバ状に延伸するための加工法として、線引き、圧延等の手段が用いられている。例えば、上記特許文献1、2には複相合金を圧延して製造すると、第二相が圧延方向に充分延伸されて繊維状になり、圧延直角方向(圧延材の長手方向に圧延が進むとして、圧延材の幅方向をいう)の強度も向上することが記載されている。   In the case of the above prior art, means such as drawing and rolling are used as a processing method for drawing the second phase into a fiber shape. For example, in Patent Documents 1 and 2 described above, when a multiphase alloy is rolled and manufactured, the second phase is sufficiently stretched in the rolling direction to become fibrous, and the rolling proceeds in the direction perpendicular to the rolling direction (the longitudinal direction of the rolled material). It also describes that the strength of the rolled material is also improved.

又、圧延は各種板材等を連続的に生産できる加工法であるが、加工前後の材料寸法の制約等から加工度をあまり大きくすることができないという問題がある。つまり、加工度は、真歪η=ln(A/A)で表されるが(A:加工前の断面積、A:加工後の断面積)、加工度が増加すると板厚が減少するため、製品厚に至るとそれ以上の加工ができなくなる。例えば、通常の圧延材の加工度は、η=1〜6(63.2%〜99.8%)程度に過ぎず、これ以上大きなηを得るには非常に大きな寸法の材料が必要となり、複相合金の強度を向上することができない。
このようなことから、繰り返し重ね接合圧延(Accumulative Roll-Bonding:以下、適宜「ARB」と称する)が提案されている(例えば、特許文献9参照)。この技術は、圧延後の材料を切断後に積層して元の板厚とした後、再圧延するサイクルを繰り返すことにより、最終板厚を減少させずに圧延を施し、強加工を行う方法である。
In addition, rolling is a processing method capable of continuously producing various plate materials and the like, but there is a problem that the degree of processing cannot be increased so much due to restrictions on material dimensions before and after processing. That is, the processing degree is expressed by true strain η = ln (A 0 / A) (A 0 : cross-sectional area before processing, A: cross-sectional area after processing), but the plate thickness decreases as the processing degree increases. Therefore, when the product thickness is reached, further processing becomes impossible. For example, the degree of work of a normal rolled material is only about η = 1 to 6 (63.2% to 99.8%), and a material having a very large size is required to obtain a larger η, The strength of the multiphase alloy cannot be improved.
For this reason, repeated roll-bonding rolling (hereinafter referred to as “ARB” as appropriate) has been proposed (see, for example, Patent Document 9). This technique is a method of performing strong processing by rolling without reducing the final plate thickness by repeating the cycle of re-rolling after laminating the material after rolling to the original plate thickness after cutting. .

特開平6‐192801号公報JP-A-6-192801 特開平6‐279894号公報JP-A-6-279894 特開平9‐104935号公報JP-A-9-104935 特開平9‐235633号公報JP-A-9-235633 特開平9‐249925号公報Japanese Patent Laid-Open No. 9-249925 特開平10‐53824号公報JP-A-10-53824 特開平10‐140267号公報Japanese Patent Laid-Open No. 10-140267 特公昭48‐34652号公報Japanese Patent Publication No. 48-34652 特許第2961263号公報Japanese Patent No. 2961263

一般に、複相合金は、複合則を利用して強化する合金、もしくは異相界面積を増加させることで強化する合金であり、第二相を繊維状(ファイバ状)に分散させることで強化される。ここでは、銅中に固溶しない晶出した第二相を強加工により銅母相中に繊維状に分散することにより作られ、異相界面積を増加することによる効果が大きい。このため第二相は数多く分散している(同じ体積分率なら微細に分散している)ほど、第二相が引き伸ばされやすいほど、また加工度が大きくなるほど高強度化される。
また、上記した従来の複相合金はいずれも2相合金であり、Cu−Fe合金、Cu−Cr合金、Cu−Nb合金等のCu−bcc系合金と、Cu−Ag合金(共晶系合金)とに分けられる。しかしながら、Cu−Ag合金は初期晶出物を微細にし易いものの、熱間加工性や耐熱性に劣り、又材料コストが高い。一方、Cu−Ag合金と比較するとCu−bcc系合金は耐熱性に優れ、材料コストが安価である。しかし、強度を向上するためFe含有量を多くすると、導電性の低下、融点上昇、固液共存領域が大きいことに起因する凝固欠陥等により生産性が低下する。
特に、Cu−Fe合金の場合、初晶がFe相であり鋳造条件により晶出物を微細化することが難しいため、Fe晶出物の微細化による高強度化に限界がある。そのため、Fe添加量(Fe相の割合)を増やして強度を向上させようとすると、導電性が低下するだけではなく、第二相の晶出物の個数が増えず、個々の晶出物が粗大となり強度上昇が小さくなる。また上記した生産性の低下を招く。
すなわち、本発明は上記の課題を解決するためになされたものであり、強度と導電性に共に優れた高強度高導電性銅合金及びその製造方法の提供を目的とする。
In general, a multiphase alloy is an alloy that is strengthened by using a composite rule, or an alloy that is strengthened by increasing the interphase interface area, and is strengthened by dispersing the second phase in a fibrous form (fiber form). . Here, it is made by dispersing the crystallized second phase that does not dissolve in copper into a fibrous form by strong processing in the copper matrix phase, and the effect by increasing the interphase interface area is great. For this reason, the strength of the second phase increases as the number of the second phase is more dispersed (finely dispersed if the volume fraction is the same), the second phase is more easily stretched, and the degree of processing is increased.
The above-described conventional multiphase alloys are all two-phase alloys, and include Cu-bcc alloys such as Cu-Fe alloys, Cu-Cr alloys, Cu-Nb alloys, and Cu-Ag alloys (eutectic alloys). ). However, although Cu-Ag alloy tends to make initial crystallized fine, it is inferior in hot workability and heat resistance, and has a high material cost. On the other hand, compared with Cu-Ag alloy, Cu-bcc alloy is excellent in heat resistance and material cost is low. However, when the Fe content is increased in order to improve the strength, productivity is lowered due to a decrease in conductivity, an increase in melting point, a solidification defect due to a large solid-liquid coexistence region, and the like.
In particular, in the case of a Cu—Fe alloy, since the primary crystal is the Fe phase and it is difficult to refine the crystallized product depending on the casting conditions, there is a limit to increasing the strength by miniaturizing the Fe crystallized product. Therefore, increasing the amount of Fe added (the proportion of the Fe phase) to improve the strength not only reduces the conductivity, but also does not increase the number of crystallized substances in the second phase. It becomes coarse and the increase in strength is small. In addition, the productivity described above is reduced.
That is, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-strength and highly-conductive copper alloy excellent in both strength and conductivity and a method for producing the same.

本発明者らは種々検討した結果、Cu母相中にFe相とAg相とを晶出させて3相合金とすることにより、Feの過剰添加に伴う導電率の低下を防ぎ、Fe相を微細化し、さらにAg相が共存することで、導電性を損なわず強度を向上できることを突き止めた。   As a result of various studies, the present inventors have crystallized an Fe phase and an Ag phase in a Cu matrix to form a three-phase alloy, thereby preventing a decrease in conductivity due to excessive addition of Fe, It has been found that the strength can be improved without losing electrical conductivity by miniaturization and coexistence of the Ag phase.

上記の目的を達成するために、本発明の高強度高導電性銅合金は、質量%でFeを7%以上25%以下含有し、Agを3%以上10%以下含有し、残部Cu及び不可避的不純物からなり、Cu母相、Feを70%以上含むFe相、及びAgを50%以上含むAg相が共存することを特徴とする。   In order to achieve the above object, the high-strength, high-conductivity copper alloy of the present invention contains 7% to 25% Fe by mass, 3% to 10% Ag, and the balance Cu and unavoidable It is characterized by comprising Cu impurities, a Cu parent phase, an Fe phase containing 70% or more of Fe, and an Ag phase containing 50% or more of Ag.

前記高強度高導電性銅合金は、さらに、質量%でSn,Mg及びZrの群から選ばれる1種又は2種以上の微量元素を合計で0.05%以上1%以下含有することが好ましい。
圧延面方向において、前記Fe相及び前記Ag相のうち隣接する相によって区切られる前記Cu母相の平均厚さdがd≦400nmの関係を満たすこと、圧延直角断面から見たとき、前記Fe相の平均アスペクト比Atが10≦Atの関係を満たすことが好ましい。
The high-strength and high-conductivity copper alloy preferably further contains 0.05% or more and 1% or less in total of one or more trace elements selected from the group of Sn, Mg and Zr by mass%. .
In the rolling surface direction, the average thickness d of the Cu matrix phase separated by the adjacent phases of the Fe phase and the Ag phase satisfies the relationship of d ≦ 400 nm. It is preferable that the average aspect ratio At 2 satisfies the relationship of 10 ≦ At 2 .

ここで、Fe相において、そのアスペクト比は、(Fe相の伸長幅)/(Fe相の圧延厚み方向での厚さ)で定義される。従って、圧延直角方向に沿う断面(圧延直角断面)から見たアスペクト比Atは、図1のt2/t1で表される。t2、t1はFe相の断面像から求めることができる。Fe相におけるt2、t1は、通常、圧延直角断面について得られたSEM(走査型電子顕微鏡)のBSE(反射電子)像からt2、t1の最大値を採用すればよい。
一つのFe相のt2、t1から算出されるAtを複数個(たとえば100個)のFe相について測定し、得られたAtの平均値を平均アスペクト比Atとすればよい。
Here, the aspect ratio of the Fe phase is defined by (elongation width of Fe phase) / (thickness of Fe phase in the rolling thickness direction). Therefore, the aspect ratio At viewed from the cross section along the direction perpendicular to the rolling (the cross section perpendicular to the rolling) is represented by t2 / t1 in FIG. t2 and t1 can be obtained from a cross-sectional image of the Fe phase. For the t2 and t1 in the Fe phase, the maximum values of t2 and t1 may normally be adopted from the BSE (reflected electron) image of the SEM (scanning electron microscope) obtained for the cross section perpendicular to the rolling.
The At is calculated from one t2 of Fe phase, t1 measured for Fe phase plurality (e.g., 100), the average value of the obtained At may be set to the average aspect ratio At 2.

本発明の高強度高導電性銅合金の製造方法の一形態は、前記高強度高導電性銅合金の製造方法であって、質量%でFeを7%以上25%以下含有し、Agを3%以上10%以下含有し、残部Cu及び不可避的不純物からなり、Cu母相、Feを70%以上含むFe相、及びAgを50%以上含むAg相が共存する銅合金の圧延素材を2枚以上積層する第1工程と、前記積層された圧延素材をその積層方向に圧延する第2工程とをこの順序で1回以上繰り返すことを特徴とする。なお、2枚以上積層する場合の圧延素材は、同種あるいは異種いずれでもよい。
前記圧延素材はさらに、質量%でSn,Mg及びZrの群から選ばれる1種又は2種以上の微量元素を合計で0.05%以上1%以下含有することが好ましい。
One form of the manufacturing method of the high-strength, high-conductivity copper alloy of the present invention is a manufacturing method of the high-strength, high-conductivity copper alloy, which contains Fe in an amount of 7% to 25% by mass, and contains 3 Ag. Two rolling materials of copper alloy containing not less than 10% and not more than 10%, the balance being Cu and unavoidable impurities, co-existing with Cu parent phase, Fe phase containing 70% or more of Fe, and Ag phase containing 50% or more of Ag The first step of laminating as described above and the second step of rolling the laminated rolling materials in the laminating direction are repeated one or more times in this order. In addition, the rolling raw material in the case of laminating two or more sheets may be the same type or different types.
The rolled material preferably further contains 0.05% or more and 1% or less in total of one or more trace elements selected from the group consisting of Sn, Mg, and Zr by mass%.

本発明によれば、強度と導電性に共に優れた高強度高導電性銅合金が得られる。   According to the present invention, a high-strength, high-conductivity copper alloy excellent in both strength and conductivity can be obtained.

以下、本発明に係る高強度高導電性銅合金の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, embodiments of the high-strength, high-conductivity copper alloy according to the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

<高強度高導電性銅合金の組成>
[化学成分]
上記銅合金は、質量%でFeを7%以上25%以下含有し、Agを3%以上10%以下含有し残部Cu及び不可避的不純物からなる。Feが7%以上含有されるとCu母相中にFe相として晶出し、Agが3%以上含有されるとCu母相中にAg相として晶出し、3相の「複相合金」となる。好ましくは、上記銅合金はFeを7%以上25%以下含有する。Fe相は、複相合金として主に異相界面積の増加に伴う強化に寄与する。又、Ag相は、複相合金として主に固溶強化、析出強化、Fe相の初期晶出物の微細化及び異相界面積の増加に伴う強化に寄与すると考えられる。なお、Agの含有量が3%未満であってもCu母相の固溶強化、析出強化に寄与するが、含有量を3%以上としてAg相を晶出させることで、さらに異相界面積の増加に伴う強化の効果が得られる。なお、Cu−Ag合金において、Agは8%まで固溶するが、鋳造は非平衡状態で行われるためAgは3%であっても晶出する。
<Composition of high strength and high conductivity copper alloy>
[Chemical composition]
The said copper alloy contains 7% or more and 25% or less of Fe by mass%, contains 3% or more and 10% or less of Ag, and consists of the remainder Cu and inevitable impurities. When Fe is contained in an amount of 7% or more, it is crystallized as an Fe phase in the Cu matrix, and when Ag is contained in an amount of 3% or more, it is crystallized as an Ag phase in the Cu matrix to form a three-phase “multiphase alloy”. . Preferably, the copper alloy contains 7% to 25% of Fe. The Fe phase mainly contributes to strengthening with an increase in the interphase interface area as a multiphase alloy. In addition, the Ag phase is considered to contribute mainly to solid solution strengthening, precipitation strengthening, refinement of the initial crystallized product of the Fe phase, and strengthening accompanying an increase in the interphase interface area as a multiphase alloy. In addition, even if the Ag content is less than 3%, it contributes to solid solution strengthening and precipitation strengthening of the Cu mother phase. However, by causing the Ag phase to crystallize with a content of 3% or more, the interfacial area is further reduced. The effect of strengthening with the increase is obtained. In the Cu-Ag alloy, Ag dissolves up to 8%. However, since casting is performed in a non-equilibrium state, crystallization occurs even when Ag is 3%.

Feの含有量が7%未満であると、Fe相による複合強化の効果が少なく、25%を超えると鋳造等が困難になり生産性が低下したり、得られた合金の導電性が低下したりする。又、Agの含有量が3%未満であると、Ag相による複合強化の効果が少なく、10%を超えるとコストが増大する。又、Agの含有量が10%を超えると、熱間加工性等の生産性が低下したり、耐熱性が低下したりする。   If the Fe content is less than 7%, the effect of composite strengthening by the Fe phase is small, and if it exceeds 25%, casting and the like become difficult and the productivity is lowered, or the conductivity of the obtained alloy is lowered. Or If the Ag content is less than 3%, the effect of composite strengthening by the Ag phase is small, and if it exceeds 10%, the cost increases. On the other hand, when the Ag content exceeds 10%, productivity such as hot workability is lowered, and heat resistance is lowered.

[Fe相及びAg相]
Fe相及びAg相は、Cu及び上記化学成分を含む合金溶湯から鋳造時にFeやAgが晶出したものである。Fe相はFeを70%以上含み、Ag相はAgを50%以上含む。Fe相及びAg相は、Cu母相内に例えば針状に晶出するが、晶出形態はこれに限定されない。なお、以下に述べる微量元素を含む場合、微量元素はCu母相とFe相(又はAg相)とに所定割合で分配される。尚、Cu母相は、例えばCuを90%以上含むが、これに限られない。
Fe相及びAg相は、最終工程終了後の圧延組織の断面を研磨した後、SEMのBSE像により、母相と異なる組成として観察することができる。組織が観察しにくい場合は、エッチング又は電解研磨を行ってもよい。
[Fe phase and Ag phase]
The Fe phase and the Ag phase are obtained by crystallization of Fe or Ag from a molten alloy containing Cu and the above chemical components during casting. The Fe phase contains 70% or more of Fe, and the Ag phase contains 50% or more of Ag. The Fe phase and the Ag phase are crystallized, for example, in a needle shape in the Cu matrix, but the crystallization form is not limited to this. In addition, when the trace element described below is included, the trace element is distributed at a predetermined ratio between the Cu parent phase and the Fe phase (or Ag phase). In addition, although Cu parent phase contains 90% or more of Cu, for example, it is not restricted to this.
The Fe phase and the Ag phase can be observed as a composition different from that of the parent phase by a SEM BSE image after polishing the cross section of the rolled structure after the final process. If the structure is difficult to observe, etching or electropolishing may be performed.

[3相合金]
次に、本発明において3相合金系を用いる理由について説明する。まず、2相合金であるCu−Ag合金は熱間加工性や耐熱性に劣り、又材料コストが高い。一方、Cu−Fe合金はCu−Ag合金に比べて強度が低く、又、強度を向上するためFe含有量を多くすると、高融点になることや固液共存領域が広くなることにより生産性が低下する。またFe相が粗大化して含有量の増加に見合うだけの強度上昇が得られず、導電性は低下する。そこで、Cu−Fe合金系にAgを含有させると、Agの存在によりFe相の粗大化が抑制される。更に、融点も上昇しないので生産性の悪化が防止される。又、Agを含有させると、Fe相(Ag相)の晶出物が微細化され、さらにAgはCu母相に固溶しても導電率の低下が少ない。このように、Cu−Fe−Ag合金とすることにより、2相合金に比べ、強度及び導電率をともに向上させることができ、耐熱性も向上する。
[Three-phase alloy]
Next, the reason for using the three-phase alloy system in the present invention will be described. First, a Cu-Ag alloy which is a two-phase alloy is inferior in hot workability and heat resistance, and has a high material cost. On the other hand, Cu—Fe alloy has lower strength than Cu—Ag alloy, and if the Fe content is increased in order to improve strength, productivity increases due to higher melting point and wider solid-liquid coexistence region. descend. Further, the Fe phase is coarsened and the strength cannot be increased enough to meet the increase in the content, and the conductivity is lowered. Therefore, when Ag is contained in the Cu—Fe alloy system, the presence of Ag suppresses the coarsening of the Fe phase. Further, since the melting point does not increase, the deterioration of productivity is prevented. In addition, when Ag is contained, the crystallized product of the Fe phase (Ag phase) is refined, and even when Ag is dissolved in the Cu matrix, the decrease in conductivity is small. Thus, by using a Cu—Fe—Ag alloy, both strength and conductivity can be improved and heat resistance can be improved as compared with a two-phase alloy.

なお、複相合金の強度を向上させる方法として、Cu母相以外の異相の初期晶出物を微細化すること、加工度(例えば冷間加工度)を大きくとること、及び加工により異相が変形し易いことが挙げられる。しかし、Cu−Fe合金の場合、晶出したFe相は剛性が高く、加工によって変形し難いが、Cu−Fe−Ag合金とすることによりFe相が変形し易くなる。これは、Fe相及びAg相の相互作用によると考えられる。   In addition, as a method for improving the strength of the multi-phase alloy, the initial phase crystallized material other than the Cu matrix is refined, the degree of work (for example, the degree of cold work) is increased, and the different phases are deformed by the work. It is easy to do. However, in the case of a Cu—Fe alloy, the crystallized Fe phase has high rigidity and is difficult to be deformed by processing, but by using a Cu—Fe—Ag alloy, the Fe phase is easily deformed. This is considered to be due to the interaction between the Fe phase and the Ag phase.

[不可避的不純物]
上記銅合金中の不可避的不純物の含有量は、JIS H2123に規格する無酸素形銅C1011ほど清浄である必要はなく、例えば、炉材や原料などから通常混入する範囲の不純物量であれば許容される。
[Inevitable impurities]
The content of inevitable impurities in the copper alloy does not need to be as clean as oxygen-free copper C1011 standardized in JIS H2123. For example, it is acceptable if the impurity content is within the range normally mixed from furnace materials or raw materials. Is done.

[微量元素]
上記銅合金は、さらに微量元素として、質量%でSn,Mg及びZrの群から選ばれる1種又は2種以上の微量元素を合計で0.05%以上1%以下含有することが好ましい。上記微量元素は、上記銅合金を析出強化(または固溶強化)させ、耐熱性を向上させ、又は上記銅合金鋳造時のFe相及び/又はAg相の初期晶出物を微細化し、合金の強度を向上させる。微量元素の含有量が0.05%未満であると、これらの効果が認められないことがあり、1%を超えると合金の導電率を著しく低下させる場合がある。
なお、Sn,Mgは固溶強化に寄与し、Zr,Mgは析出強化及び耐熱性の向上に寄与し、SnはFe相及び/又はAg相の初期晶出物の微細化による強度向上にも寄与する。
[Trace elements]
The copper alloy preferably further contains one or more trace elements selected from the group consisting of Sn, Mg and Zr by mass% as a trace element in a total amount of 0.05% or more and 1% or less. The trace element causes precipitation strengthening (or solid solution strengthening) of the copper alloy, improves heat resistance, or refines initial crystals of the Fe phase and / or Ag phase during the casting of the copper alloy, Improve strength. If the content of the trace element is less than 0.05%, these effects may not be observed, and if it exceeds 1%, the conductivity of the alloy may be significantly reduced.
Sn and Mg contribute to solid solution strengthening, Zr and Mg contribute to precipitation strengthening and heat resistance improvement, and Sn also improves strength by refinement of initial crystals of Fe phase and / or Ag phase. Contribute.

<高強度高導電性銅合金の圧延>
上記合金の素材(鋳塊等)を圧延することにより、合金の強度をさらに向上させることができる。一般に、複相合金は、母相中に繊維状、リボン状等の母相とは異なる相を分散させることにより強化を図る合金であり、強加工によりCu中に固溶せずに晶出したFe相及びAg相を引き伸ばしてCu母相中に分散させて高強度を得る。強加工としては、線引き、圧延等があるが、圧延材とすると幅広の材料や板材を製造することができる。
なお、Cu−Fe−Ag合金とすることにより、Fe相やAg相は2相合金中に単独に存在する場合に比べて変形し易くなる。従って、冷間圧延を行った場合の各相の伸びも2相合金に比べて大きく、より高強度化される。
<Rolling high-strength, high-conductivity copper alloy>
By rolling the alloy material (such as an ingot), the strength of the alloy can be further improved. In general, a multi-phase alloy is an alloy that is strengthened by dispersing a phase different from the matrix, such as a fiber or ribbon, in the matrix, and crystallized without being dissolved in Cu by strong processing. The Fe phase and the Ag phase are stretched and dispersed in the Cu matrix to obtain high strength. Strong processing includes drawing, rolling, and the like, but when rolled, wide materials and plate materials can be produced.
In addition, by setting it as a Cu-Fe-Ag alloy, it becomes easy to deform | transform compared with the case where Fe phase and Ag phase exist independently in a two-phase alloy. Therefore, the elongation of each phase when cold rolling is performed is larger than that of the two-phase alloy, and the strength is further increased.

<Cu母相の平均厚さd>
ところで、本発明の複相合金の強度には弾性的効果と塑性的効果があり、弾性的効果は母相より硬い相が存在することで強化され、複合側によれば、式
σ=Vσ+Vσ+Vσ
で表される(添え字1,2,3はそれぞれCu,Fe,Agを示し、Vは体積分率を、σは応力を示す)。しかしながら、本発明の合金の場合、V及びVよりVの方が極めて大きく、例えば、V=0.8、V=0.1とすると、Fe相の応力σを100MPaまで高めても合金全体としては10MPaしか強度が上昇しない。
一方、塑性的効果はCu母相のみに変形が起こることによる効果でCu母相とFe相及びAg相の異相界面積が増大すると高強度化される。
以上のことから、Fe相及びAg相の強度(応力)σや体積分率Vを増大させることより、異相界面積(Cu母相とFe相の界面、及びCu母相とAg相の界面が転位障害となる)を増大させることの方が高強度化の点で重要となる。
つまり、複相合金の強化に効く要因として、1)体積分率が大きいこと、2)異相の界面積が大きいこと、3)母相の厚さ(第二相や第三相によって挟まれる母相の厚さ)が薄いことが挙げられる。このうち、1)が大きくなると、母相の厚さも薄くなり、3)の効果も得られるが、この効果を発現させるのは効率的ではない。そこで、本発明においては上記2)、3)に着目する。ここで、2)を大きくすると組織は微細化し、母相の厚さも薄くなる。又、3)を薄くするためには加工度を大きくとるが、その結果、異相界面積も増大する。つまり、2)と3)は相互に関連し、複相合金の強化には上記1)〜3)の効果が相乗的に効くと考えられる。
しかしながら、2)及び3)の程度を示す指標として異相界面積を測定することは現実には難しい。そこで、Cu母相の平均厚さ(又は、隣接する第二相及び/又は第三相の間隔)dを異相界面積のパラメータとして用いる。このことを図1を用いて説明する。
<Average thickness d of Cu matrix>
By the way, the strength of the multiphase alloy of the present invention has an elastic effect and a plastic effect, and the elastic effect is strengthened by the presence of a phase harder than the parent phase. According to the composite side, the formula σ = V 1 σ 1 + V 2 σ 2 + V 3 σ 3
(Subscripts 1, 2, and 3 indicate Cu, Fe, and Ag, respectively, V indicates a volume fraction, and σ indicates stress). However, in the case of the alloy of the present invention, V 1 is much larger than V 2 and V 3. For example, when V 1 = 0.8 and V 2 = 0.1, the stress σ 2 of the Fe phase is up to 100 MPa. Even if it is increased, the strength of the alloy as a whole increases only by 10 MPa.
On the other hand, the plastic effect is an effect caused by deformation only in the Cu matrix, and the strength is increased when the interphase interface area between the Cu matrix, the Fe phase, and the Ag phase increases.
From the above, by increasing the strength (stress) σ and the volume fraction V of the Fe phase and the Ag phase, the heterogeneous interface area (the interface between the Cu matrix and the Fe phase, and the interface between the Cu matrix and the Ag phase) Increasing the amount of (dislocation failure) is more important in terms of increasing the strength.
In other words, the factors that are effective in strengthening the multiphase alloy are as follows: 1) a large volume fraction, 2) a large interfacial area, and 3) the thickness of the parent phase (the mother sandwiched between the second and third phases). The thickness of the phase is small. Among these, when 1) becomes large, the thickness of the parent phase also becomes thin and the effect of 3) can be obtained, but it is not efficient to express this effect. Therefore, in the present invention, attention is paid to the above 2) and 3). Here, when 2) is increased, the structure becomes finer and the thickness of the parent phase also becomes thinner. Further, in order to make 3) thinner, the degree of processing is increased, but as a result, the heterogeneous interface area also increases. That is, 2) and 3) are related to each other, and it is considered that the effects 1) to 3) are synergistically effective in strengthening the multiphase alloy.
However, it is actually difficult to measure the interfacial area as an index indicating the degree of 2) and 3). Therefore, the average thickness (or the interval between adjacent second and / or third phases) d of the Cu matrix is used as a parameter for the interphase interface area. This will be described with reference to FIG.

まず、本発明の合金として圧延材を考えた場合、その圧延材組織として模式図1に示すものが例示される。この図において、圧延材2のCu母相(マトリクス)中に、Fe相及びAg相4が分散されている(図1においてFe相とAg相を特に区別しない)。板幅方向を「圧延直角方向T」とし、板の長手方向を「圧延方向L」とする。従来の複相合金の場合、第二相は圧延直角方向には殆ど延伸されずファイバ状である。一方、本発明においては、Fe相及びAg相は圧延直角方向にも延伸され、例えばリボン状(舌片状)の形態を示す。
このように、圧延材の場合、リボン状のFe相及びAg相が圧延面方向に積層された状態で分散し、又、Fe相及びAg相の厚みが薄いので、各相の間隔(圧延面方向から見て、Fe相又はAg相によって区切られるCu母相の厚さ)が狭い程、合金の単位体積中のFe相及びAg相の個数が多くなる、つまり、異相界面積が増大することになる。
First, when a rolled material is considered as the alloy of the present invention, the structure shown in FIG. 1 is exemplified as the rolled material structure. In this figure, the Fe phase and the Ag phase 4 are dispersed in the Cu matrix (matrix) of the rolled material 2 (the Fe phase and the Ag phase are not particularly distinguished in FIG. 1). The sheet width direction is defined as “rolling perpendicular direction T”, and the longitudinal direction of the sheet is defined as “rolling direction L”. In the case of a conventional multiphase alloy, the second phase is hardly drawn in the direction perpendicular to the rolling and is in the form of a fiber. On the other hand, in the present invention, the Fe phase and the Ag phase are also stretched in the direction perpendicular to the rolling direction, and show, for example, a ribbon shape (tongue piece shape).
As described above, in the case of a rolled material, the ribbon-like Fe phase and Ag phase are dispersed in a state of being laminated in the rolling surface direction, and the thickness of the Fe phase and Ag phase is thin. The thickness of the Cu parent phase delimited by the Fe phase or the Ag phase as viewed from the direction is smaller, and the number of Fe phases and Ag phases in the unit volume of the alloy is increased, that is, the interfacial area is increased. become.

いま、Fe相及びAg相の厚みを無視すれば、圧延面方向に平行な線分を横切るFe相及びAg相の個数が多い程、各相の間隔は狭くなり、
Cu母相の平均厚さd=(線分mの長さ)/(線分mを横切るFe相及びAg相の個数)で表される。なお、線分mの長さとしては、例えば、圧延材の板厚としてもよく、顕微鏡の視野領域程度としてもよい。又、複数の線分について求めたdをさらに平均してもよい。粗大なFe相が存在する場合、線分の長さからその距離を引く。具体的には、50nm以上のFe相の距離の和を線分の長さから引いたものを線分mの長さとして、それを横切るFe相及びAg相の個数で割ってdを求める。粗大なFe相は、例えば図2に示すようなものである。
なお、上記dは、合金材料の厚み(板厚)より充分に小さく、通常Fe相及びAg相の厚みより充分に大きい。線分の長さに比べて、Ag相は無視できるほど小さい。
Now, if the thickness of the Fe phase and the Ag phase is ignored, the larger the number of Fe phases and Ag phases crossing the line parallel to the rolling surface direction, the narrower the interval between the phases,
The average thickness d of Cu parent phase is expressed by d = (length of line segment m) / (number of Fe phase and Ag phase crossing line segment m). In addition, as length of the line segment m, it is good also as the plate | board thickness of a rolling material, and good also about the visual field area | region of a microscope, for example. Further, d obtained for a plurality of line segments may be further averaged. When a coarse Fe phase exists, the distance is subtracted from the length of the line segment. Specifically, d is obtained by subtracting the sum of the distances of Fe phases of 50 nm or more from the length of the line segment, and dividing it by the number of Fe phases and Ag phases crossing it. The coarse Fe phase is, for example, as shown in FIG.
The above d is sufficiently smaller than the thickness (plate thickness) of the alloy material and is usually sufficiently larger than the thicknesses of the Fe phase and the Ag phase. Compared to the length of the line segment, the Ag phase is negligibly small.

異相界面積を増大させて合金の強度を向上させる点から、dがd≦400nmの関係を満たすことが好ましい。3相合金とすると、2相合金に比べて初期晶出物が微細化するとともにその個数も増えるので、異相界面積が増大する。又、3相合金とすることにより、2相合金に比べてFe相及びAg相が変形し易くなるため、dが小さくなり易い。   From the viewpoint of improving the strength of the alloy by increasing the heterogeneous interface area, it is preferable that d satisfies the relationship of d ≦ 400 nm. When a three-phase alloy is used, the initial crystallized material becomes finer and the number thereof increases as compared with the two-phase alloy, so that the interphase interface area increases. Further, by using a three-phase alloy, the Fe phase and the Ag phase are easily deformed as compared with the two-phase alloy, and d is likely to be small.

<Fe相の平均アスペクト比At
本発明の圧延材を圧延直角断面から見たとき、Fe相の平均アスペクト比Atを10以上とする。平均アスペクト比Atの規定方法について、前記図1を参照して説明する。
上記したように、本発明において、Fe相及びAg相は圧延直角方向にも延伸され、例えばリボン状(舌片状)の形態を示す。なお、従来から公知の他の複相合金において、圧延直角方向にも第二相が延伸されてリボン状(舌片状)になったものが存在する場合があっても、本発明においては、好ましくは第二相の圧延直角方向の長さは従来の複相合金より長く、平均アスペクト比も本発明の方が大きい。
<Average aspect ratio At 2 of Fe phase>
When the rolled material of the present invention is viewed from a cross section perpendicular to the rolling, the average aspect ratio At 2 of the Fe phase is set to 10 or more. A method for defining the average aspect ratio At 2 will be described with reference to FIG.
As described above, in the present invention, the Fe phase and the Ag phase are also stretched in the direction perpendicular to the rolling direction, and show, for example, a ribbon shape (tongue piece shape). In addition, in other conventionally known multi-phase alloys, even if there is a case where there is a ribbon-like (tongue piece-like) shape in which the second phase is stretched also in the direction perpendicular to the rolling direction, in the present invention, Preferably, the length in the direction perpendicular to the rolling direction of the second phase is longer than that of the conventional double phase alloy, and the average aspect ratio is also larger in the present invention.

[Atの規制範囲]
本発明において、Atは10以上とする。Atが10未満であると、圧延直角方向にFe相があまり延伸されず、この方向の強化が不充分となって強度が向上しないばかりでなく、異相界面で割れが生じる等、曲げ加工性が低下する。一方、Atは特に上限を設けないが、Atが110以下であれば、製造が容易である。又、通常の圧延方法においては、80を超えるAtを得ることが難しい場合もあるが、後述するARB(繰り返し重ね接合圧延)においては容易である。
なお、Ag相の平均アスペクト比Atも上記Atとまったく同様にして規定することができるが、Fe相よりAg相の方が変形し易いため、必ずAt>Atとなっていた。従って、Atの下限値を規定すれば充分である。
[Regulation of At]
In the present invention, At 2 is 10 or more. When At 2 is less than 10, the Fe phase is not stretched in the direction perpendicular to the rolling direction, the strength in this direction is insufficient and the strength is not improved, and cracking occurs at the interface between the different phases. Decreases. On the other hand, At 2 does not have an upper limit, but if At 2 is 110 or less, production is easy. In addition, in a normal rolling method, it may be difficult to obtain At 2 exceeding 80, but in ARB (repeated lap bonding rolling) described later, it is easy.
The average aspect ratio At 3 of the Ag phase can also be defined in exactly the same way as the above At 2. However, since the Ag phase is more easily deformed than the Fe phase, At 3 > At 2 . Therefore, it is sufficient to define the lower limit of At 2.

[Atの調整方法]
通常、圧延を行うと組織は圧延方向に延伸されるが、圧延直角方向にはあまり延伸されない。そこで、最終的に管理されるAtの値を考慮し、圧延直角方向にFe相の幅t2が伸びるよう、圧延前に晶出物(Fe相)をある程度の大きさまで成長させるなどの方法がある。また、熱間鍛造、冷間鍛造により幅だしを行うことでAtは大きくなる。その他に圧延時の圧延方向張力を低くすることにより、圧延方向への組織の延伸を弱めて圧延直角方向にFe相を延伸させることや、1パス当りの加工度を減らし、パス回数を増やすことによっても、圧延直角方向にFe相を延伸させることができる。
[Method for adjusting At 2 ]
Usually, when rolling is performed, the structure is stretched in the rolling direction, but not so much in the direction perpendicular to the rolling direction. Therefore, in consideration of the finally managed value of At, there is a method of growing a crystallized product (Fe phase) to a certain size before rolling so that the width t2 of the Fe phase extends in the direction perpendicular to the rolling. . In addition, At is increased by performing width setting by hot forging or cold forging. In addition, by lowering the rolling direction tension during rolling, the structure in the rolling direction can be weakened to extend the Fe phase in the direction perpendicular to the rolling direction, the degree of processing per pass can be reduced, and the number of passes can be increased. The Fe phase can be stretched in the direction perpendicular to the rolling.

たとえば、まず、熱間鍛造を行いインゴット幅の1.4倍程度まで幅を広げる。その後熱間圧延、冷間圧延を行い、熱処理、冷間圧延、再び熱処理を行う。   For example, first, hot forging is performed to widen the width to about 1.4 times the ingot width. Thereafter, hot rolling and cold rolling are performed, and heat treatment, cold rolling, and heat treatment are performed again.

次に、熱処理後に冷間圧延を行うが、Atを大きくするには冷間圧延時の1パスあたりの加工度η=0.16〜0.36(15%〜30%)、好ましくはη=0.29(25%)以下程度と低くし、冷間圧延時にかける張力を80MPa〜300MPa、好ましくは200MPa以下に抑えるとよい。   Next, cold rolling is performed after the heat treatment. To increase At, the work degree η = 0.16 to 0.36 (15% to 30%) per pass during cold rolling, preferably η = The tension applied during cold rolling should be as low as 0.29 (25%) or less, and should be suppressed to 80 MPa to 300 MPa, preferably 200 MPa or less.

<製造>
以下、本発明の合金の製造方法の一例を挙げる。まず、電気銅又は無酸素銅を主原料とし、上記化学成分その他を添加した組成を溶解炉にて溶解し、インゴット(鋳塊)を作製する。このインゴットを均質化焼鈍した後、熱間(温間)圧延又は熱間(温間)鍛造又は熱間(温間)圧延と熱間(温間)鍛造を共に行い、冷間圧延する。
圧延方法としては、上記した冷間圧延によって最終板厚にしてもよいが、ARBを行うこともできる。ARBで行う場合以下のように行うことが好ましい。
<Manufacturing>
Hereafter, an example of the manufacturing method of the alloy of this invention is given. First, electrolytic copper or oxygen-free copper is used as a main raw material, and a composition to which the above chemical components and others are added is melted in a melting furnace to produce an ingot (ingot). After this ingot is homogenized and annealed, it is subjected to hot (warm) rolling or hot (warm) forging or hot (warm) rolling and hot (warm) forging, and cold rolling.
As a rolling method, the final plate thickness may be obtained by the above-described cold rolling, but ARB can also be performed. When performing by ARB, it is preferable to carry out as follows.

<繰り返し重ね接合圧延(ARB)>
ARBは、上記した冷間圧延材をARB用の圧延素材として行う。図3は、ARBの一例の概略を模式的に示した工程図である。
この図において、まず、2枚の圧延素材1A、1Bの表面S、Sをそれぞれ清浄化する。圧延素材としては、銅合金のインゴット、インゴットを適宜均質化焼鈍してから熱間圧延又は熱間鍛造したもの、及び冷間圧延したものを用いることができる。圧延素材の厚みは、インゴット等の肉厚のものでもよく、最終製品厚に近い板厚が薄い冷間圧延材でもよい。又、清浄化は、圧延素材が圧延によって接合されるよう、表面の油分や酸化膜等を除去するためのものであり、例えば、脱脂、研磨、洗浄等を行うことができる。なお、ARBにおいて、清浄化する工程は現在必須であるが、焼鈍、圧延等により圧延素材の表面粗さ等を厳密に制御できるようになれば、将来省略することも可能である。
次に、圧延素材1A、1Bを積層し(I:第1工程)、先端部J同士を接合する。圧延素材は2枚以上であれば何枚積層してもよい。又、接合は必須ではないが、圧延時に先端部が開いて接合できなくなったり、積層した素材間に隙間が生じて表面酸化等が生じたりすることを防止するために行うことが好ましい。接合方法は、溶接の他、機械的接合(ボルト等による締結、ワイヤ等による緊縛)であってもよい。又、先端に加え、圧延素材の後端(圧延出側)を接合してもよい。
次に、圧延素材1A、1Bをロール10、10間に通し、その積層方向(図の上下方向)に圧延する(II:第2工程)。なお、圧延素材の加工性に応じて、圧延前に圧延素材を熱処理してもよく、又、熱処理しなくともよい。
次に、カッター20を用い、圧延材1Cを例えば短手方向(圧延直角方向)に切断し、長手方向が分断された2つの圧延材1D、1Eを得る。各圧延材は圧延素材の場合と同様にして再度ARBに供され、圧延される。
また、本発明においては、圧延の前後やその途中、及び最終圧延後に各種の熱処理や焼鈍を行ってもよい。
<Repeated lap joint rolling (ARB)>
ARB performs the above-described cold rolled material as a rolled material for ARB. FIG. 3 is a process diagram schematically showing an example of an ARB.
In this figure, first, the surfaces S and S of the two rolled materials 1A and 1B are respectively cleaned. As the rolling material, a copper alloy ingot, a material obtained by appropriately homogenizing and annealing the ingot, and then hot rolling or hot forging, or a cold rolled material can be used. The thickness of the rolled material may be a thick material such as an ingot, or a cold rolled material having a thin plate thickness close to the final product thickness. The cleaning is for removing oil, oxide film, and the like on the surface so that the rolled materials are joined by rolling. For example, degreasing, polishing, washing, and the like can be performed. In the ARB, a cleaning process is currently essential, but it can be omitted in the future if the surface roughness of the rolled material can be strictly controlled by annealing, rolling, or the like.
Next, the rolling materials 1A and 1B are stacked (I: first step), and the tip portions J are joined together. Any number of rolled materials may be stacked as long as it is two or more. Joining is not essential, but it is preferably performed to prevent the tip portion from being opened during rolling to prevent joining, or the formation of a gap between the laminated materials to cause surface oxidation or the like. In addition to welding, the joining method may be mechanical joining (fastening with a bolt or the like, binding with a wire or the like). Further, in addition to the front end, the rear end (rolling side) of the rolled material may be joined.
Next, the rolling materials 1A and 1B are passed between the rolls 10 and 10, and rolled in the stacking direction (vertical direction in the figure) (II: second step). Depending on the workability of the rolled material, the rolled material may be heat-treated before rolling or may not be heat-treated.
Next, using the cutter 20, the rolled material 1 </ b> C is cut in, for example, the short direction (the direction perpendicular to the rolling direction) to obtain two rolled materials 1 </ b> D and 1 </ b> E whose longitudinal directions are divided. Each rolled material is subjected to ARB again and rolled in the same manner as the rolled material.
In the present invention, various heat treatments and annealing may be performed before and after rolling, in the middle thereof, and after final rolling.

ARBにおいては、上記した一連の工程をこの順序で1回以上繰り返す。2回以上繰り返す場合は、圧延材を切断し工程の最初に戻す工程を行う。例えば、ARBの圧下率を50%とした場合、圧延前の圧延素材の厚みはそれぞれtであるが、圧延後の圧延材1Cの厚みもt(0.5t+0.5t)となり、実際の材料厚みを減少させずに圧延することができる。又、図3の圧延素材1A、1BにおけるFe(Ag)相1xの間隔(Cu母相の厚さ)をdとすると、圧延後のCu母相の厚さd=0.5dとなり(圧下率50%の場合)、圧延材の組織は強加工を受けて微細化することがわかる。 In ARB, the series of steps described above are repeated one or more times in this order. When repeating twice or more, the process which cut | disconnects a rolling material and returns to the beginning of a process is performed. For example, when the reduction rate of ARB is 50%, the thickness of the rolled material before rolling is t 0 , but the thickness of the rolled material 1C after rolling is also t 0 (0.5t 0 + 0.5t 0 ). It can be rolled without reducing the actual material thickness. Further, the rolling stock 1A of FIG. 3, when Fe a (Ag) Phase 1x interval (thickness of the Cu matrix) and d 0 in 1B, the thickness d 1 = 0.5d 0 next to the Cu matrix after rolling (When the reduction ratio is 50%), it can be seen that the structure of the rolled material undergoes strong processing and becomes finer.

本発明の合金は、すでに述べたようにCu−Fe−Ag系の3相合金とすることによりFe相が変形し易くなり、Cu母相の平均厚さdも小さくなり、高強度化することができる。このような強化機構を考慮すると、ARBで圧延して加工度ηを大きくするほど、Cu母相の間隔が狭まって厚みが薄くなり、Cu母相とFe相及びAg相の異相界面積が増加して高強度化される。ARBの繰返し回数が多いほど、加工度を大きくすることができる。又、繰返し回数に上限はないが、合金の組成に応じて圧延による割れが生じない範囲に設定すればよい。必要な最終板厚によるが、例えば、繰返し回数として4〜5回程度が例示される。特に、圧延材の最終製品厚は予め決まっており、通常の圧延では、この厚みを超えて圧延加工度を大きくとることはできない。しかし、ARBによれば、最終製品厚未満まで加工した後、重ね合わせて圧延を繰り返すことで、加工度を大きくすることができる。
なお、ARBにおける圧延1回毎の圧下率を50%とすると、n回繰返し後の圧延材の厚みは圧延素材の厚みの1/2となる。従って、繰返し回数がそれぞれ4,5回の場合、加工度はそれぞれη=2.77(93.8%),3.47(96.9%)となる。
As described above, the alloy of the present invention is a Cu-Fe-Ag-based three-phase alloy, whereby the Fe phase is easily deformed, the average thickness d of the Cu matrix is reduced, and the strength is increased. Can do. Considering such a strengthening mechanism, as the degree of work η is increased by rolling with ARB, the distance between the Cu matrix phases decreases and the thickness decreases, and the heterogeneous interface area between the Cu matrix, the Fe phase, and the Ag phase increases. To increase the strength. As the number of repetitions of ARB increases, the degree of processing can be increased. Moreover, although there is no upper limit to the number of repetitions, it may be set within a range in which cracking due to rolling does not occur according to the composition of the alloy. Depending on the necessary final plate thickness, for example, the number of repetitions is about 4 to 5 times. In particular, the final product thickness of the rolled material is determined in advance, and in normal rolling, the rolling degree cannot be increased beyond this thickness. However, according to ARB, after processing to less than the final product thickness, the degree of processing can be increased by repeating rolling with overlapping.
In addition, if the rolling reduction per rolling in ARB is 50%, the thickness of the rolled material after n times of repetition becomes 1/2 n of the thickness of the rolled material. Therefore, when the number of repetitions is 4 and 5, respectively, the processing degrees are η = 2.77 (93.8%) and 3.47 (96.9%), respectively.

なお、ARB前に圧延素材を熱処理する場合、圧延素材のFe相及びAg相(特に、Ag相)が熱により分断される温度以下の温度に保持すれば、第二相の分断による強度劣化が防げ、延性も回復するのでARBで割れが生じにくく、接合しやすくなる。 In addition, when heat-treating a rolling raw material before ARB, if the Fe phase and Ag phase (especially Ag phase) of a rolling raw material are hold | maintained at the temperature below the temperature divided by heat, the strength deterioration by division | segmentation of a 2nd phase will be carried out. Since it is prevented and ductility is restored, cracks are unlikely to occur in the ARB, and joining becomes easy.

従来、銅系複相合金の圧延材は導電性等の問題から、端子等のばね材に用いることはできず、一方で半導体素子と同等の熱膨張係数を有するため、ヒートシンク、ヒートスプレッタなどの放熱用部品として用いられてきた。本発明では、導電性、強度が共に良好な銅合金を得ることができ、電子機器類の小型化、軽量化や性能向上に大きく寄与し得るなど、産業上きわめて有効な効果がもたらされる。   Conventionally, rolled materials of copper-based multiphase alloys cannot be used for spring materials such as terminals due to problems such as electrical conductivity. It has been used as a product part. In the present invention, a copper alloy having both good conductivity and strength can be obtained, and it is possible to greatly contribute to the miniaturization, weight reduction and performance improvement of electronic devices, and the like.

なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金が他の成分を含有してもよい。   In addition, this invention is not limited to the said embodiment. Moreover, as long as there exists an effect of this invention, the copper alloy in the said embodiment may contain another component.

本発明は電子機器、例えばコネクタに適用可能である。コネクタは、端子が上記高強度高導電性銅合金の製造方法で構成されている。コネクタは公知のあらゆる形態、構造のものに適用でき、通常はオス(プラグ)とメス(ジャック)からなる。端子は、例えば串状の多数のピンが並設され、他のコネクタと嵌合した際に端子同士が電気的に接触するよう、適宜折り曲げられてバネのようになっていることがある。   The present invention can be applied to electronic devices such as connectors. As for the connector, the terminal is comprised by the manufacturing method of the said high intensity | strength highly conductive copper alloy. The connector can be applied to any known form and structure, and usually consists of a male (plug) and a female (jack). For example, the terminals may be arranged like a spring, with a number of skewered pins arranged side by side and appropriately bent so that the terminals come into electrical contact with each other when fitted to other connectors.

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to these.

1.試料の製造
電気銅に表1に示す組成の元素を添加して真空溶解してインゴットを鋳造し、これを均質化焼鈍後、熱間圧延を施し、冷間圧延したものを圧延素材とした。圧延素材の板厚は0.1mm、0.2mm、0.4mm又は0.8mmとした。
1−1.通常の圧延:実施例1〜10、比較例1〜8
圧延素材は、上記冷間圧延の途中で脱脂、研磨、及び洗浄した後、Fe相及びAg相が熱により分断される温度以下で焼鈍し、最終板厚になるまで冷間圧延を行った。比較のため、表1に示す組成の元素を添加して同様に試料を作成したものを比較例1〜8とした。
1−2.ARB:実施例11〜13、比較例9〜11
圧延素材は、上記冷間圧延の途中で脱脂、研磨、及び洗浄して表面を清浄化した後、Fe相及びAg相が熱により分断される温度以下で焼鈍した。次に、同一厚の圧延素材を重ね、先端及び後端の隅の計4ヶ所を溶接し、繰返し回数を1又は2回とするARBを行い最終板厚とした(加工度ηは6(99.8%)を超えた)。以上のようにして実施例1〜12の試料を得た。比較のため、表1に示す組成の元素を添加して同様に試料を作成したものを比較例9〜11とした。
なお、以下の各表において、例えば実施例10の「Cu−15Fe−4Ag」の各元素記号の前の数字が合金中のFe,Agの含有率(%)を示し、該数字が1以下のものを微量元素とした。例えば、上記実施例10の場合、微量元素がMg及びSnとなる。
1. Manufacture of a sample The element of the composition shown in Table 1 was added to electrolytic copper and melted in vacuum to cast an ingot, which was subjected to homogenization annealing, hot-rolled, and cold-rolled to obtain a rolling material. The thickness of the rolled material was 0.1 mm, 0.2 mm, 0.4 mm, or 0.8 mm.
1-1. Normal rolling: Examples 1 to 10, Comparative Examples 1 to 8
The rolled material was degreased, polished, and washed during the cold rolling, and then annealed at a temperature lower than the temperature at which the Fe phase and the Ag phase were divided by heat, and cold rolled until the final thickness was reached. For comparison, samples prepared in the same manner by adding elements having the compositions shown in Table 1 were designated as Comparative Examples 1-8.
1-2. ARB: Examples 11-13, Comparative Examples 9-11
The rolled material was degreased, polished, and washed during the cold rolling to clean the surface, and then annealed at a temperature equal to or lower than the temperature at which the Fe phase and Ag phase were separated by heat. Next, rolled materials of the same thickness are stacked, and a total of four corners at the front and rear corners are welded, and ARB is performed with the number of repetitions of 1 or 2 to obtain a final thickness (working degree η is 6 (99 8%))). Samples of Examples 1 to 12 were obtained as described above. For comparison, samples prepared in the same manner by adding elements having the compositions shown in Table 1 were designated as Comparative Examples 9 to 11.
In the following tables, for example, the number before each element symbol of “Cu-15Fe-4Ag” in Example 10 indicates the content (%) of Fe and Ag in the alloy, and the number is 1 or less. Things were trace elements. For example, in the case of Example 10, the trace elements are Mg and Sn.

2.試料の評価
(1)Fe相の平均アスペクト比At2の算出
最終板厚まで圧延後の試料の圧延直角断面を研磨後(1μmダイヤモンドペースト、但し、Fe相が小さく観察し難い場合はエッチングまたは電解研磨後)、SEMを用いてBSE像を得た。像においてCu母相に比べて黒い部分をFe相と見なし、Fe相の厚みt1、伸長幅t2を求めた。t1、t2は個々のFe相の最大値を採った。像において測定したt1、t2からAtを求め、100個のFe相についてそれぞれAtを求め、平均したものを平均アスペクト比として採用した。なお、原子番号がCuに対してAgとFeでは大小異なり、背面散乱係数は原子番号が大きくなるにつれて増加するため、BSE像でCu母相と比較するとAg相は白く、Fe相は黒く見える。
2. Evaluation of Sample (1) Calculation of Average Aspect Ratio At2 of Fe Phase After polishing the rolled perpendicular section of the sample after rolling to the final plate thickness (1 μm diamond paste, but etching or electropolishing if Fe phase is small and difficult to observe Later), BSE images were obtained using SEM. In the image, the black portion compared with the Cu parent phase was regarded as the Fe phase, and the thickness t1 and the extension width t2 of the Fe phase were determined. t1 and t2 take the maximum value of each Fe phase. Seeking At 2 from the t1, t2 measured in the image, each seeking At 2 for 100 Fe phase was adopted as the averaged as the average aspect ratio. Note that the atomic number of Ag and Fe is different from that of Cu, and the backscattering coefficient increases as the atomic number increases. Therefore, the Ag phase appears white and the Fe phase appears black compared to the Cu matrix in the BSE image.

(2)Cu母相の平均厚さd
Atの算出に用いた研磨後の試料について、8000倍の視野で観察し、観察視野の上下を線分の長さとした。同一視野につき線分を等間隔に5本引き、30視野の観察を行った。
(線分mの長さ)/(線分mを横切るFe相及びAg相の個数)
によって、Cu母相の平均厚さd(nm)を求めた。
(2) Average thickness d of Cu matrix
The polished sample used for the calculation of At 2 was observed with a field of view of 8000 times, and the upper and lower sides of the observation field of view were the length of the line segment. Five lines were drawn at equal intervals for the same visual field, and 30 visual fields were observed.
(Length of line segment m) / (Number of Fe and Ag phases crossing line segment m)
Thus, the average thickness d (nm) of the Cu matrix was determined.

(3)曲げ加工性
最終板厚まで圧延後の試料について、JIS H3110及びH3130に従い、W曲げ試験を行い、圧延直角方向及び圧延方向にそれぞれ延びる10mm幅の試料(t:試料厚さ)の最小曲げ半径(MBR)を求めた。そして、以下の基準で曲げ加工性を評価した。
○:MBR/t≦2.5であるもの
△:MBR/tが2.5を超え4未満であるもの
×:MBR/t≧4であるもの
(3) Bending workability The sample after rolling to the final plate thickness is subjected to a W bending test in accordance with JIS H3110 and H3130, and the minimum of a 10 mm wide sample (t: sample thickness) extending in the direction perpendicular to the rolling direction and the rolling direction, respectively. The bending radius (MBR) was determined. And bending workability was evaluated according to the following criteria.
○: MBR / t ≦ 2.5 Δ: MBR / t exceeds 2.5 and less than 4 ×: MBR / t ≧ 4

(4)強度の測定
JIS Z2241に従い、圧延方向の試料の引張強度を測定し、0.2%耐力(YS:yielding strength)を求めた。試料はJISに従って作製した。
(5)導電率の測定
四端子法にて、試料の導電率を求めた。
(5)耐熱性
各試料について、250℃で1時間の焼鈍を行い、焼鈍後の強度(0.2%耐力)の低下を以下の基準で耐熱性を評価した。
◎:焼鈍後の強度低下が15MPa未満であるもの
○:焼鈍後の強度低下が15MPa以上、25MPa以下であるもの
△:焼鈍後の強度低下が25MPaを超え、50MPa以下であるもの
×:焼鈍後の強度低下が50MPaを超えるもの
(4) Measurement of strength According to JIS Z2241, the tensile strength of the sample in the rolling direction was measured, and 0.2% yield strength (YS: yield strength) was obtained. The sample was produced according to JIS.
(5) Measurement of conductivity The conductivity of the sample was determined by the four probe method.
(5) Heat resistance About each sample, it annealed at 250 degreeC for 1 hour, and evaluated the heat resistance for the fall of the intensity | strength (0.2% yield strength) after annealing on the following references | standards.
◎: Strength decrease after annealing is less than 15 MPa ○: Strength decrease after annealing is 15 MPa or more and 25 MPa or less △: Strength decrease after annealing exceeds 25 MPa and 50 MPa or less ×: After annealing With a strength drop of more than 50 MPa

得られた結果を表1、2に示す。   The obtained results are shown in Tables 1 and 2.

表1から明らかなように、各実施例は、強度(0.2%耐力)と導電率が共に優れていた。又、各実施例は耐熱性にも優れていた。
なお、3相合金とした実施例1の場合、2相合金である比較例2,3,6に比べて強度が大幅に上昇している。又、Cu母相の平均厚さdが400nmを超えた実施例2の場合、他の実施例に比べて強度が若干低下したが実用上問題はなかった。又、Fe相の平均アスペクト比Atが10未満である実施例3の場合、他の実施例に比べて圧延直角方向の曲げ加工性が若干低下したが実用上問題はなかった。
As is clear from Table 1, each example was excellent in both strength (0.2% yield strength) and conductivity. Each example was also excellent in heat resistance.
In the case of Example 1, which is a three-phase alloy, the strength is significantly increased as compared with Comparative Examples 2, 3, and 6 that are two-phase alloys. Further, in Example 2 in which the average thickness d of the Cu matrix exceeded 400 nm, the strength was slightly reduced as compared with the other examples, but there was no practical problem. Further, in Example 3 in which the average aspect ratio At 2 of the Fe phase was less than 10, the bending workability in the direction perpendicular to the rolling was slightly lowered as compared with the other examples, but there was no practical problem.

ここで、実施例3は、圧延直角方向の曲げ加工性が悪い(×)が、一方で強度が高く導電率も高いため、曲げ加工性を要求されない用途(例えばフォーク型のコネクタ等)に有効に適用することができる。
又、実施例1〜3は同一組成であるが、製造時の時効処理の条件及び回数、並びに加工度が異なっている。具体的には、強度が高い順(実施例1,3,2の順)に加工度が高い(各実施例につき、η=4.5〜6(98.9%〜99.8%)の間で調整)。又、実施例1〜3は、いずれもピーク時効条件から少し過時効側で時効処理を行ったが、強度が低いものほど、過時効側の条件である。
Here, Example 3 has poor bending workability in the direction perpendicular to rolling (x), but on the other hand, it is strong and has high electrical conductivity, so it is effective for applications that do not require bending workability (for example, fork-type connectors). Can be applied to.
Moreover, although Examples 1-3 are the same compositions, the conditions and frequency | count of an aging treatment at the time of manufacture, and a workability differ. Specifically, the degree of processing increases in order of increasing strength (in the order of Examples 1, 3 and 2) (for each example, η = 4.5 to 6 (98.9% to 99.8%)). Adjust between). In Examples 1 to 3, the aging treatment was performed slightly on the overaging side from the peak aging condition, but the lower the strength, the more on the overaging side.

一方、Cu−Fe合金とした比較例1〜5の場合、3相合金である実施例に比べて強度が低下した。特に、比較例4はFe含有量を20%に増やしたが強度はあまり向上しなかった。又、比較例5は微量元素としてSnを添加したが強度はあまり向上しなかった。
なお、比較例2、3は同一組成であるが、実施例1〜3と同様にして、製造時の時効処理の条件及び回数、並びに加工度を変えた。
又、Cu−Ag合金とした比較例6,7の場合、3相合金である実施例に比べて強度が低いだけでなく、耐熱性も低下した。このうち比較例7は微量元素としてZrを添加したため、耐熱性は若干向上したが、強度は向上しなかった。
Feの含有量が7%未満である比較例8の場合、強度に寄与するほどFe相が形成されなかったため3相合金とならず、Agが同一含有量となる実施例5に比べて強度が低下した。
さらに、微量元素を添加した実施例7〜10の場合、他の実施例に比べて耐熱性がさらに優れていた。
On the other hand, in the case of Comparative Examples 1 to 5 in which Cu—Fe alloys were used, the strength was lower than that of the examples that were three-phase alloys. In particular, Comparative Example 4 increased the Fe content to 20%, but the strength did not improve much. In Comparative Example 5, Sn was added as a trace element, but the strength was not improved so much.
In addition, although the comparative examples 2 and 3 are the same compositions, the conditions and frequency | count of the aging treatment at the time of manufacture, and the workability were changed like Example 1-3.
Further, in Comparative Examples 6 and 7 made of Cu—Ag alloy, not only the strength was lower than that of the example of a three-phase alloy, but also the heat resistance was lowered. Among these, since Comparative Example 7 added Zr as a trace element, the heat resistance was slightly improved, but the strength was not improved.
In the case of Comparative Example 8 in which the Fe content is less than 7%, the Fe phase was not formed so as to contribute to the strength, so that the three-phase alloy was not formed, and the strength was higher than that in Example 5 in which the Ag content was the same. Declined.
Furthermore, in Examples 7 to 10 to which trace elements were added, the heat resistance was further excellent as compared with the other examples.

表2から明らかなように、ARBを行った各実施例は、強度(0.2%耐力)と導電率が共に優れていた。又、各実施例は耐熱性にも優れていた。
ARBを行った実施例11,13の場合、同一組成同一加工度のそれぞれ比較例10,11に比べて強度が向上した。又、ARBを行った実施例11,12の場合、最終板厚が同一の比較例9に比べて強度が向上した。又、ARBを3回行った実施例12の場合、Fe及びAgが同一組成の実施例に比べて強度が大幅に向上した。
以上のことから、ARBを行い、d≦400nmとし、10≦Atとすることが好ましい。
さらに、微量元素を添加した実施例13の場合、他の実施例に比べて耐熱性がさらに優れていた。
As is clear from Table 2, each of the examples subjected to ARB was excellent in both strength (0.2% yield strength) and conductivity. Each example was also excellent in heat resistance.
In Examples 11 and 13 in which ARB was performed, the strength was improved as compared with Comparative Examples 10 and 11 having the same composition and the same degree of processing. Further, in Examples 11 and 12 in which ARB was performed, the strength was improved as compared with Comparative Example 9 having the same final plate thickness. Further, in the case of Example 12 in which ARB was performed three times, the strength was significantly improved as compared with the Example in which Fe and Ag had the same composition.
From the above, it is preferable to perform ARB, and d ≦ 400 nm and 10 ≦ At 2 .
Furthermore, in the case of Example 13 to which a trace element was added, the heat resistance was further excellent as compared with the other examples.

なお、各資料の組織を図4〜6に示す。
図4は、実施例11(Cu−15Fe−4Ag)の圧延前の試料(インゴット)の組織のSEMのBSE像を示す図である。図4の黒い領域がFe相、白い領域がAg相、灰色の領域がCu母相を示す。図5、6、7は、それぞれ比較例3(Cu−15Fe)、比較例4(Cu−20Fe)、実施例1(Cu−15Fe−4Ag)の圧延前の試料の金属顕微鏡写真を示す図である。各図の黒い領域がFe相、白い領域がCu母相を示す(観察条件上、Ag相は見えていない)。図5〜7から明らかなように、Cu−Fe(2相)合金のFe含有量が20%に増やしてもFe相の個数は増えずに粗大化するが、Cu−Fe−Ag(3相)合金とすることで、Fe相が微細に晶出する。
The organization of each material is shown in FIGS.
FIG. 4 is a view showing an SEM BSE image of the structure of the sample (ingot) before rolling of Example 11 (Cu-15Fe-4Ag). In FIG. 4, the black region indicates the Fe phase, the white region indicates the Ag phase, and the gray region indicates the Cu matrix. 5, 6, and 7 are diagrams showing metal micrographs of samples of Comparative Example 3 (Cu-15Fe), Comparative Example 4 (Cu-20Fe), and Example 1 (Cu-15Fe-4Ag) before rolling, respectively. is there. In each figure, the black region indicates the Fe phase, and the white region indicates the Cu matrix (the Ag phase is not visible under the observation conditions). As is apparent from FIGS. 5 to 7, even when the Fe content of the Cu—Fe (two-phase) alloy is increased to 20%, the number of Fe phases does not increase, but the Cu—Fe—Ag (three phases) increases. ) By using an alloy, the Fe phase crystallizes finely.

本発明の合金の圧延材組織を模式的に示した図である。It is the figure which showed typically the rolling material structure | tissue of the alloy of this invention. 圧延後の試料の組織における粗大なFe相を示す図である。It is a figure which shows the coarse Fe phase in the structure | tissue of the sample after rolling. ARBの一例の概略を模式的に示した工程図である。It is process drawing which showed the outline of an example of ARB typically. 圧延前の試料(インゴット)の組織のSEMのBSE像を示す図である。It is a figure which shows the BEM image of SEM of the structure | tissue of the sample (ingot) before rolling. 圧延前の試料の組織を示す図である。It is a figure which shows the structure | tissue of the sample before rolling. 圧延前の試料の組織を示す別の図である。It is another figure which shows the structure | tissue of the sample before rolling. 圧延前の試料の組織を示すさらに別の図である。It is another figure which shows the structure | tissue of the sample before rolling.

符号の説明Explanation of symbols

1A、1B 圧延素材
J 圧延素材先端部
10 圧延ロール
1C、1D、1E、2 圧延材
1x、4 Fe相及びAg相
1A, 1B Rolled material J Rolled material tip 10 Roll 1C, 1D, 1E, 2 Rolled material 1x, 4 Fe phase and Ag phase

Claims (7)

質量%でFeを7%以上25%以下含有し、Agを3%以上10%以下含有し、残部Cu及び不可避的不純物からなり、Cu母相、Feを70%以上含むFe相、及びAgを50%以上含むAg相が共存することを特徴とする高強度高導電性銅合金。   Fe containing 7% or more and 25% or less of Fe by mass%, containing 3% or more and 10% or less of Ag, consisting of the balance Cu and unavoidable impurities, Cu parent phase, Fe phase containing Fe of 70% or more, and Ag A high-strength, high-conductivity copper alloy characterized in that an Ag phase containing 50% or more coexists. さらに、質量%でSn,Mg及びZrの群から選ばれる1種又は2種以上の微量元素を合計で0.05%以上1%以下含有することを特徴とする請求項1に記載の高強度高導電性銅合金。   Furthermore, the high intensity | strength of Claim 1 containing 0.05% or more and 1% or less in total of 1 type, or 2 or more types of trace elements chosen from the group of Sn, Mg, and Zr by the mass% High conductivity copper alloy. 圧延材であることを特徴とする請求項1又は2に記載の高強度高導電性銅合金。   It is a rolling material, The high intensity | strength highly conductive copper alloy of Claim 1 or 2 characterized by the above-mentioned. 圧延面方向において、前記Fe相及び前記Cu母相のうち隣接する相によって区切られる前記Cu母相の平均厚さdがd≦400nmの関係を満たすことを特徴とする請求項3に記載の高強度高導電性銅合金。   The high thickness according to claim 3, wherein an average thickness d of the Cu matrix phase separated by an adjacent phase among the Fe phase and the Cu matrix phase satisfies a relationship of d ≦ 400 nm in the rolling surface direction. High strength copper alloy. 圧延直角断面から見たとき、前記Fe相の平均アスペクト比Atが10≦Atの関係を満たすことを特徴とする請求項3又は4に記載の高強度高導電性銅合金。 5. The high-strength and high-conductivity copper alloy according to claim 3, wherein an average aspect ratio At 2 of the Fe phase satisfies a relationship of 10 ≦ At 2 when viewed from a cross-section perpendicular to rolling. 請求項1、4又は5記載の高強度高導電性銅合金の製造方法であって、質量%でFeを7%以上25%以下含有し、Agを3%以上10%以下含有し、残部Cu及び不可避的不純物からなり、Cu母相、Feを70%以上含むFe相、及びAgを50%以上含むAg相が共存する銅合金の圧延素材を2枚以上積層する第1工程と、前記積層された圧延素材をその積層方向に圧延する第2工程とをこの順序で1回以上繰り返すことを特徴とする高強度高導電性銅合金の製造方法。   It is a manufacturing method of the high intensity | strength highly conductive copper alloy of Claim 1, 4 or 5, Comprising: Fe is contained 7% or more and 25% or less by mass%, Ag is contained 3% or more and 10% or less, and remainder Cu A first step of laminating two or more copper alloy rolling materials, which are made of inevitable impurities and coexist with a Cu parent phase, an Fe phase containing 70% or more of Fe, and an Ag phase containing 50% or more of Ag; And a second step of rolling the rolled material in the stacking direction at least once in this order. 前記圧延素材はさらに、質量%でSn,Mg及びZrの群から選ばれる1種又は2種以上の微量元素を合計で0.05%以上1%以下含有することを特徴とする請求項6に記載の高強度高導電性銅合金の製造方法。
The rolling material further contains 0.05% or more and 1% or less in total of one or more trace elements selected from the group consisting of Sn, Mg, and Zr by mass%. The manufacturing method of the high intensity | strength highly conductive copper alloy of description.
JP2005067441A 2005-03-10 2005-03-10 High strength and high conductivity copper alloy and method for producing the same Expired - Fee Related JP4404786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005067441A JP4404786B2 (en) 2005-03-10 2005-03-10 High strength and high conductivity copper alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005067441A JP4404786B2 (en) 2005-03-10 2005-03-10 High strength and high conductivity copper alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006249505A JP2006249505A (en) 2006-09-21
JP4404786B2 true JP4404786B2 (en) 2010-01-27

Family

ID=37090301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005067441A Expired - Fee Related JP4404786B2 (en) 2005-03-10 2005-03-10 High strength and high conductivity copper alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4404786B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5249614B2 (en) * 2008-03-14 2013-07-31 株式会社特殊金属エクセル Method for producing rolled metal strip and method for producing metal strip material using the rolled metal strip
JP6050588B2 (en) * 2012-01-11 2016-12-21 住友電気工業株式会社 Copper alloy wire
JP2015117392A (en) * 2013-12-17 2015-06-25 株式会社オートネットワーク技術研究所 Cu-Fe-BASED ALLOY ROLLED SHEET FOR TERMINAL METAL FITTING AND TERMINAL METAL FITTING
JP5761400B1 (en) * 2014-02-21 2015-08-12 株式会社オートネットワーク技術研究所 Wire for connector pin, method for manufacturing the same, and connector

Also Published As

Publication number Publication date
JP2006249505A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP5075447B2 (en) Cu-Fe-P-Mg based copper alloy, manufacturing method, and current-carrying component
KR101367048B1 (en) Titan copper excellent in strength, electric conductivity, bending workability and manufacturing method thereof
JP4494258B2 (en) Copper alloy and manufacturing method thereof
WO2006019035A1 (en) Copper alloy plate for electric and electronic parts having bending workability
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP3977376B2 (en) Copper alloy
JP6306632B2 (en) Copper alloy for electronic materials
JP4637601B2 (en) Manufacturing method of high strength and high conductivity copper alloy and high strength and high conductivity copper alloy
TWI429764B (en) Cu-Co-Si alloy for electronic materials
JP4446479B2 (en) Copper alloy for electronic equipment
JP2006299287A (en) Dual phase copper alloy, spring material and foil body, and method for producing dual phase copper alloy
JP4404786B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP4601063B2 (en) High strength and high conductivity copper alloy, copper alloy spring material and copper alloy foil, and method for producing high strength and high conductivity copper alloy
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4302579B2 (en) High-strength, high-conductivity copper alloy for electronic equipment
JP4859238B2 (en) High strength high conductivity heat resistant copper alloy foil
JP2007169764A (en) Copper alloy
JP4431741B2 (en) Method for producing copper alloy
JP4684787B2 (en) High strength copper alloy
JP5748945B2 (en) Copper alloy material manufacturing method and copper alloy material obtained thereby
JP4875772B2 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same
WO2020195219A1 (en) Copper alloy plate, electronic component for passage of electricity, and electronic component for heat dissipation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees