JP3452387B2 - Sterilization cleaning device - Google Patents

Sterilization cleaning device

Info

Publication number
JP3452387B2
JP3452387B2 JP31937193A JP31937193A JP3452387B2 JP 3452387 B2 JP3452387 B2 JP 3452387B2 JP 31937193 A JP31937193 A JP 31937193A JP 31937193 A JP31937193 A JP 31937193A JP 3452387 B2 JP3452387 B2 JP 3452387B2
Authority
JP
Japan
Prior art keywords
water
cleaning
supplied
sterilizing
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31937193A
Other languages
Japanese (ja)
Other versions
JPH07171204A (en
Inventor
一好 荒井
達哉 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miz Co Ltd
Original Assignee
Miz Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miz Co Ltd filed Critical Miz Co Ltd
Priority to JP31937193A priority Critical patent/JP3452387B2/en
Publication of JPH07171204A publication Critical patent/JPH07171204A/en
Application granted granted Critical
Publication of JP3452387B2 publication Critical patent/JP3452387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば人工透析器の透
析液流路を殺菌・洗浄する殺菌洗浄装置に関し、特に透
析器の透析液流路に付着した蛋白成分や毒素の除去と殺
菌とを行うことができ、かつ無駄なく洗浄液を使用でき
る殺菌洗浄装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sterilizing / cleaning device for sterilizing / cleaning a dialysate flow path of an artificial dialyzer, and particularly to removing and sterilizing protein components and toxins attached to the dialysate flow path of a dialyzer. The present invention relates to a sterilization / cleaning device that can perform cleaning and can use a cleaning liquid without waste.

【0002】[0002]

【従来の技術】人工透析は腎臓の血液中の老廃物除去機
能や水分除去機能に障害がある慢性腎不全患者が受ける
治療方法であり、ナトリウム,カリウム,カルシウム等
の成分を適量に濃度調整した透析液と透析患者の静脈よ
り抽出した血液とを透析膜を介して臨ませ、拡散原理に
よって透析液と血液との間でナトリウム,カリウム,カ
ルシウム,尿素,水分等を交換する。これにより、血液
中から過剰な代謝産物や水分が除去され、この浄化され
た血液を透析患者に戻すことにより尿毒症の症状がなく
なる。
2. Description of the Related Art Artificial dialysis is a method of treatment for patients with chronic renal failure having impaired functions of removing waste products and water from the blood of the kidney, and adjusting the concentrations of components such as sodium, potassium and calcium in appropriate amounts. The dialysate and the blood extracted from the vein of the dialysis patient are exposed through the dialysis membrane, and sodium, potassium, calcium, urea, water, etc. are exchanged between the dialysate and the blood by the diffusion principle. As a result, excess metabolites and water are removed from the blood, and the purified blood is returned to the dialysis patient to eliminate the uremic symptoms.

【0003】このような人工透析を行う人工透析器にお
いては、配管やホース(患者監視装置の透析液流路、特
に透析器の下流側流路)に患者の血液から透析した蛋白
成分,グラム陰性菌,毒素等が付着し、細菌の温床とな
り易い。そのため、これらを定期的に洗浄する必要があ
り、従来より逆浸透性のある純水と薬液を用いた洗浄が
行われている。
In such an artificial dialyzer for performing artificial dialysis, a protein component dialyzed from the patient's blood in a pipe or a hose (dialysate flow path of a patient monitor, especially a downstream flow path of the dialyzer), Gram-negative Bacteria, toxins, etc. adhere to it, making it a hotbed for bacteria. Therefore, it is necessary to wash these regularly, and conventionally, washing using pure water and a chemical solution having reverse osmosis is performed.

【0004】例えば、一人の患者の透析を終了する度
に、逆浸透水を約30分間透析装置に循環させることに
より透析液流路の洗浄を行う。
For example, every time dialysis of one patient is completed, reverse osmosis water is circulated in the dialyzer for about 30 minutes to clean the dialysate flow path.

【0005】また、一日の透析治療が終了する度に、逆
浸透水を約30分間透析装置に循環させることにより透
析液流路の洗浄を行ったのち、約30分間クエン酸の結
晶を逆浸透水で1%に溶解した溶液を流して透析液流路
の殺菌洗浄を行い、さらに約30分間逆浸透水を流して
透析液流路の酸洗浄を行ったのち、二酸化塩素(ClO
2 )を逆浸透水で溶解した溶液を流して透析液流路の殺
菌洗浄を行う。この溶液を透析液流路に滞留させて4〜
5時間漬け置きし、約2時間逆浸透水を流して透析液流
路より次亜塩素酸成分を洗い流し、残留塩素濃度を確認
したのち、次の透析液を流すための準備を行う。
After each day of dialysis treatment, reverse osmosis water is circulated through the dialysis machine for about 30 minutes to wash the dialysate flow path, and then the crystals of citric acid are reversed for about 30 minutes. A solution of 1% dissolved in osmotic water is passed to sterilize and wash the dialysate channel, and reverse osmosis water is passed for about 30 minutes to wash the dialysate channel with acid, and then chlorine dioxide (ClO) is added.
Disinfect 2 ) with reverse osmosis water and wash the dialysate flow path for sterilization. Allow this solution to stay in the dialysate flow path for 4 to
After soaking for 5 hours, reverse osmosis water is allowed to flow for about 2 hours to wash away the hypochlorous acid component from the dialysate flow channel, and after confirming the residual chlorine concentration, preparations for the next dialysate flow are made.

【0006】さらに、週に一度、クエン酸の1%溶液お
よび二酸化塩素溶液による殺菌洗浄に代えて、透析液流
路に付着した蛋白質を分解除去する薬液を用いて洗浄す
ることにより、透析液流路の殺菌洗浄をより確実なもの
としている。
Further, once a week, instead of sterilizing and washing with a 1% citric acid solution and a chlorine dioxide solution, washing with a chemical solution that decomposes and removes the protein adhering to the dialysate flow path is performed. The sterilization and cleaning of the road is made more reliable.

【0007】[0007]

【発明が解決しようとする課題】ところが、上述した従
来の洗浄方法により透析液流路の殺菌洗浄を行っても透
析装置の構造上殺菌洗浄が困難な箇所が存在し、かかる
領域が細菌の温床となりやすいことも経験上判ってい
る。
However, even if the dialysate flow passage is sterilized and washed by the conventional washing method described above, there are places where sterilization and washing are difficult due to the structure of the dialyzer, and such a region is a hot bed of bacteria. Experience has shown that it is easy to become.

【0008】例えば、透析液自動供給装置には一対の原
液タンクが接続されており、一方のタンクAにはカルシ
ウム,マグネシウム,カリウム,ナトリウム等の物質が
適量に調製された透析液原液が貯留され、他方のタンク
Bには重曹が貯留されている。このうち、タンクAと透
析液自動供給装置とを結ぶ経路は高濃度の透析液が流通
しているため、透析液の殺菌作用により当該流路が細菌
により汚染されることはない。
For example, a pair of stock solution tanks are connected to the automatic dialysate supply apparatus, and one tank A stores a stock solution of dialysate prepared by preparing an appropriate amount of substances such as calcium, magnesium, potassium and sodium. Baking soda is stored in the other tank B. Of these, since a high-concentration dialysate flows through the path connecting the tank A and the dialysate automatic supply device, the flow path is not contaminated by bacteria due to the sterilizing action of the dialysate.

【0009】ところが、タンクBと透析液自動供給装置
とを結ぶ経路にあっては、透析液(重曹)が流通してお
り重曹には十分な殺菌能力がないため細菌の温床になり
やすい。この経路を殺菌するにはタンクBに次亜塩素酸
等の希釈溶液を溜め置き、透析中と同じ経路でこの溶液
を透析液流路に流通させればよい。しかしながら、タン
クBは透析液貯留用のタンクであるため、ここに上述し
た薬剤を貯留すると、タンクB内に薬剤成分がなくなる
まで洗浄するためには大量の逆浸透水と洗浄時間とを必
要とする。かかる理由によりタンクBと透析液自動供給
装置との結ぶ経路は細菌の温床になりやすいことにな
る。
On the other hand, in the path connecting the tank B and the automatic dialysate feeder, the dialysate (baking soda) is in circulation and the baking soda does not have a sufficient sterilizing ability, so that it is likely to become a hotbed of bacteria. To sterilize this route, a diluted solution of hypochlorous acid or the like may be stored in the tank B, and this solution may be circulated through the dialysate flow path through the same route as during dialysis. However, since the tank B is a dialysate storage tank, storing the above-mentioned drug requires a large amount of reverse osmosis water and a cleaning time in order to clean the tank B until the drug component is exhausted. To do. For this reason, the route connecting the tank B and the dialysate automatic feeder is likely to become a hotbed of bacteria.

【0010】また、総合的にみても洗浄に要する純水量
が膨大な量となり、洗浄時間が長時間に及ぶという問題
もあった。実際には、透析器の洗浄時間は透析時間の約
50%にも及び、また透析器1台に対して0.15t/
日の純水を使用していた。そのため、多数の患者に対し
て透析治療を行うためには、透析器を多数導入したり、
製造能力の大きな純水製造装置を導入する必要があり、
タイムリーかつ廉価な医療を実現するためのネックとな
っていた。
Also, when viewed comprehensively, the amount of pure water required for cleaning becomes enormous, and there is a problem that the cleaning time is long. Actually, the cleaning time of the dialyzer is about 50% of the dialysis time, and it is 0.15 t / per dialyzer.
I used pure water of the day. Therefore, in order to perform dialysis treatment for a large number of patients, many dialysis machines are introduced,
It is necessary to introduce a pure water production system with a large production capacity,
It was a bottleneck for realizing timely and inexpensive medical care.

【0011】また、透析器のホース等にはエンドトキシ
ンなどの毒素やグラム陰性菌などの細菌が蛋白成分等に
隠れて付着しているため、蛋白成分を十分除去したのち
に消毒液や殺菌液を流さなければ、エンドトキシンの除
去やグラム陰性菌の殺菌はできないことも判明してい
る。そのため、十分な逆浸透水による洗浄を行って蛋白
成分を除去したのち、塩素・次亜塩素・EDTA等が配
合された高価な薬液を用いて毒素を除去したり細菌を殺
菌し、最後に再び逆浸透水による洗浄を行う必要があっ
た。
Further, since toxins such as endotoxin and bacteria such as Gram-negative bacteria are hidden and attached to the protein component etc. on the hose etc. of the dialyzer, the disinfectant or sterilizing liquid should be removed after the protein component is sufficiently removed. It has also been proved that endotoxins cannot be removed or Gram-negative bacteria cannot be killed unless they are flushed. Therefore, after washing with sufficient reverse osmosis water to remove protein components, toxins are removed and bacteria are sterilized using expensive chemicals containing chlorine, hypochlorite, EDTA, etc. It was necessary to wash with reverse osmosis water.

【0012】一方、一つの透析液自動供給装置で調製さ
れる透析液は1種類であることから、一つの透析液自動
供給装置に複数の透析器を接続してもそれぞれの透析器
には同じ透析液が供給されてしまう。人工透析は患者の
症状に応じて透析液を供給する必要があるため一つの透
析器のそれぞれに透析液自動供給装置を設け、患者に供
給される透析液の自由度を高めることも少なくない。し
たがって、このような透析器に対して最も有効な殺菌洗
浄装置の開発も望まれていた。
On the other hand, since there is only one type of dialysate prepared by one dialysate automatic feeder, even if a plurality of dialysers are connected to one dialysate automatic feeder, the same dialyser is used for each dialyser. The dialysate is supplied. In artificial dialysis, it is necessary to supply a dialysate in accordance with the patient's condition. Therefore, it is often the case that each dialyzer is provided with an automatic dialysate supply device to increase the degree of freedom of the dialysate supplied to the patient. Therefore, the development of the most effective sterilizing and cleaning device for such a dialyzer has been desired.

【0013】本発明は、このような従来技術の問題点に
鑑みてなされたものであり、洗浄対象物の殺菌洗浄を短
時間かつ低コストで行うと共に無駄なく洗浄液を使用す
ることを目的とする。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to sterilize an object to be cleaned in a short time at low cost and to use a cleaning liquid without waste. .

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明の殺菌洗浄装置は、原水が収容される電解槽
を隔膜によって陽極室と陰極室とに区画形成し、前記陽
極室と陰極室のそれぞれに電極板を設け、前記陽極室で
生成された酸化水、前記陰極室で生成された還元水、お
よび他の供給源から供給される水の3種類の洗浄液を、
複数の洗浄対象物のそれぞれへ交互に供給する殺菌洗浄
装置において、前記酸化水の流出路、前記還元水の流出
路、および前記水の供給路のそれぞれに複数の切替弁を
直結するとともに、これら切替弁をそれぞれ介して、前
記複数の洗浄対象物へ前記洗浄液を導く流路を直結し、
前記複数の洗浄対象物にそれぞれ供給される洗浄液の種
類が同一時間軸上で相異するように供給タイミングに位
相差をつけながら前記洗浄対象物へ前記3種類の洗浄液
を供給することを特徴としている。
In order to achieve the above object, the sterilizing / cleaning apparatus of the present invention comprises an electrolytic cell containing raw water, which is divided into an anode chamber and a cathode chamber by a diaphragm to form the anode chamber and the anode chamber. An electrode plate is provided in each of the cathode chambers, and three kinds of cleaning liquids of oxidizing water generated in the anode chamber, reduced water generated in the cathode chamber, and water supplied from another supply source are
In a sterilization cleaning device that alternately supplies to each of a plurality of cleaning objects, a plurality of switching valves are provided in each of the oxidizing water outflow path, the reducing water outflow path, and the water supply path.
Directly connected, through each of these switching valves , directly connected to the flow path for introducing the cleaning liquid to the plurality of cleaning objects ,
Seed of cleaning liquid supplied to each of the plurality of cleaning objects
It is characterized in that the three kinds of cleaning liquids are supplied to the cleaning object while providing a phase difference in the supply timing so that the classes are different on the same time axis .

【0015】この場合、前記電極板への印加電圧極性を
反転させる極性反転回路と、前記電解槽で生成された酸
化水および還元水の各流出路を前記極性反転回路の動作
に応じて切り替える流路切替機構とを設けてもよい。ま
た、洗浄対象物の数が3n(n:自然数)であると特に
効果的である。
In this case, a polarity reversing circuit for reversing the polarity of the voltage applied to the electrode plate and a flow path for switching the respective outflow passages of the oxidizing water and the reducing water generated in the electrolytic cell according to the operation of the polarity reversing circuit. A road switching mechanism may be provided. Further, it is particularly effective that the number of objects to be cleaned is 3n (n: natural number).

【0016】[0016]

【0017】[0017]

【作用】還元水は人工透析器の透析液流路などに付着し
た蛋白成分を溶出させる作用が極めて大きく、一方、酸
化水は毒素の除去作用や細菌の殺菌作用を備えている。
したがって、還元水と酸化水を用いて交互に洗浄を行
い、還元水で配管等に付着した蛋白成分を除去したの
ち、酸化水で毒素を除去したり細菌を殺菌すると、比較
的少量の還元水で蛋白成分の除去を実現することがで
き、しかも蛋白成分に隠れていたエンドトキシンなどの
毒素の除去やグラム陰性菌の殺菌を確実に行うことが可
能となる。
[Function] Reduced water has an extremely large effect of eluting protein components adhering to the dialysate flow path of an artificial dialyzer, while oxidized water has a toxin removing effect and a bactericidal effect.
Therefore, washing with alternating use of reducing water and oxidizing water to remove protein components adhering to piping etc. with reducing water, and then removing toxins and sterilizing bacteria with oxidizing water results in a relatively small amount of reducing water. The removal of the protein component can be realized by using, and it becomes possible to surely remove the toxin such as endotoxin hidden in the protein component and sterilize the Gram-negative bacterium.

【0018】かかる酸化水と還元水は、水道水、逆浸透
水、純水または軟水処理した水道水から選択される水を
単に電気分解することにより大量かつ安価に得られる。
また、電解水は非化学物質であるため、残留性および菌
の耐性がないという特性を有している。そのため、従来
の化学物質による殺菌洗浄と比較して殺菌洗浄後の逆浸
透水による洗浄工程を大幅に削減することができ、しか
も残留した化学物質が透析液に与える悪影響についても
全く考慮する必要がないために、その取り扱いがきわめ
て簡易となる。
Such oxidizing water and reducing water can be obtained in large quantities and at low cost simply by electrolyzing water selected from tap water, reverse osmosis water, pure water or tap water treated with soft water.
In addition, since electrolyzed water is a non-chemical substance, it has the characteristics of no persistence and no resistance to bacteria. Therefore, compared with conventional sterilization cleaning with chemical substances, it is possible to significantly reduce the washing step with reverse osmosis water after sterilization cleaning, and it is necessary to completely consider the adverse effect of residual chemical substances on dialysate. Since it does not exist, its handling is extremely simple.

【0019】そこで本発明では、原水を供給して同一の
電解水生成器から同時に得られた酸化水と還元水、およ
び水を用いて複数の洗浄対象物を殺菌洗浄するに際し、
供給タイミングに位相差をつけながら洗浄対象物へ3種
類の洗浄液を供給する。具体的には、酸化水の流出路、
還元水の流出路、および水の供給路のそれぞれに、複数
の洗浄対象物へ洗浄液を導く流路と切替弁とを設ける。
同一の電解水生成器からは酸化水と還元水とが同時に生
成されるため、ある洗浄対象物に酸化水を供給している
ときは同時に生成された還元水を他の洗浄対象物に供給
し、さらに他の洗浄対象物には残りの水を供給するよう
に切替弁を切り替える。そして、このような供給を順次
位相をずらしながら切り替えると、3種類の洗浄液が常
に何れかの洗浄対象物に供給されることになり、電解水
を廃棄することなく有効に活用することが可能となる。
Therefore, in the present invention, when sterilizing and cleaning a plurality of objects to be cleaned by using the oxidizing water and the reducing water simultaneously obtained from the same electrolyzed water generator by supplying raw water,
Three kinds of cleaning liquids are supplied to the object to be cleaned while giving a phase difference to the supply timing. Specifically, the outflow passage of oxidizing water,
Each of the reducing water outflow passage and the water supply passage is provided with a flow path and a switching valve for introducing the cleaning liquid to a plurality of cleaning objects.
Oxidized water and reduced water are simultaneously generated from the same electrolyzed water generator, so when reducing water is being supplied to a certain cleaning target, the reduced water generated at the same time is supplied to other cleaning targets. The switching valve is switched so that the remaining water is supplied to the other cleaning target. When such supply is switched while sequentially shifting the phase, the three kinds of cleaning liquids are always supplied to any one of the cleaning objects, and the electrolytic water can be effectively used without being discarded. Become.

【0020】[0020]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。以下においては、本発明の殺菌洗浄装置を透析
器の透析液流路の殺菌洗浄システムに応用した具体例で
説明する。図1は本発明の一実施例を示す構成図、図2
は同実施例の殺菌洗浄装置の一部を構成する電解水生成
器および流路切替機構を示す構成図、図3は同実施例に
係る流路切替機構の作用を説明する構成図、図4は同実
施例の殺菌洗浄装置における電解水および水の供給タイ
ミングを示すタイムチャートである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In the following, a specific example in which the sterilization cleaning device of the present invention is applied to a sterilization cleaning system for a dialysate flow path of a dialyzer will be described. 1 is a block diagram showing an embodiment of the present invention, FIG.
4 is a configuration diagram showing an electrolyzed water generator and a flow path switching mechanism that constitute a part of the sterilization / cleaning apparatus of the embodiment, FIG. 3 is a configuration diagram illustrating the operation of the flow path switching mechanism according to the embodiment, and FIG. FIG. 4 is a time chart showing the timing of supplying electrolyzed water and water in the sterilization / cleaning apparatus of the same example.

【0021】本実施例の殺菌洗浄装置では、純水を生成
する逆浸透装置1に例えば水道水を供給すると、得られ
た純水は純水タンクなど(不図示)に一時的に貯留され
る。そして、図示しないポンプの作動によって、この純
水は電解水生成器13と純水供給路21の四方弁V1
に選択的に供給される。この純水供給の切替えは三方弁
15によって行われ、純水供給路21に対しては透析液
の希釈溶媒としたり、殺菌洗浄工程における純水洗浄に
用いられる。また、電解水生成器13に対しては、原水
として供給される。なお、場合によっては純水以外に
も、例えば水道水、逆浸透水、軟水処理が施された水道
水を用いることもできるので、本発明に言う水はこれら
を含む概念である。
In the sterilizing and washing apparatus of this embodiment, when tap water is supplied to the reverse osmosis apparatus 1 for producing pure water, the pure water obtained is temporarily stored in a pure water tank or the like (not shown). . Then, the pure water is selectively supplied to the electrolyzed water generator 13 and the four-way valve V 1 of the pure water supply passage 21 by the operation of a pump (not shown). The switching of the pure water supply is performed by the three-way valve 15, and the pure water supply passage 21 is used as a diluent solvent for the dialysate or used for pure water cleaning in the sterilization cleaning process. Further, it is supplied to the electrolyzed water generator 13 as raw water. In addition to pure water, for example, tap water, reverse osmosis water, and tap water that has been subjected to soft water treatment can be used in some cases, and the water referred to in the present invention is a concept including these.

【0022】電解水生成器13では、供給された純水を
電気分解することにより酸化水(OX)と還元水(RE
D)が生成され、それぞれの流出路9,10から四方弁
2,V3 に案内される。図2に詳示するように、この
電解水生成器13は、いわゆる連続通水式であって、逆
浸透装置1により生成された純水を収容する電解槽2を
有しており、電解槽2内は隔膜3によって陰極室4と陽
極室5に区画されている。これらの陰極室4および陽極
室5にはそれぞれ電極板6,7が設けられており、陰極
室4に設けられた電極板6は陰極、陽極室5に設けられ
た電極板7は陽極の電圧が印加されるように直流電源8
が接続されている。
In the electrolyzed water generator 13, the supplied pure water is electrolyzed to oxidize water (OX) and reduce water (RE).
D) is generated and guided from the respective outflow passages 9, 10 to the four-way valves V 2 , V 3 . As shown in detail in FIG. 2, the electrolyzed water generator 13 is of a so-called continuous water flow type and has an electrolyzer 2 for containing pure water generated by the reverse osmosis device 1. The interior of 2 is divided by a diaphragm 3 into a cathode chamber 4 and an anode chamber 5. Electrode plates 6 and 7 are provided in the cathode chamber 4 and the anode chamber 5, respectively. The electrode plate 6 provided in the cathode chamber 4 is a cathode, and the electrode plate 7 provided in the anode chamber 5 is an anode voltage. DC power supply 8 so that
Are connected.

【0023】ただし、本実施例では、両電極板6,7へ
の印加電圧極性をある一定間隔で反転させるための極性
反転回路11が設けられている。そのため、本実施例の
電解水生成器13における陽極室5と陰極室6は、電源
8からの極性が交互に切り替わることによって交互に入
れ代わることになるので、図2に示す陽極室5と陰極室
6の状態は、その一態様を示すものである。すなわち、
左側の電極板1に陽極、右側の電極板2に陰極が印加さ
れた状態のときを示している。以下、図2に示す状態に
おける極性を主として便宜的に説明する。
However, in the present embodiment, a polarity reversing circuit 11 for reversing the polarity of the voltage applied to both electrode plates 6 and 7 at a certain fixed interval is provided. Therefore, the anode chamber 5 and the cathode chamber 6 in the electrolyzed water generator 13 of this embodiment are alternately replaced by the polarity of the power source 8 being alternately switched. Therefore, the anode chamber 5 and the cathode chamber shown in FIG. The state of 6 shows one mode thereof. That is,
It shows a state in which an anode is applied to the left electrode plate 1 and a cathode is applied to the right electrode plate 2. Hereinafter, the polarity in the state shown in FIG. 2 will be mainly described for convenience.

【0024】本実施例の制御回路においては、電極板
6,7への印加電圧極性を所定の時間間隔で反転させる
ため、例えばタイマー(不図示)の信号を極性反転回路
11へ出力する。この信号を受けて、極性反転回路11
は直流電源8から両電極板6,7に供給される電圧印加
極性をそれまで供給されていた極性に対して反転させ
る。なお、電極板6,7への印加電圧極性の反転タイミ
ングは1回の殺菌洗浄を単位として行うことが好ましい
が、本発明では特に限定されずに、n回だけ同じ極性で
電解を行ったのち反転させてもよい。ただし、金属スケ
ールを完全に溶出させる意味で、両極性における通電時
間はできるだけ等しくすることが好ましいといえる。
In the control circuit of the present embodiment, in order to invert the polarity of the voltage applied to the electrode plates 6 and 7 at predetermined time intervals, for example, a signal from a timer (not shown) is output to the polarity inversion circuit 11. Upon receiving this signal, the polarity reversing circuit 11
Reverses the polarity of the voltage applied from the DC power source 8 to both electrode plates 6 and 7 with respect to the polarity that has been supplied until then. It is preferable that the reversal timing of the polarity of the voltage applied to the electrode plates 6 and 7 is performed by sterilizing and washing once as a unit, but in the present invention, it is not particularly limited, and electrolysis is performed n times with the same polarity. You may invert. However, in order to completely elute the metal scale, it can be said that it is preferable to make the energization times in both polarities as equal as possible.

【0025】原水中に含まれた陽イオンの一部は陰極板
6にスケールとして析出し、電解能力を低下させようと
するが、本実施例のように所定の時間間隔で電極板6,
7への印加電圧極性を反転させるようにすれば、次に電
解を行う場合には、陽イオンが析出した陰極板が陽極板
となる。その結果、それまで析出していた金属スケール
が電子を放出して再び陽イオン化し、原水中に溶出す
る。そして、この溶出した陽イオンは陰極室(前回は陽
極室であった)に集約して、還元水として供給されるこ
とになる。また、陰極板6に析出した金属スケールをイ
オン化することにより除去し、しかもこの除去された陽
イオンを陰極室4に集約して還元水として利用に供する
ことから、スケールを含んだ水を廃棄する必要もない。
A part of the cations contained in the raw water is deposited on the cathode plate 6 as a scale to reduce the electrolysis capacity. However, as in this embodiment, the electrode plates 6 and 6 are formed at predetermined time intervals.
If the polarity of the voltage applied to 7 is reversed, the cathode plate on which the cations are deposited becomes the anode plate in the next electrolysis. As a result, the metal scale that has been deposited up to that point emits electrons, is cationized again, and is eluted into the raw water. Then, the eluted cations are collected in the cathode chamber (previously the anode chamber) and supplied as reduced water. Further, since the metal scale deposited on the cathode plate 6 is removed by ionization, and the removed cations are collected in the cathode chamber 4 and used as reduced water, the water containing the scale is discarded. There is no need.

【0026】ただし、両電極板6,7への印加電圧極性
を反転させると、電解水の流出路9,10のそれぞれか
ら得られる電解水の種類も反転するので、本実施例では
四方弁V2,3 に接続された2本の流出管9,10には
常に同じ種類の電解水が導かれるように流路切替機構1
2を設けている。
However, when the polarity of the voltage applied to both electrode plates 6 and 7 is reversed, the types of electrolyzed water obtained from the outflow paths 9 and 10 of electrolyzed water are also reversed, so in this embodiment, the four-way valve V is used. The flow path switching mechanism 1 is designed so that the same kind of electrolyzed water is always introduced to the two outflow pipes 9 and 10 connected to 2, V 3.
2 is provided.

【0027】この流路切替機構12としては、具体的に
は図2に示される構成を採用することができるが、本発
明では特に図2に示す実施例にのみ限定されることはな
い。図2に示す流路切替機構12では、各流出路9,1
0に2つの三方弁19a,19b,20a,20bが設
けられ、上流側に配置された三方弁19a,20aと相
手側の下流側に配置された三方弁19b,20bとが接
続されている。また、印加電圧極性を切り替えた当初
は、流出路9,10内に種類の異なる電解水が残留して
いるため、これを押し出すためのドレン管25およびド
レンバルブ25aも設けられている。
The flow path switching mechanism 12 can be constructed by the construction shown in FIG. 2, but the present invention is not limited to the embodiment shown in FIG. In the flow path switching mechanism 12 shown in FIG. 2, each outflow path 9, 1
0 is provided with two three-way valves 19a, 19b, 20a, 20b, and the three-way valves 19a, 20a arranged on the upstream side and the three-way valves 19b, 20b arranged on the downstream side of the other side are connected. Further, at the beginning of switching the polarity of the applied voltage, different types of electrolyzed water remain in the outflow passages 9 and 10, so a drain pipe 25 and a drain valve 25a for pushing this out are also provided.

【0028】このような流路切替機構12においては、
両電極板6,7への印加電圧極性の反転に応じて次のよ
うな動作が行われる。すなわち、電解槽2の各流出路
9,10からそのまま酸化水と還元水とを導く場合に
は、図3(A)に示す如く各三方弁19a,19b,2
0a,20bを制御する。この状態から、両電極板への
印加電圧極性が反転すると、まず最初に流出路9,10
内に残留した電解水を廃棄すべく、図3(B)に示す如
く三方弁19a,20aを切り替える。これにより、ド
レンバルブ25aを介してドレン管25から残留電解水
が廃棄され、次に供給される異種の電解水の導入が可能
な状態となる。
In such a flow path switching mechanism 12,
The following operation is performed according to the reversal of the polarity of the voltage applied to both electrode plates 6 and 7. That is, when the oxidizing water and the reducing water are introduced as they are from the outflow passages 9 and 10 of the electrolytic cell 2, the three-way valves 19a, 19b and 2 as shown in FIG.
0a and 20b are controlled. When the polarity of the voltage applied to both electrode plates is reversed from this state, the outflow paths 9 and 10 are first
In order to discard the electrolyzed water remaining inside, the three-way valves 19a and 20a are switched as shown in FIG. 3 (B). As a result, the residual electrolyzed water is discarded from the drain pipe 25 via the drain valve 25a, and a different type of electrolyzed water to be supplied next can be introduced.

【0029】両電極板への印加電圧極性が反転すると、
電解槽直下の電解水の種類も反転するので、図3(C)
に示すように三方弁19b,20bおよびドレンバルブ
25aを切り替え、図1に示す四方弁V2,3 には常に
同じ種類の電解水が供給されるようにする。ついで、再
び印加電圧極性を反転すると、図3(D)に示すように
残留電解水の押し出しを行ったのち、図3(A)に示す
如く三方弁19a,20aを切り替えて酸化水と還元水
の供給を行う。
When the polarity of the voltage applied to both electrode plates is reversed,
Since the type of electrolyzed water directly below the electrolytic cell is also reversed, see Fig. 3 (C).
Three-way valve 19b, as shown in, switching and 20b and drain valve 25a, always the same kind of electrolytic water to be supplied to the four-way valve V 2, V 3 shown in FIG. Then, when the polarity of the applied voltage is reversed again, residual electrolytic water is extruded as shown in FIG. 3D, and then the three-way valves 19a and 20a are switched as shown in FIG. Supply.

【0030】このような電解水生成器13を用い、2つ
の電極板6,7に所定の電圧を印加すると、電解槽2内
に連続的に供給される純水は電気分解し、陽イオンは陰
極側、すなわち陰極室4に集約される一方で、陰イオン
は陽極側、すなわち陽極室5に集約される。このとき、
陽極室5と陰極室4とは隔膜3によって仕切られている
ことから、陽極室5に設けられた酸化水の流出口9から
は酸化水のみが吐出し、陰極室4に設けられた還元水の
流出口10からは還元水のみが吐出することになる。な
お、生成される電解水のpH値は、電解槽内における電
極板の電流密度、電極板に対する原水の接水時間または
流量、NaCl等の解離用媒体の添加量(解離度)等に
よって調節される。
When a predetermined voltage is applied to the two electrode plates 6 and 7 using such an electrolyzed water generator 13, pure water continuously supplied into the electrolytic cell 2 is electrolyzed and cations are generated. The negative ions are collected in the cathode side, that is, the cathode chamber 4, while the anions are collected in the anode side, that is, the anode chamber 5. At this time,
Since the anode chamber 5 and the cathode chamber 4 are separated by the diaphragm 3, only the oxidizing water is discharged from the outlet port 9 of the oxidizing water provided in the anode chamber 5, and the reducing water provided in the cathode chamber 4 is discharged. Only the reducing water is discharged from the outlet 10 of the. The pH value of the generated electrolyzed water is adjusted by the current density of the electrode plate in the electrolytic cell, the contact time or flow rate of the raw water with respect to the electrode plate, the amount of dissociation medium such as NaCl (dissociation degree), etc. It

【0031】電解水生成器13により電解されて得られ
た酸化水と還元水は図示しないポンプによって中央供給
装置18に案内される。このとき、電解水生成器13か
らの酸化水流出路9と還元水流出路10は、それぞれ四
方弁V2,3 に接続され、また純水供給路21は四方弁
1 に接続されている。また、図1に示すように洗浄対
象物である透析器A,B,Cが3基であるときには、そ
れぞれの四方弁V1,2,3 から3基の透析器A,B,
Cに対してそれぞれ流路が設けられている。例えば、純
水供給路21が接続された四方弁V1 からは3基の透析
器A,B,Cに対して3系統の流路21a,21b,2
1cが接続され、同様に酸化水の流出路9が接続された
四方弁V2 からは3基の透析器A,B,Cに対して3系
統の流路9a,9b,9cが、還元水の流出路10が接
続された四方弁V3 からは3基の透析器A,B,Cに対
して3系統の流路10a,10b,10cがそれぞれ接
続されている。
Oxidized water and reduced water obtained by electrolysis by the electrolyzed water generator 13 are guided to the central supply device 18 by a pump (not shown). At this time, the oxidizing water outflow passage 9 and the reducing water outflow passage 10 from the electrolyzed water generator 13 are connected to the four-way valves V 2 and V 3 , respectively, and the pure water supply passage 21 is connected to the four-way valve V 1 . Further, the dialyzer is cleaned object as shown in FIG. 1 A, B, when C is 3 groups, each of the four-way valve V 1, V 2, V 3 from the 3 groups of the dialyzer A, B,
Flow paths are provided for C respectively. For example, from the four-way valve V 1 to which the pure water supply passage 21 is connected, there are three systems of flow passages 21a, 21b, 2 for three dialyzers A, B, C.
1c is connected to the four way valve V 2 to which the outflow passage 9 of the oxidizing water is connected, and three flow passages 9a, 9b and 9c are connected to the three dialyzers A, B and C, and the reducing water is supplied. From the four-way valve V 3 to which the outflow passage 10 is connected, three systems of flow paths 10a, 10b, 10c are connected to three dialyzers A, B, C, respectively.

【0032】そして例えば、透析を終了して透析器の透
析液流路の殺菌洗浄を行う場合には、酸化水,還元水お
よび純水が図4に示される順序でそれぞれの透析器A,
B,Cに送られる。この供給タイミングについては後述
する。なお、このような四方弁V1,2,3 の切替えは
図示しないコントローラによって制御される。
For example, when dialysis is terminated and the dialysate flow path of the dialyzer is sterilized and washed, the oxidizing water, the reducing water, and the pure water are supplied in the order shown in FIG.
Sent to B and C. The supply timing will be described later. The switching of the four-way valves V 1, V 2, V 3 is controlled by a controller (not shown).

【0033】一方、電解水生成器13の上流側には、被
電解水の解離度を高めるための混合機14が設けられて
おり、ポンプ16の作動にともなって所定量の解離用媒
体Sが混合機14に供給され、純水に添加される。この
ような解離用媒体Sとしては、例えば塩化ナトリウムや
塩化カリウムなどを用いることができる。
On the other hand, on the upstream side of the electrolyzed water generator 13, there is provided a mixer 14 for increasing the dissociation degree of electrolyzed water, and a predetermined amount of dissociation medium S is supplied with the operation of the pump 16. It is supplied to the mixer 14 and added to pure water. As such a dissociation medium S, for example, sodium chloride or potassium chloride can be used.

【0034】ちなみに、電解水生成器13で得られた酸
化水および還元水のpH値を管理するために、例えば電
解水生成器13の上流および下流に電気電導度を検出す
るためのECセンサを設け、これらのECセンサによっ
て電気電導度を測定し、電解前後の電位差(EC差)に
基づいて当該電解水生成器13における電解槽内におけ
る電極板の電流密度、電極板に対する原水の接水時間ま
たは流量、NaCl等の解離用媒体の添加量(解離度)
等の各種電解条件を制御し、所望のpH値に管理するよ
うに構成してもよい。これは、電解水の電気電導度とp
H値との間には一定の相関関係が存在することは知られ
ている(例えば、本願出願人の特願平5−188,16
9号参照)ので、pHセンサを取り付けることが困難で
ある透析器の殺菌洗浄系に対しては、ECセンサを使用
して電気電導度を測定し、この電位差からpH値を推定
することが可能となるからである。
By the way, in order to manage the pH values of the oxidizing water and the reduced water obtained in the electrolyzed water generator 13, for example, EC sensors for detecting the electric conductivity are provided upstream and downstream of the electrolyzed water generator 13. The electric conductivity is measured by these EC sensors, and the current density of the electrode plate in the electrolytic cell in the electrolyzed water generator 13 in the electrolyzed water generator 13 and the contact time of the raw water with the electrode plate are measured based on the potential difference (EC difference) before and after electrolysis. Or flow rate, addition amount of dissociation medium such as NaCl (dissociation degree)
It may be configured to control various electrolysis conditions such as, and manage to a desired pH value. This is the electric conductivity of electrolyzed water and p
It is known that there is a certain correlation with the H value (for example, Japanese Patent Application No. 5-188,16 filed by the present applicant).
(See No. 9), it is possible to estimate the pH value from the potential difference by measuring the electric conductivity using the EC sensor for the sterilizing and cleaning system of the dialyzer where it is difficult to attach the pH sensor. It is because

【0035】具体的には、各ECセンサにより検出され
たEC値をコントローラに入力し、EC差、すなわち電
解前後の電気電導度の差を演算したのち、このEC差が
当該コントローラに予め記憶されている基準値の範囲に
あるか否かを判断する。もし、基準値を満たしていない
場合にはコントローラから電解水生成器13の制御部あ
るいは混合機14のポンプ16に制御信号を出力し、電
解水のEC値が基準範囲内に入るようにフィードバック
制御を行う。このように、電解水のpH値、とりわけ酸
化水のpH値は殺菌力に相関することから、後述する殺
菌洗浄方法における殺菌効果を有効に実現するために、
酸化水のpH値を管理し、殺菌力の信頼性を高めるよう
にしてもよい。なお、主に殺菌能力を管理したいという
場合には、酸化水が殺菌能力を有しているので酸化水の
EC値のみを検出し、還元水についてはセンサによる実
際のEC値測定を省略することもできる。これは、電解
水生成器13において生成される酸化水と還元水は、ほ
ぼ等しいpH値を示し、しかも後述する洗浄方法に係る
還元水の機能は流路に付着した蛋白質等を除去するもの
であることから、さほど厳密に管理する必要はないから
である。
Specifically, the EC value detected by each EC sensor is input to the controller, the EC difference, that is, the difference in electrical conductivity before and after electrolysis is calculated, and the EC difference is stored in advance in the controller. It is judged whether or not it is within the range of the reference value. If the standard value is not satisfied, the controller outputs a control signal to the control unit of the electrolytic water generator 13 or the pump 16 of the mixer 14 to perform feedback control so that the EC value of the electrolytic water falls within the standard range. I do. Thus, since the pH value of the electrolyzed water, especially the pH value of the oxidizing water correlates with the sterilizing power, in order to effectively realize the sterilizing effect in the sterilizing and cleaning method described later,
You may make it manage the pH value of oxidizing water and raise the reliability of sterilization power. If you mainly want to control the sterilizing ability, you should only detect the EC value of the oxidizing water because the oxidizing water has the sterilizing ability, and omit the actual EC value measurement by the sensor for the reducing water. You can also This is because the oxidizing water and the reducing water generated in the electrolyzed water generator 13 have almost the same pH value, and the function of the reducing water according to the cleaning method described later is to remove proteins and the like adhering to the flow path. Because there is no need to manage it so strictly.

【0036】次に、上述した殺菌洗浄装置を用いた殺菌
洗浄方法について説明する。まず、本実施例の殺菌洗浄
方法では、透析を終了した透析器A,B,Cに対して電
解により得られた還元水を供給して洗浄を行う。この還
元水は、pH=11以上、好ましくはpH=11.3以
上の強アルカリ性還元水である。還元水による洗浄は循
環洗浄であっても漬け置き洗浄であってもよく、またこ
れらを組み合わせた洗浄を行うこともできるが、本実施
例では還元水を連続的に供給する循環洗浄を採用してい
る。このような強アルカリ性還元水による洗浄によっ
て、透析器A,B,Cの透析液流路に付着した蛋白成分
が除去され、しかも、除去効果が極めて大きいので従来
の逆浸透水による洗浄に比べて少量の還元水で同等の洗
浄効果が得られる。
Next, a sterilization cleaning method using the sterilization cleaning device described above will be described. First, in the sterilization cleaning method of the present embodiment, the reducing water obtained by electrolysis is supplied to the dialyzers A, B, and C that have completed dialysis to perform cleaning. The reduced water is strongly alkaline reduced water having a pH of 11 or higher, preferably pH of 11.3 or higher. The cleaning with the reducing water may be circulating cleaning or soaking cleaning, or a combination of these cleanings can be performed. However, in this embodiment, the circulating cleaning for continuously supplying the reducing water is adopted. ing. By washing with such strongly alkaline reducing water, the protein components adhering to the dialysate flow paths of the dialyzers A, B, and C are removed, and since the removing effect is extremely large, compared with conventional washing with reverse osmosis water. An equivalent cleaning effect can be obtained with a small amount of reduced water.

【0037】透析器A,B,Cの透析液流路に付着した
蛋白成分を除去すると、次に酸化水を用いて毒素除去洗
浄および細菌の殺菌洗浄を行う。この酸化水は、pH=
3以下、好ましくはpH=2.7以下の超酸化水であ
る。酸化水による洗浄は循環洗浄であっても漬け置き洗
浄であってもよく、またこれらを組み合わせた洗浄を行
うこともできるが、本実施例では酸化水を連続的に供給
する循環洗浄を採用している。このような超酸化水によ
る洗浄によって、透析器の透析液流路に付着した毒素を
除去したり細菌を殺菌することができるが、上述した超
酸化水の毒素除去効果および殺菌効果は極めて大きいの
で、また還元水による蛋白成分の除去が好適に行われて
いるので、エンドトキシンなどのような毒素の除去およ
びグラム陰性菌の殺菌を少量の酸化水で行うことができ
る。
After removing the protein components adhering to the dialysate flow paths of the dialyzers A, B and C, the toxin-removing cleaning and the sterilizing cleaning of the bacteria are then carried out using oxidizing water. This oxidized water has a pH =
It is super-oxidized water of 3 or less, preferably pH = 2.7 or less. The cleaning with the oxidizing water may be circulating cleaning or soaking cleaning, or a combination of these cleanings can be performed. However, in this embodiment, the circulating cleaning for continuously supplying the oxidizing water is adopted. ing. By washing with such super-oxidized water, toxins adhering to the dialysate flow path of the dialyzer can be removed and bacteria can be sterilized, but the toxin removal effect and sterilization effect of the super-oxidized water described above are extremely large. Further, since the protein component is preferably removed with reduced water, it is possible to remove toxins such as endotoxin and sterilize Gram-negative bacteria with a small amount of oxidizing water.

【0038】強アルカリ性還元水を用いた洗浄と超酸化
水を用いた洗浄を終了すると、透析器A,B,Cの透析
液流路に付着した蛋白成分や毒素は除去され細菌は殺菌
されるが、洗浄に用いられた超酸化水を洗い流すために
純水洗浄を行う。この純水洗浄は超酸化水を除去できれ
ばよいので、少量かつ短時間の洗浄で足りる。このよう
に本実施例の殺菌洗浄方法を用いれば、従来多量の純水
を用いて長時間行う必要があった洗浄作業を改善するこ
とができる。なお、上述した洗浄方法では強アルカリ性
還元水による洗浄を行ったのち超酸化水による洗浄を行
い、最後に純水による洗浄を行っているが、本発明では
かかる還元水と酸化水による洗浄回数には限定されず、
交互に複数回洗浄することも可能である。
When the washing with the strongly alkaline reduced water and the washing with the super-oxidized water are completed, the protein components and toxins adhering to the dialysate flow paths of the dialyzers A, B and C are removed and the bacteria are sterilized. However, pure water cleaning is performed to wash away the super-oxidized water used for cleaning. This pure water cleaning needs only to remove super-oxidized water, so a small amount of cleaning in a short time is sufficient. As described above, by using the sterilizing and cleaning method of this embodiment, it is possible to improve the cleaning work which has conventionally required a long time using a large amount of pure water. In the cleaning method described above, cleaning with strong alkaline reducing water is performed, then cleaning with super-oxidizing water, and finally cleaning with pure water. Is not limited,
It is also possible to wash several times alternately.

【0039】特に本実施例では、一つの電解水生成器1
3から同時に得られた超酸化水と強アルカリ性還元水、
および逆浸透装置から供給される純水を用いて3基の透
析器A,B,Cを殺菌洗浄するに際し、供給タイミング
に位相差をつけながらこれら3種類の洗浄液を供給す
る。
Particularly in this embodiment, one electrolyzed water generator 1 is used.
Super-oxidized water and strong alkaline reduced water obtained from 3 at the same time,
When sterilizing and cleaning the three dialyzers A, B, and C using pure water supplied from the reverse osmosis device, these three kinds of cleaning liquids are supplied with a phase difference in the supply timing.

【0040】具体的には、酸化水の流出路9、還元水の
流出路10、および純水の供給路21のそれぞれに設け
られた四方弁V1,2,3 を図4に示すように切り替え
る。図4に示すように、例えばある時間t1 において
は、純水供給路21からの純水は透析器Aに、酸化水流
出路9からの酸化水は透析器Cに、還元水流出路からの
還元水は透析器Bにそれぞれ供給する。
Specifically, FIG. 4 shows four-way valves V 1, V 2 and V 3 provided in each of the oxidizing water outflow passage 9, the reducing water outflow passage 10 and the pure water supply passage 21. To switch. As shown in FIG. 4, for example, at a certain time t 1 , pure water from the pure water supply passage 21 is reduced to the dialyzer A, oxidized water from the oxidizing water outflow passage 9 is reduced to the dialyzer C, and reduced from the reduced water outflow passage. Water is supplied to each dialyzer B.

【0041】次いで、時間t2 においては、3つの四方
弁V1,2,3 をそれぞれ切り替え、純水供給路21か
らの純水は透析器Cに、酸化水流出路9からの酸化水は
透析器Bに、還元水流出路からの還元水は透析器Aにそ
れぞれ供給する。同様にして次の時間t3 においては、
再び3つの四方弁V1,2,3 をそれぞれ切り替え、純
水供給路21からの純水は透析器Bに、酸化水流出路9
からの酸化水は透析器Aに、還元水流出路からの還元水
は透析器Cにそれぞれ供給する。
Next, at time t 2 , the three four-way valves V 1, V 2 and V 3 are switched respectively, and the pure water from the pure water supply passage 21 is transferred to the dialyzer C and the oxidizing water from the oxidizing water outflow passage 9 is supplied. To the dialyzer B, and the reduced water from the reduced water outflow passage to the dialyzer A, respectively. Similarly, at the next time t 3 ,
Again, the three four-way valves V 1, V 2 and V 3 are switched respectively, and the pure water from the pure water supply passage 21 enters the dialyzer B and the oxidizing water outflow passage 9
Oxidized water is supplied to the dialyzer A, and reduced water from the reduced water outlet is supplied to the dialyzer C.

【0042】このような操作を順次繰り返すことによ
り、一つの透析器にたいしては、上述した殺菌洗浄方
法、すなわち還元水による蛋白成分等の除去、酸化水に
よる殺菌、純水による酸化水の除去が行われ、しかも、
生成される電解水を無駄にすることなく、かつ途中に貯
留タンクを設けることもない。
By repeating these operations in sequence, one dialysis machine can be subjected to the above-mentioned sterilization / cleaning method, that is, removal of protein components with reducing water, sterilization with oxidizing water, and removal of oxidizing water with pure water. And
The generated electrolyzed water is not wasted, and a storage tank is not provided on the way.

【0043】以上説明した実施例は、本発明の理解を容
易にするために記載されたものであって、本発明を限定
するために記載されたものではない。したがって、上記
の実施例に開示された各要素は、本発明の技術的範囲に
属する全ての設計変更や均等物をも含む趣旨である。例
えば、本発明の殺菌洗浄装置および殺菌洗浄方法は、上
述した透析器の透析液流路の洗浄のみならず、電解水を
用いた洗浄を必要とする他の洗浄対象物に対しても適用
することができる。また、生成する電解水は超酸化水や
強アルカリ性還元水に限定されることなく、適用対象に
応じて電解水の性質を変更することも可能である。
The embodiments described above are described for facilitating the understanding of the present invention, but not for limiting the present invention. Therefore, each element disclosed in the above-described embodiments is intended to include all design changes and equivalents within the technical scope of the present invention. For example, the sterilization cleaning apparatus and the sterilization cleaning method of the present invention are applied not only to the above-described cleaning of the dialysate flow path of the dialyzer, but also to other cleaning objects that require cleaning with electrolyzed water. be able to. The generated electrolyzed water is not limited to super-oxidized water or strongly alkaline reduced water, and the property of electrolyzed water can be changed according to the application target.

【0044】[0044]

【発明の効果】以上述べたように本発明によれば、安価
に生成することができる電解水を用い、電解水を無駄に
することなく、還元水の蛋白成分溶出効果や酸化水の毒
素除去効果,細菌殺菌効果を有効に発揮できる。また、
電解槽で生成された電解水をダイレクトに洗浄対象物に
導くことにより、殺菌洗浄装置の小型化を実現すること
ができ、例えば3n個の洗浄対象物に対して一つの殺菌
洗浄装置を設ける場合などに好都合である。加えて、電
極板への印加電圧極性を逐次反転させると、陰極板に析
出するスケールの除去を自動的に行うことができ、メイ
ンテナンスの点でも好ましい殺菌洗浄装置となる。
As described above, according to the present invention, the electrolyzed water that can be produced at a low cost is used, and the protein component elution effect of the reduced water and the toxin removal of the oxidized water can be performed without wasting the electrolyzed water. The effect and the bactericidal effect can be effectively exhibited. Also,
By directly guiding the electrolyzed water generated in the electrolysis tank to the object to be cleaned, it is possible to reduce the size of the sterilization cleaning device. For example, in the case of providing one sterilization cleaning device for 3n objects to be cleaned. It is convenient for In addition, by sequentially reversing the polarity of the voltage applied to the electrode plate, the scale deposited on the cathode plate can be removed automatically, and the sterilization / cleaning device is also preferable in terms of maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の殺菌洗浄装置を示すブロック図であ
る。
FIG. 1 is a block diagram showing a sterilization cleaning device of the present invention.

【図2】本発明の殺菌洗浄装置の一部を構成する電解水
生成器および流路切替機構を示す構成図である。
FIG. 2 is a configuration diagram showing an electrolyzed water generator and a flow path switching mechanism that constitute a part of the sterilization cleaning device of the present invention.

【図3】本発明に係る流路切替機構の作用を説明する構
成図である。
FIG. 3 is a configuration diagram illustrating an operation of the flow path switching mechanism according to the present invention.

【図4】本発明の殺菌洗浄装置における電解水および水
の供給タイミングを示すタイムチャートである。
FIG. 4 is a time chart showing the supply timing of electrolyzed water and water in the sterilizing and cleaning apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1…逆浸透装置 2…電解槽 3…隔膜 4…陰極室 5…陽極室 6…陰極板 7…陽極板 8…直流電源 9…酸化水の流出路 9a,9b,9c…流路 10…還元水の流出路 10a,10b,10c…流路 11…極性反転回路 12…流路切替機構 13…電解水生成器 15…三方弁 21…純水供給路 21a,21b,21c…流路 V1,2,3 …四方弁(切替弁) A,B,C…透析器(洗浄対象物)DESCRIPTION OF SYMBOLS 1 ... Reverse osmosis device 2 ... Electrolyte tank 3 ... Diaphragm 4 ... Cathode chamber 5 ... Anode chamber 6 ... Cathode plate 7 ... Anode plate 8 ... DC power supply 9 ... Oxidized water outflow passages 9a, 9b, 9c ... Flow passage 10 ... Reduction Water outflow paths 10a, 10b, 10c ... Flow path 11 ... Polarity reversing circuit 12 ... Flow path switching mechanism 13 ... Electrolyzed water generator 15 ... Three-way valve 21 ... Pure water supply paths 21a, 21b, 21c ... Flow path V 1, V 2, V 3 ... four-way valve (switching valve) A, B, C ... dialyzer (object to be cleaned)

フロントページの続き (56)参考文献 特開 平7−284744(JP,A) 特開 平5−237478(JP,A) 特開 平5−50065(JP,A) 特開 平5−220481(JP,A) 特開 平7−116247(JP,A) 特開 平7−108064(JP,A) 特開 平2−149395(JP,A) 特開 平5−329478(JP,A) 特開 昭52−23888(JP,A) 特開 平1−317592(JP,A) 特開 平2−111708(JP,A) 実開 平5−63695(JP,U) 実開 平2−117028(JP,U) (58)調査した分野(Int.Cl.7,DB名) A61L 2/18 A61L 2/02 C02F 1/46 A61M 1/14 563 Continuation of the front page (56) Reference JP-A-7-284744 (JP, A) JP-A-5-237478 (JP, A) JP-A-5-50065 (JP, A) JP-A-5-220481 (JP , A) JP 7-116247 (JP, A) JP 7-108064 (JP, A) JP 2-149395 (JP, A) JP 5-329478 (JP, A) JP 52-23888 (JP, A) JP-A-1-317592 (JP, A) JP-A-2-111708 (JP, A) Actual opening 5-63695 (JP, U) Actual opening 2-117028 (JP, A) U) (58) Fields surveyed (Int.Cl. 7 , DB name) A61L 2/18 A61L 2/02 C02F 1/46 A61M 1/14 563

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原水が収容される電解槽(2)を隔膜
(3)によって陽極室(5)と陰極室(4)とに区画形
成し、前記陽極室と陰極室のそれぞれに電極板(6,
7)を設け、前記陽極室で生成された酸化水(OX)、
前記陰極室で生成された還元水(RED)、および他の
供給源から供給される水(RO)の3種類の洗浄液を、
複数の洗浄対象物(A,B,C)のそれぞれへ交互に供
給する殺菌洗浄装置において、 前記酸化水の流出路(9)、前記還元水の流出路(1
0)、および前記水の供給路(21)のそれぞれに複数
の切替弁(V1 ,V2 ,V3 )を直結するとともに、こ
れら切替弁(V1 ,V2 ,V3 )をそれぞれ介して、前
記複数の洗浄対象物へ前記洗浄液を導く流路(21a〜
21c,9a〜9c,10a〜10c)を直結し、前記
複数の洗浄対象物にそれぞれ供給される洗浄液の種類が
同一時間軸上で相異するように供給タイミングに位相差
をつけながら前記洗浄対象物(A,B,C)へ前記3種
類の洗浄液(OX,RED,RO)を供給することを特
徴とする殺菌洗浄装置。
1. An electrolytic cell (2) containing raw water is divided into an anode chamber (5) and a cathode chamber (4) by a diaphragm (3), and an electrode plate (2) is formed in each of the anode chamber and the cathode chamber. 6,
7) is provided, and oxidizing water (OX) generated in the anode chamber,
Three types of cleaning liquids, reduced water (RED) generated in the cathode chamber and water (RO) supplied from another supply source,
In a sterilizing and cleaning apparatus that alternately supplies a plurality of cleaning objects (A, B, C), the oxidizing water outflow passage (9) and the reducing water outflow passage (1
0), and a plurality each of the supply path of the water (21)
Directly connect the switching valves (V1, V2, V3) of
Flow paths (21a to 21a) for introducing the cleaning liquid to the plurality of cleaning objects via the switching valves (V1, V2, V3) respectively.
21c, 9a to 9c, 10a to 10c) are directly connected, and
The type of cleaning liquid supplied to each of multiple objects to be cleaned
It is characterized in that the three kinds of cleaning liquids (OX, RED, RO) are supplied to the cleaning object (A, B, C) while making the supply timings different in phase on the same time axis. Sterilizing and cleaning equipment.
【請求項2】前記電極板(6,7)への印加電圧極性を
反転させる極性反転回路(11)と、前記電解槽で生成
された酸化水および還元水の各流出路(9,10)を前
記極性反転回路の動作に応じて切り替える流路切替機構
(12)とを有することを特徴とする請求項1に記載の
殺菌洗浄装置。
2. A polarity reversing circuit (11) for reversing the polarity of the voltage applied to the electrode plates (6, 7), and respective outflow paths (9, 10) of oxidizing water and reduced water generated in the electrolytic cell. The sterilization cleaning device according to claim 1, further comprising: a flow path switching mechanism (12) that switches the switch according to the operation of the polarity reversing circuit.
【請求項3】前記洗浄対象物の数は3n(n:自然数)
であることを特徴とする請求項1または2に記載の殺菌
洗浄装置。
3. The number of objects to be cleaned is 3n (n: natural number)
The sterilizing / cleaning device according to claim 1 or 2, wherein
JP31937193A 1993-12-20 1993-12-20 Sterilization cleaning device Expired - Fee Related JP3452387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31937193A JP3452387B2 (en) 1993-12-20 1993-12-20 Sterilization cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31937193A JP3452387B2 (en) 1993-12-20 1993-12-20 Sterilization cleaning device

Publications (2)

Publication Number Publication Date
JPH07171204A JPH07171204A (en) 1995-07-11
JP3452387B2 true JP3452387B2 (en) 2003-09-29

Family

ID=18109408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31937193A Expired - Fee Related JP3452387B2 (en) 1993-12-20 1993-12-20 Sterilization cleaning device

Country Status (1)

Country Link
JP (1) JP3452387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200340A (en) * 2011-03-24 2012-10-22 Nippon Torimu:Kk Manufacturing device of dialysis solution preparation water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403258B2 (en) * 1993-10-14 2003-05-06 医療法人博腎会博腎会病院 Fluid flow path cleaning method and cleaning device
DE19640839C2 (en) * 1996-10-02 1999-08-26 Fresenius Medical Care De Gmbh Method and device for disinfecting a dialysis machine
JPH10180256A (en) * 1996-12-26 1998-07-07 Noriaki Tanaka Electrolytic strongly acidic water, its production and endotoxin inactivator consisting of the strongly acidic water
JP4400790B2 (en) * 2005-04-04 2010-01-20 日機装株式会社 Hemodialysis system
PL2739573T3 (en) * 2011-08-04 2017-06-30 Unilever N.V. A device and process for improved recovery of deionised water
JP6479140B2 (en) * 2017-11-08 2019-03-06 株式会社日本トリム Cleaning method for dialysate production equipment
CN110559461A (en) * 2018-06-05 2019-12-13 杜晓欢 Medical timing pre-disinfection soaking box
KR102085474B1 (en) * 2019-02-19 2020-04-23 김정남 Generation-system for antiseptic solution including chlorine
WO2023187968A1 (en) * 2022-03-29 2023-10-05 株式会社日本トリム Cleaning device and reverse osmosis processing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223888A (en) * 1975-08-18 1977-02-23 Ando Toshiharu Disinfecting method and apparatus
JPH078768B2 (en) * 1988-06-06 1995-02-01 ジプコム株式会社 Sterilized water
JP2791889B2 (en) * 1988-06-17 1998-08-27 近藤 進 Electrolytic sterilized water or neutral aseptic water production equipment
JPH02149395A (en) * 1988-11-30 1990-06-07 Jipukomu Kk Apparatus and method of preparing aqueous disinfectant
JPH0621544Y2 (en) * 1989-03-09 1994-06-08 三菱重工業株式会社 Chemical solution adjusting and feeding device
JPH0550065A (en) * 1991-08-27 1993-03-02 Matsushita Electric Works Ltd Ionized water supplying device
JP2619756B2 (en) * 1991-11-07 1997-06-11 株式会社オムコ Sterilized water production method
JP2593605B2 (en) * 1992-02-10 1997-03-26 九州日立マクセル株式会社 Electrolysis water purifier
JP2530437Y2 (en) * 1992-02-10 1997-03-26 九州日立マクセル株式会社 Electrolysis water purifier
JP2686208B2 (en) * 1992-05-29 1997-12-08 三洋電機株式会社 Ion water generator
JP3403258B2 (en) * 1993-10-14 2003-05-06 医療法人博腎会博腎会病院 Fluid flow path cleaning method and cleaning device
JP3378057B2 (en) * 1993-10-14 2003-02-17 ミズ株式会社 Sterilization cleaning device for dialysate flow path of artificial dialyzer
JP2694503B2 (en) * 1993-10-22 1997-12-24 ライザー工業株式会社 Blood circulation in artificial dialysis, sterilization and purification method for dialysate piping pipeline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200340A (en) * 2011-03-24 2012-10-22 Nippon Torimu:Kk Manufacturing device of dialysis solution preparation water

Also Published As

Publication number Publication date
JPH07171204A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
EP0722740B1 (en) Washing and disinfecting method and apparatus for artificial dialyzer using acid water electrolytically made
JP3378057B2 (en) Sterilization cleaning device for dialysate flow path of artificial dialyzer
JP3403258B2 (en) Fluid flow path cleaning method and cleaning device
JP3452387B2 (en) Sterilization cleaning device
CN1365342A (en) Method and apparatus for electrolytic disinfection of water
JP2002512875A (en) Production of active chlorine from sodium chloride in water in the presence of biological load
US6022512A (en) Method of cleaning and disinfecting hemodialysis equipment, cleaning disinfectant, and cleaning and disinfecting apparatus
JP2008100180A (en) Water treatment apparatus
JP7094504B2 (en) Systems and methods for producing bacteriologically controlled fluids
JP4174753B2 (en) Dialysis system
JP2010131495A (en) Production method of medical purified water
JP2826654B2 (en) Cleaning and disinfection equipment for hemodialysis equipment
JP2003103259A (en) Method for cleaning filter and reverse osmosis membrane
JP4188276B2 (en) Cleaning and sterilizing method for hemodialysis system and cleaning and sterilizing apparatus for the system
JP2694503B2 (en) Blood circulation in artificial dialysis, sterilization and purification method for dialysate piping pipeline
JPH09173359A (en) Dental drainage and system for purifying piping for sucking drainage as well as method for purifying the same
JPH07148423A (en) Method for cleaning membrane separator
JPH078996A (en) Method and system for producing aseptic aqueous solution
JP3227692B2 (en) Dialysis equipment disinfection method
JPH0871147A (en) Method for disinfecting dialysis device
JP3201699B2 (en) Method and apparatus for producing hypochlorous acid-based treatment liquid
JP6987861B2 (en) Cleaning methods for dialysis machines and dialysis machines
JPH08294689A (en) Sterilizing and washing mechanism of apparatus having reverse osmosis membrane treatment tank
JP2001062453A (en) Electrolytic water production device
JPH0647381A (en) Method for washing and sterilizing continuous electrolytic water conditioning apparatus and electrolytic water conditioning apparatus equipped with mechanism executing this method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees