JP4942415B2 - Paper making method - Google Patents

Paper making method Download PDF

Info

Publication number
JP4942415B2
JP4942415B2 JP2006205635A JP2006205635A JP4942415B2 JP 4942415 B2 JP4942415 B2 JP 4942415B2 JP 2006205635 A JP2006205635 A JP 2006205635A JP 2006205635 A JP2006205635 A JP 2006205635A JP 4942415 B2 JP4942415 B2 JP 4942415B2
Authority
JP
Japan
Prior art keywords
water
papermaking
soluble polymer
cationic
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006205635A
Other languages
Japanese (ja)
Other versions
JP2008031584A (en
Inventor
佳也 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2006205635A priority Critical patent/JP4942415B2/en
Publication of JP2008031584A publication Critical patent/JP2008031584A/en
Application granted granted Critical
Publication of JP4942415B2 publication Critical patent/JP4942415B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、微細繊維分、填料を多く含む製紙原料において、地合いを損なうことなく、歩留の向上、濾水性、搾水性の改善ができる抄紙方法に関するものである。 The present invention relates to a papermaking method capable of improving yield, drainage, and squeezing without impairing the texture of a papermaking raw material containing a large amount of fine fibers and filler.

従来、塗工原紙、PPC用紙、上質紙、板紙及び新聞用紙等の抄紙工程において、微細繊維、填料等の歩留率向上を図るために、種々の歩留剤システムが用いられている。例えば、せん断ステップの前に高分子量水溶性カチオン性ポリマーを加え、当該せん断ステップの後にベントナイトを加える添加処方(特許文献1)や、同様にせん断ステップの前には水溶性カチオン性ポリマーを加え、二段目として、アニオン性高分子マイクロパーティクルを添加する処方が用いられている(特許文献2)。近年、古紙及び脱墨パルプの配合比率の増加による製紙原料中の微細繊維の増加や填料として微粒な炭酸カルシウムの使用比率が高まることにより、歩留を維持するには従来の歩留システムでは添加率の増加や、一段目のカチオン性ポリマーを高分子量化する必要があった。しかし、歩留システムの添加率を増加すると歩留を維持するには多量の添加率を必要とし、添加コストが莫大となる。一方、カチオン性ポリマーを高分子量化すると過大なフロックを形成、紙品質、特に地合い性が悪化することが考えられる。又、過大なフロックは水を過多に取り込むためワイヤーパートでの濾水性の低下、ドライヤーパートでの搾水性、乾燥効率の低下を招くことになる。そのため、従来の歩留システムでは安定かつ生産的な操業ができない状態であった。
特開平5−239800号公報 特開平11−286890号公報
2. Description of the Related Art Conventionally, in a papermaking process such as coated base paper, PPC paper, high-quality paper, paperboard, and newsprint, various yielding systems have been used in order to improve the yield rate of fine fibers, fillers, and the like. For example, an addition formulation (Patent Document 1) in which a high molecular weight water-soluble cationic polymer is added before the shearing step and bentonite is added after the shearing step, and similarly, a water-soluble cationic polymer is added before the shearing step, As the second stage, a prescription in which anionic polymer microparticles are added is used (Patent Document 2). In recent years, it has been added to the conventional yield system to maintain the yield by increasing the proportion of waste paper and deinked pulp due to the increase in fine fibers in the papermaking raw material and the use ratio of fine calcium carbonate as filler. It was necessary to increase the rate and to increase the molecular weight of the first-stage cationic polymer. However, when the addition rate of the yield system is increased, a large amount of addition rate is required to maintain the yield, and the addition cost becomes enormous. On the other hand, if the cationic polymer has a high molecular weight, it is considered that excessive flocs are formed, and the paper quality, particularly the texture is deteriorated. Moreover, since an excessive floc takes in water excessively, the fall of the drainage in a wire part, the squeezing in a dryer part, and the fall of drying efficiency will be caused. For this reason, the conventional yield system cannot perform stable and productive operation.
JP-A-5-239800 JP-A-11-286890

本発明は、微細繊維分、填料を多く含む製紙原料において、地合いを損なうことなく、歩留の向上、濾水性、搾水性の改善及び生産性の向上を図る抄紙方法を提供することを課題とする。 It is an object of the present invention to provide a papermaking method for improving yield, drainage, water squeezing and productivity in a papermaking raw material containing a large amount of fine fibers and fillers without impairing the texture. To do.

上記課題を解決するため詳細な検討を行なった結果、抄紙工程において、抄紙前の製紙原料中に一段目として塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させる分散重合法により製造した粒径100μm以下の微粒子の分散液を構成し、1規定NaCl水溶液中、25℃で測定した固有粘度が15〜25dl/gであるカチオン性あるいは両性水溶性ポリマーを添加することにより、パルプスラリーへの拡散性を改善、地合い性を損なうことなく歩留を向上、濾水性、搾水性の改善を図ることが可能であることを発見し本発明に達した。 As a result of detailed studies to solve the above problems, a dispersion polymerization method in which a water-soluble polymer dispersant coexists in an aqueous salt solution as a first step in the papermaking raw material before papermaking in the papermaking process. By forming a dispersion of fine particles having a particle diameter of 100 μm or less and adding a cationic or amphoteric water-soluble polymer having an intrinsic viscosity of 15 to 25 dl / g measured at 25 ° C. in a 1N NaCl aqueous solution, The present inventors have found that it is possible to improve the diffusibility into the slurry, improve the yield without impairing the texture, and improve the drainage and squeezability.

本発明は抄紙工程において、抄紙前の製紙原料に塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させる分散重合法により製造した粒径100μm以下の微粒子の分散液からなり、1規定NaCl水溶液中、25℃で測定した固有粘度が15〜25dl/gであるカチオン性あるいは両性水溶性ポリマーを添加、少なくとも一つ以上のせん断工程を経て、アニオン性無機微粒子、アニオン性有機微粒子およびアニオン性ポリアクリルアミド系水溶性ポリマーから選択される一種以上を紙料中に添加する。 In the present invention the papermaking process, made from a dispersion of particle size 100μm following microparticles prepared by dispersion polymerization coexist soluble polymer dispersing agent to the salt solution in an aqueous salt solution to the paper stock prior to paper making, 1 A cationic or amphoteric water-soluble polymer having an intrinsic viscosity of 15 to 25 dl / g measured at 25 ° C. in a normal NaCl aqueous solution is added, and after passing through at least one shearing step, anionic inorganic fine particles, anionic organic fine particles and One or more selected from anionic polyacrylamide-based water-soluble polymers are added to the stock.

本発明で使用する合成カチオン性あるいは両性水溶性ポリマーを用いた添加処方により地合い性を損なうことなく歩留向上、濾水性・搾水性効果が得られ、添加コストの削減、生産性向上が達成できる。 The additive formulation using the synthetic cationic or amphoteric water-soluble polymer used in the present invention can improve yield, drainage and water squeezing effect without impairing the texture, and can achieve reduction in addition cost and improvement in productivity. .

本発明のカチオン性あるいは両性水溶性ポリマーは、水溶性ポリマー濃度0.1重量%以下に1規定NaCl水溶液で希釈した数点の水溶性ポリマー希釈液を、毛細管粘度計を用いて25℃で測定した還元粘度ηsp/c(単位:dl/g)のプロットをηsp/c=[η]+k×cの式(cは重合体濃度で単位はg/dl、[η]は固有粘度)に近似した時の係数kの値が20以下である水溶性ポリマーを使用することがより好ましい。 The cationic or amphoteric water-soluble polymer of the present invention was measured at 25 ° C. using a capillary viscometer with several water-soluble polymer dilutions diluted with 1N NaCl aqueous solution to a water-soluble polymer concentration of 0.1% by weight or less. Approximates the plot of reduced viscosity ηsp / c (unit: dl / g) to the formula ηsp / c = [η] + k × c (where c is the polymer concentration, the unit is g / dl, and [η] is the intrinsic viscosity) It is more preferable to use a water-soluble polymer having a coefficient k of 20 or less.

すなわち単に水溶性ポリマーを高分子量化するだけでは過大なフロックを形成、紙品質、特に地合い性を悪化させる。また過大なフロックは水を過多に取り込むためワイヤーパートでの濾水性の低下、ドライヤーパートでの搾水性、乾燥効率の低下を招くことになる。従って本発明においては、単に高分子量化し、水溶液中において大きく広がっている高分子を用いるのではなく、架橋によって広がりの抑制ないしは収縮、あるいは結晶化によって分子が分子内の側鎖同士の分子間力によって収縮した傾向のある高分子を使用することが好ましい。 That is, simply increasing the molecular weight of the water-soluble polymer forms excessive flocs and deteriorates the paper quality, particularly the texture. Moreover, since an excessive floc takes in water excessively, the fall of the drainage in a wire part, the squeezing in a dryer part, and the fall of drying efficiency will be caused. Therefore, in the present invention, instead of using a polymer that is simply increased in molecular weight and greatly spread in an aqueous solution, the intermolecular force between side chains in the molecule is suppressed by crosslinking or suppressed by shrinkage or by crystallization. It is preferred to use polymers that tend to shrink due to.

この現象は塩水溶液中の析出重合であることと関係すると考えられる。すなわち塩水溶液中で不溶化時重合体濃度が非常に高い状態になる。その結果、分子は結晶化しやすい状態に置かれることになる。この状態に加え少量の架橋剤を共存させ重合を行っているため局部的に高濃度になりやすく、結晶化を促進していると考えられる。従って高分子の一部が結晶化あるいは架橋剤による共有結合的結合によって溶液中で縮まった分子になっていると推定される。そのため係数kの値が20以下である水溶性ポリマーは、分子がより粒子的な状態にあると考えられる。 This phenomenon is considered to be related to precipitation polymerization in an aqueous salt solution. That is, the polymer concentration becomes very high when insolubilized in a salt solution. As a result, the molecules are placed in a state where they are easily crystallized. In addition to this state, a small amount of a crosslinking agent coexists to carry out the polymerization, so that the concentration tends to be high locally, and it is considered that crystallization is promoted. Therefore, it is presumed that a part of the polymer is a molecule contracted in the solution by crystallization or covalent bonding by a crosslinking agent. Therefore, a water-soluble polymer having a coefficient k of 20 or less is considered to be in a more particle-like state.

上記理由により、このような状態にある高分子を製紙工業における歩留向上剤として使用した場合、製紙原料フロックが巨大化せず小さく締ったものとなりシェアに強い。従って歩留が向上するだけでなく、地合も良好な紙が抄紙できる。また本発明は、前記製紙原料が、微細繊維分および炭酸カルシウムを含む200メッシュアンダー微細分が製紙原料全乾燥固形分に対し、45〜85質量パーセントである微細繊維を多く含む製紙原料に対し優れた効果を示す。 For the above reasons, when a polymer in such a state is used as a yield improver in the paper industry, the paper-making raw material flocs are not enlarged and tightened to a small size, and the share is strong. Accordingly, not only the yield is improved, but also paper having a good texture can be produced. Further, the present invention is superior to a papermaking raw material containing a large amount of fine fibers in which the papermaking raw material contains a fine fiber content and a 200 mesh under fine content containing calcium carbonate is 45 to 85 mass percent with respect to the total dry solid content of the papermaking raw material. Show the effect.

本発明のカチオン性あるいは両性水溶性ポリマーは、アクリルアミド系水溶性ポリマーであり、下記構造式で表されるカチオン性モノマーを5〜50モル%含有する重合体であるものとする。
一般式(1)
1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基或いはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素又はNH、Bは炭素数2〜4のアルコキシル基又はアルコキシレン基、X1は陰イオンをそれぞれ表わす。
The cationic or amphoteric water-soluble polymer of the present invention is an acrylamide-based water-soluble polymer, and is a polymer containing 5 to 50 mol% of a cationic monomer represented by the following structural formula.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group or alkoxyl group having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, A may be different, A is oxygen or NH, B is an alkoxyl or alkoxylene group having 2 to 4 carbon atoms, and X 1 is an anion.

前記カチオン性水溶性ポリマーの例は、以下に例示するカチオン性モノマーと非イオン性モノマーとの共重合物である。すなわちカチオン性モノマーは、カチオン性ビニル単量体である(メタ)アクリル酸ジメチルアミノエチルやジメチルアミノプロピル(メタ)アクリルアミドなどの無機酸や有機酸の塩、あるいは塩化メチルや塩化ベンジルによる四級アンモニウム塩とアクリルアミドとの共重合体である。例えば単量体として、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルトリメチルアンモニウム塩化物、(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルオキシ2−ヒドロキシプロピルジメチルベンジルアンモニウム塩化物、(メタ)アクリロイルアミノプロピルジメチルベンジルアンモニウム塩化物などがあげられる。またジメチルジアリルアンモニウム塩化物のようなジアリルアンモニウム塩類も使用することができる。 An example of the cationic water-soluble polymer is a copolymer of a cationic monomer and a nonionic monomer exemplified below. That is, the cationic monomer is a cationic vinyl monomer such as a salt of an inorganic acid or an organic acid such as dimethylaminoethyl (meth) acrylate or dimethylaminopropyl (meth) acrylamide, or quaternary ammonium by methyl chloride or benzyl chloride. A copolymer of salt and acrylamide. For example, as a monomer, (meth) acryloyloxyethyl trimethylammonium chloride, (meth) acryloyloxy 2-hydroxypropyltrimethylammonium chloride, (meth) acryloylaminopropyltrimethylammonium chloride, (meth) acryloyloxyethyldimethylbenzyl Examples include ammonium chloride, (meth) acryloyloxy 2-hydroxypropyldimethylbenzylammonium chloride, (meth) acryloylaminopropyldimethylbenzylammonium chloride, and the like. Also, diallylammonium salts such as dimethyldiallylammonium chloride can be used.

また両性水溶性ポリマーは、アニオン性ビニル単量体と前記カチオン性単量体の共重合により合成することができる。アニオン性ビニル単量体は、アクリルアミド2−メチルプロパンスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、(メタ)アクリル酸、マレイン酸あるいはイタコン酸などであり、これらを一種以上用いて共重合する。 The amphoteric water-soluble polymer can be synthesized by copolymerization of an anionic vinyl monomer and the cationic monomer. Anionic vinyl monomers are acrylamide 2-methylpropane sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, vinyl sulfonic acid, (meth) acrylic acid, maleic acid or itaconic acid. Use to copolymerize.

また非イオン性単量体をこれらイオン性単量体と共重合しても良い。このような非イオン性単量体の例としては、(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドアクリロイルモルホリン、アクリロイルピペラジンなどがあげられる。これらの中でアクリルアミドが最も好ましい。 Further, nonionic monomers may be copolymerized with these ionic monomers. Examples of such nonionic monomers include (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N -Vinylpyrrolidone, N-vinylformamide, N-vinylacetamidoacryloylmorpholine, acryloylpiperazine and the like. Of these, acrylamide is most preferred.

これらカチオン性水溶性ポリマーのカチオン性単量体と非イオン性単量体とのモル%は、カチオン性単量体5〜50モル%、非イオン性単量体50〜95モル%であり、好ましくはカチオン性単量体10〜40モル%、非イオン性単量体60〜90モル%である。 The molar% of the cationic monomer and the nonionic monomer of these cationic water-soluble polymers is 5 to 50 mol% of the cationic monomer and 50 to 95 mol% of the nonionic monomer, Preferably they are 10-40 mol% of cationic monomers, and 60-90 mol% of nonionic monomers.

また両性水溶性ポリマーのカチオン性単量体とアニオン性単量体とのモル%は、カチオン性単量体5〜50モル%、アニオン性単量体5〜50モル%であり、好ましくはカチオン性単量体10〜40モル%、アニオン性単量体5〜50モル%である。 Further, the mol% of the cationic monomer and the anionic monomer of the amphoteric water-soluble polymer is 5 to 50 mol% of the cationic monomer and 5 to 50 mol% of the anionic monomer, preferably cation 10 to 40 mol% of the ionic monomer and 5 to 50 mol% of the anionic monomer.

本発明で使用するカチオン性あるいは両性水溶性ポリマーは、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させる分散重合法により製造した粒径100μm以下の微粒子の分散液を構成している。 The cationic or amphoteric water-soluble polymer used in the present invention constitutes a dispersion of fine particles having a particle size of 100 μm or less produced by a dispersion polymerization method in which a polymer dispersant soluble in the aqueous salt solution coexists in the aqueous salt solution. ing.

塩水中分散液からなるカチオン性あるいは両性水溶性ポリマーは、以下の操作によって製造することができる。すなわち塩水溶液中に分散した高分子微粒子分散液からなる水溶性重合体は、特開昭62−15251号公報などによって製造することができる。この方法は、カチオン性単量体あるいはカチオン性単量体と非イオン性単量体を、塩水溶液中で該塩水溶液に可溶なイオン性高分子からなる分散剤共存下で、攪拌しながら製造された粒系100μm以下の高分子微粒子の分散液からなるもである。イオン性高分子からなる分散剤は、ジメチルジアリルアンモニウム塩化物、(メタ)アクリロイルオキシエチルトリメチルアンモニウム塩化物の単独重合体や非イオン性単量体との共重合体を使用する。塩水溶液を構成する無機塩類は、多価アニオン塩類が、より好ましく、硫酸塩又は燐酸塩が適当であり、具体的には、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アルミニウム、燐酸水素アンモニウム、燐酸水素ナトリウム、燐酸水素カリウム等を例示することができ、これらの塩を濃度15%以上の水溶液として用いることが好ましい。 A cationic or amphoteric water-soluble polymer comprising a dispersion in brine can be produced by the following operation. That is, a water-soluble polymer comprising a polymer fine particle dispersion dispersed in an aqueous salt solution can be produced by Japanese Patent Application Laid-Open No. 62-15251. In this method, a cationic monomer or a cationic monomer and a nonionic monomer are stirred in a salt aqueous solution in the presence of a dispersant composed of an ionic polymer soluble in the salt aqueous solution. It consists of a dispersion of polymer fine particles having a particle size of 100 μm or less. As the dispersant made of an ionic polymer, a homopolymer of dimethyldiallylammonium chloride or (meth) acryloyloxyethyltrimethylammonium chloride or a copolymer with a nonionic monomer is used. The inorganic salts constituting the aqueous salt solution are more preferably polyvalent anion salts, and sulfates or phosphates are suitable. Specifically, ammonium sulfate, sodium sulfate, magnesium sulfate, aluminum sulfate, ammonium hydrogen phosphate, hydrogen phosphate Examples thereof include sodium and potassium hydrogen phosphate, and these salts are preferably used as an aqueous solution having a concentration of 15% or more.

本発明のカチオン性あるいは両性水溶性ポリマーは、1規定NaCl水溶液中、25℃で測定した固有粘度が15〜25dl/gであり、この範囲の固有粘度のものを使用することが好ましい。固有粘度が15dl/gより小さいと歩留率が低下する傾向にあり、15〜25dl/gより大きいと地合の低下などを引き起こし好ましくない。 The cationic or amphoteric water-soluble polymer of the present invention has an intrinsic viscosity of 15 to 25 dl / g measured at 25 ° C. in a 1 N NaCl aqueous solution, and an intrinsic viscosity in this range is preferably used. If the intrinsic viscosity is less than 15 dl / g, the yield tends to decrease, and if it is more than 15 to 25 dl / g, the formation is lowered, which is not preferable.

また本発明のカチオン性あるいは両性水溶性ポリマーは、水溶性ポリマー濃度0.1重量%以下に1規定NaCl水溶液で希釈した数点の水溶性ポリマー希釈液を、毛細管粘度計を用いて25℃で測定した還元粘度ηsp/c(単位:dl/g)のプロットをηsp/c=[η]+k×cの式(cは重合体濃度で単位はg/dl、[η]は固有粘度)に近似した時の係数kの値が20以下である水溶性ポリマーを使用することがより好ましい。 The cationic or amphoteric water-soluble polymer of the present invention is obtained by diluting several water-soluble polymer dilutions diluted with 1N NaCl aqueous solution to a water-soluble polymer concentration of 0.1% by weight or less at 25 ° C. using a capillary viscometer. A plot of the measured reduced viscosity ηsp / c (unit: dl / g) is expressed as ηsp / c = [η] + k × c (where c is the polymer concentration, the unit is g / dl, and [η] is the intrinsic viscosity). It is more preferable to use a water-soluble polymer having a coefficient k value of 20 or less when approximated.

すなわち背景技術においても説明したように、単に水溶性ポリマーを高分子量化するだけでは過大なフロックを形成、紙品質、特に地合い性を悪化させる。また過大なフロックは水を過多に取り込むためワイヤーパートでの濾水性の低下、ドライヤーパートでの搾水性、乾燥効率の低下を招くことになる。従って本発明においては、単に高分子量化し、水溶液中において大きく広がっている高分子を用いるのではなく、架橋によって広がりの抑制ないしは収縮、あるいは結晶化によって分子が分子内の側鎖同士の分子間力によって収縮した傾向のある高分子を使用することが好ましい。 In other words, as described in the background art, simply increasing the molecular weight of the water-soluble polymer forms excessive flocs, deteriorating paper quality, particularly texture. Moreover, since an excessive floc takes in water excessively, the fall of the drainage in a wire part, the squeezing in a dryer part, and the fall of drying efficiency will be caused. Therefore, in the present invention, instead of using a polymer that is simply increased in molecular weight and greatly spread in an aqueous solution, the intermolecular force between side chains in the molecule is suppressed by crosslinking or suppressed by shrinkage or by crystallization. It is preferred to use polymers that tend to shrink due to.

この現象は塩水溶液中の析出重合であることと関係すると考えられる。すなわち塩水溶液中で不溶化時重合体濃度が非常に高い状態になる。その結果、分子は結晶化しやすい状態に置かれることになる。この状態に加え少量の架橋剤を共存させ重合を行っているため局部的に高濃度になりやすく、結晶化を促進していると考えられる。従って高分子の一部が結晶化あるいは架橋剤による共有結合的結合によって溶液中で縮まった分子になっていると推定される。そのため係数kの値が20以下である水溶性ポリマーは、分子がより粒子的な状態にあると考えられる。 This phenomenon is considered to be related to precipitation polymerization in an aqueous salt solution. That is, the polymer concentration becomes very high when insolubilized in a salt solution. As a result, the molecules are placed in a state where they are easily crystallized. In addition to this state, a small amount of a crosslinking agent coexists to carry out the polymerization, so that the concentration tends to be high locally, and it is considered that crystallization is promoted. Therefore, it is presumed that a part of the polymer is a molecule contracted in the solution by crystallization or covalent bonding by a crosslinking agent. Therefore, a water-soluble polymer having a coefficient k of 20 or less is considered to be in a more particle-like state.

上記理由により、このような状態にある高分子を製紙工業における歩留向上剤として使用した場合、製紙原料フロックが巨大化せず小さく締ったものとなりシェアに強い。従って歩留が向上するだけでなく、地合も良好な紙が抄紙できる。 For the above reasons, when a polymer in such a state is used as a yield improver in the paper industry, the paper-making raw material flocs are not enlarged and tightened to a small size, and the share is strong. Accordingly, not only the yield is improved, but also paper having a good texture can be produced.

本発明で使用する合成カチオン性あるいは両性水溶性ポリマーの添加率は全紙料に対して0.001〜0.1重量%であり、0.005〜0.1重量%が好ましい。0.001重量%以下では効果が発揮されないことがあり、0.1重量%以上では効果の改善が観られなく、不経済である。 The addition rate of the synthetic cationic or amphoteric water-soluble polymer used in the present invention is 0.001 to 0.1% by weight, preferably 0.005 to 0.1% by weight, based on the total stock. If it is 0.001% by weight or less, the effect may not be exhibited, and if it is 0.1% by weight or more, the improvement of the effect is not observed, which is uneconomical.

本発明のカチオン性あるいは両性水溶性ポリマーを添加すると、粒子の挙動を示すため分散性が良く、微細繊維分が多い場合や微粒な炭酸カルシウムを多く含む抄紙紙料に対してそれらに拡散が障害されることがないので添加が効率的である。また、局所に添加されることがないため、不均一な巨大なフロックを形成せず、地合いの低下が抑制される。 When the cationic or amphoteric water-soluble polymer of the present invention is added, it exhibits good particle dispersibility and good dispersibility, impairing diffusion to papermaking stocks containing a large amount of fine fibers or a large amount of fine calcium carbonate. The addition is efficient. Moreover, since it is not added locally, a nonuniform huge floc is not formed and the fall of a texture is suppressed.

一段目のカチオン性あるいは両性水溶性ポリマーの添加後、少なくとも一つ以上のせん断工程を経て前記アニオン性無機微粒子あるいはアニオン性有機微粒子を添加することにより、更に歩留の向上、濾水性・搾水性効果の改善が得られる。また、一液で必要とする添加率で歩留効果、濾水性・搾水性効果を維持するために、二液を添加することにより添加率の総量を下げることができ、添加コストが抑えられ経済的である。 After the addition of the first-stage cationic or amphoteric water-soluble polymer, the anionic inorganic fine particles or the anionic organic fine particles are added through at least one shearing process to further improve the yield, drainage and water squeezability. The effect is improved. In addition, in order to maintain the yield effect, drainage and squeezing effect at the addition rate required by one liquid, the total amount of the addition ratio can be lowered by adding two liquids, and the addition cost can be suppressed and the economy is reduced. Is.

本発明の抄紙方法は、水溶性ポリマー添加後、少なくとも一つ以上のせん断工程を経て、二段目としてアニオン性無機微粒子としてベントナイトあるいはコロイダルシリカを使用する。添加率は製紙原料に対して0.001〜0.5重量%であり、0.005〜0.1重量%が好ましい。 The papermaking method of the present invention uses bentonite or colloidal silica as anionic inorganic fine particles as the second stage after at least one shearing step after addition of the water-soluble polymer. The addition rate is 0.001 to 0.5% by weight, preferably 0.005 to 0.1% by weight, based on the papermaking raw material.

また本発明の抄紙方法は、水溶性ポリマー添加後、少なくとも一つ以上のせん断工程を経て、二段目としアクリルアミド系水膨潤性微粒子あるいは非アクリルアミド系水不溶性微粒子を使用する。アクリルアミド系水膨潤性微粒子は、アクリルアミドがアニオン性単量体と架橋性単量体を存在させた油中水型エマルジョン重合などによって合成された、高架橋度の水不溶性水膨潤微粒子である。この微粒子は、水膨潤前の粒子径が1000nm以下、好ましくは200nm以下である。一方、非アクリルアミド系水不溶性微粒子は、水不溶性モノマー、すなわちスチレンや(メタ)アクリル酸エステル類がアニオン性単量体を存在させた水中油型エマルジョン重合などによって合成された水不溶性アニオン性微粒子である。この微粒子は、粒子径が200nm以下であることが好ましい。これらアニオン性有機微粒子の添加率は全紙料に対して0.001〜0.5重量%であり、0.005〜0.1重量%が好ましい。 In the papermaking method of the present invention, after addition of the water-soluble polymer, at least one shearing process is performed, and the second stage is acrylamide water-swellable fine particles or non-acrylamide water-insoluble fine particles. Acrylamide-based water-swellable fine particles are water-insoluble water-swellable fine particles having a high degree of crosslinking, which are synthesized by water-in-oil emulsion polymerization in which acrylamide is present in the presence of an anionic monomer and a crosslinkable monomer. The fine particles have a particle size of 1000 nm or less, preferably 200 nm or less before water swelling. On the other hand, non-acrylamide water-insoluble fine particles are water-insoluble monomers, that is, water-insoluble anionic fine particles synthesized by oil-in-water emulsion polymerization in which styrene or (meth) acrylic acid esters are present in the presence of an anionic monomer. is there. The fine particles preferably have a particle size of 200 nm or less. The addition rate of these anionic organic fine particles is 0.001 to 0.5% by weight, preferably 0.005 to 0.1% by weight, based on the total stock.

さらにまた本発明の抄紙方法は、水溶性ポリマー添加後、少なくとも一つ以上のせん断工程を経て、二段目としてアニオン性ポリアクリルアミド系水溶性ポリマーを添加する。アニオン性ポリアクリルアミド系水溶性ポリマーは、以下のようなものである。すなわちビニルスルホン酸、ビニルベンゼンスルホン酸あるいは2−アクリルアミド2−メチルプロパンスルホン酸、メタクリル酸、アクリル酸、イタコン酸、マレイン酸あるいはp−カルボキシスチレンなどの単独重合物、あるいは共重合可能な二つ以上の共重合物である。また
他の非イオン性の単量体との共重合体でも良い。例えば(メタ)アクリルアミド、N,N−ジメチルアクリルアミド、酢酸ビニル、アクリロニトリル、アクリル酸メチル、(メタ)アクリル酸2−ヒドロキシエチル、ジアセトンアクリルアミド、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミドなどがあげられ、これら一種又は二種以上との共重合が可能である。
Furthermore, in the papermaking method of the present invention, after addition of the water-soluble polymer, an anionic polyacrylamide-based water-soluble polymer is added as the second stage through at least one shearing step. The anionic polyacrylamide-based water-soluble polymer is as follows. That is, homopolymers such as vinyl sulfonic acid, vinyl benzene sulfonic acid or 2-acrylamide 2-methylpropane sulfonic acid, methacrylic acid, acrylic acid, itaconic acid, maleic acid or p-carboxystyrene, or two or more copolymerizable It is a copolymer of Moreover, the copolymer with another nonionic monomer may be sufficient. For example, (meth) acrylamide, N, N-dimethylacrylamide, vinyl acetate, acrylonitrile, methyl acrylate, 2-hydroxyethyl (meth) acrylate, diacetone acrylamide, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide The copolymerization with these 1 type (s) or 2 or more types is possible.

重合する単量体(混合物)の組成は、アニオン性単量体5〜100モル%、アクリルアミド0〜95モル%である。これらアニオン性重合物の分子量としては、100万〜2000万、好ましくは500万〜1500万である。また添加率は、全紙料に対して0.001〜0.1重量%であり、0.005〜0.05重量%が好ましい。 The composition of the monomer (mixture) to be polymerized is 5 to 100 mol% anionic monomer and 0 to 95 mol% acrylamide. The molecular weight of these anionic polymers is 1 million to 20 million, preferably 5 million to 15 million. The addition rate is 0.001 to 0.1% by weight, preferably 0.005 to 0.05% by weight, based on the total stock.

対象紙料としては特に限定はなく、あらゆる紙料に対して適用できるが、特に従来の歩留システムでは効果の発揮され難い微細繊維分を多く含む新聞用紙や填料として炭酸カルシウムが多く用いられる塗工原紙やPPC用紙においてその効果がより発揮される。すなわち微細繊維分+炭酸カルシウムを含む200メッシュアンダー微細分の製紙原料に占める含有量として、新聞用紙では約45〜85%である。また、塗工原紙やPPC用紙では約40〜75%である。 The target paper is not particularly limited, and can be applied to any paper. However, in particular, a newspaper paper containing a large amount of fine fibers, which is difficult to be effective in a conventional yield system, and a coating in which calcium carbonate is often used as a filler. The effect is more exerted on engineering paper and PPC paper. That is, the content of the 200-mesh under fine component containing fine fiber content + calcium carbonate is about 45-85% for newsprint. In the case of coated base paper and PPC paper, it is about 40 to 75%.

以下に実施例をあげて詳細に説明するが、本発明はこれら実施例により限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

(合成例1)攪拌機、還流冷却管、温度計および窒素導入管を備えた4つ口500mlセパラブルフラスコに脱イオン水117.7g、硫酸アンモニウム84.1g、カチオン性単量体として80重量%アクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMQ)17.7g及び80重量%アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物(以下DMABC)6.2g、50重量%アクリルアミド(以下AAM)51.9g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)22.5gをそれぞれ仕込んだ。その後、攪拌しながら窒素導入管より窒素を導入し溶存酸素の除去を行った。この間、恒温水槽により35±2℃に内部温度を調整した。窒素導入30分後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1重量%水溶液0.45g(対単量体100ppm)を添加し重合を開始させた。内部温度を35±2℃に保ち重合開始後6時間たったところで上記開始剤を0.45g追加し、さらに10時間反応させ終了した。この得られた分散液を試作1とする。このDMQ/DMABC/AAMのモル比は16/4/80であり、分散液粘度は540mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。またキャノンフェンスケ型粘度計を用いて1規定NaCl水溶液中に重合体濃度0.02g/dl、0.04g/dl、0.06g/dlに希釈した液のそれぞれの還元粘度を25℃で測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Synthesis Example 1) A four-neck 500 ml separable flask equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen introduction tube was charged with 117.7 g of deionized water, 84.1 g of ammonium sulfate, and 80 wt% acryloyl as a cationic monomer. 17.7 g of oxyethyltrimethylammonium chloride (DMQ) and 80% by weight of acryloyloxyethyldimethylbenzylammonium chloride (hereinafter DMABC) 6.2 g, 51.9 g of 50% by weight acrylamide (hereinafter AAM), acryloyloxy as a dispersant 22.5 g of ethyltrimethylammonium chloride homopolymer (20% by weight solution, viscosity 6450 mPa · s) was charged. Thereafter, nitrogen was introduced from the nitrogen introduction tube while stirring to remove dissolved oxygen. During this time, the internal temperature was adjusted to 35 ± 2 ° C. using a constant temperature water bath. 30 minutes after nitrogen introduction, 0.45 g of 1% by weight aqueous solution of 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride as an initiator (as a monomer) 100 ppm) was added to initiate the polymerization. 0.45 g of the initiator was added after 6 hours from the start of polymerization while maintaining the internal temperature at 35 ± 2 ° C., and the reaction was further completed for 10 hours. This obtained dispersion is designated as prototype 1. The DMQ / DMABC / AAM molar ratio was 16/4/80, and the dispersion viscosity was 540 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. In addition, the reduced viscosity of each solution diluted to a polymer concentration of 0.02 g / dl, 0.04 g / dl, and 0.06 g / dl in a 1N NaCl aqueous solution using a Canon Fenceke viscometer is measured at 25 ° C. The coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(合成例2)合成例1と同様の装置に脱イオン水112.2g、硫酸アンモニウム89.3g、カチオン性単量体として80重量%DMQ13.5g及び80重量%メタクリロイルオキシエチルトリメチルアンモニウム塩化物(以下DMC)9.7g、50重量%AAM52.9g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)22.5gをそれぞれ仕込み、実施例1と同様の方法で反応した。得られた分散液を試作2とする。このDMQ/DMC/AAMのモル比は12/8/80であり、この分散液の粘度は720mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。また実施例1と同様の方法で還元粘度を測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Synthesis Example 2) In the same apparatus as in Synthesis Example 1, 112.2 g of deionized water, 89.3 g of ammonium sulfate, 13.5 g of 80 wt% DMQ and 80 wt% methacryloyloxyethyl trimethyl ammonium chloride (hereinafter referred to as cationic monomers) DMC) 9.7 g, 50 wt% AAM 52.9 g, and 22.5 g of acryloyloxyethyltrimethylammonium chloride homopolymer (20 wt% solution, viscosity 6450 mPa · s) as a dispersing agent were charged in the same manner as in Example 1. Reacted in the way. The obtained dispersion is referred to as trial production 2. The molar ratio of DMQ / DMC / AAM was 12/8/80, and the viscosity of the dispersion was 720 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. Further, the reduced viscosity was measured in the same manner as in Example 1, and the coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(合成例3)合成例1と同様の装置に脱イオン水112.3g、硫酸アンモニウム89.3g、60重量%アクリル酸(以下AAC)2.7g、カチオン性単量体として80重量%DMQ11.2g及び80重量%DMC11.6g、50重量%AAM50.9g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)22.5gをそれぞれ仕込み、実施例1と同様の方法で反応した。得られた分散液を試作3とする。このAAC/DMQ/DMC/AAMのモル比は5/10/10/75であり、分散液の粘度は870mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。また実施例1と同様の方法で還元粘度を測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Synthesis Example 3) In the same apparatus as in Synthesis Example 1, 112.3 g of deionized water, 89.3 g of ammonium sulfate, 2.7 g of 60% by weight acrylic acid (hereinafter AAC), 11.2 g of 80% by weight DMQ as a cationic monomer And 12.5 g of 80 wt% DMC, 50.9 g of 50 wt% AAM, and 22.5 g of acryloyloxyethyltrimethylammonium chloride homopolymer (20 wt% solution, viscosity 6450 mPa · s) as a dispersing agent, respectively, It reacted in the same way. The resulting dispersion is referred to as prototype 3. The molar ratio of AAC / DMQ / DMC / AAM was 5/10/10/75, and the viscosity of the dispersion was 870 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. Further, the reduced viscosity was measured in the same manner as in Example 1, and the coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(合成例4)合成例1と同様の装置に脱イオン水111.9g、硫酸アンモニウム89.3g、カチオン性単量体として80重量%DMQ16.0g及び50重量%AAM37.5g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)15.8gをそれぞれ仕込んだ。その後、攪拌しながら窒素導入管より窒素を導入し溶存酸素の除去を行った。この間、恒温水槽により35±2℃に内部温度を調整した。窒素導入30分後、開始剤として2、2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕二塩化水素化物の1重量%水溶液0.45g(対単量体100ppm)を添加し重合を開始させた。内部温度を35±2℃に保ち、重合開始の2時間後に80重量%DMQ3.4g、50重量%AAM8.0g、分散剤のアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)3.4gの混合物を添加した。更に2時間後に80重量%DMQ3.4g、50重量%AAM8.0g、分散剤のアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)3.4gの混合物を添加した。重合開始より8時間たったところで上記開始剤を0.45g追加し、さらに10時間反応させ終了した。重合反応中は窒素導入管より窒素を導入し続けた。この得られた分散液を試作4とする。このDMQ/AAMのモル比は20/80であり、分散液粘度は960mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。また実施例1と同様の方法で還元粘度を測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Synthesis Example 4) 111.9 g of deionized water, 89.3 g of ammonium sulfate, 80 wt% DMQ 16.0 g and 50 wt% AAM 37.5 g as a cationic monomer, and acryloyloxy as a dispersing agent 15.8 g of ethyl trimethylammonium chloride homopolymer (20% by weight solution, viscosity 6450 mPa · s) was charged. Thereafter, nitrogen was introduced from the nitrogen introduction tube while stirring to remove dissolved oxygen. During this time, the internal temperature was adjusted to 35 ± 2 ° C. using a constant temperature water bath. 30 minutes after nitrogen introduction, 0.45 g of 1% by weight aqueous solution of 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride as an initiator (as a monomer) 100 ppm) was added to initiate the polymerization. The internal temperature was maintained at 35 ± 2 ° C., and 2 hours after the start of polymerization, 3.4 g of 80 wt% DMQ, 8.0 g of 50 wt% AAM, acryloyloxyethyltrimethylammonium chloride homopolymer as a dispersant (20 wt% liquid, viscosity 6450 mPa · s) 3.4 g of the mixture was added. After another 2 hours, a mixture of 3.4 g of 80 wt% DMQ, 8.0 g of 50 wt% AAM, and 3.4 g of acryloyloxyethyltrimethylammonium chloride homopolymer (20 wt% liquid, viscosity 6450 mPa · s) as a dispersant was added. . After 8 hours from the start of polymerization, 0.45 g of the above initiator was added, and the reaction was further completed for 10 hours. During the polymerization reaction, nitrogen was continuously introduced from the nitrogen introduction tube. This dispersion is designated as prototype 4. The DMQ / AAM molar ratio was 20/80, and the dispersion viscosity was 960 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. Further, the reduced viscosity was measured in the same manner as in Example 1, and the coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(比較合成例1)実施例4と同じ単量体組成を分割して仕込まずに全量を一括して仕込んで、重合を開始させた。重合開始後2時間後に反応液の粘度が著しく増加し攪拌不可能となり、全量が一塊となり流動性のある分散液として得られなかった。 (Comparative Synthesis Example 1) The same monomer composition as in Example 4 was not divided and charged, but the entire amount was charged all at once to initiate polymerization. Two hours after the start of the polymerization, the viscosity of the reaction solution was remarkably increased and stirring was impossible, and the whole amount became a lump and could not be obtained as a fluid dispersion.

(比較合成例2)比較例1と同様に実施例4と同じ単量体組成を分割して仕込まずに全量を一括して仕込み、さらに連鎖移動剤としてイソプロピルアルコールを対単量体0.5%加えた。すなわち脱イオン水111.9g、硫酸アンモニウム89.3g、カチオン性単量体として80重量%DMQ22.8g及び50重量%AAM5305g、分散剤としてアクリロイルオキシエチルトリメチルアンモニウム塩化物単独重合体(20重量%液、粘度6450mPa・s)22.5g、連鎖移動剤としてイソプロピルアルコール0.23gをそれぞれ仕込み、実施例1と同様の方法で反応した。得られた分散液を比較2とする。このDMQ/AAMのモル比は20/80であり、この分散液の粘度は1020mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。また実施例1と同様の方法で還元粘度を測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Comparative Synthesis Example 2) Similar to Comparative Example 1, the same monomer composition as in Example 4 was divided and charged all at once, and isopropyl alcohol as a chain transfer agent was added to the monomer 0.5. %added. That is, 111.9 g of deionized water, 89.3 g of ammonium sulfate, 80 wt% DMQ 22.8 g and 50 wt% AAM 5305 g as a cationic monomer, and acryloyloxyethyltrimethylammonium chloride homopolymer (20 wt% solution, Viscosity 6450 mPa · s) 22.5 g, 0.23 g of isopropyl alcohol as a chain transfer agent were charged, and reacted in the same manner as in Example 1. The obtained dispersion is referred to as Comparative 2. The DMQ / AAM molar ratio was 20/80, and the viscosity of the dispersion was 1020 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. Further, the reduced viscosity was measured in the same manner as in Example 1, and the coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(比較合成例3)実施例1と同じ単量体組成にさらに連鎖移動剤としてイソプロピルアルコールを0.23g(対単量体0.5%)加え、実施例1と同様の方法で反応した。得られた分散液を比較3とする。このDMQ/DMABC/AAMのモル比は16/4/80であり、分散液粘度は390mPa・sであった。なお、顕微鏡観察の結果、1〜50μmの粒子であることが判明した。また実施例1と同様の方法で還元粘度を測定し、係数kと固有粘度を算出した。結果を表1に示す。 (Comparative Synthesis Example 3) 0.23 g (0.5% monomer) of isopropyl alcohol was further added as a chain transfer agent to the same monomer composition as in Example 1, and reacted in the same manner as in Example 1. The obtained dispersion is designated as Comparative Example 3. The DMQ / DMABC / AAM molar ratio was 16/4/80, and the dispersion viscosity was 390 mPa · s. As a result of microscopic observation, the particles were found to be 1 to 50 μm. Further, the reduced viscosity was measured in the same manner as in Example 1, and the coefficient k and the intrinsic viscosity were calculated. The results are shown in Table 1.

(表1)
DMQ:アクリロイルオキシエチルトリメチルアンモニウム塩化物
DMC:メタクリロイルオキシエチルトリメチルアンモニウム塩化物
ABC:アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物、AAC:アクリル酸、AAM:アクリルアミド、数値の単位 分散液粘度:mPa・s、固有粘度(1規定NaCl水溶液中):dl/g
(Table 1)
DMQ: acryloyloxyethyltrimethylammonium chloride DMC: methacryloyloxyethyltrimethylammonium chloride ABC: acryloyloxyethyldimethylbenzylammonium chloride, AAC: acrylic acid, AAM: acrylamide, numerical unit Dispersion viscosity: mPa · s, inherent Viscosity (in 1N NaCl aqueous solution): dl / g

ダイナミックジャーテスターによる歩留率の測定試験を行なった。200メッシュワイヤー使用。使用原料は、固形分濃度0.9質量%で、200メッシュアンダーが73.0%(微細分;微細繊維分+填料 炭酸カルシウム) の新聞用紙製紙原料を用いた。製紙原料の物性値は、pH7.3、Whatman No.41濾紙濾過液のカチオン要求量 0.0249meq/L、濁度 10NTUであった。カチオン要求量はミューテック社製PCD−03型、濁度はHACH社製DR−2100型をそれぞれ使用した。ミューテック社製SZP−06型によるSZPは−7.3mVであった。一液目として試料―1を対紙料固形分に対して150ppm添加、攪拌回転数1200rpmで20秒間攪拌後、二液目としてアニオン性ポリアクリルアミド塩水中分散液(アクリルアミド/アクリル酸ナトリウム=70/30共重合物、分子量1000万)(試料―5)を対紙料固形分に対して150ppm添加、10秒間攪拌後、濾液を採取、ADVANTECNo.2濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。 A yield measurement test was performed using a dynamic jar tester. Use 200 mesh wire. The raw material used was a newspaper papermaking raw material with a solid content of 0.9% by mass and a 200 mesh under 73.0% (fine content; fine fiber content + filler calcium carbonate). The physical properties of the papermaking raw materials are pH 7.3, Whatman No. The required amount of cation of 41 filter paper filtrate was 0.0249 meq / L, and the turbidity was 10 NTU. The required amount of cation was PCD-03 type manufactured by Mutech, and the turbidity was DR-2100 type manufactured by HACH. SZP according to SZP-06 type manufactured by Mutek was -7.3 mV. As a first liquid, Sample-1 was added at 150 ppm with respect to the solid content of the paper stock, stirred at 1200 rpm for 20 seconds, and then dispersed in an anionic polyacrylamide salt water dispersion (acrylamide / sodium acrylate = 70 / 30 copolymer, molecular weight 10 million) (sample-5) was added at 150 ppm with respect to the solid content of the paper stock, stirred for 10 seconds, and the filtrate was collected, ADVANTECNo. After filtering with 2 filter papers, SS was measured, and the total yield was measured. Then, the filter paper was ashed at 525 ° C. for 2 hours, and the ash yield was measured.

同様な試験を試料―2〜試料―4に関してアニオン性ポリアクリルアミド塩水中分散液あるいはベントナイト(添加量として1500ppm)と組み合わせて実施した。これらの結果を表2に示す。 A similar test was performed on Sample-2 to Sample-4 in combination with an anionic polyacrylamide salt water dispersion or bentonite (addition amount of 1500 ppm). These results are shown in Table 2.

(比較試験1)比較―2〜比較―3を用いて同様な試験を実施した。その結果を表2に示す。 (Comparative Test 1) A similar test was carried out using Comparative-2 to Comparative-3. The results are shown in Table 2.

本発明の試料―1〜試料―4を用いた実施例1−1〜1−4は、比較試験1−2〜1−3に比べて、総歩留率、灰分歩留率がが向上していることが確認できる。
In Examples 1-1 to 1-4 using Sample-1 to Sample-4 of the present invention, the total yield rate and the ash content yield rate were improved as compared with Comparative Tests 1-2 to 1-3. Can be confirmed.

(表2)
カチオン/両性;添加率0.015%(対乾燥製紙原料)、試料―5;添加率0.015%(対乾燥製紙原料)、BT(ベントナイト);0.15%(対乾燥製紙原料)
(Table 2)
Cation / amphoteric; addition rate 0.015% (vs dry paper raw material), sample-5; addition rate 0.015% (vs dry paper raw material), BT (bentonite); 0.15% (vs dry paper raw material)

実施例1と同紙料を用いて動的濾水性試験機DDA(Dynamic Drainage Analyzer、マツボー社製)による濾水性及び地合い性の測定試験を行なった。製紙原料を底部に315メッシュワイヤーの付いたDDA攪拌槽に投入。一液目として試料―2〜試料―4を対紙料固形分に対して150ppm添加、攪拌回転数1000rpmで20秒間攪拌後、二液目としてアニオン性ポリアクリルアミド塩水中分散液(アクリルアミド/アクリル酸ナトリウム=70/30共重合物、分子量1000万)(試料―5)を対紙料固形分に対して150ppm添加、10秒間攪拌後、300mBarの減圧下で、紙料を吸引し、ワイヤー上にシートを形成した時点の濾水時間、形成したシートの最終減圧度(成紙の地合に関係する数値)を測定し、その結果を表3に示す。 Using the same paper material as in Example 1, a freeness and texture measurement test using a dynamic drainage tester DDA (Dynamic Drainage Analyzer, manufactured by Matsubo) was performed. The papermaking material is put into a DDA stirring tank with a 315 mesh wire at the bottom. Sample-2 to Sample-4 were added at 150 ppm with respect to the solid content of the stock as the first solution, stirred for 20 seconds at a stirring speed of 1000 rpm, and then dispersed in anionic polyacrylamide salt water (acrylamide / acrylic acid) as the second solution. Sodium = 70/30 copolymer, molecular weight 10 million) (Sample-5) was added to the solid content of the paper at 150 ppm, stirred for 10 seconds, and then the paper was sucked under a reduced pressure of 300 mBar and placed on the wire. The drainage time at the time when the sheet was formed and the final pressure reduction degree of the formed sheet (numerical values related to the formation of the formed paper) were measured, and the results are shown in Table 3.

(比較試験2)実施例1と同紙料を用いて同試験条件で動的濾水性試験機DDAによる濾水性及び地合い性の測定試験を行なった。一液目として比較―2〜比較―3を対紙料固形分に対して150ppm添加、二液目としてアニオン性ポリアクリルアミド塩水中分散液(アクリルアミド/アクリル酸ナトリウム=70/30共重合物、分子量1000万)(試料―5)を対紙料固形分に対して150ppm添加し、あるいはベントナイトを対紙料固形分に対して1500ppm添加し、濾水時間、最終減圧度を測定し、その結果を表3に示す。 (Comparative Test 2) Using the same paper material as in Example 1, a freeness and texture measurement test using a dynamic drainage tester DDA was performed under the same test conditions. As a first solution, comparisons 2 to 3 were added at 150 ppm with respect to the solid content of the paper stock, and a second solution was an anionic polyacrylamide salt water dispersion (acrylamide / sodium acrylate = 70/30 copolymer, molecular weight). 10 million) (Sample-5) was added to 150 ppm of the solid content of the paper, or 1500 ppm of bentonite was added to the solid content of the paper, and the drainage time and the final pressure reduction were measured. Table 3 shows.

(表3)
(Table 3)

本発明の試料―1〜試料―4は、比較−2〜比較―3に比べて、濾水時間が短縮しており、濾水性能が良いことが確認できる。また、最終減圧度は、地合い性の指標となり、数値が高い程、地合い性は良いと判断できる。試料―1〜試料―4は、比較−2〜比較―3に比べて、同程度であることから地合い性を損なうことなく濾水性能が向上することを意味する。これは、試料―1〜試料―の濾水性は比較−2〜比較―3に比べて改善されているが、形成フロックが細かく過大なフロックを形成しないため最終減圧度は同程度であることを示唆する。 It can be confirmed that Sample-1 to Sample-4 of the present invention have a shorter drainage time and better drainage performance than Comparative-2 to Comparative-3. In addition, the final degree of decompression is an index of the texture, and it can be determined that the texture is better as the numerical value is higher. Since Sample-1 to Sample-4 are comparable to Comparative-2 to Comparative-3, it means that drainage performance is improved without impairing the texture. This is because the drainage of Sample-1 to Sample-- is improved compared to Comparative-2 to Comparative-3, but the final decompression degree is about the same because the formed flocs are fine and do not form excessive flocs. Suggest.

実施例1と同様な製紙原料と条件により歩留試験を実施した。一液目として試料―1〜試料―4を対紙料固形分に対して150ppm添加、攪拌回転数1000rpmで20秒間攪拌後、二液目としてスチレン93モル%とメタクリル酸7モル%からなる単量体混合物を、アニオン性高分子界面活性剤とポリオキシエチレン系親水性界面活性剤によりマイクロエマルジョンを形成させ重合して得た粒径150nmのアニオン性高分子マイクロパーティクル(試料―6)を対紙料固形分に対して150ppm添加、10秒間攪拌後、濾液を採取、ADVANTECNo.2濾紙にて濾過後、SSを測定、総歩留率を測定後、濾紙を525℃で2時間灰化し、灰分歩留率を測定した。その結果を表4に示す。 A yield test was carried out using the same papermaking raw materials and conditions as in Example 1. Sample-1 to Sample-4 were added at 150 ppm with respect to the solid content of the paper as the first solution, stirred for 20 seconds at a stirring speed of 1000 rpm, and then a single solution consisting of 93 mol% styrene and 7 mol% methacrylic acid as the second solution. The polymer mixture was polymerized by forming a microemulsion with an anionic polymer surfactant and a polyoxyethylene hydrophilic surfactant to polymerize the 150 nm particle size anionic polymer microparticles (Sample-6). After adding 150 ppm to the solid content of the paper and stirring for 10 seconds, the filtrate was collected, and ADVANTEC No. After filtering with 2 filter papers, SS was measured, and the total yield was measured. Then, the filter paper was ashed at 525 ° C. for 2 hours, and the ash yield was measured. The results are shown in Table 4.

(比較試験3)比較―2〜比較―3を用いて同様な試験を実施した。その結果を表4に示す。 (Comparative Test 3) A similar test was performed using Comparative-2 to Comparative-3. The results are shown in Table 4.

実施例4と同様な試験をアニオン性高分子マイクロパーティクルとして水膨潤性ポリアクリルアミド粒子を用いて実施した。すなわちアクリルアミド88モル%とアクリル酸12モル%、メチレンビスアクリルアミド対単量体0.5質量%からなる単量体混合物を、ソルビタンオレート系疎水性界面活性剤により油中水型エマルジョンを形成させ、重合して得た水不溶性粒子(水中に分散後の粒径が約700nm)(試料―7)を用いた。その結果を表4に示す。 A test similar to that of Example 4 was performed using water-swellable polyacrylamide particles as anionic polymer microparticles. That is, a monomer mixture consisting of 88 mol% acrylamide, 12 mol% acrylic acid, and 0.5% by mass of methylenebisacrylamide was formed into a water-in-oil emulsion using a sorbitan oleate-based hydrophobic surfactant, Water-insoluble particles obtained by polymerization (particle size after dispersion in water of about 700 nm) (Sample-7) were used. The results are shown in Table 4.

(比較試験4)比較―2〜比較―3を用いて同様な試験を実施した。その結果を表4に示す。





(Comparative Test 4) A similar test was performed using Comparative-2 to Comparative-3. The results are shown in Table 4.





(表4)










(Table 4)










Claims (5)

製紙工程における抄紙時、製紙原料中に歩留及び/または水切れ向上を目的として、一段目として下記一般式(1)で表されるカチオン性モノマーを5〜50モル%、及び(メタ)アクリロイルオキシエチルジメチルベンジルアンモニウム塩化物0〜4モル%を含有するカチオン性あるいは両性水溶性ポリマーが、塩水溶液中で該塩水溶液に可溶な高分子分散剤を共存させる分散重合法により製造した粒径100μm以下の微粒子の分散液からなり、1規定NaCl水溶液中、25℃で測定した固有粘度が15〜25dl/gである当該カチオン性あるいは両性水溶性ポリマーを添加、少なくとも一つ以上のせん断工程を経て、二段目としてアニオン性無機微粒子、アニオン性有機微粒子およびアニオン性ポリアクリルアミド系水溶性ポリマーから選択される一種以上を紙料中に添加することを特徴とする抄紙方法。
一般式(1)
1は水素又はメチル基、R2、R3は炭素数1〜3のアルキル基或いはアルコキシル基、R4は水素、炭素数1〜3のアルキル基、アルコキシル基あるいはベンジル基であり、同種でも異種でも良い、Aは酸素又はNH、Bは炭素数2〜4のアルキレン基又はアルコキシレン基、X1は陰イオンをそれぞれ表わす。
At the time of papermaking in the papermaking process , 5 to 50 mol% of a cationic monomer represented by the following general formula (1) as a first step and (meth) acryloyloxy for the purpose of improving yield and / or drainage in the papermaking raw material A particle size of 100 μm produced by a dispersion polymerization method in which a cationic or amphoteric water-soluble polymer containing 0 to 4 mol% of ethyldimethylbenzylammonium chloride coexists with a polymer dispersant soluble in the aqueous salt solution in the aqueous salt solution. made from a dispersion of the following microparticles, through in 1N NaCl aqueous solution, adding the cationic or amphoteric water-soluble polymer is intrinsic viscosity measured at 25 ° C. is 15~25dl / g, the at least one shear steps In the second stage, anionic inorganic fine particles, anionic organic fine particles and anionic polyacrylamide water-soluble polymers Paper making method characterized by adding one or more kinds in stock selected from.
General formula (1)
R 1 is hydrogen or a methyl group, R 2 and R 3 are an alkyl group or alkoxyl group having 1 to 3 carbon atoms, R 4 is hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group or a benzyl group, A may be different, A is oxygen or NH, B is an alkylene group or alkoxylene group having 2 to 4 carbon atoms, and X 1 is an anion.
前記カチオン性あるいは両性水溶性ポリマーが、水溶性ポリマー濃度0.1重量%以下に1規定NaCl水溶液で希釈した数点の水溶性ポリマー希釈液を毛細管粘度計にて25℃で測定した還元粘度ηsp/c(単位:dl/g)のプロットをηsp/c=[η]+k×cの式(cは重合体濃度で単位はg/dl、[η]は固有粘度)に近似した時の係数kの値が20以下であることを特徴とする請求項1に記載の抄紙方法。 Reduced viscosity ηsp obtained by measuring several water-soluble polymer dilutions obtained by diluting the cationic or amphoteric water-soluble polymer with a 1N NaCl aqueous solution to a water-soluble polymer concentration of 0.1% by weight or less with a capillary viscometer at 25 ° C. / C (unit: dl / g) is a coefficient when approximating the equation of ηsp / c = [η] + k × c (where c is the polymer concentration, the unit is g / dl, and [η] is the intrinsic viscosity) The papermaking method according to claim 1, wherein the value of k is 20 or less. 前記アニオン性無機微粒子がベントナイトあるいはコロイダルシリカであることを特徴とする請求項1〜のいずれかに記載の抄紙方法。 Papermaking method according to any one of claims 1-2, characterized in that the anionic inorganic particles are bentonite or colloidal silica. 前記アニオン性有機微粒子が、アクリルアミド系水膨潤性微粒子あるいは非アクリルアミド系水不溶性微粒子であることを特徴とする請求項1〜のいずれかに記載の抄紙方法。 The anionic organic particles, papermaking method according to any one of claims 1-2, characterized in that the acrylamide-based water-swellable particulate or non-acrylamide based water-insoluble particles. 前記製紙原料が、微細繊維分および炭酸カルシウムを含む200メッシュアンダー微細分が製紙原料全乾燥固形分に対し、45〜85質量パーセントであることを特徴とする請求項1に記載の抄紙方法。 2. The papermaking method according to claim 1, wherein the papermaking raw material has a fine content of 200 mesh under containing fine fiber and calcium carbonate in an amount of 45 to 85 mass percent based on the total dry solid content of the papermaking raw material.
JP2006205635A 2006-07-28 2006-07-28 Paper making method Active JP4942415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205635A JP4942415B2 (en) 2006-07-28 2006-07-28 Paper making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205635A JP4942415B2 (en) 2006-07-28 2006-07-28 Paper making method

Publications (2)

Publication Number Publication Date
JP2008031584A JP2008031584A (en) 2008-02-14
JP4942415B2 true JP4942415B2 (en) 2012-05-30

Family

ID=39121322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205635A Active JP4942415B2 (en) 2006-07-28 2006-07-28 Paper making method

Country Status (1)

Country Link
JP (1) JP4942415B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709043B2 (en) * 2010-03-31 2015-04-30 荒川化学工業株式会社 Water-soluble polymer dispersion, paper strength enhancer, paper drainage improver and paper yield improver
CN103282582B (en) 2010-10-29 2016-02-24 巴克曼实验室国际公司 The polymer particles papermaking utilizing ion-type crosslinked and the product produced thereby
JP5713389B2 (en) * 2011-02-18 2015-05-07 ハイモ株式会社 Paper making method
JP5713053B2 (en) * 2013-06-13 2015-05-07 栗田工業株式会社 Papermaking additive, method for producing papermaking additive, and method for producing paper
JP5713054B2 (en) * 2013-06-13 2015-05-07 栗田工業株式会社 Papermaking additive, method for producing papermaking additive, and method for producing paper
WO2014199996A1 (en) * 2013-06-13 2014-12-18 栗田工業株式会社 Papermaking additive, method for producing papermaking additive, and method for producing paper

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218557B2 (en) * 1996-01-11 2001-10-15 ハイモ株式会社 Papermaking method
CA2189724A1 (en) * 1996-07-08 1998-01-09 Suezone Chow Method of pulping
JP3998803B2 (en) * 1998-04-01 2007-10-31 日本製紙株式会社 Paper making method
JP2004025094A (en) * 2002-06-27 2004-01-29 Hymo Corp Flocculating and treating agent consisting of cross-linking, ionizable and water-soluble polymer and its use

Also Published As

Publication number Publication date
JP2008031584A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
US6605674B1 (en) Structurally-modified polymer flocculants
KR101753427B1 (en) Cationic cross-linked polymers in water-in-water polymer dispersions
AU2001251282A1 (en) Structurally-modified polymer flocculants
JP4942415B2 (en) Paper making method
JP4886228B2 (en) Water-soluble polymer dispersion and paper making method using the same
KR100853926B1 (en) Amphoteric water-soluble polymer dispersion and use thereof
JP2007023146A (en) Ionic fine particle and application of the same
EP0877120B1 (en) Papermaking process
JP5382708B2 (en) Pitch reduction method
JP2006182816A (en) Crosslinked water-soluble polymer dispersion liquid and paper making method using the same
JP6308585B2 (en) Yield improver and method for improving yield of papermaking raw material using the same
JP4236953B2 (en) Paper making method
JP3509003B2 (en) Papermaking method
RU2650117C2 (en) Dispersions of polymers with large molecular weights
JP3642566B2 (en) Paper making method
JP5506259B2 (en) Water extraction improvement method
WO2011102266A1 (en) Thickening agent for papermaking, method for producing same, and papermaking method using said thickening agent
JP2001295196A (en) Method for improving yield
JP7300082B2 (en) Anionic retention aid and papermaking method using the same
JP5614832B2 (en) How to make neutral newsprint
JP4666558B2 (en) Freeness improvement method
JP4236945B2 (en) How to make paper
CN117510739A (en) Cationic polyacrylamide with micro-block structure
JP2023161607A (en) Papermaking method for improving yield and freeness
JP6037432B2 (en) Paper additive and paper making method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250