JP4404645B2 - Organic sludge dewatering method - Google Patents

Organic sludge dewatering method Download PDF

Info

Publication number
JP4404645B2
JP4404645B2 JP2004008624A JP2004008624A JP4404645B2 JP 4404645 B2 JP4404645 B2 JP 4404645B2 JP 2004008624 A JP2004008624 A JP 2004008624A JP 2004008624 A JP2004008624 A JP 2004008624A JP 4404645 B2 JP4404645 B2 JP 4404645B2
Authority
JP
Japan
Prior art keywords
monomer
water
soluble
soluble polymer
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004008624A
Other languages
Japanese (ja)
Other versions
JP2005199185A (en
Inventor
俊明 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2004008624A priority Critical patent/JP4404645B2/en
Publication of JP2005199185A publication Critical patent/JP2005199185A/en
Application granted granted Critical
Publication of JP4404645B2 publication Critical patent/JP4404645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は有機汚泥の脱水方法に関するものであり、詳しくは有機汚泥を脱水する際、カチオン性水溶性単量体及びアニオン性水溶性単量体を必須として含有する単量体混合物を、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させ、前記塩水溶液に不溶な粒径100μm以下の重合体粒子を生成させる分散重合法によって製造された分散液からなるカチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)とアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)とを組み合わせて添加し脱水する有機汚泥の脱水方法に関する。 The present invention relates to a method for dewatering organic sludge, and more specifically, when dewatering organic sludge, a monomer mixture containing a cationic water-soluble monomer and an anionic water-soluble monomer as essential components is used as a salt aqueous solution. A cation equivalent consisting of a dispersion produced by a dispersion polymerization method in which a polymer dispersant soluble in the aqueous salt solution is coexisted to produce polymer particles having a particle size of 100 μm or less insoluble in the aqueous salt solution. The present invention relates to an organic sludge dewatering method in which an amphoteric water-soluble polymer (A) having the same number or higher than an equivalent value and an amphoteric water-soluble polymer (B) having an anion equivalent value higher than a cation equivalent value are added in combination and dehydrated.

各種汚泥の脱水には、従来カチオン性高分子凝集剤が当初使用されていたが、脱水ケーキ含水率の低下や濾布剥離性の改善などを目的として両性高分子凝集剤が普及普及している。しかし近年の汚泥発生量の増加及び汚泥性状の悪化により、汚泥の処理量に限界があることや、脱水ケーキ含水率、SS回収率、ケーキの濾布からの剥離性などの点でより処理状態の向上が要求されている。   Conventionally, cationic polymer flocculants have been used for the dehydration of various sludges, but amphoteric polymer flocculants have become widespread for the purpose of reducing the moisture content of dehydrated cake and improving filter cloth peelability. . However, due to the recent increase in sludge generation and deterioration of sludge properties, there is a limit to the amount of sludge treated, the water content of the dehydrated cake, the SS recovery rate, the peelability of the cake from the filter cloth, etc. Improvement is demanded.

一方で脱水ケーキ含水率の低下や濾布からの剥離性改善を目的として、特許文献1や特許文献2などには、架橋性のイオン性高分子凝集剤が開示されている。このように架橋性水溶性高分子は、種々の特徴や機能を有しているが、水溶液中における分子の広がりが相対的に小さいためか、汚泥脱水剤に適用した場合、直鎖状高分子に較べ添加量が増加してしまうという問題が存在する。架橋性水溶性高分子のこのような欠点を改良するため特許文献3あるいは特許文献4には、四級アンモニウム塩基を含有し、メタクリレ−ト系単量体、アクリレ−ト系単量体及びアニオン性単量体を一定の比率で共重合した両性高分子脱水剤が開示されている。しかし、これらもまだまだ目的を十分満足するものではない。   On the other hand, for the purpose of reducing the moisture content of the dehydrated cake and improving the peelability from the filter cloth, Patent Document 1 and Patent Document 2 disclose crosslinkable ionic polymer flocculants. As described above, the crosslinkable water-soluble polymer has various characteristics and functions. However, when the polymer is applied to a sludge dehydrating agent, the molecular spread in the aqueous solution is relatively small. There is a problem that the amount of addition increases compared to the above. In order to improve such disadvantages of the crosslinkable water-soluble polymer, Patent Document 3 or Patent Document 4 contains a quaternary ammonium base, a methacrylate monomer, an acrylate monomer and an anion. An amphoteric polymer dehydrating agent obtained by copolymerizing an ionic monomer at a certain ratio is disclosed. However, these still do not satisfy the purpose enough.

さらに新しい改良法としてカチオン性単量体のモル比がアニオン性単量体のモル比より高い両性水溶性高分子とアニオン性単量体のモル比がカチオン性単量体のモル比より高い両性水溶性高分子とを組み合わせたものである(特許文献5)。しかしこの両性水溶性高分子の製品形態は、粉末あるいは油中水型エマルジョンであり、粉末のため溶解時間が長いことや油中水型エマルジョンのため溶剤や活性剤が環境へ影響することが懸念される。   As a new and improved method, the amphoteric water-soluble polymer and the anionic monomer molar ratio are higher than the molar ratio of the cationic monomer. A combination with a water-soluble polymer (Patent Document 5). However, the product form of this amphoteric water-soluble polymer is a powder or water-in-oil emulsion, and the dissolution time is long because of the powder, and there is concern that the solvent and activator may affect the environment because of the water-in-oil emulsion. Is done.

特開平2−219887号公報Japanese Patent Laid-Open No. 2-219887 特公平8−164号公報Japanese Patent Publication No. 8-164 特開平7−256299号公報JP 7-256299 A 特開平7−256300号公報JP 7-256300 A 特開2003−175302号公報JP 2003-175302 A

架橋性の水溶性イオン性高分子を汚泥脱水剤として使用した場合、脱水ケーキ含水率の低下など優れた点が発現するが、その反面、効果の発現するまで添加するにはどうしても添加量が増加し、その結果、コストの増大という問題が発生する。また特許文献5のようにカチオン性単量体のモル比がアニオン性単量体のモル比より高い両性水溶性高分子とアニオン性単量体のモル比がカチオン性単量体のモル比より高い両性水溶性高分子とを組み合わせた方法では、脱水性は改善されることが期待されるが、製品溶解性や環境影響の問題が発生する。従って本発明の目的は、架橋性の水溶性イオン性高分子の長所を残し、添加量の削減という問題を解決し、更に製品溶解性や環境影響の問題をも解決する汚泥脱水方法を提案することにある。   When a crosslinkable water-soluble ionic polymer is used as a sludge dewatering agent, excellent points such as a decrease in the moisture content of the dehydrated cake are manifested, but on the other hand, the amount of addition is inevitably increased until the effect is manifested. As a result, there arises a problem of an increase in cost. Further, as in Patent Document 5, the molar ratio of the amphoteric water-soluble polymer and the anionic monomer is higher than the molar ratio of the cationic monomer. The method combining with a high amphoteric water-soluble polymer is expected to improve the dehydration property, but causes problems of product solubility and environmental impact. Therefore, an object of the present invention is to propose a sludge dewatering method that leaves the advantages of a crosslinkable water-soluble ionic polymer, solves the problem of reducing the addition amount, and further solves the problems of product solubility and environmental impact. There is.

上記課題を解決するため本発明者は、鋭意検討した結果以下のような発明に達した。すなわち請求項1の発明は、有機汚泥を脱水する際、カチオン性水溶性単量体及びアニオン性水溶性単量体を必須として含有する単量体混合物を、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させ、前記塩水溶液に不溶な粒径100μm以下の重合体粒子を生成させる分散重合法によって製造された分散液からなるカチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)とアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)とを組み合わせて添加し、脱水することを特徴とする有機汚泥の脱水方法に関する。 In order to solve the above-mentioned problems, the present inventor has intensively studied and as a result, has reached the following invention. That is, according to the first aspect of the present invention, when dewatering organic sludge, a monomer mixture containing a cationic water-soluble monomer and an anionic water-soluble monomer as essential components can be added to the salt aqueous solution in a salt aqueous solution. The cation equivalent value of the dispersion produced by the dispersion polymerization method in which a soluble polymer dispersant is coexistent to produce polymer particles having a particle size of 100 μm or less insoluble in the salt aqueous solution is equal to or higher than the anion equivalent value. The present invention relates to a method for dewatering organic sludge, comprising adding and dehydrating an amphoteric water-soluble polymer (A) and an amphoteric water-soluble polymer (B) having an anion equivalent value higher than the cation equivalent value.

請求項2の発明は、前記両性水溶性高分子(A)が、下記一般式(1)及び/又は(2)で表される単量体15〜95モル%、(3)で表される単量体5〜50モル%及び非イオン性単量体0〜80モル%からなる単量体混合物を重合して得たものであり、前記両性水溶性高分子(B)が、下記一般式(1)及び/又は(2)で表される単量体5〜50モル%、(3)で表される単量体15〜60モル%及び非イオン性単量体0〜80モル%からなる単量体混合物を重合して得たものであることを特徴とする請求項1に記載の有機汚泥の脱水方法である。

Figure 0004404645
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、R4は水素、炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす
Figure 0004404645
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす
Figure 0004404645
一般式(3)
R8は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R9は水素、メチル基またはCOOY3であり、Y1、Y2、Y3は水素または陽イオン In the invention of claim 2, the amphoteric water-soluble polymer (A) is represented by 15 to 95 mol% of a monomer represented by the following general formula (1) and / or (2), and (3). It is obtained by polymerizing a monomer mixture comprising 5 to 50 mol% of a monomer and 0 to 80 mol% of a nonionic monomer, and the amphoteric water-soluble polymer (B) has the following general formula: From 5 to 50 mol% of the monomer represented by (1) and / or (2), from 15 to 60 mol% of the monomer represented by (3) and from 0 to 80 mol% of the nonionic monomer The method for dewatering organic sludge according to claim 1, which is obtained by polymerizing a monomer mixture.
Figure 0004404645
General formula (1)
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups or benzyl groups, R4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxy groups or benzyl groups. But it ’s okay. A represents oxygen or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
Figure 0004404645
General formula (2)
R5 represents hydrogen or a methyl group, R6 and R7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.
Figure 0004404645
General formula (3)
R8 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R9 is hydrogen, methyl group or COOY3, Y1, Y2, Y3 are hydrogen or cation

請求項3の発明は、前記両性水溶性高分子(A)及び両性水溶性高分子(B)のアニオン性基がカルボキシル基のみで構成されていることを特徴とする請求項1あるいは2に記載の有機汚泥の脱水方法である。 The invention of claim 3 is characterized in that the anionic group of the amphoteric water-soluble polymer (A) and the amphoteric water-soluble polymer (B) is composed only of a carboxyl group. This is a method for dewatering organic sludge.

二種類の両性水溶性高分子を組み合わせて添加すると以下のような作用により効率的脱水が実現すると考えられる。すなわち逐次添加した場合は、カチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)が最初に汚泥懸濁粒子に作用し、凝集反応によりフロックが生成するが攪拌により細粒化する過程と、次にアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)を添加することにより、フロックのカチオン的サイトに吸着し再凝集する反応とが並行して起こる。この作用により強度的に高くしかも「締った」状態となり余分な水分を含まない脱水性の良いフロックが形成され、その結果脱水効率が向上する。これに対し二種類の両性水溶性高分子を混合添加した場合は、汚泥に添加した時点で大部分の高分子によりイオンコンプレックスが生成し、凝集反応が起こる。この場合は一種類の両性水溶性高分子より効率良くイオンコンプレックスが生成し、これが凝集効果を高めると推定される。   When two types of amphoteric water-soluble polymers are added in combination, it is considered that efficient dehydration is realized by the following actions. That is, when added sequentially, the amphoteric water-soluble polymer (A) having a cation equivalent value equal to or higher than the anion equivalent value first acts on the sludge suspended particles, and flocs are generated by agglomeration reaction. Next, the addition of the amphoteric water-soluble polymer (B) having an anion equivalent value higher than the cation equivalent value causes the reaction to adsorb to the cationic sites of floc and reaggregate in parallel. This action results in a strong and dehydrated floc that is high in strength and does not contain excess moisture, resulting in improved dewatering efficiency. On the other hand, when two types of amphoteric water-soluble polymers are mixed and added, an ion complex is formed by most of the polymers when they are added to the sludge, and agglutination occurs. In this case, it is presumed that an ion complex is generated more efficiently than one type of amphoteric water-soluble polymer, and this enhances the aggregation effect.

本発明の特徴は、有機汚泥を脱水する際、カチオン性水溶性単量体及びアニオン性水溶性単量体を必須として含有する単量体混合物を、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させ、前記塩水溶液に不溶な粒径100μm以下の重合体粒子を生成させる分散重合法によって製造された分散液からなるカチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)とアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)とを組み合わせて使用することにある。   A feature of the present invention is that when dewatering organic sludge, a monomer mixture containing a cationic water-soluble monomer and an anionic water-soluble monomer as an essential component is soluble in the aqueous salt solution in the aqueous salt solution. An amphoteric aqueous solution having a cation equivalent value equal to or higher than the anion equivalent value of a dispersion prepared by a dispersion polymerization method in which a polymer dispersant is present to produce polymer particles having a particle size of 100 μm or less that is insoluble in the aqueous salt solution. The hydrophilic polymer (A) and the amphoteric water-soluble polymer (B) having an anion equivalent value higher than the cation equivalent value.

すなわち両性水溶性高分子は、分子内にカチオン性基とアニオン性基を有するため分子内あるいは分子間イオンコンプレックスを生成し、汚泥に添加した時点で見かけ分子量を増大させ凝集効果を向上させる。またカチオン性基のみでは再分散の可能性が高く凝集効果低下の原因になりやすいが、その原因を防止する機能を有すると考えられる。これが両性水溶性高分子の基本的な考え方である。二種類の両性水溶性高分子を混合して添加した場合と、逐次添加した場合ではその作用機構がやや異なると推定される。   That is, since the amphoteric water-soluble polymer has a cationic group and an anionic group in the molecule, an intramolecular or intermolecular ion complex is formed, and when added to sludge, the apparent molecular weight is increased and the aggregation effect is improved. In addition, the cationic group alone has a high possibility of redispersion and tends to cause a decrease in the aggregation effect, but is considered to have a function of preventing the cause. This is the basic concept of amphoteric water-soluble polymers. It is presumed that the action mechanism is slightly different between the case where two types of amphoteric water-soluble polymers are mixed and added and the case where they are added sequentially.

二種類の両性水溶性高分子を逐次添加した場合は、カチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)が最初に汚泥懸濁粒子に作用し、凝集反応によりフロックが生成するが攪拌により細粒化する過程と、次にアニオン当量値がカチオン当量値に対し同数か高い両性水溶性高分子(B)を添加すると、両性水溶性高分子(B)がフロックのカチオン的サイトに吸着し再凝集する反応とが並行して起こる。この作用により強度的に高くしかも「締った」状態となり余分な水分を含まない脱水性の良いフロックが形成され、その結果脱水効率が向上する。これに対し二種類の両性水溶性高分子を混合添加した場合は、汚泥に添加した時点で大部分の高分子によりイオンコンプレックスが生成し、凝集反応が起こる。この場合は一種類の両性水溶性高分子より効率良くイオンコンプレックスが生成し、これが凝集効果を高めると考えられる。   When two types of amphoteric water-soluble polymers are added sequentially, the amphoteric water-soluble polymer (A) whose cation equivalent value is equal to or higher than the anion equivalent value acts on sludge suspended particles first, and flocs due to agglomeration reaction. When the amphoteric water-soluble polymer (B) having the same or higher anion equivalent value than the cation equivalent value is added, and the amphoteric water-soluble polymer (B) is floc A reaction that adsorbs to the cationic sites and reaggregates occurs in parallel. This action results in a strong and dehydrated floc that is high in strength and does not contain excess moisture, resulting in improved dewatering efficiency. On the other hand, when two types of amphoteric water-soluble polymers are mixed and added, an ion complex is formed by most of the polymers when they are added to the sludge, and agglutination occurs. In this case, it is considered that an ion complex is generated more efficiently than one type of amphoteric water-soluble polymer, and this enhances the aggregation effect.

塩水溶液中に分散した高分子微粒子分散液からなる水溶性重合体は、特開昭62−15251号公報などによって製造することができる。この方法は、カチオン性単量体あるいはカチオン性単量体と非イオン性単量体を、塩水溶液中で該塩水溶液に可溶なイオン性高分子からなる分散剤共存下で、攪拌しながら製造された粒系100mμ以下の高分子微粒子の分散液からなるもである。両性水溶性高分子を重合する場合は、アニオン性単量体を重合時共存させる。高分子分散剤は、ジメチルジアリルアンモニウム塩化物、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物の単独重合体や非イオン性単量体との共重合体を使用する。あるいは非イオン性のポリビニルピロリドンなども使用することもできる。添加量は、単量体質量に対し1〜20質量%、好ましくは3〜15質量%である。塩水溶液を構成する無機塩類は、多価アニオン塩類が、より好ましく、硫酸塩又は燐酸塩が適当であり、具体的には硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アルミニウム、燐酸水素アンモニウム、燐酸水素ナトリウム、燐酸水素カリウム等を例示することができ、これらの塩を濃度15%以上の水溶液として用いることが好ましい。   A water-soluble polymer comprising a polymer fine particle dispersion dispersed in an aqueous salt solution can be produced according to Japanese Patent Application Laid-Open No. 62-15251. In this method, a cationic monomer or a cationic monomer and a nonionic monomer are stirred in a salt aqueous solution in the presence of a dispersant composed of an ionic polymer soluble in the salt aqueous solution. It consists of a dispersion of polymer fine particles having a particle size of 100 mμ or less. When polymerizing an amphoteric water-soluble polymer, an anionic monomer is allowed to coexist during polymerization. As the polymer dispersing agent, a homopolymer of dimethyldiallylammonium chloride or (meth) acryloyloxyethyltrimethylammonium chloride or a copolymer with a nonionic monomer is used. Alternatively, nonionic polyvinyl pyrrolidone can also be used. The addition amount is 1 to 20% by mass, preferably 3 to 15% by mass, based on the monomer mass. The inorganic salts constituting the aqueous salt solution are more preferably polyvalent anion salts, and sulfates or phosphates are suitable. Specifically, ammonium sulfate, sodium sulfate, magnesium sulfate, aluminum sulfate, ammonium hydrogen phosphate, sodium hydrogen phosphate And potassium hydrogen phosphate. These salts are preferably used as an aqueous solution having a concentration of 15% or more.

次に両性水溶性高分子(A)及び両性水溶性高分子(B)に関して説明する。これら両性水溶性高分子は、カチオン性水溶性単量体、アニオン性水溶性単量体を必須とする単量体混合物を重合した共重合体である。たとえばカチオン性水溶性単量体は、一般式(1)で表わされる(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどの無機酸や有機酸の塩、あるいは塩化メチルや塩化ベンジルによる四級アンモニウム塩とアクリルアミドとの共重合体である。すなわち(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などがあげられる。また一般式(2)で表わされるジメチルジアリルアンモニウム塩化物のようなジアリルアンモニウム塩類も使用することができる。 Next, the amphoteric water-soluble polymer (A) and the amphoteric water-soluble polymer (B) will be described. These amphoteric water-soluble polymers are copolymers obtained by polymerizing a monomer mixture essentially comprising a cationic water-soluble monomer and an anionic water-soluble monomer. For example, the cationic water-soluble monomer is a salt of inorganic acid or organic acid such as dimethylaminoethyl (meth) acrylate or dimethylaminopropyl (meth) acrylamide represented by the general formula (1), or methyl chloride or benzyl chloride. Is a copolymer of quaternary ammonium salt and acrylamide. That is, (meth) acryloyloxyethyltrimethylammonium chloride, (meth) acryloyloxy 2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzylammonium chloride, ( Examples thereof include (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride and (meth) acryloylaminopropyldimethylbenzylammonium chloride. Also, diallylammonium salts such as dimethyldiallylammonium chloride represented by the general formula (2) can be used.

アニオン性水溶性単量体は一般式(3)で表わされるのものであり例えば、アクリルアミド2−メチルプロパンスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、(メタ)アクリル酸、マレイン酸あるいたイタコン酸などであり、これらを一種以上用いて共重合する。   The anionic water-soluble monomer is represented by the general formula (3). For example, acrylamide 2-methylpropanesulfonic acid, styrenesulfonic acid, (meth) allylsulfonic acid, vinylsulfonic acid, (meth) acrylic acid And itaconic acid, which is maleic acid, and the like are copolymerized using one or more of them.

またこれらイオン性水溶性単量体に非イオン性水溶性単量体を共重合してもよい。例えば(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどがあげられ、アクリルアミドが好ましい。 A nonionic water-soluble monomer may be copolymerized with these ionic water-soluble monomers. For example, (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide Acrylamide is preferable.

これら両性水溶性高分子(A)及び(B)の各単量体の比率は、以下のようになる。カチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)は、カチオン性水溶性単量体15〜95モル%、アニオン性水溶性単量体5〜50モル%、非イオン性水溶性単量体0〜80モル%であり、好ましくはカチオン性水溶性単量体20〜90モル%、アニオン性水溶性単量体10〜50モル%、非イオン性水溶性単量体0〜70モル%である。またアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)は、カチオン性水溶性単量体5〜50モル%、アニオン性水溶性単量体15〜60モル%、非イオン性水溶性単量体0〜80モル%であり、好ましくはカチオン性水溶性単量体10〜50モル%、アニオン性水溶性単量体20〜50モル%、非イオン性水溶性単量体0〜70モル%である。 The ratio of each monomer of these amphoteric water-soluble polymers (A) and (B) is as follows. The amphoteric water-soluble polymer (A) whose cation equivalent value is the same or higher than the anion equivalent value is 15 to 95 mol% of the cationic water-soluble monomer, 5 to 50 mol% of the anionic water-soluble monomer, and nonionic. 0 to 80 mol% of the water-soluble monomer, preferably 20 to 90 mol% of the cationic water-soluble monomer, 10 to 50 mol% of the anionic water-soluble monomer, and the nonionic water-soluble monomer It is 0-70 mol%. Further, the amphoteric water-soluble polymer (B) having an anion equivalent value higher than the cation equivalent value is 5 to 50 mol% of the cationic water-soluble monomer, 15 to 60 mol% of the anionic water-soluble monomer, and nonionic. 0 to 80 mol% of water-soluble monomer, preferably 10 to 50 mol% of cationic water-soluble monomer, 20 to 50 mol% of anionic water-soluble monomer, and 0 to nonionic water-soluble monomer -70 mol%.

本発明で使用する両性水溶性高分子は、アニオン性基としてカルボキシル基あるいはスルホン基どちらでもよいが、あるいは併存してもかまわないが、カルボキシル基のみで構成されているほうが好ましい。この理由は、カルボキシル基は、pHによって解離度が変化するためそれだけ周りの環境に対応した凝集反応が発生し、その結果凝集性能も向上すると考えられる。またスルホン基含有単量体は、一般的に価格が高くコストに影響が大きく、より低価格であるカルボキシル基含有単量体を使用することは経済的価値が高い。   The amphoteric water-soluble polymer used in the present invention may be either a carboxyl group or a sulfone group as an anionic group, or may coexist, but it is preferably composed of only a carboxyl group. The reason for this is considered that the dissociation degree of the carboxyl group changes depending on the pH, so that an agglutination reaction corresponding to the surrounding environment is generated, and as a result, the agglomeration performance is also improved. In addition, the sulfone group-containing monomer generally has a high price and a large influence on the cost, and it is economically expensive to use a carboxyl group-containing monomer at a lower price.

二種類の両性水溶性高分子(A)および(B)の組合せる比率は、単位質量当たりのイオン当量が同量ではない場合は(両性水溶性高分子(A)の単位質量当たりカチオン当量−アニオン当量)/(両性水溶性高分子(B)の単位質量当たりのアニオン当量−カチオン当量)比が=0.5〜10であり、好ましくは0.6〜8である。単位質量当たりのイオン当量が同量の場合は、(両性水溶性高分子(A)の単位質量当たりカチオン当量)/(両性水溶性高分子(B)の単位質量当たりのアニオン当量)比が=0.5〜15であり、好ましくは0.8〜1.2である。添加法は、両性水溶性高分子(A)および(B)のどちらか一方を先に添加し逐次もう一方を添加しても良いし、両方を混合して添加しても良い。 The ratio of the combination of the two types of amphoteric water-soluble polymers (A) and (B) is such that when the ion equivalent per unit mass is not the same (cation equivalent per unit mass of the amphoteric water-soluble polymer (A)) The ratio of anion equivalent) / (anion equivalent-cation equivalent per unit mass of the amphoteric water-soluble polymer (B)) is 0.5 to 10, preferably 0.6 to 8. When the ion equivalent per unit mass is the same amount, the ratio of (cation equivalent per unit mass of amphoteric water-soluble polymer (A)) / (anion equivalent per unit mass of amphoteric water-soluble polymer (B)) ratio = It is 0.5-15, Preferably it is 0.8-1.2. As for the addition method, either one of the amphoteric water-soluble polymers (A) and (B) may be added first, and the other may be added sequentially, or both may be mixed and added.

これら両性水溶性高分子(A)あるいは(B)の分子量は10万〜2,000万であるが、好ましくは100万〜1,500万である。10万未満では凝集力が不足し歩留率が低下し、2000万以上では、凝集力が高すぎフロックが巨大化し脱水性が返って低下し、また溶液粘度も高くなり過ぎ分散性も悪くなるほか、水溶液の取り扱いも悪くなる。   The molecular weight of these amphoteric water-soluble polymers (A) or (B) is 100,000 to 20 million, preferably 1 million to 15 million. If it is less than 100,000, the cohesive force is insufficient and the yield rate is lowered, and if it is 20 million or more, the cohesive force is too high and the flocs become enormous and dehydration is reduced, and the solution viscosity becomes too high and the dispersibility becomes poor. In addition, the handling of the aqueous solution also becomes worse.

適用可能な汚泥は、製紙排水、化学工業排水、食品工業排水などの生物処理したときに発生する余剰汚泥、あるいは都市下水の生汚泥、混合生汚泥、余剰汚泥、消化汚泥などの有機汚泥である。本発明で使用する両性水溶性高分子(A)あるいは(B)の有機汚泥への添加量は、(A)及び(B)の総量として汚泥固形分への比率で0.1〜1.5質量%であり、好ましくは0.2〜1.0質量%である。 Applicable sludge is surplus sludge generated during biological treatment such as papermaking wastewater, chemical industry wastewater, food industry wastewater, or organic sludge such as raw sludge, mixed raw sludge, surplus sludge, digested sludge, etc. . The amount of the amphoteric water-soluble polymer (A) or (B) used in the present invention to the organic sludge is 0.1 to 1.5 in terms of the total amount of (A) and (B) to the sludge solids. It is mass%, Preferably it is 0.2-1.0 mass%.

(合成例1)温度計、攪拌機、窒素導入管、ペリスタポンプ(SMP−21型、東京理化器械製)に接続した単量体供給管およびコンデンサ−を備えた500mLの4ツ口フラスコ内にメタクロイルオキシエチルトリメチルアンモニウム塩化物(以下DMCと略記)の80重量水溶液%46.3g、アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)の80重量%水溶液60.5g、アクリル酸(以下AACと略記)の60重量%水溶液20.6g、アクリルアミド(以下AAMと略記)の50%水溶液36.5g、イオン交換水173.1g、硫酸アンモニウム125.0g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体30.0g(20重量%液、粘度6450mPa・s)をそれぞれしこみpHを3.3に調節した。この時各単量体のモル%は、DMC/DMQ/AAC/AAM=25/35/20/20である。次ぎに反応器内の温度を30±2℃に保ち、30分間窒素置換をした後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕ニ塩化水素化物の1%水溶液1.0g(対単量体0.01%)を添加し重合を開始させた。内部温度を30±2℃に保ち重合開始から7時間反応させた時点で上記開始剤を対単量体0.01%追加し、さらに7時間反応させ終了した。得られた分散液のしこみ単量体濃度は20%であり、ポリマー粒径は10μm以下、分散液の粘度は710mPa・sであった。また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。この試料を試料−1とする。組成を表1に及び結果を表2に示す。 (Synthesis Example 1) Metacloyl in a 500 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, a monomer supply pipe connected to a peristaltic pump (SMP-21 type, manufactured by Tokyo Rika Kikai Co., Ltd.) and a condenser 46.3 g of 80 wt% aqueous solution of oxyethyltrimethylammonium chloride (hereinafter abbreviated as DMC), 60.5 g of 80 wt% aqueous solution of acryloyloxyethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), acrylic acid (hereinafter abbreviated as AAC) ) (20.6 g), 50% aqueous solution of acrylamide (hereinafter abbreviated as AAM) 36.5 g, 173.1 g of ion-exchanged water, 125.0 g of ammonium sulfate, acryloyloxyethyltrimethylammonium chloride homopolymer as a dispersant 30.0 g (20 wt% liquid, viscosity 6450 mPa · s ) And the pH was adjusted to 3.3. At this time, the mol% of each monomer is DMC / DMQ / AAC / AAM = 25/35/20/20. Next, the temperature in the reactor was kept at 30 ± 2 ° C., and after replacing with nitrogen for 30 minutes, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] as an initiator was used. Polymerization was initiated by adding 1.0 g of a 1% aqueous solution of dihydrochloride (0.01% monomer). When the internal temperature was kept at 30 ± 2 ° C. and the reaction was carried out for 7 hours from the start of polymerization, 0.01% of the initiator was added to the above monomer, and the reaction was further completed for 7 hours. The resulting dispersion had a squeeze monomer concentration of 20%, a polymer particle size of 10 μm or less, and a viscosity of the dispersion of 710 mPa · s. Moreover, the weight average molecular weight was measured with the molecular weight measuring device (DLS-7000 by Otsuka Electronics) by a static light scattering method. This sample is designated as Sample-1. The composition is shown in Table 1 and the results are shown in Table 2.

(合成例2)合成例1と同様な操作により、塩水溶液中分散重合品DMQ/AAC/アクリルアミド2−メチルプロパンスルホン酸/AAM=40/10/5/45(試料−2)を合成した。組成を表1に及び結果を表2に示す。 (Synthesis Example 2) By the same operation as in Synthesis Example 1, a dispersion polymerized product DMQ / AAC / acrylamido 2-methylpropanesulfonic acid / AAM = 40/10/5/45 (sample-2) in an aqueous salt solution was synthesized. The composition is shown in Table 1 and the results are shown in Table 2.

(合成例3)温度計、攪拌機、窒素導入管、ペリスタポンプ(SMP−21型、東京理化器械製)に接続した単量体供給管およびコンデンサ−を備えた500mLの4ツ口フラスコ内にアクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQと略記)の80重量%水溶液49.4g、アクリル酸(以下AACと略記)の60重量%水溶液36.7g、アクリルアミド(以下AAMと略記)の50%水溶液72.4g、イオン交換水150.0g、硫酸アンモニウム125.0g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体30.0g(20重量%液、粘度6450mPa・s)をそれぞれしこみpHを3.3に調節した。この時各単量体のモル%は、DMQ/AAC/AAM=20/30/50である。次ぎに反応器内の温度を30±2℃に保ち、30分間窒素置換をした後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕ニ塩化水素化物の1%水溶液1.0g(対単量体0.01%)を添加し重合を開始させた。内部温度を30±2℃に保ち重合開始から7時間反応させた時点で上記開始剤を対単量体0.01%追加し、さらに7時間反応させ終了した。得られた分散液のしこみ単量体濃度は20.5%であり、ポリマー粒径は10μm以下、分散液の粘度は550mPa・sであった。また、静的光散乱法による分子量測定器(大塚電子製DLS−7000)によって重量平均分子量を測定した。この試料を試料−4とする。組成を表1に及び結果を表2に示す。 (Synthesis Example 3) Acryloyloxy in a 500 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, a monomer supply tube connected to a peristaltic pump (SMP-21 type, manufactured by Tokyo Rika Kikai Co., Ltd.) and a condenser 49.4 g of 80% by weight aqueous solution of ethyltrimethylammonium chloride (hereinafter abbreviated as DMQ), 36.7 g of 60% by weight aqueous solution of acrylic acid (hereinafter abbreviated as AAC), 50% aqueous solution of acrylamide (hereinafter abbreviated as AAM) 72. 4 g, 150.0 g of ion-exchanged water, 125.0 g of ammonium sulfate, and 30.0 g of acryloyloxyethyltrimethylammonium chloride homopolymer as a dispersant (20 wt% solution, viscosity 6450 mPa · s) were each squeezed to a pH of 3.3. Adjusted. At this time, the mol% of each monomer is DMQ / AAC / AAM = 20/30/50. Next, the temperature in the reactor was kept at 30 ± 2 ° C., and after replacing with nitrogen for 30 minutes, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] as an initiator was used. Polymerization was initiated by adding 1.0 g of a 1% aqueous solution of dihydrochloride (0.01% monomer). When the internal temperature was kept at 30 ± 2 ° C. and the reaction was carried out for 7 hours from the start of polymerization, 0.01% of the initiator was added to the above monomer, and the reaction was further completed for 7 hours. The dispersion monomer obtained had a squeeze monomer concentration of 20.5%, a polymer particle size of 10 μm or less, and a dispersion viscosity of 550 mPa · s. Moreover, the weight average molecular weight was measured with the molecular weight measuring device (DLS-7000 by Otsuka Electronics) by a static light scattering method. This sample is designated as sample-4. The composition is shown in Table 1 and the results are shown in Table 2.

(合成例4)合成例3と同様な操作により、塩水溶液中分散重合品DMQ/AAC/アクリルアミド2−メチルプロパンスルホン酸/AAM=20/20/10/50(試料−4)を合成した。組成を表1に及び結果を表2に示す。



(表1)

Figure 0004404645
DMC:メタクロルオキシエチルトリメチルアンモニウムクロリド
DMQ:アクロルオキシエチルトリメチルアンモニウムクロリド、AAC:アクリル酸、AAPS:アクリルアミド2−メチルプロパンスルホン酸、AAM:アクリルアミド、
(表2)
Figure 0004404645
製品粘度:mPa・s、分子量:万、製品形態:塩水中分散液 (Synthesis Example 4) By the same operation as in Synthesis Example 3, a dispersion polymerized product DMQ / AAC / acrylamido 2-methylpropanesulfonic acid / AAM = 20/20/10/50 (sample-4) in an aqueous salt solution was synthesized. The composition is shown in Table 1 and the results are shown in Table 2.



(Table 1)
Figure 0004404645
DMC: methacryloxyethyltrimethylammonium chloride DMQ: acryloxyethyltrimethylammonium chloride, AAC: acrylic acid, AAPS: acrylamide 2-methylpropanesulfonic acid, AAM: acrylamide,
(Table 2)
Figure 0004404645
Product viscosity: mPa · s, molecular weight: 10,000, product form: salt water dispersion

下水混合生汚泥(pH5.95、全ss分31,500mg/L)200mLをポリビ−カ−に採取し、表2の両性水溶性高分子(A)試料−1あるいは試料−2を対汚泥固形分3,500ppm添加し、ビ−カ−移し変え攪拌10回行った後、表2の両性水溶性高分子(B)試料−3あるいは試料−4を対汚泥固形分3,000ppm添加し、ビ−カ−移し変え攪拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、20秒後の濾液量を測定した。また濾過した汚泥をプレス圧3Kg/m2で1分間脱水する。その後、濾布剥離性を目視によりチェックし、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。 Collect 200 mL of raw sewage mixed sludge (pH 5.95, total ss 31,500 mg / L) in a poly-bicker, and use the amphoteric water-soluble polymer (A) sample-1 or sample-2 in Table 2 as a solid sludge Add 3,500 ppm to the beaker, change the beaker and stir 10 times, then add amphoteric water-soluble polymer (B) Sample-3 or Sample-4 of Table 2 to the solid content of 3000 ppm against sludge. -After transferring and stirring 10 times, the mixture was filtered through a T-1179L filter cloth (made of nylon), and the filtrate amount after 20 seconds was measured. The filtered sludge is dehydrated at a press pressure of 3 kg / m 2 for 1 minute. Thereafter, the filter cloth peelability was visually checked, and the cake water content (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 3.

比較試験として表2の試料−1のみ用いた場合、試料−1と試料−2とを組み合わせた場合、試料−2のみ用いた場合、試料−3のみ用いた場合及び試料−3と試料−4を組み合わせた各場合について試験した。
結果を表3に示す。
(表3)

Figure 0004404645
フロック径:mm、ケーキ含水率:質量%、薬注濃度:質量%
薬注量:対ss質量%、濾布剥離性:○>△>×の順に良いことを示す。 When only sample-1 of Table 2 is used as a comparative test, when sample-1 and sample-2 are combined, when only sample-2 is used, when only sample-3 is used, and when sample-3 and sample-4 are used Each case was tested in combination.
The results are shown in Table 3.
(Table 3)
Figure 0004404645
Flock diameter: mm, cake moisture content: mass%, chemical concentration: mass%
This indicates that the amount of chemical injection: ss mass%, filter cloth peelability: ○>Δ> × in that order.

都市下水消化汚泥(pH7.66、全ss38、000mg/mL)200mLをポリビ−カ−に採取し表2の両性水溶性高分子(A)、試料−1あるいは試料−2を対汚泥固形分4,000ppm添加し、ビ−カ−移し変え攪拌10回行った後、表2の両性水溶性高分子(B)試料−3あるいは試料−4を対汚泥固形分4,000ppm添加し、ビ−カ−移し変え攪拌10回行った後、T−1179Lの濾布(ナイロン製)により濾過し、20秒後の濾液量を測定した。また濾過した汚泥をプレス圧2Kg/m2で1分間脱水する。その後、濾布剥離性を目視によりチェックし、ケ−キ含水率(105℃で20hr乾燥)を測定した。結果を表4に示す。   200 mL of city sewage digested sludge (pH 7.66, total ss 38,000 mg / mL) was collected in a poly-bicker, and the amphoteric water-soluble polymer (A), Sample-1 or Sample-2 in Table 2 was used as a solid sludge content 4 2,000 ppm was added, the beaker was transferred and stirred 10 times, and then the amphoteric water-soluble polymer (B) Sample-3 or Sample-4 shown in Table 2 was added to the sludge solid content of 4,000 ppm. -After changing and stirring 10 times, the mixture was filtered through a T-1179L filter cloth (made of nylon), and the amount of filtrate after 20 seconds was measured. The filtered sludge is dehydrated at a press pressure of 2 kg / m @ 2 for 1 minute. Thereafter, the filter cloth peelability was visually checked, and the cake water content (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 4.

比較試験として表2の試料−1のみ用いた場合、試料−1と試料−2とを組み合わせた場合、試料−4のみ用いた場合及び試料−3と試料−4を組み合わせた各場合について試験した。結果を表4に示す。
(表4)

Figure 0004404645
フロック径:mm、ケーキ含水率:質量%、薬注濃度:質量%、薬注量:対ss質量%、濾布剥離性:○>△>×の順に良いことを示す。




When only sample-1 of Table 2 was used as a comparative test, when sample-1 and sample-2 were combined, only when sample-4 was used, and each case where sample-3 and sample-4 were combined was tested. . The results are shown in Table 4.
(Table 4)
Figure 0004404645
Flock diameter: mm, cake moisture content: mass%, chemical injection concentration: mass%, chemical injection amount: ss mass%, filter cloth peelability: ○>Δ> × indicates good order.




Claims (3)

有機汚泥を脱水する際、カチオン性水溶性単量体及びアニオン性水溶性単量体を必須として含有する単量体混合物を、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させ、前記塩水溶液に不溶な粒径100μm以下の重合体粒子を生成させる分散重合法によって製造された分散液からなるカチオン当量値がアニオン当量値に対し同数か高い両性水溶性高分子(A)とアニオン当量値がカチオン当量値に対し高い両性水溶性高分子(B)とを組み合わせて添加し、脱水することを特徴とする有機汚泥の脱水方法。 When dewatering organic sludge, a monomer mixture containing a cationic water-soluble monomer and an anionic water-soluble monomer as an essential component coexists with a polymer dispersant soluble in the aqueous salt solution. The amphoteric water-soluble polymer (A) having a cation equivalent value equal to or higher than the anion equivalent value of a dispersion produced by a dispersion polymerization method for producing polymer particles having a particle size of 100 μm or less insoluble in the aqueous salt solution. And an amphoteric water-soluble polymer (B) having an anion equivalent value higher than the cation equivalent value in combination and dehydrating, and dehydrating the organic sludge. 前記両性水溶性高分子(A)が、下記一般式(1)及び/又は(2)で表される単量体15〜95モル%、(3)で表される単量体5〜50モル%及び非イオン性単量体0〜80モル%からなる単量体混合物を重合して得たものであり、前記両性水溶性高分子(B)が、下記一般式(1)及び/又は(2)で表される単量体5〜50モル%、(3)で表される単量体15〜60モル%及び非イオン性単量体0〜80モル%からなる単量体混合物を重合して得たものであることを特徴とする請求項1に記載の有機汚泥の脱水方法。
Figure 0004404645
一般式(1)
R1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、R4は水素、炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基であり、同種でも異種でも良い。Aは酸素またはNH、Bは炭素数2〜4のアルキレン基またはアルコキシレン基、X1は陰イオンをそれぞれ表わす
Figure 0004404645
一般式(2)
R5は水素又はメチル基、R6、R7は炭素数1〜3のアルキル基、アルコキシ基あるいはベンジル基、X2は陰イオンをそれぞれ表わす
Figure 0004404645
一般式(3)
R8は水素またはCH2COOY2、QはSO3、C6H4SO3、
CONHC(CH3)2CH2SO3、C6H4COOあるいはCOO、R9は水素、メチル基またはCOOY3であり、Y1、Y2、Y3は水素または陽イオン
The amphoteric water-soluble polymer (A) is a monomer represented by the following general formula (1) and / or (2) 15 to 95 mol%, a monomer represented by (3) 5 to 50 mol % And a nonionic monomer from 0 to 80 mol%, and the amphoteric water-soluble polymer (B) is represented by the following general formula (1) and / or ( 2) The monomer mixture represented by 5 to 50 mol% represented by 2), the monomer mixture represented by (3) 15 to 60 mol% and the nonionic monomer 0 to 80 mol% is polymerized. The method for dewatering organic sludge according to claim 1, wherein the method is obtained.
Figure 0004404645
General formula (1)
R1 is hydrogen or a methyl group, R2 and R3 are alkyl groups having 1 to 3 carbon atoms, alkoxy groups or benzyl groups, R4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, alkoxy groups or benzyl groups. But it ’s okay. A represents oxygen or NH, B represents an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X1 represents an anion.
Figure 0004404645
General formula (2)
R5 represents hydrogen or a methyl group, R6 and R7 each represent an alkyl group having 1 to 3 carbon atoms, an alkoxy group or a benzyl group, and X2 represents an anion.
Figure 0004404645
General formula (3)
R8 is hydrogen or CH2COOY2, Q is SO3, C6H4SO3,
CONHC (CH3) 2CH2SO3, C6H4COO or COO, R9 is hydrogen, methyl group or COOY3, Y1, Y2, Y3 are hydrogen or cation
前記両性水溶性高分子(A)及び両性水溶性高分子(B)のアニオン性基がカルボキシル基のみで構成されていることを特徴とする請求項1あるいは2に記載の有機汚泥の脱水方法。




The method for dewatering organic sludge according to claim 1 or 2, wherein the anionic groups of the amphoteric water-soluble polymer (A) and the amphoteric water-soluble polymer (B) are composed of only carboxyl groups.




JP2004008624A 2004-01-16 2004-01-16 Organic sludge dewatering method Expired - Fee Related JP4404645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004008624A JP4404645B2 (en) 2004-01-16 2004-01-16 Organic sludge dewatering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008624A JP4404645B2 (en) 2004-01-16 2004-01-16 Organic sludge dewatering method

Publications (2)

Publication Number Publication Date
JP2005199185A JP2005199185A (en) 2005-07-28
JP4404645B2 true JP4404645B2 (en) 2010-01-27

Family

ID=34821889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008624A Expired - Fee Related JP4404645B2 (en) 2004-01-16 2004-01-16 Organic sludge dewatering method

Country Status (1)

Country Link
JP (1) JP4404645B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5103395B2 (en) * 2006-08-03 2012-12-19 ハイモ株式会社 Flocculant composition and method for producing the same
JP4897523B2 (en) * 2007-03-15 2012-03-14 ハイモ株式会社 Sludge dewatering agent and sludge dewatering method
JP5709086B2 (en) * 2010-10-25 2015-04-30 三菱レイヨン株式会社 Organic coagulant
JP5692911B2 (en) * 2011-02-24 2015-04-01 ハイモ株式会社 Coagulation treatment agent and sludge dewatering method using the same

Also Published As

Publication number Publication date
JP2005199185A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR100853926B1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP2007016086A (en) Water-soluble polymer dispersion and papermaking method using the same
JP3963361B2 (en) Aggregation treatment agent and method of using the same
JP3936894B2 (en) Aggregation treatment agent and method of using the same
JP3712946B2 (en) Amphoteric water-soluble polymer dispersion
JP4942415B2 (en) Paper making method
JP4868127B2 (en) Organic sludge dewatering method
JP2009039652A (en) Sludge dewatering agent and method
JP4404645B2 (en) Organic sludge dewatering method
JP3819766B2 (en) Paper sludge dewatering method
JP2009039650A (en) Sludge dewatering agent and method
JP2010163538A (en) Water-soluble polymer composition
JP2009039651A (en) Sludge dewatering agent and method
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP4236953B2 (en) Paper making method
JP4878422B2 (en) Water-soluble polymer dispersion and method for producing the same
JP3731740B2 (en) Sludge dewatering method
JP3714612B2 (en) Sludge dewatering method
JP3633726B2 (en) Sludge treatment method
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP3871322B2 (en) How to use water-soluble polymer dispersion
JP2008194677A (en) Method for dehydrating papermaking sludge
JP4064194B2 (en) Flocculant and method of using the same
JP4213320B2 (en) Recovering valuable materials in papermaking white water
JP3709825B2 (en) Sludge dewatering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151113

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees