JP4400790B2 - Hemodialysis system - Google Patents

Hemodialysis system Download PDF

Info

Publication number
JP4400790B2
JP4400790B2 JP2005107411A JP2005107411A JP4400790B2 JP 4400790 B2 JP4400790 B2 JP 4400790B2 JP 2005107411 A JP2005107411 A JP 2005107411A JP 2005107411 A JP2005107411 A JP 2005107411A JP 4400790 B2 JP4400790 B2 JP 4400790B2
Authority
JP
Japan
Prior art keywords
dialysate
flow path
acid
conductivity
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005107411A
Other languages
Japanese (ja)
Other versions
JP2006280776A (en
Inventor
義郎 上田
洋介 嶋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2005107411A priority Critical patent/JP4400790B2/en
Publication of JP2006280776A publication Critical patent/JP2006280776A/en
Application granted granted Critical
Publication of JP4400790B2 publication Critical patent/JP4400790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、所定濃度の透析液を作製し、当該透析液の血液浄化手段に対する供給又は回収を行わせて透析治療し得る血液透析システムに関するものである。   The present invention relates to a hemodialysis system capable of preparing a dialysate having a predetermined concentration and performing dialysis treatment by supplying or collecting the dialysate to a blood purification means.

透析治療においては、通常、ダイアライザ等の血液浄化手段に所定濃度の透析液を供給しつつ、当該血液浄化手段にて取り除かれた血液中の老廃物等を含んだ透析液を回収するための血液透析システムが使用されている。かかる血液透析システムは、2種の原液(A剤原液及びB剤原液)を清浄水に溶解して所定濃度の透析液を作製する透析液作製手段と、作製された透析液を血液浄化手段側に導くと共に当該血液浄化手段から回収された透析液を廃液手段側に導く透析液流路と、作製された透析液が所定濃度に達しているか否かを検出すべく当該透析液の電導度を計測する電導度計測手段(電導度計など)とから主に構成されている。   In dialysis treatment, usually, blood for collecting dialysate containing waste products etc. in blood removed by blood purification means while supplying a predetermined concentration of dialysate to blood purification means such as dialyzer. A dialysis system is used. Such a hemodialysis system includes two dialysate solutions (A drug stock solution and B drug stock solution) dissolved in clean water to prepare a dialysate solution having a predetermined concentration, and the prepared dialysate solution on the blood purification means side. And the dialysate flow path for guiding the dialysate collected from the blood purification means to the waste fluid means side, and the conductivity of the dialysate to detect whether the prepared dialysate has reached a predetermined concentration. It is mainly composed of a conductivity measuring means (such as a conductivity meter) for measuring.

ところで、例えば次亜塩素酸ナトリウムなど塩素系消毒洗浄剤を透析液流路に供給して循環させる消毒工程と、酢酸水溶液などの酸洗浄剤を透析液流路に供給して循環させる酸洗浄工程とを定期的に実施することにより、血液透析システムの衛生が長期に亘って保たれている。しかして、消毒工程においては、塩素系消毒洗浄剤による消毒とタンパク質除去が図られ、酸洗浄工程においては、透析液の成分に起因して析出される炭酸カルシウムなどの除去が図られることとなる。   By the way, for example, a disinfection process for supplying and circulating a chlorine-based disinfectant cleaning agent such as sodium hypochlorite to the dialysate flow path, and an acid cleaning process for supplying and circulating an acid cleaning agent such as an acetic acid aqueous solution to the dialysate flow path By regularly implementing the above, hygiene of the hemodialysis system is maintained for a long time. Thus, in the disinfection process, disinfection and protein removal are achieved with a chlorine-based disinfectant cleaning agent, and in the acid cleaning process, calcium carbonate and the like precipitated due to the components of the dialysate are removed. .

然るに、消毒工程にて使用された塩素系消毒洗浄剤や酸洗浄工程にて使用された酸洗浄剤をそのまま廃液手段に導き、排水として放出すると、環境に悪影響を及ぼしてしまうことから、これを防止すべく種々提案がなされている。例えば、特許文献1にて開示されているように、従来、消毒工程後に還元剤を添加して、塩素系消毒洗浄剤などを還元剤で分解することにより無害化を図り、廃液することが提案されていた。
特開昭64−11552号公報
However, if the chlorine-based disinfectant used in the disinfection process or the acid detergent used in the acid cleaning process is directly introduced into the waste liquid means and discharged as wastewater, it will have an adverse effect on the environment. Various proposals have been made to prevent this. For example, as disclosed in Patent Document 1, conventionally, it has been proposed to add a reducing agent after the disinfection process and to make the waste liquid by detoxifying the chlorine-based disinfectant cleaning agent with the reducing agent. It had been.
Japanese Patent Laid-Open No. 64-11552

しかしながら、上記従来の血液透析システムにおいては、例えば塩素系消毒洗浄剤の無害化(不活化)が良好に図られているか否かを監視することができないという問題があった。即ち、消毒工程後に還元剤を所定量添加しても、例えば装置の不具合や条件の変化等により塩素系消毒洗浄剤の不活化が良好に行われない可能性があるが、かかる場合において、目視等による簡易な判別ができないという不具合があったのである。   However, the conventional hemodialysis system has a problem that it is impossible to monitor whether the chlorine-based disinfectant detergent is detoxified (inactivated) or not. That is, even if a predetermined amount of reducing agent is added after the disinfection step, the chlorine-based disinfectant cleaning agent may not be deactivated satisfactorily due to, for example, malfunction of the apparatus or changes in conditions. For example, there is a problem that simple discrimination cannot be performed.

また、上記不具合を解消すべく、例えばpH計などを装備させて、消毒工程や酸洗浄工程後のpH値を監視し、塩素系消毒洗浄剤や酢酸等の不活化が良好に行われているか否かを判別することが考えられるが、その場合、新たにpH計を設置する必要があることから、血液透析システムの製造コストが嵩んでしまうとともに、メンテナンス要素の増大に伴って作業性が悪化してしまう等の問題がある。   In addition, in order to solve the above problems, for example, a pH meter is equipped to monitor the pH value after the disinfection process or the acid cleaning process, and the inactivation of the chlorine-based disinfectant cleaning agent, acetic acid, etc. is performed well. However, in this case, it is necessary to install a new pH meter, which increases the manufacturing cost of the hemodialysis system and deteriorates workability as the number of maintenance elements increases. There are problems such as.

そこで本出願人は、消毒工程や酸洗浄工程などに用いられる溶液のpH値の変化に伴って、その電導度も上昇又は下降することを見出し、血液透析システムには必須とされる電導度計測手段(電導度計)を消毒又は酸洗浄後における廃液のpH監視にも流用することを検討した。   Therefore, the present applicant has found that the electrical conductivity increases or decreases with changes in the pH value of the solution used in the disinfection process, the acid washing process, etc., and the electrical conductivity measurement that is essential for the hemodialysis system. It was studied to use the means (conductivity meter) for pH monitoring of waste liquid after disinfection or acid cleaning.

本発明は、このような事情に鑑みてなされたもので、装置の製造コストの上昇及びメンテナンス作業性の悪化を抑制しつつ、廃液中に含まれる消毒剤や酸洗浄剤等の不活化が良好に図られているか否かを監視することができる血液透析システムを提供することにある。   The present invention has been made in view of such circumstances, and inactivates disinfectants, acid detergents, etc. contained in waste liquid while suppressing an increase in manufacturing cost of the apparatus and deterioration in maintenance workability. It is an object of the present invention to provide a hemodialysis system capable of monitoring whether or not it is planned.

請求項1記載の発明は、所定濃度の透析液を作製し得る透析液作製手段と、該透析液作製手段で作製された透析液を血液浄化手段側に導くとともに、当該血液浄化手段から回収された透析液を廃液手段側に導く透析液流路と、作製された透析液の濃度を検出すべく前記透析液流路を流れる透析液の電導度を計測する電導度計測手段と、閉鎖状態とされた透析液流路にアルカリ性のアルカリ洗浄剤、該アルカリ洗浄剤を不活化して酸性又は中性とする不活化剤を供給し、アルカリ洗浄工程、酸洗浄工程又は中和工程を行うための供給手段とを具備した血液透析システムであって、前記供給手段による洗浄又は中和工程時、前記電導度計測手段により計測された電導度に基づき、当該透析液流路内のpH状態を監視するものとされ、前記透析液流路を流れる透析液の電導度を計測するための電導度計測手段を流用して前記供給手段による洗浄又は中和工程時の当該透析液流路内のpH状態を監視することを特徴とする。 According to the first aspect of the present invention, the dialysate preparation means capable of preparing a dialysate having a predetermined concentration, and the dialysate prepared by the dialysate preparation means are guided to the blood purification means side and recovered from the blood purification means. A dialysate flow path for guiding the dialysate to the waste liquid means side, a conductivity measuring means for measuring the conductivity of the dialysate flowing through the dialysate flow path to detect the concentration of the prepared dialysate, and a closed state. Supplying an alkaline alkaline detergent, an inactivating agent that deactivates the alkaline detergent to be acidic or neutral, and performs an alkaline washing step, an acid washing step, or a neutralization step A hemodialysis system comprising a supply means, wherein the pH state in the dialysate flow path is monitored based on the conductivity measured by the conductivity measurement means during the washing or neutralization step by the supply means Said dialysis fluid flow Characterized by monitoring the pH condition of the dialysate flow path during cleaning or neutralization step by the supply means to divert the conductivity measuring means for measuring the conductivity of the dialysate flowing in the.

請求項2記載の発明は、請求項1記載の血液透析システムにおいて、前記供給手段は、塩素系消毒洗浄剤を供給してアルカリ洗浄工程を行わせた後、不活化剤を供給して酸性の酸洗浄剤とし、酸洗浄工程を行わせることを特徴とする。   According to a second aspect of the present invention, in the hemodialysis system according to the first aspect, the supply means supplies a chlorine-based disinfectant cleaning agent to perform an alkali cleaning step, and then supplies an inactivating agent to make it acidic. An acid cleaning agent is used, and an acid cleaning process is performed.

請求項3記載の発明は、請求項2記載の血液透析システムにおいて、前記供給手段は、前記酸洗浄工程の後、不活化剤を供給して中和工程を行わせることを特徴とする。   The invention according to claim 3 is the hemodialysis system according to claim 2, wherein the supplying means supplies an inactivating agent after the acid washing step to perform a neutralization step.

請求項4記載の発明は、請求項1〜請求項3の何れか1つに記載の血液透析システムにおいて、前記供給手段は、アルカリ洗浄剤を供給する第1供給手段と、アルカリ洗浄剤を酸性の酸洗浄剤とするとともに、その酸洗浄剤を中和して中和剤とし得る不活化剤を供給する第2供給手段とから成ることを特徴とする。   According to a fourth aspect of the present invention, in the hemodialysis system according to any one of the first to third aspects, the supply unit includes a first supply unit that supplies an alkaline detergent, and an acidic detergent. And a second supply means for supplying an inactivator capable of neutralizing the acid detergent to serve as a neutralizing agent.

請求項1の発明によれば、血液透析システムには必須とされる電導度計測手段を消毒又は酸洗浄後における廃液のpH監視にも流用するので、装置の製造コストの上昇及びメンテナンス作業性の悪化を抑制しつつ、廃液中に含まれる消毒剤や酸洗浄剤等の不活化が良好に図られているか否かを監視することができる。   According to the first aspect of the present invention, the conductivity measuring means that is essential for the hemodialysis system is also used for pH monitoring of the waste liquid after disinfection or acid cleaning. It is possible to monitor whether or not the inactivation of the disinfectant, the acid cleaning agent, and the like contained in the waste liquid is successfully achieved while suppressing the deterioration.

請求項2の発明によれば、供給手段が、塩素系消毒洗浄剤を供給してアルカリ洗浄工程を行わせた後、不活化剤を供給して酸性の酸洗浄剤とし、酸洗浄工程を行わせるとともに、当該酸洗浄工程時、電導度計測手段によるpH状態の監視が行われるので、アルカリ洗浄工程におけるpHと酸洗浄におけるpHとを連続的に変化させることができ、電導度計測手段によるpH監視を確実且つ容易とすることができるとともに、酸洗浄工程における酸洗浄が確実に行われているか否かを判別させることができる。   According to the invention of claim 2, the supply means supplies the chlorine-based disinfectant cleaning agent to perform the alkali cleaning step, then supplies the inactivating agent to form an acidic acid cleaning agent, and performs the acid cleaning step. In addition, since the pH state is monitored by the conductivity measuring means during the acid cleaning step, the pH in the alkali cleaning step and the pH in the acid cleaning can be continuously changed, and the pH by the conductivity measuring means can be changed. Monitoring can be performed reliably and easily, and it can be determined whether or not the acid cleaning in the acid cleaning step is reliably performed.

請求項3の発明によれば、供給手段が、酸洗浄工程の後、不活化剤を供給して中和工程を行わせるとともに、当該中和工程時、電導度計測手段によるpH状態の監視が行われるので、アルカリ洗浄工程から中和工程まで連続的にpHを変化させることができ、電導度計測手段によるpH監視を確実且つ容易とすることができるとともに、中和工程における中和が確実に行われているか否かを判別させることができる。   According to the invention of claim 3, the supplying means supplies an inactivating agent after the acid cleaning step to perform the neutralization step, and at the time of the neutralization step, the pH state is monitored by the conductivity measuring means. Since it is performed, the pH can be continuously changed from the alkali washing step to the neutralization step, pH monitoring by the conductivity measuring means can be surely and easily performed, and neutralization in the neutralization step is ensured. It can be determined whether or not it is being performed.

請求項4の発明によれば、供給手段が、アルカリ洗浄剤を供給する第1供給手段と、アルカリ洗浄剤を酸性の酸洗浄剤とするとともに、その酸洗浄剤を中和して中和剤とし得る不活化剤を供給する第2供給手段とから成るので、消毒液及び酸洗浄液の2つを供給し得るよう構成されていた既存の血液透析システムにそのまま適用することができる。   According to the invention of claim 4, the supply means uses the first supply means for supplying the alkaline cleaning agent and the alkaline cleaning agent as an acidic acid cleaning agent, and neutralizes the acid cleaning agent to neutralize the acid cleaning agent. And the second supply means for supplying an inactivating agent that can be used, the present invention can be applied as it is to an existing hemodialysis system configured to be able to supply the disinfecting solution and the acid washing solution.

以下、本発明の実施形態について図面を参照しながら具体的に説明する。
本実施形態に係る血液透析システムは、図1に示すように、所定濃度の透析液を作製し得る透析液作製手段1と、該透析液作製手段1で作製された透析液をダイアライザ7側に導く供給側透析液流路L1と、ダイアライザ7から回収された透析液を廃液手段5側に導く排出側透析液流路L2と、供給側透析液流路L1と排出側透析液流路L2とに跨って配設された複式ポンプ3と、電導度計4(電導度計測手段)と、除水ポンプ6とから主に構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 1, the hemodialysis system according to the present embodiment has a dialysate preparation means 1 capable of preparing a dialysate having a predetermined concentration and the dialysate prepared by the dialysate preparation means 1 on the dialyzer 7 side. A supply-side dialysate flow path L1, a discharge-side dialysate flow path L2 that guides the dialysate collected from the dialyzer 7 to the waste fluid means 5, a supply-side dialysate flow path L1, and a discharge-side dialysate flow path L2. Are mainly composed of a dual pump 3, a conductivity meter 4 (conductivity measuring means), and a water removal pump 6.

血液浄化手段としてのダイアライザ7は、その筐体部に、血液導入ポート7c、血液導出ポート7d、透析液導入ポート7a、及び透析液導出ポート7bが形成されており、このうち血液導入ポート7cには動脈側血液回路(不図示)の基端が、血液導出ポート7dには静脈側血液回路(不図示)の基端がそれぞれ接続されている。そして、患者の血液は、動脈側血液回路、ダイアライザ7及び静脈側血液回路にて体外循環され、その過程においてダイアライザ7で浄化されるようになっている。尚、透析液導入ポート7a及び透析液導出ポート7bには、後述する供給側透析液流路L1及び排出側透析液流路L2が接続されることとなる。   The dialyzer 7 as a blood purification means is formed with a blood introduction port 7c, a blood outlet port 7d, a dialysate inlet port 7a, and a dialysate outlet port 7b in the casing, of which the blood inlet port 7c Is connected to the proximal end of an arterial blood circuit (not shown), and the blood outlet port 7d is connected to the proximal end of a venous blood circuit (not shown). The patient's blood is circulated extracorporeally in the arterial blood circuit, the dialyzer 7 and the venous blood circuit, and is purified by the dialyzer 7 in the process. A supply side dialysate flow path L1 and a discharge side dialysate flow path L2, which will be described later, are connected to the dialysate introduction port 7a and the dialysate discharge port 7b.

ダイアライザ7内には、複数の中空糸(中空糸束)が収容されており、該中空糸内部が血液の流路とされるとともに、中空糸外周面と筐体部の内周面との間が透析液の流路とされている。各中空糸には、その外周面と内周面とを貫通した微少な孔(ポア)が多数形成されて中空糸膜を形成しており、該膜を介して血液中の老廃物が透析液内に透過して除去され得るよう構成されている。   A plurality of hollow fibers (hollow fiber bundles) are accommodated in the dialyzer 7, the inside of the hollow fibers is used as a blood flow path, and between the outer peripheral surface of the hollow fibers and the inner peripheral surface of the housing portion. Is a flow path for dialysate. Each hollow fiber has a number of minute pores (pores) penetrating the outer peripheral surface and the inner peripheral surface thereof to form a hollow fiber membrane, through which the waste products in the blood are dialyzed. It is configured so that it can be transmitted through and removed.

供給側透析液流路L1は、その一端側が清浄水が供給される給水手段2に接続されるとともに、他端側がダイアライザ7の透析液導入ポート7aと接続され得るよう構成され、途中に透析液作製手段1及び電導度計4が配設されている。透析液作製手段1は、作製過程の透析液を所定量収容しつつ撹拌するための撹拌チャンバ1a、1bと、透析液の原液であるA剤原液及びB剤原液を導入し得る導入ラインL7、L8及び導入ポンプP1、P2とから主に構成されている。   The supply-side dialysate flow path L1 is configured such that one end side thereof is connected to the water supply means 2 to which clean water is supplied and the other end side can be connected to the dialysate introduction port 7a of the dialyzer 7, The production means 1 and the conductivity meter 4 are provided. The dialysate preparation means 1 includes stirring chambers 1a and 1b for stirring while containing a predetermined amount of dialysate in the preparation process, and an introduction line L7 that can introduce the agent A stock solution and the agent B stock solution that are stock solutions of the dialysate. L8 and introduction pumps P1 and P2 are mainly configured.

A剤原液は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム及び酢酸ナトリウムなどを含有する混合水溶液から成り、導入ラインL7と連通され得る容器Ta内に収容されている。また、B剤原液は、炭酸水素ナトリウムの水溶液から成り、導入ラインL8と連通され得る容器Tb内に収容されている。そして、給水手段2から導かれた清浄水と導入ポンプP2の駆動により容器Tbから導入されたB剤原液とを撹拌チャンバ1bにて撹拌して溶解させた後、その溶液と導入ポンプP1の駆動により容器Taから導入されたA剤原液とを撹拌チャンバ1aにて撹拌して溶解させることにより、所定濃度の透析液が作製されることとなる。   The agent A stock solution is composed of a mixed aqueous solution containing sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium acetate, and the like, and is contained in a container Ta that can communicate with the introduction line L7. Moreover, B agent stock solution consists of the aqueous solution of sodium hydrogencarbonate, and is accommodated in the container Tb which can be connected with the introduction line L8. Then, after the clean water guided from the water supply means 2 and the B agent stock solution introduced from the container Tb by the drive of the introduction pump P2 are stirred and dissolved in the stirring chamber 1b, the solution and the drive of the introduction pump P1 are driven. By stirring and dissolving the agent A stock solution introduced from the container Ta in the stirring chamber 1a, a dialysate having a predetermined concentration is produced.

電導度計4は、作製された透析液の濃度を検出すべく供給側透析液流路L1を流れる透析液の電導度を計測するためのもので、当該供給側透析液流路L1における透析液作製手段1よりも下流側で且つ複式ポンプ3よりも上流側の位置に配設されている。尚、かかる電導度計4で計測された電導度を、所定のディスプレイ等に対してリアルタイムに数値表示又はグラフ表示するようにしてもよい。   The conductivity meter 4 is for measuring the conductivity of the dialysate flowing through the supply-side dialysate flow path L1 so as to detect the concentration of the prepared dialysate, and the dialysate in the supply-side dialysate flow path L1. It is arranged at a position downstream of the production means 1 and upstream of the duplex pump 3. The conductivity measured by the conductivity meter 4 may be numerically displayed or displayed in a graph on a predetermined display or the like in real time.

排出側透析液流路L2は、その一端側が廃水処理するための廃液手段5に接続されるとともに、他端側がダイアライザ7の透析液導出ポート7bと接続され得るよう構成され、途中に供給手段8及び複式ポンプ3を迂回するバイパスラインL3が接続されている。バイパスラインL3には、透析治療において除水を行うための除水ポンプ6が配設されており、この除水ポンプ6を駆動させると、複式ポンプ3が定量型であるため、供給側透析液流路L1から供給される透析液量よりも排出側透析液流路L2から排出される液体の容量が多くなり、その多い容量分だけ血液中から水分を除去(除水)し得るようになっている。   The discharge-side dialysate flow path L2 is configured such that one end side thereof is connected to the waste liquid means 5 for treating waste water and the other end side thereof can be connected to the dialysate outlet port 7b of the dialyzer 7, and the supply means 8 is provided in the middle. A bypass line L3 that bypasses the duplex pump 3 is connected. The bypass line L3 is provided with a water removal pump 6 for performing water removal in dialysis treatment. When the water removal pump 6 is driven, the duplex pump 3 is of a fixed type, so that the supply side dialysate The volume of the liquid discharged from the discharge-side dialysate flow path L2 is larger than the amount of dialysate supplied from the flow path L1, and water can be removed (dehydrated) from the blood by the larger volume. ing.

供給手段8は、容器F1内に収容された塩素系消毒洗浄剤、及び容器F2内に収容された不活化剤をそれぞれ導入ラインL5及びL6を介して排出側透析液流路L2に供給し、アルカリ洗浄、酸洗浄或いは中和を行い得るものである。また、導入ラインL5及びL6には、それぞれ電磁弁V3及びV4が配設されており、透析治療時においては、両電磁弁V3及びV4が閉状態とされるとともに、アルカリ洗浄工程、酸洗浄工程又は中和工程においては、電磁弁V3或いはV4の一方が選択的に開くよう構成されている。   The supply means 8 supplies the chlorine-based disinfectant cleaning agent accommodated in the container F1 and the inactivating agent accommodated in the container F2 to the discharge-side dialysate flow path L2 via the introduction lines L5 and L6, respectively. Alkali washing, acid washing or neutralization can be performed. The introduction lines L5 and L6 are provided with solenoid valves V3 and V4, respectively. During the dialysis treatment, the solenoid valves V3 and V4 are closed, and the alkali washing process and the acid washing process are performed. Alternatively, in the neutralization step, one of the solenoid valves V3 or V4 is selectively opened.

容器F1内の塩素系消毒洗浄剤は、pHが7以上(好ましくは9以上)のアルカリ性を示すアルカリ洗浄剤から成り、特に次亜塩素酸ナトリウムを含む消毒剤が好ましいが、例えば次亜塩素酸カリウム等他の次亜塩素酸アルカリ金属塩、塩素化イソシアヌル酸ナトリウム或いは塩素化イソシアヌル酸カリウム等の塩素化イソシアヌル酸アルカリ金属塩を用いてもよい。このような、アルカリ洗浄剤を供給することで、供給側透析液流路L1及び排出側透析液流路L2から成る透析液流路全般に対するたんぱく汚れの除去及び消毒などを強力に行うことができる。   The chlorine-based disinfectant cleaner in the container F1 is composed of an alkaline cleaner having a pH of 7 or more (preferably 9 or more), and is particularly preferably a disinfectant containing sodium hypochlorite. For example, hypochlorous acid Other alkali metal hypochlorites such as potassium, chlorinated isocyanuric acid alkali metal salts such as sodium chlorinated isocyanurate or potassium chlorinated isocyanurate may be used. By supplying such an alkaline detergent, it is possible to powerfully remove and disinfect protein stains on the entire dialysate flow path including the supply-side dialysate flow path L1 and the discharge-side dialysate flow path L2. .

一方、容器F2内の不活化剤は、透析液流路内のアルカリ洗浄剤(塩素系消毒洗浄剤)を不活化して酸性又は中性とするものであり、例えば還元剤としてのチオ硫酸ナトリウムとアルカリ剤としての水酸化ナトリウムとを混合した水溶液から成る。即ち、アルカリ洗浄後、本実施形態に係る不活化剤を供給することにより、チオ硫酸ナトリウムの還元作用(不活化)で例えばpHを4以下に低下させ、酸洗浄剤とすることができ、酸洗浄を図ることができるのである。   On the other hand, the inactivating agent in the container F2 inactivates the alkaline cleaner (chlorine-based disinfectant cleaner) in the dialysate flow path to make it acidic or neutral. For example, sodium thiosulfate as a reducing agent And an aqueous solution obtained by mixing sodium hydroxide as an alkali agent. That is, by supplying the inactivating agent according to the present embodiment after alkali cleaning, the pH can be lowered to 4 or less, for example, by the reduction action (inactivation) of sodium thiosulfate to obtain an acid cleaning agent. It can be cleaned.

その後、更に不活化剤を供給すると、洗浄剤中の塩素が既に不活化されているため、少量のアルカリ成分(即ち、不活化剤が含有する水酸化ナトリウム)でもpHを容易に上昇でき、例えばpHが5〜9の中性とすることができる。ここで、本実施形態においては、チオ硫酸ナトリウム(還元剤)と水酸化ナトリウム(アルカリ剤)とを混合した水溶液を容器F2に収容し、酸洗浄工程時の酸性化、中和工程の中和化の両者を図っているが、それぞれ別個の容器に還元剤及びアルカリ剤を収容し、選択的に供給させるようにしてもよい。   Thereafter, when the inactivating agent is further supplied, the chlorine in the cleaning agent has already been inactivated. Therefore, even with a small amount of an alkaline component (that is, sodium hydroxide contained in the inactivating agent), the pH can be easily increased. The pH can be neutral from 5 to 9. Here, in the present embodiment, an aqueous solution obtained by mixing sodium thiosulfate (reducing agent) and sodium hydroxide (alkali agent) is accommodated in the container F2, and is acidified during the acid washing step and neutralized in the neutralizing step. However, the reducing agent and the alkali agent may be accommodated in separate containers and selectively supplied.

尚、不活化剤に含有される還元剤として、チオ硫酸ナトリウム等チオ硫酸塩の他、重亜硫酸塩、次亜硫酸塩及びアスコルビン酸塩から選ばれる1種以上が挙げられ、塩はナトリウム、カリウム等のアルカリ金属塩が好ましい。また、不活化剤に含有されるアルカリ剤として、水酸化ナトリウムの他、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウムや炭酸カリウム等のアルカリ金属炭酸塩から選ばれる1種以上が挙げられる。   In addition, as a reducing agent contained in the inactivating agent, in addition to thiosulfate such as sodium thiosulfate, one or more selected from bisulfite, hyposulfite, and ascorbate can be mentioned. Alkali metal salts are preferred. Examples of the alkali agent contained in the inactivating agent include sodium hydroxide, alkali metal hydroxides such as potassium hydroxide, and one or more selected from alkali metal carbonates such as sodium carbonate and potassium carbonate. .

然るに、アルカリ洗浄剤(本実施形態においては次亜塩素酸ナトリウムを含む洗浄剤)を排出側透析液流路L2に供給するための部位(容器F1に接続された導入ラインL5及び電磁弁V3)が本発明の第1供給手段、不活化剤(本実施形態においては還元剤としてのチオ硫酸ナトリウムとアルカリ剤としての水酸化ナトリウムとを混合した水溶液)を排出側透析液流路L2に供給するための部位(容器F2に接続された導入ラインL6及び電磁弁V4)が本発明の第2供給手段に該当する。   However, portions for supplying an alkaline detergent (a detergent containing sodium hypochlorite in this embodiment) to the discharge-side dialysate flow path L2 (introduction line L5 and solenoid valve V3 connected to the container F1). The first supply means of the present invention, an inactivating agent (in this embodiment, an aqueous solution in which sodium thiosulfate as a reducing agent and sodium hydroxide as an alkaline agent are mixed) is supplied to the discharge-side dialysate flow path L2. The part for this (introduction line L6 connected to container F2 and electromagnetic valve V4) corresponds to the 2nd supply means of the present invention.

本実施形態によれば、上記の如く、アルカリ洗浄剤を酸性の酸洗浄剤とする不活化剤と、その酸洗浄剤を中和して中和剤とし得る不活化剤とを1つの剤として共通化しているので、供給手段8が、第1供給手段と第2供給手段の2つから構成させることができ、消毒液及び酸洗浄液の2つを供給し得るよう構成されていた既存の血液透析システムにそのまま適用することができる。   According to this embodiment, as described above, an inactivator that uses an alkaline detergent as an acidic acid detergent and an inactivator that can neutralize the acid detergent to serve as a neutralizer are used as one agent. Since the supply means 8 is common, the supply means 8 can be constituted by two of the first supply means and the second supply means, and the existing blood configured to supply two of the disinfecting liquid and the acid cleaning liquid. It can be directly applied to a dialysis system.

一方、供給側透析液流路L1における透析液作製手段1より上流側、排出側透析液流路L2における除水ポンプ6より下流側には、それぞれ電磁弁V1及びV2が配設されている。また、電磁弁V1より下流側と電磁弁V2より上流側とは、バイパスラインL4にて連結されており、該バイパスラインL4には電磁弁V5が配設されている。そして、透析治療時には、電磁弁V5が閉状態(既述の如く、電磁弁V3及びV4も閉状態)、且つ、電磁弁V1及びV2が開状態とされており、複式ポンプ3の駆動により、透析液作製手段1にて作製された所定濃度の透析液が供給側透析液流路L1を通ってダイアライザ7に供給された後、排出側透析液流路L2を通って廃液手段5に至ることとなる。   On the other hand, electromagnetic valves V1 and V2 are disposed upstream of the dialysate preparation means 1 in the supply-side dialysate flow path L1 and downstream of the dewatering pump 6 in the discharge-side dialysate flow path L2. The downstream side from the solenoid valve V1 and the upstream side from the solenoid valve V2 are connected by a bypass line L4, and the solenoid valve V5 is disposed in the bypass line L4. At the time of dialysis treatment, the electromagnetic valve V5 is closed (as described above, the electromagnetic valves V3 and V4 are also closed), and the electromagnetic valves V1 and V2 are opened. After the dialysate having a predetermined concentration prepared by the dialysate preparation means 1 is supplied to the dialyzer 7 through the supply-side dialysate flow path L1, it reaches the waste liquid means 5 through the discharge-side dialysate flow path L2. It becomes.

次に、透析治療後のアルカリ洗浄工程及び酸洗浄工程について説明する。
複式ポンプ3及び除水ポンプ6が停止して透析治療が終了し、不図示の血液回路中の血液が患者の体内に回収された後、供給側透析液流路L1と排出側透析液流路L2とをダイアライザ7の透析液導入ポート7a、及び透析液導出ポート7bから取り外すとともに、図2に示すように、各先端をバイパスコネクタC5に接続して短絡させる。
Next, the alkali washing process and the acid washing process after dialysis treatment will be described.
After the compound pump 3 and the water removal pump 6 are stopped and the dialysis treatment is completed, and the blood in the blood circuit (not shown) is collected in the patient's body, the supply-side dialysate flow path L1 and the discharge-side dialysate flow path L2 is removed from the dialysate introduction port 7a and dialysate lead-out port 7b of the dialyzer 7, and as shown in FIG. 2, each tip is connected to the bypass connector C5 and short-circuited.

同時に、透析液作製手段1における導入ラインL7及びL8の先端を、接続部C3、C4から接続部C1、C2へ繋ぎ代えた後、給水手段2からの清浄水の供給を行いつつ複式ポンプ3を駆動させる。このとき、電磁弁V1、V2の開状態、電磁弁V3、V4及びV5の閉状態が維持されているため、供給された清浄水は、透析液作製手段1を含む供給側透析液流路L1、排出側透析液流路L2(複式ポンプ3部含む)及びバイパスラインL3を通って廃液手段5に導かれる。これにより、清浄水による洗浄工程が完了し、複式ポンプ3を停止させる。   At the same time, after the tips of the introduction lines L7 and L8 in the dialysate preparation means 1 are connected from the connection portions C3 and C4 to the connection portions C1 and C2, the dual pump 3 is supplied while supplying clean water from the water supply means 2. Drive. At this time, since the open state of the solenoid valves V1 and V2 and the closed state of the solenoid valves V3, V4 and V5 are maintained, the supplied clean water is supplied to the supply-side dialysate flow path L1 including the dialysate preparation means 1. Then, it is led to the waste liquid means 5 through the discharge side dialysate flow path L2 (including 3 parts of the duplex pump) and the bypass line L3. Thereby, the cleaning process with clean water is completed, and the dual pump 3 is stopped.

続いて、電磁弁V1を閉状態としつつ電磁弁V3を開状態とし(電磁弁V2の開状態及び電磁弁V4の閉状態はそのまま)、除水ポンプ6を駆動させると、容器F1内の次亜塩素酸ナトリウムを含む洗浄剤(アルカリ洗浄剤)が導入ラインL5を介して排出側透析液流路L2に供給される。かかる洗浄剤の所定量の供給後、電磁弁V3を閉状態とするとともに電磁弁V2を閉状態及び電磁弁V5を開状態とすることにより、透析液流路を閉鎖状態(流路が閉じた状態)とする。   Subsequently, when the solenoid valve V3 is opened while the solenoid valve V3 is opened (the solenoid valve V2 is open and the solenoid valve V4 is closed), and the water removal pump 6 is driven, the next in the container F1. A cleaning agent (alkali cleaning agent) containing sodium chlorite is supplied to the discharge-side dialysate flow path L2 through the introduction line L5. After supplying a predetermined amount of the cleaning agent, the dial valve is closed (the channel is closed) by closing the solenoid valve V3 and closing the solenoid valve V2 and opening the solenoid valve V5. State).

この閉鎖状態で複式ポンプ3を再び駆動させることにより、供給された洗浄剤が閉鎖した流路を循環し、その循環過程においてpHが10程度のアルカリ洗浄剤とされるとともに、タンパク除去や消毒などを目的としたアルカリ洗浄工程が行われることとなる。そして、所定時間経過後、複式ポンプ3を停止させ、再び電磁弁V5を閉状態、V2を開状態とするとともに、除水ポンプ6を駆動させつつ電磁弁V4を開状態とすることにより、容器F2内の不活化剤が導入ラインL6を介して排出側透析液流路L2に供給される。かかる不活化剤の所定量の供給後、電磁弁V4を閉状態とするとともに電磁弁V2を閉状態及び電磁弁V5を開状態とすることにより、透析液流路を閉鎖状態(流路が閉じた状態)とする。   When the duplex pump 3 is driven again in this closed state, the supplied cleaning agent circulates in the closed channel, and in the circulation process, the alkaline cleaning agent has a pH of about 10, and protein removal, disinfection, etc. An alkali cleaning process for the purpose is performed. Then, after a predetermined time has elapsed, the duplex pump 3 is stopped, the electromagnetic valve V5 is closed again, the V2 is opened again, and the electromagnetic valve V4 is opened while the dewatering pump 6 is driven. The inactivating agent in F2 is supplied to the discharge-side dialysate flow path L2 through the introduction line L6. After supplying a predetermined amount of the inactivating agent, the solenoid valve V4 is closed, the solenoid valve V2 is closed, and the solenoid valve V5 is opened, thereby closing the dialysate channel (the channel is closed). State).

この閉鎖状態で複式ポンプ3を再び駆動させることにより、供給された不活化剤が閉鎖した流路を循環し、アルカリ洗浄剤の不活化が図られるとともに、pHを10程度から2.8程度まで下降させ、洗浄剤の酸性化を図る。かかる酸性化された洗浄剤(酸洗浄剤)を閉鎖した流路内で循環させることにより、炭酸カルシウムの除去等を目的とした酸洗浄工程が行われることとなる。   By driving the dual pump 3 again in this closed state, the supplied inactivating agent circulates in the closed flow path, inactivating the alkaline cleaning agent, and adjusting the pH from about 10 to about 2.8. Lower and attempt to acidify the cleaning agent. By circulating such an acidified cleaning agent (acid cleaning agent) in a closed flow path, an acid cleaning step for the purpose of removing calcium carbonate or the like is performed.

そして更に所定時間経過後、上記不活化剤の供給と同様の動作にて、容器F2内の不活化剤を再び供給及び循環することにより、酸洗浄剤の不活化が図られるとともに、pHを2.8程度から5〜9程度の中性領域まで上昇させ、洗浄剤の中和を図る。かかる中和工程の後、電磁弁V5を閉状態とするとともに、電磁弁V1、V2を開きつつ給水手段2から清浄水を供給することにより、前述と同様の清浄水による洗浄工程が行われる。   Further, after a predetermined time has elapsed, the inactivator in the container F2 is again supplied and circulated by the same operation as the inactivator supply, whereby the acid detergent is inactivated and the pH is set to 2 Raise from about 8 to a neutral region of about 5-9 to neutralize the detergent. After the neutralization step, the electromagnetic valve V5 is closed, and clean water is supplied from the water supply means 2 while the electromagnetic valves V1 and V2 are opened, whereby the cleaning step with clean water similar to that described above is performed.

ここで、本実施形態においては、上記一連の洗浄工程(清浄水による洗浄工程−アルカリ洗浄工程−酸洗浄工程−中和工程−清浄水による洗浄工程)の過程で、電導度計4による電導度の計測をリアルタイムに行っており、例えば酸洗浄工程や中和工程で規定のpHに達し、確実な酸洗浄或いは中和が行われたか否かを監視することができるよう構成されている。   Here, in the present embodiment, the conductivity measured by the conductivity meter 4 in the above-described series of cleaning steps (cleaning step with clean water-alkali cleaning step-acid cleaning step-neutralization step-cleaning step with clean water). Is measured in real time, and for example, it is configured to monitor whether or not the acid cleaning or neutralization has been performed by reaching a prescribed pH in the acid cleaning or neutralization step.

即ち、一連の洗浄工程の過程において、電導度計4で計測される電導度は、図3で示す如き変化する。かかる電導度は、pHが10程度とされた状態(アルカリ洗浄工程)、pHが2.8程度とされた状態(酸洗浄工程)、pHが8.2程度とされた状態(中和工程)において、それぞれ計測される値が上昇又は下降することが分かる。従って、電導度をリアルタイムに計測すれば、規定のpHに達したか否かが判別できるのである。   That is, in the course of a series of cleaning steps, the conductivity measured by the conductivity meter 4 changes as shown in FIG. The electrical conductivity is in a state where the pH is about 10 (alkali cleaning step), a state where the pH is about 2.8 (acid cleaning step), and a state where the pH is about 8.2 (neutralization step). It can be seen that the measured values rise or fall. Therefore, if the conductivity is measured in real time, it can be determined whether or not the specified pH has been reached.

より具体的には、アルカリ洗浄工程から酸洗浄工程に移行した際、電導度計4で計測される電導度の酸洗浄工程初期(pH10程度のとき)との差が0.5(mS/cm)程度になれば、酸洗浄工程で必要な酸性領域に達したと認識できるので、酸洗浄工程における酸洗浄が確実に行われているか否かを判別させることができる。同様に、酸洗浄工程から中和工程に移行した際、電導度計4で計測される電導度の酸洗浄工程時との差が0.9(mS/cm)程度になれば、中和されて無害化が図られたと認識できるので、中和工程における中和が確実に行われているか否かを判別させることができる。   More specifically, when shifting from the alkali cleaning process to the acid cleaning process, the difference between the conductivity measured by the conductivity meter 4 and the initial stage of the acid cleaning process (at about pH 10) is 0.5 (mS / cm). ), It can be recognized that the acid region required in the acid cleaning step has been reached, and therefore it can be determined whether or not the acid cleaning in the acid cleaning step is being performed reliably. Similarly, when the acid washing process is shifted to the neutralization process, the difference is approximately 0.9 (mS / cm) when the conductivity measured by the conductivity meter 4 is about 0.9 (mS / cm). Thus, it can be recognized that detoxification has been achieved, so that it is possible to determine whether or not neutralization in the neutralization step is reliably performed.

本実施形態によれば、血液透析システムには必須とされる電導度計(電導度計測手段)を消毒(アルカリ洗浄)又は酸洗浄後における廃液のpH監視にも流用するので、装置の製造コストの上昇及びメンテナンス作業性の悪化を抑制しつつ、廃液中に含まれる消毒剤や酸洗浄剤等の不活化が良好に図られているか否かを監視することができる。尚、電導度計4による計測値は、図3に示すように、一連の洗浄工程の過程でグラフ表示するよう構成してもよく、或いは電導度が所定の値に達しなかったときに警報等を鳴らすよう構成してもよい。   According to this embodiment, the conductivity meter (conductivity measuring means) that is essential for the hemodialysis system is also used for disinfection (alkali cleaning) or pH monitoring of waste liquid after acid cleaning. It is possible to monitor whether or not the inactivation of the disinfectant, the acid cleaning agent and the like contained in the waste liquid is satisfactorily performed while suppressing the increase in the temperature and the deterioration of the maintenance workability. In addition, as shown in FIG. 3, the measured value by the conductivity meter 4 may be configured to be displayed in a graph in the course of a series of cleaning steps, or an alarm or the like when the conductivity does not reach a predetermined value. May be configured to sound.

以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば一連の洗浄工程において中和工程が行われないもの、或いはアルカリ洗浄工程後、中和工程に移行するもの等にも適用することができる。また、一連の洗浄工程における電導度の監視は、pHと電導度との対応関係を予め把握しておき、かかる対応関係に基づいて透析液流路内のpH状態を監視するようにすればよい。尚、個人用透析装置から成る血液透析システム或いは透析用監視装置を含む血液透析システムの何れに適用してもよい。   As mentioned above, although this embodiment was described, this invention is not limited to this, For example, what does not perform a neutralization process in a series of washing processes, or moves to a neutralization process after an alkali washing process The present invention can also be applied. Further, in monitoring the conductivity in a series of washing steps, the correspondence between pH and conductivity may be grasped in advance, and the pH state in the dialysate flow path may be monitored based on the correspondence. . Note that the present invention may be applied to either a hemodialysis system including a personal dialysis apparatus or a hemodialysis system including a dialysis monitoring apparatus.

供給手段による洗浄又は中和工程時、電導度計測手段により計測された電導度に基づき、透析液流路内のpH状態を監視するものとされ、前記透析液流路を流れる透析液の電導度を計測するための電導度計測手段を流用して前記供給手段による洗浄又は中和工程時の当該透析液流路内のpH状態を監視する血液透析システムであれば、透析液流路の配管形態が異なるものや他の機能が付加されたものにも適用することができる。 During the washing or neutralization step by the supply means, the pH state in the dialysate flow path is monitored based on the conductivity measured by the conductivity measuring means, and the conductivity of the dialysate flowing through the dialysate flow path If it is a hemodialysis system that monitors the pH state in the dialysate flow path during the washing or neutralization step by the supply means by using the conductivity measuring means for measuring the dialysis fluid flow path piping configuration It can also be applied to those with different or other functions added.

本発明の実施形態に係る血液透析システムの透析治療時の状態を示す模式図The schematic diagram which shows the state at the time of the dialysis treatment of the hemodialysis system which concerns on embodiment of this invention. 同血液透析システムの洗浄工程及び中和工程時の状態を示す模式図Schematic diagram showing the state of the hemodialysis system during the washing and neutralization steps 同血液透析システムによる一連の洗浄工程における電導度の推移を示すグラフGraph showing the transition of conductivity in a series of washing steps using the hemodialysis system

符号の説明Explanation of symbols

1 透析液作製手段
2 給水手段
3 複式ポンプ
4 電導度計(電導度計測手段)
5 廃液手段
6 除水ポンプ
7 ダイアライザ(血液浄化手段)
8 供給手段
L1 供給側透析液流路(透析液流路)
L2 排出側透析液流路(透析液流路)
DESCRIPTION OF SYMBOLS 1 Dialysate preparation means 2 Water supply means 3 Duplex pump 4 Conductivity meter (conductivity measurement means)
5 Waste liquid means 6 Dewatering pump 7 Dialyzer (blood purification means)
8 Supply means L1 Supply side dialysate channel (dialysate channel)
L2 Discharge side dialysate channel (dialysate channel)

Claims (4)

所定濃度の透析液を作製し得る透析液作製手段と、
該透析液作製手段で作製された透析液を血液浄化手段側に導くとともに、当該血液浄化手段から回収された透析液を廃液手段側に導く透析液流路と、
作製された透析液の濃度を検出すべく前記透析液流路を流れる透析液の電導度を計測する電導度計測手段と、
閉鎖状態とされた透析液流路にアルカリ性のアルカリ洗浄剤、該アルカリ洗浄剤を不活化して酸性又は中性とする不活化剤を供給し、アルカリ洗浄工程、酸洗浄工程又は中和工程を行うための供給手段と、
を具備した血液透析システムであって、
前記供給手段による洗浄又は中和工程時、前記電導度計測手段により計測された電導度に基づき、当該透析液流路内のpH状態を監視するものとされ、前記透析液流路を流れる透析液の電導度を計測するための電導度計測手段を流用して前記供給手段による洗浄又は中和工程時の当該透析液流路内のpH状態を監視することを特徴とする血液透析システム。
Dialysate preparation means capable of preparing a predetermined concentration of dialysate;
A dialysate flow path that guides the dialysate prepared by the dialysate preparation means to the blood purification means, and guides the dialysate collected from the blood purification means to the waste liquid means;
Conductivity measuring means for measuring the conductivity of the dialysate flowing through the dialysate flow path to detect the concentration of the prepared dialysate;
An alkaline alkaline detergent and an inactivating agent that deactivates the alkaline detergent to become acidic or neutral are supplied to the dialysate flow path that is in a closed state, and an alkaline washing step, an acid washing step, or a neutralization step is performed. Supply means for performing;
A hemodialysis system comprising:
During the washing or neutralization step by the supply means, the pH state in the dialysate flow path is monitored based on the conductivity measured by the conductivity measuring means , and the dialysate flowing in the dialysate flow path A hemodialysis system characterized by monitoring the pH state in the dialysate flow path during the washing or neutralization step by the supply means by diverting the conductivity measuring means for measuring the electrical conductivity .
前記供給手段は、塩素系消毒洗浄剤を供給してアルカリ洗浄工程を行わせた後、不活化剤を供給して酸性の酸洗浄剤とし、酸洗浄工程を行わせるとともに、当該酸洗浄工程時、前記電導度計測手段によるpH状態の監視が行われることを特徴とする請求項1記載の血液透析システム。   The supply means supplies a chlorine-based disinfectant cleaning agent to perform an alkali cleaning step, then supplies an inactivator to form an acidic acid cleaning agent, performs an acid cleaning step, and at the time of the acid cleaning step The hemodialysis system according to claim 1, wherein the pH state is monitored by the conductivity measuring means. 前記供給手段は、前記酸洗浄工程の後、不活化剤を供給して中和工程を行わせるとともに、当該中和工程時、前記電導度計測手段によるpH状態の監視が行われることを特徴とする請求項2記載の血液透析システム。   The supply means is characterized in that after the acid washing step, an inactivating agent is supplied to perform a neutralization step, and at the time of the neutralization step, the pH state is monitored by the conductivity measuring means. The hemodialysis system according to claim 2. 前記供給手段は、
アルカリ洗浄剤を供給する第1供給手段と、
アルカリ洗浄剤を酸性の酸洗浄剤とするとともに、その酸洗浄剤を中和して中和剤とし得る不活化剤を供給する第2供給手段と、
から成ることを特徴とする請求項1〜請求項3の何れか1つに記載の血液透析システム。
The supply means includes
First supply means for supplying an alkaline cleaner;
A second supply means for supplying an inactivator capable of neutralizing the acid detergent and neutralizing the acid detergent, while the alkaline detergent is an acidic acid detergent;
The hemodialysis system according to any one of claims 1 to 3, characterized by comprising:
JP2005107411A 2005-04-04 2005-04-04 Hemodialysis system Active JP4400790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005107411A JP4400790B2 (en) 2005-04-04 2005-04-04 Hemodialysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107411A JP4400790B2 (en) 2005-04-04 2005-04-04 Hemodialysis system

Publications (2)

Publication Number Publication Date
JP2006280776A JP2006280776A (en) 2006-10-19
JP4400790B2 true JP4400790B2 (en) 2010-01-20

Family

ID=37403275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107411A Active JP4400790B2 (en) 2005-04-04 2005-04-04 Hemodialysis system

Country Status (1)

Country Link
JP (1) JP4400790B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287724B2 (en) * 2007-07-05 2012-10-16 Baxter International Inc. Dialysis fluid measurement systems using conductive contacts
JP6687509B2 (en) * 2016-12-27 2020-04-22 三菱ケミカル・クリンスイ株式会社 Purified water supply system and its operating method
JP6956223B2 (en) * 2016-12-27 2021-11-02 三菱ケミカルアクア・ソリューションズ株式会社 Purified water supply system and its operation method
JP7293841B2 (en) * 2019-04-24 2023-06-20 ニプロ株式会社 Neutralization system for effluent flowing through dialysis effluent flow path
JP6947442B2 (en) * 2020-03-13 2021-10-13 Fkプランニング株式会社 Dialysis wastewater treatment system
JP2023007245A (en) * 2021-07-01 2023-01-18 日機装株式会社 Blood purification device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378057B2 (en) * 1993-10-14 2003-02-17 ミズ株式会社 Sterilization cleaning device for dialysate flow path of artificial dialyzer
JP3452387B2 (en) * 1993-12-20 2003-09-29 ミズ株式会社 Sterilization cleaning device
JP2002360689A (en) * 2001-06-13 2002-12-17 Clean Chemical Kk Cleaning method of artificial dialyzer
JP3971659B2 (en) * 2002-06-14 2007-09-05 日機装株式会社 Dialysate supply device
JP4130378B2 (en) * 2003-04-16 2008-08-06 花王株式会社 Disinfectant for medical equipment

Also Published As

Publication number Publication date
JP2006280776A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4400790B2 (en) Hemodialysis system
JP5734262B2 (en) Blood purification system
JP5204995B2 (en) Central system for dialysis treatment and its disinfection method
JP5204996B2 (en) Dialysis treatment system and its disinfection method
WO2012169527A1 (en) Mixing device
WO2012147175A1 (en) Electrolyzed water generator
JP2007209859A (en) Wastewater treatment method and wastewater treatment equipment of medical purpose cleaning and sterilizing device
JP2004016413A (en) Dialysis liquid feeding apparatus
KR20090009162A (en) Method of rinsing endoscopes
JP4613831B2 (en) Blood purification apparatus and automatic priming method for blood circulation circuit thereof
JP3996449B2 (en) Central system for dialysis treatment and control method thereof
JP4188276B2 (en) Cleaning and sterilizing method for hemodialysis system and cleaning and sterilizing apparatus for the system
JP2826654B2 (en) Cleaning and disinfection equipment for hemodialysis equipment
JP3867838B2 (en) Pipeline cleaning method and apparatus, and medical device provided with the pipeline cleaning apparatus
JPH10182325A (en) Device for reinforcing sterilization powder of sodium hypochlorite
JP2010029376A (en) Dialyzer
JP2017185218A (en) Blood purification device and sterilization method
JP4290640B2 (en) Artificial dialysis machine
JP2003310749A (en) Dialyzer
JP7229099B2 (en) blood purifier
JP6668171B2 (en) Blood purification system
JP7442715B2 (en) blood purification device
JP7262310B2 (en) blood purifier
CN113891732B (en) Blood purifying device
WO2020241710A1 (en) Blood purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

R150 Certificate of patent or registration of utility model

Ref document number: 4400790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250