JP4402207B2 - Alcohol-resistant yeast - Google Patents

Alcohol-resistant yeast Download PDF

Info

Publication number
JP4402207B2
JP4402207B2 JP21985399A JP21985399A JP4402207B2 JP 4402207 B2 JP4402207 B2 JP 4402207B2 JP 21985399 A JP21985399 A JP 21985399A JP 21985399 A JP21985399 A JP 21985399A JP 4402207 B2 JP4402207 B2 JP 4402207B2
Authority
JP
Japan
Prior art keywords
sake
strain
alcohol
association
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21985399A
Other languages
Japanese (ja)
Other versions
JP2001046054A (en
Inventor
輝 朝日
Original Assignee
オエノンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オエノンホールディングス株式会社 filed Critical オエノンホールディングス株式会社
Priority to JP21985399A priority Critical patent/JP4402207B2/en
Publication of JP2001046054A publication Critical patent/JP2001046054A/en
Application granted granted Critical
Publication of JP4402207B2 publication Critical patent/JP4402207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Description

【0001】
【産業上の利用分野】
酒類の製造における酵母に関する。
特に、従来のアルコール耐性酵母を用いた清酒製造において問題となっているリンゴ酸などの有機酸の多量生産が改良された酵母に関する。
【0002】
【従来の技術】
清酒醪発酵においてアルコール濃度が10%を越えると、酵母は自ら生成したアルコールによりダメージを受けるものが現れはじめ、アルコール濃度が15%を越え20%近くに達すると、死滅するものも観察され、このダメージを受けた酵母および死滅した酵母から種々の物質が漏出されると考えられている。この漏出された菌体内物質が製成される清酒に雑味を与えたり、製成された清酒の品質劣化速度を速くすることから、アルコールに耐性を持つ菌株の探索が盛んに行われてきた。例えば、菅野らは、酒造場から野生のアルコール耐性酵母を分離している(J.Brew.Soc.Japan,65,902(1970))。また、原らは、アルコールを含む麹エキス培地でアルコール耐性酵母を育種、分離し(J. Soc.Brew. Japan,71,301(1976))、この系統から日本醸造協会が頒布している協会11号が誕生した。
【0003】
また、菌体内物質の漏出に関する基礎的な研究も進められてきた。後藤と土肥は、米および麹には検出される量は含まれていないが酵母の液胞に多量に蓄積されるS−アデノシルメチオニン(以下、SAMと略す。)に注目し、SAMの菌体外への漏出が清酒醪発酵における酵母菌体内物質漏出の指標となりうることを報告している(J.Brew.Soc.Japan,87,230(1992))。また、アルコール耐性酵母を用いた清酒醪発酵では、SAMの漏出が少ないことが明らかにされている。
【0004】
【本発明が解決しようとする課題】
現在、清酒製造に最も頻繁に用いられているアルコール耐性菌株は協会11号であり、他の菌株は殆ど用いられていない。
しかも、協会11号により製成される清酒は、協会7号や協会9号、協会701号などの一般に広く使われている酵母菌株により製成される清酒と比較するとリンゴ酸を非常に多く含み、一般の清酒と較べるとやや異なった香味であるなどの難点があり、協会11号が清酒製造に用いられるのは限られた場合にしかすぎない。
【0005】
原らは、前記のアルコール耐性酵母を育種、分離とは別に、菌体溶解酵素を用いたアルコール耐性酵母の育種、分離を行っているが、この結果においてもアルコール耐性の強い菌株にはリンゴ酸高生産が認められている(J.Brew.Soc.Japan,73,408(1978)。
そのため、菌体内物質の漏出が少ないというアルコール耐性酵母の利点を保持しながら一般の清酒の範疇の香味を有する清酒を製成する新たな性質を示すアルコール耐性酵母の出現が望まれ、より広い目的でのアルコール耐性酵母の使用が望まれている。
【0006】
【課題を解決するための手段】
上記課題を解決するために、清酒醪発酵が完了した後も長期間にわたり静置を続けて高濃度アルコールが存在する条件下でアルコール耐性株を育種し、このなかから様々な方法で優れた性質を有するアルコール耐性株を探索した。
様々な探索を試みていたところ、醪発酵においてSAM漏出が少ないという基準で選択した菌株のなかに、YNBG寒天培地(ディフコ社製イースト・ナイトロジェン・ベース0.67%、グルコース2%、寒天2%)から麹エキス寒天培地に継代した場合は良好に生育するが、YPD寒天培地(酵母エキス1%、ペプトン2%、グルコース2%、寒天2%)に継代した場合やYNBG寒天培地に継代した場合では生育が不良な菌株が存在することを見出した。さらに、これらの菌株が製成する清酒について調べたところ、リンゴ酸などの有機酸生成に問題のない良好な清酒を製成する菌株が多く存在することを見出し、本発明を完成させた。
【0007】
すなわち、本発明は、YNBG培地に継代後YPD培地及びYNBG培地に継代すると生育が不良であるという新しいタイプのアルコール耐性酵母菌株を提供するものであり、本発明の菌株は、アルコール耐性株でありながら、リンゴ酸などの有機酸含量が一般の清酒と同等である良好な清酒を製成することができるものである。
【0008】
本発明の酵母は、醪発酵が完了した後も長期間にわたり静置を続けたものから分離した酵母菌株から探索することにより取得することができる。ここで、醪の調製に用いる酵母は、協会7号、9号または701号など通常の清酒製造に用いられているサッカロミセス・セレビシエに属する酵母菌株をはじめ様々な酵母を用いることができ、また、酵母を変異剤、紫外線、放射線などで変異処理したものを用いても良いが、変異処理をせずに自然誘発で起きる変異により目的の菌株を得ることができる。
【0009】
醪の調製は、通常の清酒製造に用いられている米、麹及び水を用いればよく、必要に応じて乳酸や酵素剤などを加えてもよい。また、醪の調製方法は、従来の醪発酵の方法を適宜用いればよく、好ましくは、10〜20℃の温度で留後8〜20日にアルコール濃度が18%を越える発酵条件で行うのがよい。また、発酵が完了した醪の静置は、10〜20℃の温度で30日以上続けるのが好ましく、長期間静置した後の醪の酵母を用いて再度醪発酵を行い、再度長期間静置してもよい。
【0010】
発酵が完了した後も長期間にわたり静置を続けた醪からの酵母菌株の分離は、一般の方法を用いればよいが、好ましくは、醪を生理食塩水で希釈したものを麹エキス寒天培地に塗布し、15〜30℃で静置培養してコロニーを形成させ、コロニーから麹エキス寒天培地のスラントに植え継ぐのがよい。
【0011】
分離した菌株のなかからSAM漏出が少ない菌株を選択するには、各分離菌株及び親株を用いて醪発酵の小仕込を行い、それぞれの醪上清のSAM濃度とアルコール濃度の経時変化を測定し、アルコール濃度が18%に到達したときの醪上清SAM濃度を親株のものと比較してSAM漏出が少ないかを判定することにより行うことができる。このとき、SAM濃度の測定は、たとえば、後藤と土肥の方法(J.Brew.Soc.Japan,87,230(1992))で行うことができ、また、アルコール濃度の測定は、たとえば、国税庁所定分析法注解に記載の方法に従って行うことができる。
【0012】
次に、上記で得られたSAM漏出が少ない菌株の中から、YPD寒天培地及びYNBG寒天培地では生育が不良である菌株の選択するには、上記のSAM漏出が少ないと判定された菌株をまずYNBG寒天培地のスラントに植え継ぎ、次にこのスラントから麹エキス寒天培地、YPD寒天培地及びYNBG寒天培地に各々移植し、この3種の寒天培地を30℃で3日間静置して、目視により生育状態を判定することにより、麹エキス寒天培地では生育が良好であるがYPD寒天培地及びYNBG寒天培地では生育が不良なものを取得することができる。ここで言う麹エキス培地とは、麹米に2倍重量の水を加え、50℃で1晩静置して麹菌の酵素により米の糖化を進めたものをろ過して得た液体から調製した培地である。麹米とは、麹室で、蒸した米を40℃付近まで放冷したところに麹菌を振りかけて、米に麹菌を増殖させたものであり、米の澱粉を糖化する酵素が含まれている。また、生育の良、不良の判断は、接種面一面に菌体が増産する場合は良好、接種面に点々と小さな菌体の塊のみしか形成されない場合は不良と判断すればよい。
【0013】
このようにして、醪発酵においてSAM漏出が少なく、かつ、YNBG寒天培地に継代するとYPD寒天培地及びYNBG寒天培地では生育が不良である性質を持つ酵母菌株を取得することができる。このようにして得られた本発明の菌株は、通常の清酒醪発酵においてアルコール濃度が18%に到達したときの醪上清SAM濃度が協会7号の50%以下であり、また、アルコール濃度が18%に到達したときのメチレンブルー染色による酵母の死滅率は10%以下であった。
【0014】
本発明の菌株は、YPD寒天培地及びYNBG寒天培地で生育が不良である他、糖蜜培地(糖蜜10%、硫酸アンモニウム0.5%、尿素1%、リン酸二水素一カリウム0.5%、硫酸マグネシウム0.05%)を用いた通気撹拌培養での菌体の収量も協会7号の場合と較べると20〜30%にすぎなかった。これらのことから、具体的には物質を特定できないが麹エキスに含まれるものを本発明の菌株は要求すると考えられる。アルコール耐性酵母のなかでこのような栄養要求性を持つものは、これまでに知られておらず、本発明の菌株は新規タイプのアルコール耐性酵母であることが判明した。そこで、取得した菌株の内の1株をSAM001と命名し、本株を受託番号FERM P−17373として通商産業省工業技術院生命工学工業技術研究所に寄託した。
【0015】
SAM001株は、協会7号を用いて前記の方法により得られた菌株であり、TTC染色およびβ−アラニン培地での繁殖性は親株である協会7号と同じであった。
SAM001株のアルコール耐性能力の強さを調べるために、本株の親株である協会7号及びアルコール耐性株のなかで清酒製造に最も用いられている協会11号と比較して、16%アルコール存在下での生存能力、10%アルコール存在下での増殖能力および18%アルコール存在醪での発酵能力を測定した。その結果を表1に示す通り、SAM001株のアルコール耐性能力は協会11号とは異なることが明らかになった。
【0016】
【表1】

Figure 0004402207
【0017】
また、本発明には、本発明の酵母を用いて製造した酒類も含まれる。
本発明の酵母は、清酒をはじめ焼酎、ビール、ワインなど様々な酒類の製造に用いることが出来き、また、本発明の菌株を用いた酒類の製成は、従来の酒類の製造方法を適宜用いることにより可能である。
【0018】
アルコール耐性株のなかで清酒製造に最も用いられている協会11号により製成される清酒は、協会7号や協会9号、協会701号などの通常の清酒酵母により製成した清酒と比較するとリンゴ酸などが多量に含まれており有機酸組成が異なることが知られているが、本発明の菌株の製成する清酒について有機酸分析を行ったところ、リンゴ酸をはじめ種々の有機酸含量が親株(協会7号)のものと同等である菌株が多く存在した。
【0019】
また、製成した清酒の清酒らしさを官能評価により判定したところ、総ての菌株のものが協会11号により製成されたものより清酒らしさがあった。また、官能評価により香味の良さを判定したところ、親株のものよりも優れているものが多く存在した。このことから、従来の清酒の香味を持ち、良好な酒質の清酒を製成することが可能な菌株が多く含まれると推測された。
以下、具体例を挙げて本発明を説明するが、本発明は以下の具体例に限定されるものではない。
【0020】
【実施例1】
協会7号酵母を10mlYPD培地に種菌し、30℃で1日間静置培養した。この培養液を400ml糖蜜培地に移植し、30℃で3日間静置培養した。この培養液を集菌洗浄し、この酵母菌体を用い、表2に示す仕込配合で清酒醪発酵を行った。
【0021】
【表2】
Figure 0004402207
【0022】
ここで、原料である米は日本晴(平成7年度産)を精米歩合70%に精米して使用した。また、麹は常法により2日間麹室にて製麹し、酵素剤はスピターゼMKを用いた。仕込み方法は3日間に分け、初日を初添、1日置いて3日目に仲添、4日目に留添をし、15℃で発酵させた。酵母は初添時に湿菌体重量で1g添加した。
【0023】
留後17日に醪上清のアルコール濃度が19.3%に達した。その後も15℃で静置を続け、留後60日の醪をサンプリングし、無菌生理食塩水で希釈した液を麹エキス寒天培地に塗布した。この寒天培地を30℃で4日間静置培養し、コロニーを形成させ、各コロニーからアルコール耐性菌株探索の候補菌株のスラントを調製した。
【0024】
ここで得られた株の内の1株である本発明の菌株SAM001株、及び親株である協会7号を用いて上記の方法で培養し、集菌洗浄した酵母菌体を用いて表2に示す仕込配合で清酒醪発酵を行った。このときの醪上清のアルコール濃度およびSAM濃度を測定し、その結果をそれぞれ表3および表4に示す。
【0025】
【表3】
Figure 0004402207
【0026】
【表4】
Figure 0004402207
【0027】
表3に示す通り、本発明の菌株のアルコール生成速度は、醪発酵前半では親株よりもやや遅かったが醪発酵後半では親株よりも速く、アルコール生成量は醪発酵末期に親株のアルコール生成量を追い越した。また、表4に示す通り、本発明の菌株のSAM漏出量は親株と比較すると著しく少なく、アルコール濃度が18%に到達したときのSAM濃度を基にSAM漏出量を比較したところ、本発明の菌株のSAM漏出量は親株の31.6%であった。
【0028】
ここで、SAM濃度の測定は、後藤と土肥の高速液体クロマトグラフィーによる方法(J.Brew.Soc.Japan,87,230(1992))に準じて行った。すなわち、強カチオン交換樹脂カラムChemocopak Nucleosil 10SAを用い、リン酸アンモニウム緩衝液(pH3.0)の0.05Mから0.5Mのグラジエントで展開し、260nmの吸光度で検出することにより行った。
【0029】
【実施例2】
本発明の菌株SAM001株および親株である協会7号をYNBG寒天培地に植え、30℃で4日間静置培養してスラントを作製した。このスラントから麹エキス寒天培地及びYPD寒天培地並びにYNBG寒天培地に移植し、30℃で静置培養し、3日後に目視により生育状況を判定した。その結果を表5に示す。
【0030】
【表5】
Figure 0004402207
【0031】
表5に示す通り、親株である協会7号は総ての培地で生育良好であった。本発明の菌株は、麹エキス寒天培地では生育は良好であったが、YPD寒天培地およびYNBG寒天培地では親株である協会7号のものと比較すると寒天表面に形成される菌体の塊の厚みが薄く生育不良であると判定した。特に、YNBG寒天培地の生育においては、親株のものは、菌を接種した部分には一面に菌体が増殖しているのに対して、本発明の菌株のものは、点々と小さな菌体の塊があるのみであり、明らかに生育不良であることが観察された。
【0032】
【実施例3】
本発明の菌株、親株及び協会11号を麹エキス培地に種菌し、30℃で1日間静置培養した。これらの培養液にアルコール濃度が16%となるようにアルコールを加え、30℃に4時間温置し、メチレンブルー染色で死滅率を測定した。この結果を表6に示す。
【0033】
【表6】
Figure 0004402207
【0034】
表6に示す通り、本発明の菌株の高アルコール濃度中での生存維持能力は、協会11号ほどは強くなかったが、親株よりは強かった。
【0035】
【実施例4】
本発明の菌株、親株及び協会11号を麹エキス培地に種菌し、30℃で1日間静置培養した。これらの培養液を10%アルコール含有麹エキス培地に酵母密度が約104/mlとなるように移植し、30℃で20時間静置培養し、トーマ血球板を用いて生菌数を測定して増殖倍率を求めた。この結果を表7に示す。
【0036】
【表7】
Figure 0004402207
【0037】
表7に示す通り、本発明の菌株の高アルコール濃度中での増殖速度は、親株および協会11号よりも速かった。
【0038】
【実施例5】
本発明の菌株を麹エキス培地10mlに4本種菌し、30℃で1日間静置培養した。この培養液1本分を麹エキス培地500mlに移植し、30℃で2日間静置培養し、合計2Lの培地に増殖させた本発明の菌株の菌液を調製した。
この菌液を水100Lおよび乳酸1Lを入れた容器に加えた後に、麹米45kg、次いで70%精白米105kgを加え、常法により速醸酒母を調製した。
この調製した酒母を用いて、表8に示す仕込配合で醸造を行った。
【0039】
【表8】
Figure 0004402207
【0040】
ここで、原料である米は日本晴(平成10年度産)を精米歩合70%に精米して使用し、、麹は常法により2日間麹室にて製麹した。仕込み方法は3日間に分け、初日を初添、1日置いて3日目に仲添、4日目に留添をし、15℃で発酵させた。酒母は、調製した全量を初添時に加えた。
【0041】
また、留19日に30%アルコールを876L添加し、留20日に米120Kgを汲み水240Lのなかで酵素剤スピターゼMを用いて55℃で12時間の糖化をして15℃まで冷却したものを四段として加えた。
留21日に上槽し、アルコール濃度20.7%、日本酒度+7.5,酸度1.7、アミノ酸度1.7の製成酒5681Lを得た。
【0042】
親株を用いて同様な方法で醸造した製成酒は、アルコール濃度20.4%、日本酒度+5.0 ,酸度1.8、アミノ酸度1.5であり、日本酒度を比較すると本発明の菌株から製成した清酒は高く、本発明の菌株を用いて辛口タイプの清酒を製成できることが明らかになった。
【0043】
また、本製成酒のグルコースおよびマルトース濃度を測定したところ、それぞれ1.82%および0.30%であった。親株を用いて同様な方法で醸造した清酒の2.26%および0.45%と較べると、本発明の菌株により製成される清酒の残存グルコースおよびマルトースは少なく、辛口タイプの清酒を製成するのに適していると考えられる。
【0044】
また、上槽直前の醪中の酵母の死滅率をメチレンブルー染色法により観察したところ、19.2%であり、親株を用いて同様な方法で醸造した場合の58.3%と比較するとかなり低かった。また、アルコール濃度が18%に達したときの死滅率は、1.4%であり、親株を用いて同様な方法で醸造した場合の15.0%と比較するとかなり低かった。
【0045】
アルコール濃度が18%に到達したときの醪上清SAM濃度は、4.6ppmであり、親株を用いて同様な方法で醸造した場合の12.6ppmと比較するとかなり低かった。
本製成酒並びに親株及び協会11号を用いて本製成酒と同様な方法で醸造した清酒の有機酸分析を行ったところ、表9に示す結果が得られた。
【0046】
【表9】
Figure 0004402207
【0047】
表9の結果から、協会11号により製成される清酒には協会7号のものと較べるとリンゴ酸およびコハク酸が非常に多量に含まれるが、本発明の菌株により製成される清酒の有機酸組成は、親株である協会7号のものとあまり変わらないことが確認された。
【0048】
【実施例6】
実施例5に記載の本発明の菌株、協会7号及び協会11号により製成された清酒を用いて、15名のパネルが清酒らしい香味を有しているかを官能評価した。評価方法は、協会7号により製成された清酒を基準とし、5:協会7号により製成された清酒よりも非常に清酒らしい、4:協会7号により製成された清酒よりもやや清酒らしい、3:協会7号により製成された清酒と同等、2:協会7号により製成された清酒と較べるとやや清酒らしくない、1:協会7号により製成された清酒と較べると全く清酒らしくない、の5段階評価で行い、表10に示す結果が得られた。
【0049】
【表10】
Figure 0004402207
【0050】
表10に示す通り、本発明の菌株から製成された清酒は、協会11号により製成された清酒よりも清酒らしい香味を有していた。
【0051】
【実施例7】
実施例5に記載の本発明の菌株、協会7号および協会11号により製成された清酒を用いて、15名のパネルが良質の香味を有しているかを官能評価した。評価方法は、5:非常に良い、4:やや良い、3:普通、2:やや悪い、1:非常に悪い、の5段階評価で行い、表11に示す結果が得られた。
【0052】
【表11】
Figure 0004402207
【0053】
表11に示す通り、本発明の菌株から製成された清酒は、協会7号により製成された清酒よりもやや香味が良く、協会11号により製成された清酒よりも良質の香味を有していた。[0001]
[Industrial application fields]
It relates to yeast in the production of liquors.
In particular, the present invention relates to a yeast improved in mass production of organic acids such as malic acid, which is a problem in sake production using conventional alcohol-resistant yeast.
[0002]
[Prior art]
In the sake lees fermentation, when the alcohol concentration exceeds 10%, yeast begins to appear damaged by the alcohol generated by itself, and when the alcohol concentration exceeds 15% and reaches nearly 20%, some things are observed to die. It is believed that various substances are leaked from damaged yeast and dead yeast. In order to give taste to the sake produced by this leaked bacterial substance and to increase the quality deterioration rate of the produced sake, the search for strains resistant to alcohol has been actively conducted. . For example, Sugano et al. Isolated wild alcohol-resistant yeast from a brewery (J. Brew. Soc. Japan, 65 , 902 (1970)). Hara et al. Breeding and Isolating Alcohol-Resistant Yeast on a Koji Extract Medium Containing Alcohol (J. Soc. Brew. Japan, 71 , 301 (1976)), an association distributed by the Japan Brewing Association from this strain Eleventh was born.
[0003]
In addition, basic research on leakage of intracellular substances has been carried out. Goto and Toi pay attention to S-adenosylmethionine (hereinafter abbreviated as SAM), which is not contained in rice and rice bran but is abundantly accumulated in yeast vacuoles. It has been reported that leakage to the outside of the body can be an index of leakage of yeast cells in sake lees fermentation (J. Brew. Soc. Japan, 87 , 230 (1992)). In addition, it has been clarified that sake lees fermentation using alcohol-resistant yeast has little SAM leakage.
[0004]
[Problems to be solved by the present invention]
Currently, the alcohol-resistant strain most frequently used for sake production is Association No. 11, and other strains are rarely used.
Moreover, sake produced by Association No. 11 contains much more malic acid than sake produced by commonly used yeast strains such as Association No. 7, Association No. 9, and Association No. 701. However, there is a drawback that it has a slightly different flavor compared to general sake, and Association No. 11 is used only for limited sake production.
[0005]
Hara et al. Breeds and isolates alcohol-resistant yeast using cell-lytic enzymes separately from the above-mentioned breeding and isolation of alcohol-resistant yeast. High production is recognized (J. Brew. Soc. Japan, 73 , 408 (1978).
For this reason, the emergence of alcohol-resistant yeast that has the new properties of producing sake with the flavor of general sake while maintaining the advantage of alcohol-resistant yeast with less leakage of intracellular substances is desired. The use of alcohol tolerant yeast is desired.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, after the sake lees fermentation was completed, the solution was allowed to stand for a long period of time, and an alcohol-resistant strain was bred under conditions where high-concentration alcohol was present. We searched for an alcohol-resistant strain having
When various searches were attempted, among strains selected on the basis that SAM leakage was small in koji fermentation, YNBG agar medium (Difco East Nitrogen Base 0.67%, glucose 2%, agar 2 %)), It grows well when subcultured to koji extract agar medium, but when subcultured to YPD agar medium (yeast extract 1%, peptone 2%, glucose 2%, agar 2%) or to YNBG agar medium It was found that there was a strain with poor growth when subcultured. Furthermore, when the sake produced by these strains was examined, it was found that there are many strains that produce good sake with no problem in the production of organic acids such as malic acid, and the present invention was completed.
[0007]
That is, the present invention provides a new type of alcohol-resistant yeast strain that grows poorly when subcultured to a YPDG medium and a YNBG medium after being subcultured to a YNBG medium. However, it is possible to produce good sake having an organic acid content such as malic acid equivalent to that of general sake.
[0008]
The yeast of the present invention can be obtained by searching for yeast strains separated from those that have been allowed to stand for a long period of time after the koji fermentation is completed. Here, as the yeast used for the preparation of koji, various yeasts can be used including yeast strains belonging to Saccharomyces cerevisiae used in ordinary sake production such as Association No. 7, No. 9 or No. 701, A yeast obtained by mutation treatment with a mutagen, ultraviolet light, radiation, or the like may be used, but the target strain can be obtained by mutation that occurs by natural induction without mutation treatment.
[0009]
For the preparation of koji, rice, koji, and water used in ordinary sake production may be used, and lactic acid, an enzyme agent, or the like may be added as necessary. Moreover, the koji preparation method should just use the conventional koji fermentation method suitably, Preferably, it carries out on the fermentation conditions over which alcohol concentration exceeds 18% on the 8th to 20th day after a distillation at the temperature of 10-20 degreeC. Good. In addition, it is preferable that the fermentation of the koji after completion of fermentation is continued for 30 days or more at a temperature of 10 to 20 ° C. It may be placed.
[0010]
Separation of the yeast strain from the koji that has been allowed to stand for a long period of time after completion of the fermentation may be carried out using a general method, but preferably, koji diluted with physiological saline is used as a koji extract agar medium. It is preferably applied and statically cultured at 15 to 30 ° C. to form a colony, and the colony is preferably planted on a slant of a koji extract agar medium.
[0011]
In order to select a strain with less SAM leakage from the isolated strains, a small preparation of koji fermentation is performed using each of the isolated strains and the parent strain, and the time-dependent changes in the SAM concentration and alcohol concentration of each koji supernatant are measured. It can be performed by determining whether the SAM leakage is small by comparing the SAM supernatant SAM concentration when the alcohol concentration reaches 18% with that of the parent strain. At this time, the SAM concentration can be measured by, for example, the method of Goto and Toi (J. Brew. Soc. Japan, 87 , 230 (1992)), and the alcohol concentration can be measured, for example, by the National Tax Agency. It can be performed according to the method described in the analytical method comment.
[0012]
Next, in order to select a strain that is poorly grown on a YPD agar medium and a YNBG agar medium from among the strains obtained above with a small amount of SAM leakage, first, the strain determined to have a small amount of SAM leakage is first selected. The plant was transferred to a slant of YNBG agar medium, and then transplanted from the slant to koji extract agar medium, YPD agar medium, and YNBG agar medium. By determining the growth state, it is possible to obtain a growth that is good in the koji extract agar medium but poor in the YPD agar medium and the YNBG agar medium. The rice bran extract medium mentioned here was prepared from a liquid obtained by adding 2 times the weight of water to rice and leaving it at 50 ° C. overnight and filtering the rice saccharified with the koji mold enzyme. Medium. Sticky rice is a rice cake in which steamed rice is allowed to cool to around 40 ° C and sprinkled with koji molds, and the koji molds are grown on the rice, and contains enzymes that saccharify the starch of rice. . Further, whether the growth is good or bad may be judged as good when the bacterial cells are produced on the entire surface of the inoculation, and bad when only small lumps of bacterial cells are formed on the surface of the inoculation.
[0013]
In this way, a yeast strain having the property that there is little SAM leakage in koji fermentation and the growth is poor in the YPD agar medium and the YNBG agar medium when subcultured to the YNBG agar medium can be obtained. The strain of the present invention thus obtained has a SAM supernatant SAM concentration of 50% or less of Association No. 7 when the alcohol concentration reaches 18% in ordinary sake koji fermentation, and the alcohol concentration is When it reached 18%, the death rate of yeast by methylene blue staining was 10% or less.
[0014]
The strain of the present invention has poor growth on YPD agar medium and YNBG agar medium, as well as molasses medium (molasses 10%, ammonium sulfate 0.5%, urea 1%, dipotassium dihydrogen phosphate 0.5%, sulfuric acid The yield of bacterial cells in aeration and agitation culture using magnesium (0.05%) was only 20 to 30% as compared with the case of Association No. 7. From these facts, it is considered that the strain of the present invention requires a substance that cannot be specifically identified but is contained in the koji extract. No alcohol-resistant yeast having such auxotrophy has been known so far, and the strain of the present invention has been found to be a novel type of alcohol-resistant yeast. Therefore, one of the obtained strains was named SAM001, and this strain was deposited at the Biotechnology Institute of Industrial Technology, Ministry of International Trade and Industry under the accession number FERM P-17373.
[0015]
The SAM001 strain was a strain obtained by the above-mentioned method using Association No. 7, and the TTC staining and the fertility in β-alanine medium were the same as those of Association No. 7 as the parent strain.
In order to examine the strength of alcohol tolerance of SAM001 strain, compared with Association 7 which is the parent strain of this strain and Association 11 which is most used for sake production among alcohol-resistant strains, 16% alcohol is present. Underlying viability, growth ability in the presence of 10% alcohol and fermentation ability in the presence of 18% alcohol were measured. As shown in Table 1, it was revealed that the alcohol tolerance ability of SAM001 strain was different from that of Association No. 11.
[0016]
[Table 1]
Figure 0004402207
[0017]
The present invention also includes alcoholic beverages produced using the yeast of the present invention.
The yeast of the present invention can be used for the production of various alcoholic beverages such as sake, shochu, beer, wine and the like, and the production of alcoholic beverages using the strain of the present invention can be carried out by a conventional method for producing alcoholic beverages as appropriate. It is possible by using.
[0018]
Among the alcohol-resistant strains, sake produced by Association No. 11 that is most used for sake production is compared with sake produced by ordinary sake yeast such as Association No. 7, Association No. 9, Association No. 701, etc. It is known that malic acid is contained in a large amount and the organic acid composition is different, but when organic acid analysis was performed on sake produced by the strain of the present invention, various organic acid contents including malic acid were found. There are many strains that are equivalent to those of the parent strain (Association No. 7).
[0019]
Moreover, when the sake quality of the produced sake was judged by sensory evaluation, all the strains were more like sake than those produced by Association No. 11. Moreover, when the flavor was judged by sensory evaluation, many of them were superior to those of the parent strain. From this, it was speculated that there are many strains that have the flavor of conventional sake and are capable of producing sake of good quality.
Hereinafter, the present invention will be described with specific examples, but the present invention is not limited to the following specific examples.
[0020]
[Example 1]
Association No. 7 yeast was inoculated into 10 ml YPD medium and statically cultured at 30 ° C. for 1 day. This culture solution was transplanted to a 400 ml molasses medium and statically cultured at 30 ° C. for 3 days. The culture broth was collected and washed, and using this yeast cell body, sake koji fermentation was carried out with the formulation shown in Table 2.
[0021]
[Table 2]
Figure 0004402207
[0022]
Here, Nihonbare (produced in 1995) was used as the raw material, and the rice was refined to 70%. In addition, the koji was made in a common room for 2 days by a conventional method, and the enzyme agent used was Spitase MK. The charging method was divided into 3 days, the first day was the first addition, the first day was placed, the middle day was added on the third day, the fourth day was added, and the fermentation was carried out at 15 ° C. Yeast was added in an amount of 1 g by weight of wet cells at the time of initial addition.
[0023]
On the 17th day after the distillation, the alcohol concentration in the sputum supernatant reached 19.3%. Thereafter, the mixture was kept still at 15 ° C., and the sputum of 60 days after the retention was sampled, and a solution diluted with sterile physiological saline was applied to the sputum extract agar medium. This agar medium was statically cultured at 30 ° C. for 4 days to form colonies, and a slant of a candidate strain for alcohol-resistant strain search was prepared from each colony.
[0024]
The strain SAM001 of the present invention, which is one of the strains obtained here, and the parent strain, Association No. 7, were cultured in the manner described above, and the yeast cells collected and washed were used in Table 2. Sake lees fermentation was performed with the formulation shown. The alcohol concentration and SAM concentration of the sputum supernatant at this time were measured, and the results are shown in Table 3 and Table 4, respectively.
[0025]
[Table 3]
Figure 0004402207
[0026]
[Table 4]
Figure 0004402207
[0027]
As shown in Table 3, the alcohol production rate of the strain of the present invention was slightly slower than the parent strain in the first half of the koji fermentation but faster than the parent strain in the second half of the koji fermentation, and the amount of alcohol produced was the alcohol production amount of the parent strain at the end of the koji fermentation. Overtaken. Moreover, as shown in Table 4, the amount of SAM leakage of the strain of the present invention was remarkably small compared to the parent strain, and the amount of SAM leakage was compared based on the SAM concentration when the alcohol concentration reached 18%. The amount of SAM leakage of the strain was 31.6% of the parent strain.
[0028]
Here, the SAM concentration was measured according to the method of high-performance liquid chromatography (J. Brew. Soc. Japan, 87 , 230 (1992)) by Goto and Toi. Specifically, a strong cation exchange resin column Chemocopak Nucleosil 10SA was used, developed with a 0.05M to 0.5M gradient of ammonium phosphate buffer (pH 3.0), and detected with an absorbance of 260 nm.
[0029]
[Example 2]
The strain SAM001 of the present invention and the parental association No. 7 were planted on a YNBG agar medium, and left to stand at 30 ° C. for 4 days to produce a slant. From this slant, it was transplanted to a koji extract agar medium, a YPD agar medium and a YNBG agar medium, statically cultured at 30 ° C., and the growth state was visually determined after 3 days. The results are shown in Table 5.
[0030]
[Table 5]
Figure 0004402207
[0031]
As shown in Table 5, Association No. 7, which is the parent strain, grew well on all the media. Although the strain of the present invention grew well on the koji extract agar medium, the thickness of the cell mass formed on the agar surface compared to that of the association No. 7 which is the parent strain on the YPD agar medium and the YNBG agar medium. Was thin and poorly grown. In particular, in the growth of the YNBG agar medium, the cells of the parent strain grow on the whole surface in the part inoculated with the bacteria, whereas the strain of the present invention has many small cells. It was observed that there were only lumps and clearly poor growth.
[0032]
[Example 3]
The bacterial strain, parental strain and association No. 11 of the present invention were inoculated in a koji extract medium, and statically cultured at 30 ° C for 1 day. Alcohol was added to these cultures so that the alcohol concentration was 16%, and the mixture was incubated at 30 ° C. for 4 hours, and the death rate was measured by methylene blue staining. The results are shown in Table 6.
[0033]
[Table 6]
Figure 0004402207
[0034]
As shown in Table 6, the ability of the strain of the present invention to maintain survival in a high alcohol concentration was not as strong as that of Association No. 11, but was stronger than that of the parent strain.
[0035]
[Example 4]
The bacterial strain, parental strain and association No. 11 of the present invention were inoculated in a koji extract medium, and statically cultured at 30 ° C for 1 day. These cultures were transplanted to a 10% alcohol-containing koji extract medium so that the yeast density was about 10 4 / ml, left to stand at 30 ° C. for 20 hours, and the viable cell count was measured using a toma hemocytometer. Thus, the multiplication factor was determined. The results are shown in Table 7.
[0036]
[Table 7]
Figure 0004402207
[0037]
As shown in Table 7, the growth rate of the strain of the present invention in a high alcohol concentration was faster than that of the parent strain and Association No. 11.
[0038]
[Example 5]
Four strains of the strain of the present invention were seeded in 10 ml of koji extract medium, and cultured at 30 ° C. for 1 day. One culture broth was transplanted to 500 ml of koji extract medium, and statically cultured at 30 ° C. for 2 days to prepare a bacterial solution of the strain of the present invention grown on a total of 2 L of medium.
After adding this bacterial solution to a container containing 100 L of water and 1 L of lactic acid, 45 kg of glutinous rice and then 105 kg of 70% polished rice were added to prepare a quick brewing mother by a conventional method.
Using this prepared liquor mother, brewing was carried out with the charging composition shown in Table 8.
[0039]
[Table 8]
Figure 0004402207
[0040]
Here, the raw material rice used was Nipponbare (produced in 1998) with a rice milling ratio of 70%, and koji was smelted in a common room for two days. The charging method was divided into three days, the first day was the first addition, the first day was placed, the middle day was added on the third day, the fourth day was added, and the mixture was fermented at 15 ° C. The brewer added the total amount prepared at the time of initial addition.
[0041]
Also, 876L of 30% alcohol was added on the 19th day, 120Kg of rice was pumped on the 20th day, saccharified for 12 hours at 55 ° C with the enzyme agent Spitase M in 240L of water, and cooled to 15 ° C. Was added in four steps.
On the 21st day of the distillation, 5681L of sake with an alcohol concentration of 20.7%, a sake degree of 7.5, an acidity of 1.7 and an amino acid degree of 1.7 was obtained.
[0042]
The sake brewed in the same manner using the parent strain has an alcohol concentration of 20.4%, a sake degree of 5.0, an acidity of 1.8, and an amino acid degree of 1.5. The sake produced from the brewery was expensive, and it became clear that dry type sake can be produced using the strain of the present invention.
[0043]
Moreover, when the glucose and maltose concentrations of this sake were measured, they were 1.82% and 0.30%, respectively. Compared to 2.26% and 0.45% of sake brewed in the same way using the parent strain, the sake produced by the strain of the present invention has less residual glucose and maltose, and produces dry type sake. It is thought that it is suitable for doing.
[0044]
In addition, when the death rate of yeast in the culm just before the upper tank was observed by methylene blue staining, it was 19.2%, which was considerably lower than 58.3% when brewed in the same manner using the parent strain. It was. Further, the death rate when the alcohol concentration reached 18% was 1.4%, which was considerably lower than 15.0% when brewed in the same manner using the parent strain.
[0045]
The SAM concentration of sputum supernatant when the alcohol concentration reached 18% was 4.6 ppm, which was considerably lower than 12.6 ppm when brewed in a similar manner using the parent strain.
When the organic acid analysis of the sake brewed by the same method as that of the present sake was performed using the present sake and the parent strain and association No. 11, the results shown in Table 9 were obtained.
[0046]
[Table 9]
Figure 0004402207
[0047]
From the results of Table 9, the sake produced by Association No. 11 contains a very large amount of malic acid and succinic acid compared to those of Association No. 7, but the sake produced by the strain of the present invention It was confirmed that the organic acid composition was not much different from that of Association 7 as the parent strain.
[0048]
[Example 6]
Using the sake of the present invention described in Example 5 and sake produced by Association No. 7 and Association No. 11, it was sensory-evaluated whether the panel of 15 persons had a flavor like sake. The evaluation method is based on the sake produced by Association No.7, 5: It seems to be much more refined than the sake produced by Association No.7, 4: Sake slightly more than the sake produced by Association No.7 It seems to be 3: Same as Sake made by Association No.7 2: Slightly not like Sake made by Association No.7, 1: Not completely compared to Sake made by Association No.7 The results were shown in Table 10 with a five-step evaluation that was not likely to be sake.
[0049]
[Table 10]
Figure 0004402207
[0050]
As shown in Table 10, the sake produced from the strain of the present invention had a flavor more like that of sake produced by Association No. 11.
[0051]
[Example 7]
Using the strain of the present invention described in Example 5, sake produced by Association No. 7 and Association No. 11, it was sensory evaluated whether 15 panels had good quality flavor. The evaluation method was a five-step evaluation of 5: very good, 4: slightly good, 3: normal, 2: slightly bad, and 1: very bad, and the results shown in Table 11 were obtained.
[0052]
[Table 11]
Figure 0004402207
[0053]
As shown in Table 11, the sake produced from the strain of the present invention has a slightly better flavor than the sake produced by Association No. 7, and has a higher quality flavor than the sake produced by Association No. 11. Was.

Claims (2)

アルコール耐性酵母SAM001株(FERM P−17373)。 Alcohol-resistant yeast SAM001 strain (FERM P-17373). 請求項1記載のアルコール耐性酵母を用いて製造され、グルコース及びマルトース含量が協会7号を用いて同条件で得られた清酒よりも少ない清酒。Claims produced using an alcohol-resistant yeast claim 1 Symbol placement, glucose and less sake than Sake obtained under the same conditions with maltose content of the No. 7 Association.
JP21985399A 1999-08-03 1999-08-03 Alcohol-resistant yeast Expired - Lifetime JP4402207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21985399A JP4402207B2 (en) 1999-08-03 1999-08-03 Alcohol-resistant yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21985399A JP4402207B2 (en) 1999-08-03 1999-08-03 Alcohol-resistant yeast

Publications (2)

Publication Number Publication Date
JP2001046054A JP2001046054A (en) 2001-02-20
JP4402207B2 true JP4402207B2 (en) 2010-01-20

Family

ID=16742095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21985399A Expired - Lifetime JP4402207B2 (en) 1999-08-03 1999-08-03 Alcohol-resistant yeast

Country Status (1)

Country Link
JP (1) JP4402207B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339060B2 (en) * 2003-09-26 2009-10-07 麒麟麦酒株式会社 Manufacturing method of fermented malt beverage
JP2009178087A (en) * 2008-01-30 2009-08-13 Kyoto Univ Method for producing liquors or fermented seasoning
JP2015177782A (en) * 2014-06-18 2015-10-08 黄桜株式会社 Method of producing liquor or fermented seasoning

Also Published As

Publication number Publication date
JP2001046054A (en) 2001-02-20

Similar Documents

Publication Publication Date Title
Sefa-Dedeh et al. Yeasts in the traditional brewing of pito in Ghana
CN109370929B (en) Application of saccharomyces cerevisiae in brewing wine
CN106701519B (en) Method for improving content of total acid esters and reducing sugar in table vinegar by using high-ester-yield indigenous aroma-producing yeast enhanced Daqu
CN112725114B (en) Method for increasing ethyl caproate content of Luzhou-flavor liquor
Hayashida et al. Formation of high concentrations of alcohol by various yeasts
CN106753994B (en) Method for improving alcohol content of alcohol fermentation liquor and reducing isoamyl alcohol content by using high-ester-yield indigenous aroma-producing yeast enhanced yeast
JP4402207B2 (en) Alcohol-resistant yeast
Bechem et al. Characterization of palm wine yeasts using osmotic, ethanol tolerance and the isozyme polymorphism of alcohol dehydrogenase
JP2683058B2 (en) Method for producing alcoholic beverage or fermented seasoning
KR101777555B1 (en) Distilled liquor using Saccharomyces cerevisiae N9 and method for preparation thereof
CN111621429B (en) High-yield ester Mao Zhenbi red yeast and application thereof in fermentation of jujube fruit wine
CN114574375A (en) Saccharomyces cerevisiae, leavening agent and application of saccharomyces cerevisiae and leavening agent in preparation of fermented food
Ueno et al. Fermentation of Molasses by Several Yeasts from Hot Spring Drain and Phylogeny of the Unique Isolate Producing Ethanol at 55^ oC
Flor et al. Saccharomyces uvarum inulyticus var. nov., a new high-concentration ethanol tolerant yeast from rice wine
JP2003116523A (en) Yeast isolated from cherry blossom, method for obtaining the same, and method for producing sake or other food and beverage using the same
CN114763517B (en) High-temperature resistant saccharomyces cerevisiae and high-temperature fermentation process development of saccharomyces cerevisiae in fermented food
CN114836332B (en) Pichia kudriavzevii with high tolerance and low isoamyl alcohol yield and application thereof
JP4393028B2 (en) Novel yeast and its use
JP2835814B2 (en) Alcohol production method
JP2670037B2 (en) Distilled liquor manufacturing method
JP3835564B2 (en) New yeast and its use
CN114621880B (en) Ester-producing abnormal Wikihan yeast and application thereof in white spirit Daqu
CN116103171B (en) Saccharomyces cerevisiae resistant to environmental stress and capable of producing ethanol through rapid fermentation and application thereof
Crumplen et al. The use of spheroplast fusion to improve yeast osmotolerance
JP2006000025A (en) New yeast and method for producing sake therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090709

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091029

R150 Certificate of patent or registration of utility model

Ref document number: 4402207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term