JP4399586B2 - POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE - Google Patents

POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE Download PDF

Info

Publication number
JP4399586B2
JP4399586B2 JP2002001707A JP2002001707A JP4399586B2 JP 4399586 B2 JP4399586 B2 JP 4399586B2 JP 2002001707 A JP2002001707 A JP 2002001707A JP 2002001707 A JP2002001707 A JP 2002001707A JP 4399586 B2 JP4399586 B2 JP 4399586B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
antioxidant
polymer
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002001707A
Other languages
Japanese (ja)
Other versions
JP2003201352A (en
Inventor
直樹 満田
長之 金岡
洋一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002001707A priority Critical patent/JP4399586B2/en
Publication of JP2003201352A publication Critical patent/JP2003201352A/en
Application granted granted Critical
Publication of JP4399586B2 publication Critical patent/JP4399586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用プロトン導伝性高分子電解質膜、該固体高分子型燃料電池用プロトン導伝性高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化している。そこで、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目され、広範に開発されている。また、一部では前記燃料電池が実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。
【0003】
前記固体高分子型燃料電池に用いる膜電極構造体として、白金等の触媒がカーボンブラック等の触媒担体に担持されイオン導伝性高分子バインダーにより一体化されることにより形成されている一対の電極触媒層を備え、両電極触媒層の間にイオン導伝可能な高分子電解質膜を挟持した構造のものが知られている。前記膜電極構造体は、各電極触媒層の上に拡散層を積層し、さらにガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成することができる。
【0004】
前記固体高分子型燃料電池では、一方の電極触媒層を燃料極として前記拡散層を介して水素、メタノール等の還元性ガスを導入すると共に、他方の電極触媒層を酸素極として前記拡散層を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層に含まれる触媒の作用により、前記還元性ガスからプロトン及び電子が生成し、前記プロトンは前記高分子電解質膜を介して、前記酸素極側の電極触媒層に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層で、前記電極触媒層に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガス及び電子と反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより、前記燃料極で生成した電子を前記酸素極に送る回路が形成され、電流を取り出すことができる。
【0005】
従来、前記高分子電解質膜として、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))が広く利用されている。前記パーフルオロアルキレンスルホン酸高分子化合物は、スルホン化されていることにより優れたプロトン導伝性を備え、しかもフッ素樹脂としての耐薬品性とを併せ備えているが、非常に高価であるという問題がある。
【0006】
そこで、前記パーフルオロアルキレンスルホン酸高分子化合物に代わる廉価な高分子電解質膜材料として、例えば、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物を用いることが検討されている。ところが、前記重合体のスルホン化物は、前記固体高分子型燃料電池に用いた場合に十分な耐酸化性が得られないという問題がある。
【0007】
十分な耐酸化性が得られない理由として、前記固体高分子型燃料電池の前記酸素極側の電極触媒層で水が生成する際に発生する、・HO2ラジカル、・OHラジカル等のラジカルの作用が考えられる。前記ラジカルが発生すると、該ラジカルは前記主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜を攻撃し、高分子鎖を切断する連鎖反応を引き起こす。この結果、前記高分子電解質膜が劣化し、耐酸化性が低くなるものと考えられる。
【0008】
前記ラジカルによる前記高分子電解質膜の劣化を防止するために、前記ラジカルを捕捉する作用を有する酸化防止剤を前記高分子電解質膜に添加することが考えられる。前記酸化防止剤としては、例えば、複数のフェノール基を備える化合物を挙げることができる。
【0009】
しかしながら、前記酸化防止剤を前記高分子電解質膜に添加しても、前記酸化防止剤の種類によっては前記高分子電解質膜の劣化を防止できないことがあり、また酸化防止剤を添加しないときよりも耐熱性が低下することがあるとの不都合がある。
【0010】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、優れた耐酸化性と、従来と同等の耐熱性とを備える固体高分子型燃料電池用プロトン導伝性高分子電解質膜、該固体高分子型燃料電池用プロトン導伝性高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、前記主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜に、前記ラジカルを捕捉する作用を有する酸化防止剤を添加したときに、該高分子電解質膜の劣化を防止できなかったり、耐熱性が低下する場合がある理由について鋭意検討した。
【0012】
この結果、前記酸化防止剤が分子構造中に、フェノール基に含まれる以外のO原子、或いはN、S、P等の非共有電子対を有する原子を備え、前記重合体のスルホン化物が電子吸引性基等の前記非共有電子対と反応しやすい部分を備える場合に、前記重合体のスルホン化物からなる高分子電解質膜が劣化し、或いは耐熱性が低下することが判明した。すなわち、この場合には前記ラジカルは前記酸化防止剤に捕捉されるものの、該酸化防止剤自体が前記重合体のスルホン化物と反応して、該重合体のスルホン化物の劣化を引き起こすものと考えられる。
【0013】
そこで、本発明者等は、前記ラジカルを捕捉する作用を有する酸化防止剤として、複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物を用いることに想到し、本発明に到達した。
【0014】
前記目的を達成するために、本発明の第1の態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜は、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物と、酸化防止剤とを含む高分子電解質膜であって、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であることを特徴とする。
【0015】
前記高分子電解質膜は、前記酸化防止剤を含むので、固体高分子型燃料電池に用いたときに、該燃料電池の前記酸素極側の電極触媒層で生成する、・HO2ラジカル、・OHラジカル等のラジカルを該酸化防止剤が捕捉する。従って、前記ラジカルとの反応による前記高分子電解質膜の劣化を防止することができる。
【0016】
また、前記酸化防止剤は、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成されており、分子構造中にフェノール基に含まれる以外のO原子或いはN、S、P等の非共有電子対を有する原子を備えていない。従って、前記高分子電解質膜が前記非共有電子対と反応しやすい部分を備えていても、前記酸化防止剤との反応による劣化、耐熱性の低下を防止することができる。
【0017】
この結果、前記高分子電解質膜によれば、優れた耐酸化性と、従来と同等の耐熱性とを得ることができる。
【0018】
前記高分子電解質膜を形成する重合体のスルホン化物は、主鎖及び/または側鎖に芳香族基を備えており、前記酸化防止剤もまた芳香族基であるフェノール基を備えている。従って、前記酸化防止剤は、前記重合体のスルホン化物に対して優れた親和性を備えており、前記重合体のスルホン化物に対して比較的に多量に配合することができる。
【0019】
そこで、前記高分子電解質膜は、前記スルホン化物100重量部に対して、前記酸化防止剤を0.1〜10重量部の範囲で含むことを特徴とする。前記酸化防止剤の含有量が0.1重量部未満では、前記ラジカルを捕捉する効果を得ることができない。また、前記酸化防止剤の含有量が10重量部を超えるときには、該酸化防止剤が前記高分子電解質膜から溶出し、該高分子電解質膜を固体高分子型燃料電池に用いたときに導電率が低下する。
【0020】
また、前記高分子電解質膜において、前記酸化防止剤は、融点が150℃以上であることを特徴とする。前記酸化防止剤の融点が150℃未満であると、前記高分子電解質膜を固体高分子型燃料電池に用いたときに、該燃料電池の運転中の高温環境下で、該酸化防止剤が溶出することがある。
【0021】
また、本発明の第2の態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜は、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜と、該高分子電解質膜を挟持する1対の緩衝層とからなる複合高分子電解質膜であって、該緩衝層はイオン導伝性物質と酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であって、前記1対の緩衝層の合計の厚さが該高分子電解質膜の厚さよりも小であることを特徴とする。
【0022】
本発明では、前記構成を備える第2の態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜によっても、第1の態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜と同等の効果を得ることができ、前記重合体のスルホン化物からなる高分子電解質膜の前記ラジカルとの反応による劣化を防止することができる。このとき、前記1対の緩衝層の合計厚さは前記高分子電解質膜の厚さよりも小であるので、本発明の第1の態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜に比較して前記酸化防止剤の含有量を低減することができる。
【0023】
前記緩衝層に用いるイオン導伝性物質は、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物であっても、パーフルオロアルキレンスルホン酸高分子化合物であってもよい。
【0024】
前記イオン導伝性物質が、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物である場合には、前記緩衝層は該イオン導伝性物質100重量部に対して0.1〜10重量部の範囲で前記酸化防止剤を含むことを特徴とする。前記酸化防止剤の含有量が0.1重量部未満では、前記ラジカルを捕捉する効果を得ることができない。また、前記酸化防止剤の含有量が10重量部を超えるときには、該酸化防止剤が前記緩衝層から溶出し、前記複合高分子電解質膜を固体高分子型燃料電池に用いたときに導電率が低下する。
【0025】
また、前記イオン導伝性物質が、前記パーフルオロアルキレンスルホン酸高分子化合物である場合には、該パーフルオロアルキレンスルホン酸高分子化合物自体が優れた化学安定性を備えており、前記高分子電解質膜を保護する作用を得ることができる。そこで、この場合には、前記緩衝層に含まれる前記酸化防止剤を減量することができ、前記緩衝層は、前記イオン導伝性物質100重量部に対して、0.01〜5重量部の範囲で前記酸化防止剤を含むことを特徴とする。
【0026】
前記複合高分子電解質膜は、前記緩衝層が前記酸化防止剤を含むことにより、本発明の第1の態様の高分子電解質膜に比較して、さらに前記酸化防止剤の含有量を低減することができる。前記酸化防止剤の含有量が0.01重量部未満では、前記ラジカルを捕捉する効果を得ることができない。また、前記酸化防止剤を5重量部を超えて含有してもそれ以上の効果は望めない。
【0027】
一方、前記パーフルオロアルキレンスルホン酸高分子化合物は、前述のように優れた化学安定性を備えているので、どのような酸化防止剤を含有しても、該酸化防止剤との反応による劣化、耐熱性の低下を起こすことがない。しかし、前記酸化防止剤は、前記緩衝層から前記主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜に移行することがある。従って、前記イオン導伝性物質として前記パーフルオロアルキレンスルホン酸高分子化合物を用いる場合にも、前記酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成されるものを用いることが好ましい。
【0029】
本発明の膜電極構造体は、前記いずれかの態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜と、該固体高分子型燃料電池用プロトン導伝性高分子電解質膜を挟持する電極とを備えることを特徴とし、本発明の固体高分子型燃料電池は該膜電極構造体を備えることを特徴とする。
【0030】
本発明の膜電極構造体または固体高分子型燃料電池は、前記いずれかの態様の固体高分子型燃料電池用プロトン導伝性高分子電解質膜を備えているので、優れた耐酸化性と、従来と同等の耐熱性とを得ることができる。
【0031】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本発明の第1の実施形態の膜電極構造体の構成を示す説明的断面図であり、図2は第2の実施形態の膜電極構造体の構成を示す説明的断面図、図3は第1の実施形態に用いる高分子電解質膜の重量低下率と破断伸び低下率とを酸化防止剤を含まない高分子電解質膜と比較するヒストグラム、図4は第1の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と導電率との関係を示すグラフ、図5は第1の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と重量低下率との関係を示すグラフ、図6、図7は第1の実施形態に用いる高分子電解質膜の重量低下率と破断伸び低下率とを他の酸化防止剤を含む高分子電解質膜と比較するヒストグラム、図8は第2の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と重量低下率との関係を第1の実施形態に用いる高分子電解質膜と比較するグラフである。
【0032】
本発明の第1の実施形態の膜電極構造体は、図1示のように、高分子電解質膜1と、高分子電解質膜1を挟持する1対の電極触媒層2,2と、両電極触媒層2,2の上に積層された1対の拡散層3,3とからなる。
【0033】
高分子電解質膜1は、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物と、酸化防止剤とからなる。前記主鎖及び/または側鎖に芳香族基を有する重合体としては、例えば、次式(1)で表されるポリエーテルエーテルケトン、または次式(2)で示される2,5−ジクロロ−4’−(4−フェノキシフェノキシ)ベンゾフェノンと、次式(3)で示される2,2−ビス〔4−{4−(4−クロロベンゾイル)フェノキシ}フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパンとを、所定の重合比で重合させて得られる次式(4)の含フッ素共重合体等を挙げることができる。
【0034】
【化1】

Figure 0004399586
【0035】
前記重合体のスルホン化物は、前記重合体に濃硫酸を加え、スルホン酸基を0.5〜3.0ミリグラム当量/gの範囲で含むようにスルホン化することにより得ることができる。前記スルホン化物は、含有するスルホン酸基の量が0.5ミリグラム当量/g未満であるときには十分なイオン導伝性を得ることができない。また、含有するスルホン酸基の量が3.0ミリグラム当量/gを超えると十分な靱性が得られず、後述の膜電極構造体を構成する際に取り扱いが難しくなる。
【0036】
前記酸化防止剤は、複数のフェノール基を有し、かつフェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物である。前記酸化防止剤としては、例えば、次式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、次式(6)で表される4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、次式(7)で表される1,3,5−トリメチル−2,4,6−トリス(3,5−t−ブチル−4−ヒドロキシベンジル)ベンゼン等を挙げることができる。
【0037】
【化2】
Figure 0004399586
【0038】
高分子電解質膜1を製造するときは、まず、前式(1)または(4)で表される重合体のスルホン化物を、N−メチルピロリドン等の溶媒に溶解して高分子電解質溶液とする。次に、前記高分子電解質溶液に、前記重合体のスルホン化物100重量部に対し、前式(5)〜(7)で表される酸化防止剤のいずれか1種を0.1〜10重量部の範囲で溶解する。そして、得られた溶液からキャスト法により成膜し、オーブンにて乾燥する。このようにすることにより、例えば、乾燥膜厚50μmの高分子電解質膜1を得ることができる。
【0039】
電極触媒層2は、触媒粒子と含フッ素イオン導伝性高分子バインダーとからなる触媒ペーストを拡散層3上に触媒含有量が所定の量(例えば、0.5mg/cm2)となるようにスクリーン印刷し、乾燥させることにより形成される。前記触媒粒子は、カーボンブラック(ファーネスブラック)に白金粒子を所定の重量比(例えば、カーボンブラック:白金=1:1)で担持させることにより作成される。また、前記触媒ペーストは、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))等の含フッ素イオン導伝性高分子バインダー溶液に、前記触媒粒子を所定の重量比(例えば、触媒粒子:バインダー溶液=1:1)で均一に分散させることにより調製される。
【0040】
前記拡散層3は、下地層とカーボンペーパーとからなる。前記下地層は、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とを所定の重量比(例えば、カーボンブラック:PTFE粒子=4:6)で混合し、得られた混合物をエチレングリコール等の溶媒に均一に分散させたスラリーを前記カーボンペーパーの片面に塗布、乾燥させることにより形成される。
【0041】
拡散層3上にスクリーン印刷された前記触媒ペーストは、例えば60℃で10分間の乾燥を行い、次いで120℃で60分間の減圧乾燥を行うことにより乾燥される。
【0042】
図1示の膜電極構造体は、前記1対の電極触媒層2と拡散層3とにより、電極触媒層2側で高分子電解質膜1を挟持し、ホットプレスを行うことにより得ることができる。前記ホットプレスは、例えば80℃、5MPaで2分間の一次ホットプレスを行い、次いで160℃、4MPaで1分間の二次ホットプレスを行う。
【0043】
次に、本発明の第2の実施形態の膜電極構造体は、図1示の高分子電解質膜1に替えて、図2示のように、高分子電解質膜4が1対の緩衝層5,5に挟持された複合高分子膜5を備えること以外は、第1の実施形態の膜電極構造体と全く同一の構成を備えている。
【0044】
高分子電解質膜4は、主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなり、酸化防止剤を含んでいない。前記主鎖及び/または側鎖に芳香族基を有する重合体としては、例えば、第1の実施形態の膜電極構造体と同一の前式(1)で表されるポリエーテルエーテルケトン、または前式(4)で表される含フッ素共重合体等を挙げることができる。前記重合体のスルホン化物は、第1の実施形態の場合と全く同一にして得ることができる。
【0045】
また、高分子電解質膜4は、前記重合体のスルホン化物を、N−メチルピロリドン等の溶媒に溶解して高分子電解質溶液とし、該高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、例えば、乾燥膜厚50μmの膜として得ることができる。
【0046】
緩衝層5は、イオン導伝性物質と酸化防止剤とからなる。前記イオン導伝性物質としては、高分子電解質膜4と同一の主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物を用いてもよく、パーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))を用いてもよい。また、前記酸化防止剤としては、第1の実施形態に用いたものと同一の前式(5)〜(7)で表される化合物のいずれか1種を用いることができる。
【0047】
前記緩衝層5を製造するときは、まず、前記イオン導伝性物質を、N−メチルピロリドン等の溶媒に溶解する。次に、前記イオン導伝性物質の溶液に、前記イオン導伝性物質100重量部に対し、前式(5)〜(7)で表される酸化防止剤のいずれか1種を0.01〜6重量部の範囲で溶解する。そして、得られた溶液からキャスト法により成膜し、オーブンにて乾燥する。このようにすることにより、例えば、乾燥膜厚3μmの緩衝層5を得ることができる。
【0048】
前記複合高分子電解質膜6は、前記1対の緩衝層5により、高分子電解質膜4を挟持し、例えば、150℃、2.5MPaで1分間のホットプレスを行うことにより得ることができる。
【0049】
尚、緩衝層5は、高分子電解質膜4の両面から、前記酸化防止剤を所定の厚さに浸透させることにより形成するようにしてもよい。
【0050】
また、図2示の膜電極構造体は、前記1対の電極触媒層2と拡散層3とにより、電極触媒層2側で複合高分子電解質膜6を挟持し、第1の実施形態の場合と全く同一にしてホットプレスを行うことにより得ることができる。
【0051】
図1または図2に示す膜電極構造体は、拡散層3,3の上にさらにガス通路を兼ねるセパレータを積層することにより、固体高分子型燃料電池を構成することができる。
【0052】
次に、本実施形態の実施例と比較例とを示す。
【0053】
【実施例1】
本実施例では、まず、前式(1)で表されるポリエーテルエーテルケトン(VICTREX社製、380P(グレード名))に濃硫酸を加え、スルホン酸基を1.9ミリグラム当量/gの範囲で含むようにスルホン化して、該ポリエーテルエーテルケトンのスルホン化物を調製した。次に、前記ポリエーテルエーテルケトンのスルホン化物を、N−メチルピロリドンに溶解して高分子電解質溶液とした。次に、該高分子電解質溶液に、前記ポリエーテルエーテルケトンのスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン(m.p.186℃)を1重量部溶解した。そして、前記酸化防止剤を溶解した高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、乾燥膜厚50μmの高分子電解質膜を得た。
【0054】
次に、本実施例の高分子電解質膜について、酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。
【0055】
前記高分子電解質膜は、酸化防止剤が溶出すると表面に白斑が現れるので、膜の外観を目視で観察し、酸化防止剤溶出の有無を確認した。
【0056】
前記耐酸化性は、H223%、Fe20ppmを含む水溶液(フェントン試薬)を液温50℃とし、該水溶液中に前記高分子電解質膜を8時間浸漬した後の該高分子電解質膜の重量低下率(%)として測定した。該重量低下率は、前記高分子電解質膜がフェントン試薬に酸化されて前記水溶液中に溶解した量を示し、数値が小さいほど耐酸化性が高いことを意味する。
【0057】
前記耐熱性は、前記高分子電解質膜を150℃の雰囲気下に5時間放置し、さらに23℃、相対湿度50%の環境下に2時間放置する処理を行った後の引張試験による破断伸びの低下率(%)として算出した。前記引張試験は、JIS K7127に準じて行った。
【0058】
前記高分子電解質膜は、加熱されると高分子鎖間に架橋が形成され、脆くなる。従って、前記破断伸びの低下率(%)は、数値が小さいほど耐熱性が高いことを意味する。
【0059】
また、前記高分子電解質膜は加熱により劣化が進むと色が変化するので、該高分子電解質膜の色の変化を目視で観察し、劣化の有無を判定した。
【0060】
結果を表1に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図3に示す。
【0061】
【比較例1】
本比較例では、前記酸化防止剤を全く用いなかった以外は、実施例1と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0062】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表1に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図3に示す。
【0063】
【実施例2】
本実施例では、実施例1のポリエーテルエーテルケトンのスルホン化物に替えて、式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物を用いた以外は、実施例1と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0064】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表1に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図3に示す。
【0065】
次に、本実施例の高分子電解質膜の導電率を測定した。前記導電率は、前記高分子電解質膜を2枚の白金電極で挟持し、温度85℃、相対湿度90%の条件下、交流2端子法(周波数10kHz)で測定した。前記酸化防止剤の添加量と、前記導電率との関係を図4に示す。
【0066】
【比較例2】
本比較例では、前記酸化防止剤を全く用いなかった以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0067】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表1に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図3に示す。また、前記酸化防止剤の添加量と、重量低下率(%)との関係を図5に示す。
【0068】
【表1】
Figure 0004399586
【0069】
表1、図3から、式(5)で表される酸化防止剤を用いる実施例1,2の高分子電解質膜は、前記酸化防止剤を全く用いない場合(比較例1,2)に比較して、重量低下率が小さく、優れた耐酸化性を示すことが明らかである。また、式(5)で表される酸化防止剤を用いる実施例1,2の高分子電解質膜は、前記酸化防止剤を全く用いない場合(比較例1,2)と略同等の耐熱性を備えていることが明らかである。
【0070】
尚、実施例1の高分子電解質膜は、比較例2の高分子電解質膜に比較して、重量低下率が大きく、耐酸化性に劣るように見える。しかし、これは、実施例1、比較例1の高分子電解質膜が前式(1)で表されるポリエーテルエーテルケトンのスルホン化物であるのに対し、実施例2、比較例2の高分子電解質膜が前式(4)で表される含フッ素共重合体のスルホン化物であるという、高分子電解質の化学種の相違によるものである。
【0071】
【実施例3】
本実施例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン6重量部を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0072】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表2に示す。また、前記酸化防止剤の添加量と、重量低下率(%)との関係を図5に示す。
【0073】
また、本実施例の高分子電解質膜について、実施例2と全く同一にして導電率を測定した。前記酸化防止剤の添加量と、前記導電率との関係を図4に示す。
【0074】
【実施例4】
本実施例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン0.4重量部を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0075】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表2に示す。また、前記酸化防止剤の添加量と、重量低下率(%)との関係を図5に示す。
【0076】
また、本実施例の高分子電解質膜について、実施例2と全く同一にして導電率を測定した。前記酸化防止剤の添加量と、前記導電率との関係を図4に示す。
【0077】
【比較例3】
本比較例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン0.005重量部を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0078】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表2に示す。また、前記酸化防止剤の添加量と、重量低下率(%)との関係を図5に示す。
【0079】
【比較例4】
本比較例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン20重量部を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0080】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表2に示す。また、前記酸化防止剤の添加量と、重量低下率(%)との関係を図5に示す。
【0081】
また、本実施例の高分子電解質膜について、実施例2と全く同一にして導電率を測定した。前記酸化防止剤の添加量と、前記導電率との関係を図4に示す。
【0082】
【表2】
Figure 0004399586
【0083】
表2、図4,5から、前式(4)で表される含フッ素共重合体のスルホン化物100重量部に対し、式(5)で表される酸化防止剤を0.1〜10重量部の範囲で含む実施例2(表2に再掲した),3,4の高分子電解質膜は、耐酸化性、導電率に優れ、前記酸化防止剤を全く用いない場合(比較例2)と略同等の耐熱性を備えており、しかも前記酸化防止剤の溶出もないことが明らかである。
【0084】
かかる実施例2〜4の高分子電解質膜に対し、前式(4)で表される含フッ素共重合体のスルホン化物100重量部に対し、式(5)で表される酸化防止剤を0.1重量部未満の0.005重量部含む比較例3の高分子電解質膜は、表2、図5から耐酸化性が酸化防止剤を全く含まない比較例2(表2に再掲した)の場合と略同等であり、殆ど耐酸化性を得ることができないことが明らかである。
【0085】
また、前式(4)で表される含フッ素共重合体のスルホン化物100重量部に対し、式(5)で表される酸化防止剤を10重量部を超えて20重量部含む比較例4の高分子電解質膜は、表2から、耐酸化性には優れているものの、前記酸化防止剤が溶出することが明らかである。かかる比較例4の高分子電解質膜は、図4から、実施例2〜4の高分子電解質膜に対し、著しく導電率が劣ることが明らかである。
【0086】
【実施例5】
本実施例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、前式(6)で表される4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)(m.p.210℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0087】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表3に示す。
【0088】
【実施例6】
本実施例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、前式(7)で表される1,3,5−トリメチル−2,4,6−トリス(3,5−t−ブチル−4−ヒドロキシベンジル)ベンゼン(m.p.244℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0089】
次に、本実施例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表3に示す。
【0090】
【表3】
Figure 0004399586
【0091】
前式(6)で表される4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)、前式(7)で表される1,3,5−トリメチル−2,4,6−トリス(3,5−t−ブチル−4−ヒドロキシベンジル)ベンゼンは、前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンと同様に、複数のフェノール基を有し、かつフェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物である。
【0092】
この結果、表3から明らかなように、酸化防止剤として前式(6)、(7)の化合物を用いる実施例5,6の高分子電解質膜によれば、酸化防止剤として前式(5)の化合物を用いる実施例2の高分子電解質膜(表3に再掲する)と略同等の耐酸化性、耐熱性を得ることができることが明らかである。
【0093】
【比較例5】
本比較例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、次式(8)で表されるビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(m.p.86℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。次式(8)で表される酸化防止剤は、分子構造中に全くフェノール基を含まず、しかもN原子、O原子を含んでいる。
【0094】
【化3】
Figure 0004399586
【0095】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表4に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図6に示す。
【0096】
【比較例6】
本比較例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、次式(9)で表される含イオウ化合物(m.p.23℃以下)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。次式(9)で表される酸化防止剤は、分子構造中に全くフェノール基を含まず、しかもS原子、O原子を含んでいる。
【0097】
【化4】
Figure 0004399586
【0098】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表4に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図6に示す。
【0099】
【比較例7】
本比較例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、次式(10)で表される含リン化合物(m.p.165℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。次式(10)で表される酸化防止剤は、分子構造中に全くフェノール基を含まず、しかもP原子、O原子を含んでいる。
【0100】
【化5】
Figure 0004399586
【0101】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表4に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図6に示す。
【0102】
【比較例8】
本比較例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、次式(11)で表されるトリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート(m.p.221℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。次式(11)で表される酸化防止剤は、分子構造中に複数のフェノール基を含むが、フェノール基以外にもO原子を含み、さらにN原子を含んでいる。
【0103】
【化6】
Figure 0004399586
【0104】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表4に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図6に示す。
【0105】
【比較例9】
本比較例では、酸化防止剤として、実施例2で用いた前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタンに替えて、次式(12)で表されるテトラキス〔メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)−プロピオネート〕メタン(m.p.115℃)を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。次式(12)で表される酸化防止剤は、分子構造中に複数のフェノール基を含むが、フェノール基以外にもO原子を含んでいる。
【0106】
【化7】
Figure 0004399586
【0107】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表4に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図6に示す。
【0108】
【表4】
Figure 0004399586
【0109】
表4、図6から、分子構造中に全くフェノール基を含まず、しかもN原子、O原子を含む酸化防止剤を用いる比較例5の高分子電解質膜、分子構造中に複数のフェノール基を含むが、フェノール基以外にもO原子を含み、さらにN原子を含む酸化防止剤を用いる比較例8の高分子電解質膜、分子構造中に複数のフェノール基を含むが、フェノール基以外にもO原子を含む比較例9の高分子電解質膜によれば、実施例2の高分子電解質膜(表4に再掲する)に対し、耐酸化性については略同等であるが、耐熱性について著しく劣ることが明らかである。
【0110】
また、表4、図6から、分子構造中に全くフェノール基を含まず、しかもS原子、O原子を含む比較例6の高分子電解質膜によれば、実施例2の高分子電解質膜に対し、耐酸化性、耐熱性について著しく劣ることが明らかである。
【0111】
さらに、表4、図6から、分子構造中に全くフェノール基を含まず、しかもP原子、O原子を含む比較例7の高分子電解質膜によれば、実施例2の高分子電解質膜に対し、耐熱性については略同等であるが、耐酸化性について著しく劣ることが明らかである。
【0112】
【比較例10】
本比較例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(11)で表されるトリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート6重量部を用いた以外は、実施例2と全く同一にして乾燥膜厚50μmの高分子電解質膜を得た。
【0113】
次に、本比較例の高分子電解質膜について、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表5に示す。また、重量低下率(%)と破断伸びの低下率(%)とを図7に示す。
【0114】
【表5】
Figure 0004399586
【0115】
表5、図7から、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(11)で表されるトリス−(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)−イソシアヌレート6重量部を用いた本比較例の高分子電解質膜は、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン6重量部を用いた実施例3の高分子電解質膜(表5に再掲する)に対して、耐酸化性については略同等であるが、耐熱性について著しく劣ることが明らかである。
【0116】
【実施例7】
本実施例では、まず、実施例で用いたものと同一の前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物を、N−メチルピロリドンに溶解して高分子電解質溶液とし、該高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、乾燥膜厚50μmの第1の高分子電解質膜を得た。
【0117】
次に、前記高分子電解質溶液に、前記含フッ素共重合体のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン1重量部を溶解した。そして、前記酸化防止剤を溶解した高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、乾燥膜厚3μmの第2の高分子電解質膜を2枚得た。
【0118】
次に、前記第2の高分子電解質膜を緩衝層とし、該緩衝層で前記第1の高分子電解質膜で挟持し、150℃、2.5MPaで1分間のホットプレスを行うことにより複合高分子電解質膜Aを得た。
【0119】
次に、本実施例の複合高分子電解質膜Aについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0120】
【実施例8】
本実施例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン0.4重量部を用いて乾燥膜厚3μmの第2の高分子電解質膜2枚を得たた以外は、実施例7と全く同一にして、前記第1の高分子電解質膜が前記緩衝層(第2の高分子電解質膜)で挟持された複合高分子電解質膜Aを得た。
【0121】
次に、本実施例の複合高分子電解質膜Aについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0122】
【実施例9】
本実施例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン6重量部を用いて乾燥膜厚3μmの第2の高分子電解質膜2枚を得たた以外は、実施例7と全く同一にして、前記第1の高分子電解質膜が前記緩衝層(第2の高分子電解質膜)で挟持された複合高分子電解質膜Aを得た。
【0123】
次に、本実施例の複合高分子電解質膜Aについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0124】
【比較例11】
本比較例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン0.005重量部を用いて乾燥膜厚3μmの第2の高分子電解質膜2枚を得たた以外は、実施例7と全く同一にして、前記第1の高分子電解質膜が前記緩衝層(第2の高分子電解質膜)で挟持された複合高分子電解質膜Aを得た。
【0125】
次に、本比較例の複合高分子電解質膜Aについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0126】
【実施例10】
本実施例では、前式(4)で表される含フッ素共重合体(n:m=1:1)のスルホン化物に替えて、パーフルオロアルキレンスルホン酸高分子化合物(デュポン社製ナフィオン(商品名))を用いて、乾燥膜厚3μmの第2の高分子電解質膜2枚を得たた以外は、実施例7と全く同一にして、前記第1の高分子電解質膜が前記緩衝層(第2の高分子電解質膜)で挟持された複合高分子電解質膜Bを得た。
【0127】
次に、本実施例の複合高分子電解質膜Bについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0128】
【実施例11】
本実施例では、前記パーフルオロアルキレンスルホン酸高分子化合物100重量部に対し、酸化防止剤として前式(5)で表される1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン0.03重量部を用いて乾燥膜厚3μmの第2の高分子電解質膜2枚を得たた以外は、実施例7と全く同一にして、前記第1の高分子電解質膜が前記緩衝層(第2の高分子電解質膜)で挟持された複合高分子電解質膜Bを得た。
【0129】
次に、本実施例の複合高分子電解質膜Bについて、実施例1と全く同一にして酸化防止剤の溶出の有無、耐酸化性、耐熱性を評価した。結果を表6に示す。また、前記緩衝層(第2の高分子電解質膜)に対する前記酸化防止剤の添加量と、重量低下率(%)との関係を図8に示す。
【0130】
【表6】
Figure 0004399586
【0131】
表6、図8から、緩衝層(第2の高分子電解質膜)を構成するイオン導伝性物質が第1の高分子電解質膜と同一の前式(4)で表される含フッ素共重合体のスルホン化物であり、該緩衝層が前式(4)で表される含フッ素共重合体のスルホン化物100重量部に対し前式(5)で表される酸化防止剤を0.4〜6重量部の範囲で含む実施例7〜9の複合高分子電解質膜Aは、耐酸化性、導電率に優れ、しかも前記酸化防止剤の溶出もないことが明らかであり、実施例2〜4の高分子電解質膜(図8に再掲する)と同等の耐酸化性を備えていることが明らかである。
【0132】
かかる実施例7〜9の複合高分子電解質膜Aに対し、前記緩衝層が前式(4)で表される含フッ素共重合体のスルホン化物100重量部に対し式(5)で表される酸化防止剤を0.1重量部未満の0.005重量部含む比較例11の複合高分子電解質膜Aは、耐酸化性において著しく劣ることが明らかである。
【0133】
また、前記実施例7〜9の複合高分子電解質膜Aでは、酸化防止剤を全く含まない第1の高分子電解質膜の膜厚が50μmであることに対し、酸化防止剤を含む緩衝層(第2の高分子電解質膜)の膜厚が3μmであることから、実施例2〜4の高分子電解質膜に対して、前記酸化防止剤の含有量が著しく低減されていることが明らかである。
【0134】
また、表6、図8から、緩衝層(第2の高分子電解質膜)を構成するイオン導伝性物質が前記パーフルオロアルキレンスルホン酸高分子化合物である実施例10,11の複合高分子電解質膜Bによれば、前記実施例7〜9の複合高分子電解質膜Aに対してさらに優れた耐酸化性を得ることができることが明らかである。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の膜電極構造体の構成を示す説明的断面図。
【図2】本発明の第2の実施形態の膜電極構造体の構成を示す説明的断面図。
【図3】本発明の第1の実施形態に用いる高分子電解質膜の重量低下率と破断伸び低下率とを酸化防止剤を含まない高分子電解質膜と比較するヒストグラム。
【図4】本発明の第1の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と導電率との関係を示すグラフ。
【図5】本発明の第1の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と重量低下率との関係を示すグラフ。
【図6】本発明の第1の実施形態に用いる高分子電解質膜の重量低下率と破断伸び低下率とを他の酸化防止剤を含む高分子電解質膜と比較するヒストグラム。
【図7】本発明の第1の実施形態に用いる高分子電解質膜の重量低下率と破断伸び低下率とを他の酸化防止剤を含む高分子電解質膜と比較するヒストグラム。
【図8】本発明の第2の実施形態に用いる高分子電解質膜における酸化防止剤の添加量と重量低下率との関係を第1の実施形態に用いる高分子電解質膜と比較するグラフ。
【符号の説明】
1,4…高分子電解質膜、 2…電極、 5…緩衝層、 6…複合高分子電解質膜。[0001]
BACKGROUND OF THE INVENTION
The present invention Proton conductivity for polymer electrolyte fuel cells Polymer electrolyte membrane, Proton conductivity for polymer electrolyte fuel cells The present invention relates to a membrane electrode structure including a polymer electrolyte membrane and a polymer electrolyte fuel cell including the membrane electrode structure.
[0002]
[Prior art]
While oil resources are depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious. Therefore, fuel cells have attracted attention as a clean power source for electric motors that does not generate carbon dioxide, and have been widely developed. In some cases, the fuel cell has been put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current can be easily obtained.
[0003]
As a membrane electrode structure used in the polymer electrolyte fuel cell, a pair of electrodes formed by a catalyst such as platinum supported on a catalyst carrier such as carbon black and integrated by an ion conductive polymer binder A structure having a catalyst layer and having a polymer electrolyte membrane capable of conducting ions between both electrode catalyst layers is known. The membrane electrode structure can constitute a solid polymer fuel cell by laminating a diffusion layer on each electrode catalyst layer and further laminating a separator also serving as a gas passage.
[0004]
In the polymer electrolyte fuel cell, a reducing gas such as hydrogen or methanol is introduced through the diffusion layer using one electrode catalyst layer as a fuel electrode, and the diffusion layer is formed using the other electrode catalyst layer as an oxygen electrode. An oxidizing gas such as air or oxygen is introduced. In this way, on the fuel electrode side, protons and electrons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer, and the protons pass through the polymer electrolyte membrane to the oxygen electrode side. To the electrode catalyst layer. The protons react with the oxidizing gas and electrons introduced into the oxygen electrode by the action of the catalyst contained in the electrode catalyst layer in the electrode catalyst layer on the oxygen electrode side to generate water. Therefore, by connecting the fuel electrode and the oxygen electrode with a conducting wire, a circuit for sending electrons generated at the fuel electrode to the oxygen electrode is formed, and a current can be taken out.
[0005]
Conventionally, a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) has been widely used as the polymer electrolyte membrane. The perfluoroalkylene sulfonic acid polymer compound has excellent proton conductivity due to being sulfonated, and also has chemical resistance as a fluororesin, but is very expensive. There is.
[0006]
Therefore, as a low-cost polymer electrolyte membrane material replacing the perfluoroalkylene sulfonic acid polymer compound, for example, the use of a sulfonated polymer having an aromatic group in the main chain and / or side chain has been studied. . However, the polymer sulfonated product has a problem that sufficient oxidation resistance cannot be obtained when used in the polymer electrolyte fuel cell.
[0007]
The reason why sufficient oxidation resistance cannot be obtained is that water is generated in the electrode catalyst layer on the oxygen electrode side of the polymer electrolyte fuel cell. 2 The action of radicals such as radicals and .OH radicals can be considered. When the radical is generated, the radical attacks a polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, and causes a chain reaction that breaks the polymer chain. As a result, it is considered that the polymer electrolyte membrane is deteriorated and the oxidation resistance is lowered.
[0008]
In order to prevent the polymer electrolyte membrane from being deteriorated by the radicals, it is conceivable to add an antioxidant having an action of trapping the radicals to the polymer electrolyte membrane. As said antioxidant, the compound provided with a some phenol group can be mentioned, for example.
[0009]
However, even if the antioxidant is added to the polymer electrolyte membrane, depending on the type of the antioxidant, deterioration of the polymer electrolyte membrane may not be prevented, and more than when no antioxidant is added. There is an inconvenience that heat resistance may decrease.
[0010]
[Problems to be solved by the invention]
The present invention eliminates such inconvenience and has excellent oxidation resistance and heat resistance equivalent to the conventional one. Proton conductivity for polymer electrolyte fuel cells Polymer electrolyte membrane, Proton conductivity for polymer electrolyte fuel cells It is an object of the present invention to provide a membrane electrode structure including a polymer electrolyte membrane and a solid polymer fuel cell including the membrane electrode structure.
[0011]
[Means for Solving the Problems]
When the present inventors added an antioxidant having an action of scavenging the radicals to the polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, The inventors have intensively studied why the polymer electrolyte membrane cannot be prevented from being deteriorated or the heat resistance may be lowered.
[0012]
As a result, the antioxidant has an O atom other than that contained in the phenol group in the molecular structure, or an atom having an unshared electron pair such as N, S, P, etc., and the sulfonated product of the polymer is electron withdrawing. It has been found that the polymer electrolyte membrane made of a sulfonated product of the polymer is deteriorated or the heat resistance is lowered when a portion that easily reacts with the unshared electron pair such as a functional group is provided. That is, in this case, although the radical is trapped by the antioxidant, it is considered that the antioxidant itself reacts with the sulfonated product of the polymer to cause deterioration of the sulfonated product of the polymer. .
[0013]
Therefore, the present inventors, as an antioxidant having the action of scavenging the radicals, a compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding the oxygen atoms of the phenol group The present invention has been reached.
[0014]
In order to achieve the above object, the first aspect of the present invention Proton conductivity for polymer electrolyte fuel cells The polymer electrolyte membrane is a polymer electrolyte membrane containing a sulfonated polymer having an aromatic group in the main chain and / or side chain, and an antioxidant, and the antioxidant has a plurality of phenol groups. And 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl), which is a compound composed of only carbon atoms and hydrogen atoms excluding the oxygen atom of the phenol group It is one compound selected from the group consisting of butane and 4,4′-butylidenebis (6-t-butyl-3-methylphenol).
[0015]
Since the polymer electrolyte membrane contains the antioxidant, it is produced in the electrode catalyst layer on the oxygen electrode side of the fuel cell when used in a solid polymer fuel cell. 2 The antioxidant captures radicals such as radicals and .OH radicals. Therefore, deterioration of the polymer electrolyte membrane due to reaction with the radicals can be prevented.
[0016]
Further, the antioxidant is composed of only carbon atoms and hydrogen atoms excluding the oxygen atom of the phenol group, and O atoms other than those contained in the phenol group in the molecular structure or N, S, P, etc. It does not have an atom with a shared electron pair. Therefore, even if the polymer electrolyte membrane includes a portion that easily reacts with the unshared electron pair, deterioration due to reaction with the antioxidant and reduction in heat resistance can be prevented.
[0017]
As a result, according to the polymer electrolyte membrane, excellent oxidation resistance and heat resistance equivalent to the conventional one can be obtained.
[0018]
The sulfonated polymer that forms the polymer electrolyte membrane has an aromatic group in the main chain and / or side chain, and the antioxidant also has a phenol group that is an aromatic group. Therefore, the antioxidant has an excellent affinity for the sulfonated product of the polymer, and can be blended in a relatively large amount with respect to the sulfonated product of the polymer.
[0019]
Therefore, the polymer electrolyte membrane includes the antioxidant in a range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the sulfonated product. If the content of the antioxidant is less than 0.1 parts by weight, the effect of scavenging the radicals cannot be obtained. Further, when the content of the antioxidant exceeds 10 parts by weight, the antioxidant elutes from the polymer electrolyte membrane, and the conductivity is obtained when the polymer electrolyte membrane is used in a solid polymer fuel cell. Decreases.
[0020]
In the polymer electrolyte membrane, the antioxidant has a melting point of 150 ° C. or higher. When the melting point of the antioxidant is less than 150 ° C., when the polymer electrolyte membrane is used in a polymer electrolyte fuel cell, the antioxidant is eluted under a high temperature environment during operation of the fuel cell. There are things to do.
[0021]
Further, the second aspect of the present invention Proton conductivity for polymer electrolyte fuel cells The polymer electrolyte membrane is a composite high membrane composed of a polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, and a pair of buffer layers sandwiching the polymer electrolyte membrane. A molecular electrolyte membrane, wherein the buffer layer includes an ion conductive substance and an antioxidant, the antioxidant having a plurality of phenol groups, and excluding oxygen atoms of the phenol groups, A compound composed of only hydrogen atoms, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (6-tert-butyl-3) -A compound selected from the group consisting of (methylphenol), wherein the total thickness of the pair of buffer layers is smaller than the thickness of the polymer electrolyte membrane.
[0022]
In the present invention, the second aspect having the above-described configuration is provided. Proton conductivity for polymer electrolyte fuel cells Also according to the first aspect of the polymer electrolyte membrane Proton conductivity for polymer electrolyte fuel cells An effect equivalent to that of the polymer electrolyte membrane can be obtained, and deterioration of the polymer electrolyte membrane made of a sulfonated product of the polymer due to a reaction with the radical can be prevented. At this time, since the total thickness of the pair of buffer layers is smaller than the thickness of the polymer electrolyte membrane, the first aspect of the present invention Proton conductivity for polymer electrolyte fuel cells Compared to the polymer electrolyte membrane, the content of the antioxidant can be reduced.
[0023]
The ion conductive material used for the buffer layer may be a polymer sulfonated product having an aromatic group in the main chain and / or side chain, or a perfluoroalkylenesulfonic acid polymer compound.
[0024]
In the case where the ion conductive material is a sulfonated polymer having an aromatic group in the main chain and / or side chain, the buffer layer is added in an amount of 0.1% by weight with respect to 100 parts by weight of the ion conductive material. The antioxidant is contained in the range of 1 to 10 parts by weight. If the content of the antioxidant is less than 0.1 parts by weight, the effect of scavenging the radicals cannot be obtained. In addition, when the content of the antioxidant exceeds 10 parts by weight, the antioxidant is eluted from the buffer layer, and the conductivity is increased when the composite polymer electrolyte membrane is used in a solid polymer fuel cell. descend.
[0025]
Further, when the ion conductive material is the perfluoroalkylenesulfonic acid polymer compound, the perfluoroalkylenesulfonic acid polymer compound itself has excellent chemical stability, and the polymer electrolyte The effect | action which protects a film | membrane can be acquired. Therefore, in this case, the amount of the antioxidant contained in the buffer layer can be reduced, and the buffer layer is 0.01 to 5 parts by weight with respect to 100 parts by weight of the ion conductive material. In a range, the antioxidant is included.
[0026]
In the composite polymer electrolyte membrane, the content of the antioxidant is further reduced as compared with the polymer electrolyte membrane of the first aspect of the present invention by the buffer layer containing the antioxidant. Can do. When the content of the antioxidant is less than 0.01 parts by weight, the effect of scavenging the radicals cannot be obtained. Moreover, even if it contains the said antioxidant exceeding 5 weight part, the effect beyond it cannot be expected.
[0027]
On the other hand, since the perfluoroalkylene sulfonic acid polymer compound has excellent chemical stability as described above, even if it contains any antioxidant, deterioration due to reaction with the antioxidant, Does not cause deterioration of heat resistance. However, the antioxidant may migrate from the buffer layer to a polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain. Therefore, even when the perfluoroalkylene sulfonic acid polymer compound is used as the ion conductive substance, the antioxidant has a plurality of phenol groups, and carbon atoms and oxygen atoms other than the phenol groups are excluded. It is preferable to use one composed only of hydrogen atoms.
[0029]
The membrane electrode structure of the present invention has any one of the above aspects. Proton conductivity for polymer electrolyte fuel cells A polymer electrolyte membrane; and Proton conductivity for polymer electrolyte fuel cells And an electrode sandwiching the polymer electrolyte membrane. The solid polymer fuel cell of the present invention is characterized by comprising the membrane electrode structure.
[0030]
The membrane electrode structure or the polymer electrolyte fuel cell of the present invention has any one of the above aspects. Proton conductivity for polymer electrolyte fuel cells Since the polymer electrolyte membrane is provided, excellent oxidation resistance and heat resistance equivalent to the conventional one can be obtained.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory sectional view showing the configuration of the membrane electrode structure according to the first embodiment of the present invention, and FIG. 2 is an explanatory sectional view showing the configuration of the membrane electrode structure according to the second embodiment. 3 is a histogram comparing the weight reduction rate and the breaking elongation reduction rate of the polymer electrolyte membrane used in the first embodiment with a polymer electrolyte membrane not containing an antioxidant, and FIG. 4 is a high histogram used in the first embodiment. FIG. 5 is a graph showing the relationship between the added amount of the antioxidant and the electrical conductivity in the molecular electrolyte membrane, and FIG. 5 shows the relationship between the added amount of the antioxidant and the weight reduction rate in the polymer electrolyte membrane used in the first embodiment. Graphs, FIGS. 6 and 7 are histograms comparing the weight reduction rate and the breaking elongation reduction rate of the polymer electrolyte membrane used in the first embodiment with polymer electrolyte membranes containing other antioxidants, and FIG. Of the antioxidant in the polymer electrolyte membrane used in the second embodiment The relationship between the pressure volume and weight reduction rate is a graph comparing the polymer electrolyte membrane used in the first embodiment.
[0032]
As shown in FIG. 1, a membrane electrode structure according to a first embodiment of the present invention includes a polymer electrolyte membrane 1, a pair of electrode catalyst layers 2 and 2 sandwiching the polymer electrolyte membrane 1, and both electrodes. It consists of a pair of diffusion layers 3 and 3 laminated on the catalyst layers 2 and 2.
[0033]
The polymer electrolyte membrane 1 comprises a polymer sulfonated product having an aromatic group in the main chain and / or side chain, and an antioxidant. Examples of the polymer having an aromatic group in the main chain and / or side chain include polyether ether ketone represented by the following formula (1) or 2,5-dichloro- represented by the following formula (2). 4 ′-(4-phenoxyphenoxy) benzophenone and 2,2-bis [4- {4- (4-chlorobenzoyl) phenoxy} phenyl] -1,1,1,3 represented by the following formula (3) Examples thereof include a fluorine-containing copolymer represented by the following formula (4) obtained by polymerizing 3,3-hexafluoropropane at a predetermined polymerization ratio.
[0034]
[Chemical 1]
Figure 0004399586
[0035]
The sulfonated product of the polymer can be obtained by adding concentrated sulfuric acid to the polymer and sulfonated so as to contain sulfonic acid groups in the range of 0.5 to 3.0 milligram equivalent / g. The sulfonated product cannot obtain sufficient ion conductivity when the amount of the sulfonic acid group contained is less than 0.5 milligram equivalent / g. Further, if the amount of the sulfonic acid group contained exceeds 3.0 milligram equivalent / g, sufficient toughness cannot be obtained, and handling becomes difficult when constituting a membrane electrode structure described later.
[0036]
The antioxidant is a compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding oxygen atoms of the phenol groups. Examples of the antioxidant include 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the following formula (5), and represented by the following formula (6). 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-trimethyl-2,4,6-tris (3,5- and t-butyl-4-hydroxybenzyl) benzene.
[0037]
[Chemical formula 2]
Figure 0004399586
[0038]
When producing the polymer electrolyte membrane 1, first, the polymer sulfonated product represented by the above formula (1) or (4) is dissolved in a solvent such as N-methylpyrrolidone to obtain a polymer electrolyte solution. . Next, 0.1 to 10 weight percent of any one of the antioxidants represented by the above formulas (5) to (7) is added to the polymer electrolyte solution with respect to 100 weight parts of the sulfonated product of the polymer. Dissolves in the range of parts. Then, a film is formed from the obtained solution by a casting method and dried in an oven. By doing so, for example, the polymer electrolyte membrane 1 having a dry film thickness of 50 μm can be obtained.
[0039]
In the electrode catalyst layer 2, a catalyst paste comprising catalyst particles and a fluorine-containing ion conductive polymer binder is placed on the diffusion layer 3 with a predetermined catalyst content (for example, 0.5 mg / cm2). 2 It is formed by screen-printing and drying. The catalyst particles are prepared by supporting platinum particles on carbon black (furnace black) at a predetermined weight ratio (for example, carbon black: platinum = 1: 1). Further, the catalyst paste is prepared by adding the catalyst particles to a fluorine-containing ion conductive polymer binder solution such as a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) in a predetermined weight ratio ( For example, it is prepared by uniformly dispersing with catalyst particles: binder solution = 1: 1).
[0040]
The diffusion layer 3 is composed of an underlayer and carbon paper. The undercoat layer is a mixture of carbon black and polytetrafluoroethylene (PTFE) particles at a predetermined weight ratio (for example, carbon black: PTFE particles = 4: 6), and the resulting mixture is mixed with a solvent such as ethylene glycol. It is formed by applying and drying a uniformly dispersed slurry on one side of the carbon paper.
[0041]
The catalyst paste screen-printed on the diffusion layer 3 is dried by, for example, drying at 60 ° C. for 10 minutes and then drying at 120 ° C. for 60 minutes under reduced pressure.
[0042]
The membrane electrode structure shown in FIG. 1 can be obtained by sandwiching the polymer electrolyte membrane 1 on the side of the electrode catalyst layer 2 between the pair of electrode catalyst layers 2 and the diffusion layer 3 and performing hot pressing. . The hot press is, for example, a primary hot press at 80 ° C. and 5 MPa for 2 minutes, and then a secondary hot press at 160 ° C. and 4 MPa for 1 minute.
[0043]
Next, in the membrane electrode structure of the second embodiment of the present invention, instead of the polymer electrolyte membrane 1 shown in FIG. 1, a polymer electrolyte membrane 4 is a pair of buffer layers 5 as shown in FIG. , 5 except that the composite polymer membrane 5 is sandwiched between the membrane electrode structures of the first embodiment.
[0044]
The polymer electrolyte membrane 4 is made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, and does not contain an antioxidant. Examples of the polymer having an aromatic group in the main chain and / or side chain include polyether ether ketone represented by the same formula (1) as in the membrane electrode structure of the first embodiment, The fluorine-containing copolymer represented by Formula (4) can be mentioned. The sulfonated product of the polymer can be obtained in exactly the same way as in the first embodiment.
[0045]
The polymer electrolyte membrane 4 is prepared by dissolving the sulfonated polymer in a solvent such as N-methylpyrrolidone to form a polymer electrolyte solution, and forming the polymer electrolyte solution by a casting method in an oven. By drying, for example, a film having a dry film thickness of 50 μm can be obtained.
[0046]
The buffer layer 5 is made of an ion conductive material and an antioxidant. As the ion conductive material, a polymer sulfonated product having an aromatic group in the same main chain and / or side chain as the polymer electrolyte membrane 4 may be used, and a perfluoroalkylenesulfonic acid polymer compound ( For example, DuPont Nafion (trade name) may be used. In addition, as the antioxidant, any one of the compounds represented by the previous formulas (5) to (7) which are the same as those used in the first embodiment can be used.
[0047]
When the buffer layer 5 is manufactured, first, the ion conductive material is dissolved in a solvent such as N-methylpyrrolidone. Next, 0.01% of any one of the antioxidants represented by the previous formulas (5) to (7) is added to the solution of the ion conductive material with respect to 100 parts by weight of the ion conductive material. Dissolves in the range of ~ 6 parts by weight. Then, a film is formed from the obtained solution by a casting method and dried in an oven. In this way, for example, the buffer layer 5 having a dry film thickness of 3 μm Get Can.
[0048]
The composite polymer electrolyte membrane 6 can be obtained by sandwiching the polymer electrolyte membrane 4 between the pair of buffer layers 5 and performing hot pressing at 150 ° C. and 2.5 MPa for 1 minute, for example.
[0049]
The buffer layer 5 may be formed by infiltrating the antioxidant to a predetermined thickness from both sides of the polymer electrolyte membrane 4.
[0050]
In the case of the first embodiment, the membrane electrode structure shown in FIG. 2 sandwiches the composite polymer electrolyte membrane 6 on the electrode catalyst layer 2 side by the pair of electrode catalyst layers 2 and the diffusion layer 3. It can be obtained by performing hot pressing in exactly the same way.
[0051]
The membrane electrode structure shown in FIG. 1 or 2 can constitute a solid polymer fuel cell by further laminating a separator that also serves as a gas passage on the diffusion layers 3 and 3.
[0052]
Next, examples of the present embodiment and comparative examples will be described.
[0053]
[Example 1]
In this example, first, concentrated sulfuric acid was added to the polyether ether ketone represented by the above formula (1) (manufactured by VICTREX, 380P (grade name)), and the sulfonic acid group was within a range of 1.9 milligram equivalent / g. The polyether ether ketone sulfonated product was prepared by sulfonation to include Next, the sulfonated product of the polyether ether ketone was dissolved in N-methylpyrrolidone to obtain a polymer electrolyte solution. Next, 1,1,3-tris (2-methyl-4) represented by the above formula (5) as an antioxidant is added to the polymer electrolyte solution with respect to 100 parts by weight of the sulfonated product of the polyether ether ketone. 1 part by weight of -hydroxy-5-t-butylphenyl) butane (mp 186 ° C.) was dissolved. And it formed into a film by the casting method from the polymer electrolyte solution which melt | dissolved the said antioxidant, and the polymer electrolyte membrane with a dry film thickness of 50 micrometers was obtained by drying in oven.
[0054]
Next, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance of the polymer electrolyte membrane of this example were evaluated.
[0055]
Since the polymer electrolyte membrane had white spots appearing on the surface when the antioxidant was eluted, the appearance of the membrane was visually observed to confirm whether the antioxidant was eluted.
[0056]
The oxidation resistance is H 2 O 2 An aqueous solution containing 3% Fe20 ppm (Fenton reagent) was set at a liquid temperature of 50 ° C., and the weight reduction rate (%) of the polymer electrolyte membrane after the polymer electrolyte membrane was immersed in the aqueous solution for 8 hours was measured. The weight reduction rate indicates the amount of the polymer electrolyte membrane oxidized by the Fenton reagent and dissolved in the aqueous solution, and the smaller the value, the higher the oxidation resistance.
[0057]
The heat resistance is determined by the elongation at break according to a tensile test after the polymer electrolyte membrane was left in an atmosphere of 150 ° C. for 5 hours and further left in an environment of 23 ° C. and 50% relative humidity for 2 hours. It was calculated as a reduction rate (%). The tensile test was performed according to JIS K7127.
[0058]
When the polymer electrolyte membrane is heated, crosslinks are formed between the polymer chains and become brittle. Therefore, the decreasing rate (%) of the elongation at break means that the smaller the value, the higher the heat resistance.
[0059]
Moreover, since the color of the polymer electrolyte membrane changes as the deterioration proceeds by heating, the color change of the polymer electrolyte membrane was visually observed to determine the presence or absence of deterioration.
[0060]
The results are shown in Table 1. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0061]
[Comparative Example 1]
In this comparative example, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in the same manner as in Example 1 except that the antioxidant was not used at all.
[0062]
Next, the presence / absence of dissolution of the antioxidant, oxidation resistance, and heat resistance of the polymer electrolyte membrane of this comparative example were evaluated in exactly the same manner as in Example 1. The results are shown in Table 1. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0063]
[Example 2]
In this example, the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the formula (4) was used in place of the sulfonated product of the polyether ether ketone of Example 1. A polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in exactly the same manner as in Example 1.
[0064]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 1. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0065]
Next, the electrical conductivity of the polymer electrolyte membrane of this example was measured. The conductivity was measured by the AC two-terminal method (frequency 10 kHz) under the conditions of a temperature of 85 ° C. and a relative humidity of 90%, with the polymer electrolyte membrane sandwiched between two platinum electrodes. FIG. 4 shows the relationship between the added amount of the antioxidant and the conductivity.
[0066]
[Comparative Example 2]
In this comparative example, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in the same manner as in Example 2 except that the antioxidant was not used at all.
[0067]
Next, the presence / absence of dissolution of the antioxidant, oxidation resistance, and heat resistance of the polymer electrolyte membrane of this comparative example were evaluated in exactly the same manner as in Example 1. The results are shown in Table 1. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG. Moreover, the relationship between the addition amount of the said antioxidant and a weight decreasing rate (%) is shown in FIG.
[0068]
[Table 1]
Figure 0004399586
[0069]
From Table 1 and FIG. 3, the polymer electrolyte membranes of Examples 1 and 2 using the antioxidant represented by Formula (5) are compared with the case where the antioxidant is not used at all (Comparative Examples 1 and 2). Thus, it is apparent that the weight reduction rate is small and excellent oxidation resistance is exhibited. Further, the polymer electrolyte membranes of Examples 1 and 2 using the antioxidant represented by the formula (5) have substantially the same heat resistance as the case where the antioxidant is not used at all (Comparative Examples 1 and 2). It is clear that it has.
[0070]
It should be noted that the polymer electrolyte membrane of Example 1 has a larger weight reduction rate than the polymer electrolyte membrane of Comparative Example 2, and appears to be inferior in oxidation resistance. However, this is because the polymer electrolyte membranes of Example 1 and Comparative Example 1 are sulfonated products of polyetheretherketone represented by the above formula (1), whereas the polymers of Example 2 and Comparative Example 2 are used. This is due to the difference in the chemical species of the polymer electrolyte, in which the electrolyte membrane is a sulfonated product of the fluorine-containing copolymer represented by the above formula (4).
[0071]
[Example 3]
In this example, 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4) is represented by the above formula (5) as an antioxidant. A polymer electrolyte membrane having a dry film thickness of 50 μm exactly as in Example 2 except that 6 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane was used. Got.
[0072]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 2. Moreover, the relationship between the addition amount of the said antioxidant and a weight decreasing rate (%) is shown in FIG.
[0073]
Further, the conductivity of the polymer electrolyte membrane of this example was measured in the same manner as in Example 2. FIG. 4 shows the relationship between the added amount of the antioxidant and the conductivity.
[0074]
[Example 4]
In this example, 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4) is represented by the above formula (5) as an antioxidant. A polymer having a dry film thickness of 50 μm exactly the same as in Example 2 except that 0.4 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane was used. An electrolyte membrane was obtained.
[0075]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 2. Moreover, the relationship between the addition amount of the said antioxidant and a weight decreasing rate (%) is shown in FIG.
[0076]
Further, the conductivity of the polymer electrolyte membrane of this example was measured in the same manner as in Example 2. FIG. 4 shows the relationship between the added amount of the antioxidant and the conductivity.
[0077]
[Comparative Example 3]
In this comparative example, with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4), the antioxidant is represented by the above formula (5). A polymer having a dry film thickness of 50 μm exactly the same as Example 2 except that 0.005 part by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane was used. An electrolyte membrane was obtained.
[0078]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 2. Moreover, the relationship between the addition amount of the said antioxidant and a weight decreasing rate (%) is shown in FIG.
[0079]
[Comparative Example 4]
In this comparative example, with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4), the antioxidant is represented by the above formula (5). A polymer electrolyte membrane having a dry film thickness of 50 μm exactly as in Example 2 except that 20 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane was used. Got.
[0080]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 2. Moreover, the relationship between the addition amount of the said antioxidant and a weight decreasing rate (%) is shown in FIG.
[0081]
Further, the conductivity of the polymer electrolyte membrane of this example was measured in the same manner as in Example 2. FIG. 4 shows the relationship between the added amount of the antioxidant and the conductivity.
[0082]
[Table 2]
Figure 0004399586
[0083]
From Table 2 and FIGS. 4 and 5, 0.1 to 10 weight of the antioxidant represented by the formula (5) with respect to 100 parts by weight of the sulfonated fluorinated copolymer represented by the previous formula (4). The polymer electrolyte membranes of Example 2 (reprinted in Table 2), 3 and 4 included in the range of parts are excellent in oxidation resistance and electrical conductivity, and when no antioxidant is used (Comparative Example 2). It is apparent that they have substantially the same heat resistance and that the antioxidant is not eluted.
[0084]
For the polymer electrolyte membranes of Examples 2 to 4, the antioxidant represented by Formula (5) was added to 100 parts by weight of the sulfonated fluorinated copolymer represented by Formula (4). The polymer electrolyte membrane of Comparative Example 3 containing 0.005 parts by weight of less than 1 part by weight is that of Comparative Example 2 (reproduced in Table 2) whose oxidation resistance does not contain any antioxidant from Table 2 and FIG. It is clear that the oxidation resistance is almost the same as that of the case and almost no oxidation resistance can be obtained.
[0085]
Further, Comparative Example 4 containing 20 parts by weight of the antioxidant represented by formula (5) in excess of 10 parts by weight with respect to 100 parts by weight of the sulfonated fluorinated copolymer represented by formula (4). From Table 2, it is clear that the above-mentioned antioxidant elutes, although the polymer electrolyte membrane is excellent in oxidation resistance. It is clear from FIG. 4 that the polymer electrolyte membrane of Comparative Example 4 is significantly inferior in conductivity to the polymer electrolyte membranes of Examples 2 to 4.
[0086]
[Example 5]
In this example, as an antioxidant, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the formula (5) used in Example 2 was used. Instead, it was exactly the same as Example 2 except that 4,4′-butylidenebis (6-tert-butyl-3-methylphenol) (mp 210 ° C.) represented by the formula (6) was used. Thus, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained.
[0087]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 3.
[0088]
[Example 6]
In this example, as an antioxidant, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the formula (5) used in Example 2 was used. Instead, 1,3,5-trimethyl-2,4,6-tris (3,5-t-butyl-4-hydroxybenzyl) benzene represented by the above formula (7) (mp 244 ° C.) A polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in the same manner as in Example 2 except that was used.
[0089]
Next, for the polymer electrolyte membrane of this example, the presence / absence of elution of the antioxidant, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 3.
[0090]
[Table 3]
Figure 0004399586
[0091]
4,4′-butylidenebis (6-tert-butyl-3-methylphenol) represented by the formula (6), 1,3,5-trimethyl-2,4,6 represented by the formula (7) -Tris (3,5-t-butyl-4-hydroxybenzyl) benzene is 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) represented by the formula (5) ) Similar to butane, it is a compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding the oxygen atoms of the phenol groups.
[0092]
As a result, as is apparent from Table 3, according to the polymer electrolyte membranes of Examples 5 and 6 using the compounds of the formulas (6) and (7) as the antioxidant, the formula (5) It is apparent that oxidation resistance and heat resistance substantially equivalent to those of the polymer electrolyte membrane of Example 2 using the compound (1) (reproduced in Table 3) can be obtained.
[0093]
[Comparative Example 5]
In this comparative example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the above formula (5) used in Example 2 was used as an antioxidant. Instead, it was exactly the same as Example 2 except that bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (mp 86 ° C.) represented by the following formula (8) was used. Thus, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained. The antioxidant represented by the following formula (8) does not contain any phenol group in the molecular structure, and further contains N atoms and O atoms.
[0094]
[Chemical 3]
Figure 0004399586
[0095]
Next, the presence / absence of dissolution of the antioxidant, oxidation resistance, and heat resistance of the polymer electrolyte membrane of this comparative example were evaluated in exactly the same manner as in Example 1. The results are shown in Table 4. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0096]
[Comparative Example 6]
In this comparative example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the above formula (5) used in Example 2 was used as an antioxidant. Instead, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in exactly the same manner as in Example 2 except that the sulfur-containing compound (mp 23 ° C. or lower) represented by the following formula (9) was used. . The antioxidant represented by the following formula (9) does not contain any phenol group in the molecular structure, and further contains S atoms and O atoms.
[0097]
[Formula 4]
Figure 0004399586
[0098]
Next, for the polymer electrolyte membrane of this comparative example, the presence / absence of antioxidant dissolution, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 4. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0099]
[Comparative Example 7]
In this comparative example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the above formula (5) used in Example 2 was used as an antioxidant. Instead, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in exactly the same manner as in Example 2 except that the phosphorus-containing compound (mp 165 ° C.) represented by the following formula (10) was used. The antioxidant represented by the following formula (10) does not contain any phenol group in the molecular structure, and further contains P atoms and O atoms.
[0100]
[Chemical formula 5]
Figure 0004399586
[0101]
Next, for the polymer electrolyte membrane of this comparative example, the presence / absence of antioxidant dissolution, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 4. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0102]
[Comparative Example 8]
In this comparative example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the above formula (5) used in Example 2 was used as an antioxidant. Instead, Example 2 was used except that tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate (mp 221 ° C.) represented by the following formula (11) was used. And a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained. The antioxidant represented by the following formula (11) contains a plurality of phenol groups in the molecular structure, but contains O atoms in addition to the phenol groups, and further contains N atoms.
[0103]
[Chemical 6]
Figure 0004399586
[0104]
Next, for the polymer electrolyte membrane of this comparative example, the presence / absence of antioxidant dissolution, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 4. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0105]
[Comparative Example 9]
In this comparative example, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane represented by the above formula (5) used in Example 2 was used as an antioxidant. Instead, tetrakis [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) -propionate] methane represented by the following formula (12) (mp 115 ° C.) is used. A polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in exactly the same manner as in Example 2 except that it was used. The antioxidant represented by the following formula (12) contains a plurality of phenol groups in the molecular structure, but also contains O atoms in addition to the phenol groups.
[0106]
[Chemical 7]
Figure 0004399586
[0107]
Next, for the polymer electrolyte membrane of this comparative example, the presence / absence of antioxidant dissolution, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 4. Moreover, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0108]
[Table 4]
Figure 0004399586
[0109]
From Table 4 and FIG. 6, the polymer electrolyte membrane of the comparative example 5 which uses the antioxidant which does not contain a phenol group at all in a molecular structure and also contains an N atom and an O atom, and contains a plurality of phenol groups in the molecular structure However, the polymer electrolyte membrane of Comparative Example 8 containing an O atom in addition to the phenol group and further containing an N atom contains a plurality of phenol groups in the molecular structure. According to the polymer electrolyte membrane of Comparative Example 9 containing, the oxidation resistance of the polymer electrolyte membrane of Example 2 (reproduced in Table 4) is substantially equivalent, but the heat resistance may be significantly inferior. it is obvious.
[0110]
Further, from Table 4 and FIG. 6, according to the polymer electrolyte membrane of Comparative Example 6 containing no phenol group in the molecular structure and containing S atoms and O atoms, the polymer electrolyte membrane of Example 2 was compared with that of Example 2. It is apparent that the oxidation resistance and heat resistance are significantly inferior.
[0111]
Furthermore, from Table 4 and FIG. 6, according to the polymer electrolyte membrane of Comparative Example 7 which does not contain any phenol group in the molecular structure and also contains P atoms and O atoms, the polymer electrolyte membrane of Example 2 It is clear that the heat resistance is almost the same, but the oxidation resistance is remarkably inferior.
[0112]
[Comparative Example 10]
In this comparative example, with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4), the antioxidant is represented by the above formula (11). Except for using 6 parts by weight of tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate, a polymer electrolyte membrane having a dry film thickness of 50 μm was obtained in the same manner as in Example 2. .
[0113]
Next, for the polymer electrolyte membrane of this comparative example, the presence / absence of antioxidant dissolution, oxidation resistance, and heat resistance were evaluated in exactly the same manner as in Example 1. The results are shown in Table 5. Further, the weight reduction rate (%) and the elongation reduction rate (%) are shown in FIG.
[0114]
[Table 5]
Figure 0004399586
[0115]
From Table 5 and FIG. 7, with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4), the antioxidant is represented by the above formula (11). The polymer electrolyte membrane of this comparative example using 6 parts by weight of tris- (3,5-di-t-butyl-4-hydroxybenzyl) -isocyanurate is represented by the formula (5) as an antioxidant. For the polymer electrolyte membrane of Example 3 using 6 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane as described above (reproduced in Table 5) It is clear that the oxidation resistance is substantially the same, but the heat resistance is remarkably inferior.
[0116]
[Example 7]
In this example, first, a sulfonated product of a fluorine-containing copolymer (n: m = 1: 1) represented by the same formula (4) as that used in the example was dissolved in N-methylpyrrolidone. Thus, a polymer electrolyte solution was formed, and a film was formed from the polymer electrolyte solution by a casting method, followed by drying in an oven to obtain a first polymer electrolyte membrane having a dry film thickness of 50 μm.
[0117]
Next, in the polymer electrolyte solution, 1,1,3-tris (2-methyl-) represented by the above formula (5) as an antioxidant with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer. 1 part by weight of 4-hydroxy-5-tert-butylphenyl) butane was dissolved. And it formed into a film from the polymer electrolyte solution which melt | dissolved the said antioxidant by the casting method, and dried in oven, and obtained two 2nd polymer electrolyte membranes with a dry film thickness of 3 micrometers.
[0118]
Next, the second polymer electrolyte membrane is used as a buffer layer, and the buffer layer is sandwiched between the first polymer electrolyte membranes, and hot pressing is performed at 150 ° C. and 2.5 MPa for 1 minute. A molecular electrolyte membrane A was obtained.
[0119]
Next, the composite polymer electrolyte membrane A of this example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0120]
[Example 8]
In this example, 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4) is represented by the above formula (5) as an antioxidant. Two second polymer electrolyte membranes having a dry film thickness of 3 μm were obtained using 0.4 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane. Except for the above, a composite polymer electrolyte membrane A in which the first polymer electrolyte membrane was sandwiched between the buffer layers (second polymer electrolyte membrane) was obtained in the same manner as in Example 7.
[0121]
Next, the composite polymer electrolyte membrane A of this example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0122]
[Example 9]
In this example, 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4) is represented by the above formula (5) as an antioxidant. Except that two second polymer electrolyte membranes having a dry film thickness of 3 μm were obtained using 6 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane. In the same manner as in Example 7, a composite polymer electrolyte membrane A in which the first polymer electrolyte membrane was sandwiched between the buffer layers (second polymer electrolyte membrane) was obtained.
[0123]
Next, the composite polymer electrolyte membrane A of this example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0124]
[Comparative Example 11]
In this comparative example, with respect to 100 parts by weight of the sulfonated product of the fluorine-containing copolymer (n: m = 1: 1) represented by the above formula (4), the antioxidant is represented by the above formula (5). Two second polymer electrolyte membranes having a dry film thickness of 3 μm were obtained using 0.005 parts by weight of 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane. Except for the above, a composite polymer electrolyte membrane A in which the first polymer electrolyte membrane was sandwiched between the buffer layers (second polymer electrolyte membrane) was obtained in the same manner as in Example 7.
[0125]
Next, the composite polymer electrolyte membrane A of this comparative example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0126]
[Example 10]
In this example, perfluoroalkylenesulfonic acid polymer compound (Dafon Nafion (commercial product) was used instead of the sulfonated fluorinated copolymer (n: m = 1: 1) represented by the above formula (4). The first polymer electrolyte membrane is the same as in Example 7 except that two second polymer electrolyte membranes having a dry film thickness of 3 μm were obtained using A composite polymer electrolyte membrane B sandwiched between the second polymer electrolyte membranes) was obtained.
[0127]
Next, the composite polymer electrolyte membrane B of this example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0128]
Example 11
In this example, 1,1,3-tris (2-methyl-4-hydroxy-5) represented by the above formula (5) as an antioxidant with respect to 100 parts by weight of the perfluoroalkylenesulfonic acid polymer compound. Except that two second polymer electrolyte membranes having a dry film thickness of 3 μm were obtained using 0.03 part by weight of (t-butylphenyl) butane, the same procedure as in Example 7 was carried out. A composite polymer electrolyte membrane B in which a molecular electrolyte membrane was sandwiched between the buffer layers (second polymer electrolyte membrane) was obtained.
[0129]
Next, the composite polymer electrolyte membrane B of this example was evaluated in the same manner as in Example 1 for the presence or absence of antioxidant dissolution, oxidation resistance, and heat resistance. The results are shown in Table 6. FIG. 8 shows the relationship between the amount of the antioxidant added to the buffer layer (second polymer electrolyte membrane) and the weight reduction rate (%).
[0130]
[Table 6]
Figure 0004399586
[0131]
From Table 6 and FIG. 8, the fluorine-containing copolymer represented by the same formula (4) as that of the first polymer electrolyte membrane is used as the ion conductive material constituting the buffer layer (second polymer electrolyte membrane). It is a sulfonated product of a combination, and the buffer layer has an antioxidant represented by the formula (5) of 0.4 to 100 parts by weight based on 100 parts by weight of the sulfonated fluorinated copolymer represented by the formula (4) It is clear that the composite polymer electrolyte membranes A of Examples 7 to 9 contained in the range of 6 parts by weight are excellent in oxidation resistance and electrical conductivity, and are free from elution of the antioxidant. It is apparent that the polymer electrolyte membrane (reproduced in FIG. 8) has the same oxidation resistance.
[0132]
For the composite polymer electrolyte membrane A of Examples 7 to 9, the buffer layer is represented by the formula (5) with respect to 100 parts by weight of the sulfonated fluorinated copolymer represented by the formula (4). It is apparent that the composite polymer electrolyte membrane A of Comparative Example 11 containing 0.005 parts by weight of antioxidant less than 0.1 parts by weight is remarkably inferior in oxidation resistance.
[0133]
In the composite polymer electrolyte membranes A of Examples 7 to 9, the first polymer electrolyte membrane containing no antioxidant is 50 μm in thickness, whereas the buffer layer containing the antioxidant ( Since the film thickness of the second polymer electrolyte membrane) is 3 μm, it is clear that the content of the antioxidant is remarkably reduced with respect to the polymer electrolyte membranes of Examples 2 to 4. .
[0134]
Further, from Table 6 and FIG. 8, the composite polymer electrolytes of Examples 10 and 11 in which the ion conductive material constituting the buffer layer (second polymer electrolyte membrane) is the perfluoroalkylenesulfonic acid polymer compound. According to the membrane B, it is clear that further excellent oxidation resistance can be obtained with respect to the composite polymer electrolyte membrane A of Examples 7-9.
[Brief description of the drawings]
FIG. 1 is an explanatory sectional view showing a configuration of a membrane electrode structure according to a first embodiment of the present invention.
FIG. 2 is an explanatory sectional view showing a configuration of a membrane electrode structure according to a second embodiment of the present invention.
FIG. 3 is a histogram comparing the weight reduction rate and the breaking elongation reduction rate of the polymer electrolyte membrane used in the first embodiment of the present invention with a polymer electrolyte membrane not containing an antioxidant.
FIG. 4 is a graph showing the relationship between the addition amount of an antioxidant and the electrical conductivity in the polymer electrolyte membrane used in the first embodiment of the present invention.
FIG. 5 is a graph showing the relationship between the amount of antioxidant added and the weight reduction rate in the polymer electrolyte membrane used in the first embodiment of the present invention.
FIG. 6 is a histogram comparing the weight reduction rate and the breaking elongation reduction rate of the polymer electrolyte membrane used in the first embodiment of the present invention with a polymer electrolyte membrane containing other antioxidants.
FIG. 7 is a histogram comparing the weight reduction rate and the breaking elongation reduction rate of the polymer electrolyte membrane used in the first embodiment of the present invention with a polymer electrolyte membrane containing other antioxidants.
FIG. 8 is a graph comparing the relationship between the amount of antioxidant added and the weight reduction rate in the polymer electrolyte membrane used in the second embodiment of the present invention, compared to the polymer electrolyte membrane used in the first embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,4 ... Polymer electrolyte membrane, 2 ... Electrode, 5 ... Buffer layer, 6 ... Composite polymer electrolyte membrane.

Claims (10)

主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物と、酸化防止剤とを含む高分子電解質膜であって、
該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であることを特徴とする固体高分子型燃料電池用プロトン導伝性高分子電解質膜。
A polymer electrolyte membrane comprising a sulfonated polymer having an aromatic group in the main chain and / or side chain, and an antioxidant,
The antioxidant is a compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding the oxygen atoms of the phenol group, and 1,1,3-tris (2-methyl-4 - solid high, which is a hydroxy -5-t-butylphenyl) butane, one compound selected from the group consisting of 4,4'-butylidenebis (6-t-butyl-3-methylphenol) Proton conducting polymer electrolyte membrane for molecular fuel cell .
前記スルホン化物100重量部に対して、前記酸化防止剤を0.1〜10重量部の範囲で含むことを特徴とする請求項1記載の固体高分子型燃料電池用プロトン導伝性高分子電解質膜。2. The proton conducting polymer electrolyte for a polymer electrolyte fuel cell according to claim 1, wherein the antioxidant is contained in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the sulfonated product. film. 前記酸化防止剤は融点が150℃以上であることを特徴とする請求項1または請求項2記載の固体高分子型燃料電池用プロトン導伝性高分子電解質膜。The proton conductive polymer electrolyte membrane for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the antioxidant has a melting point of 150 ° C or higher. 主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物と、酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物である固体高分子型燃料電池用プロトン導伝性高分子電解質膜と、該固体高分子型燃料電池用プロトン導伝性高分子電解質膜を挟持する1対の電極とを備えることを特徴とする膜電極構造体。A polymer sulfonated product having an aromatic group in the main chain and / or side chain, and an antioxidant, the antioxidant having a plurality of phenol groups, and excluding an oxygen atom of the phenol group; A compound composed of only carbon and hydrogen atoms, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 4,4′-butylidenebis (6-t- butyl-3-methylphenol) one proton conducting polymer electrolyte membrane for a polymer electrolyte fuel cell is a compound selected from the group consisting of, the polymer electrolyte fuel cell proton-conductive high A membrane electrode structure comprising a pair of electrodes sandwiching a molecular electrolyte membrane. 主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物と、酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物である固体高分子型燃料電池用プロトン導伝性高分子電解質膜と、該固体高分子型燃料電池用プロトン導伝性高分子電解質膜を挟持する1対の電極とを備える膜電極構造体を備えることを特徴とする固体高分子型燃料電池。A polymer sulfonated product having an aromatic group in the main chain and / or side chain, and an antioxidant, the antioxidant having a plurality of phenol groups, and excluding an oxygen atom of the phenol group; A compound composed of only carbon and hydrogen atoms, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 4,4′-butylidenebis (6-t- butyl-3-methylphenol) one proton conducting polymer electrolyte membrane for a polymer electrolyte fuel cell is a compound selected from the group consisting of, the polymer electrolyte fuel cell proton-conductive high A solid polymer fuel cell comprising a membrane electrode structure including a pair of electrodes sandwiching a molecular electrolyte membrane. 主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜と、該高分子電解質膜を挟持する1対の緩衝層とからなる複合高分子電解質膜であって、
該緩衝層はイオン導伝性物質と酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であって、前記1対の緩衝層の合計の厚さが該高分子電解質膜の厚さよりも小であることを特徴とする固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜。
A composite polymer electrolyte membrane comprising a polymer electrolyte membrane comprising a sulfonated polymer having an aromatic group in the main chain and / or side chain, and a pair of buffer layers sandwiching the polymer electrolyte membrane. ,
The buffer layer includes an ion conductive material and an antioxidant, and the antioxidant has a plurality of phenol groups, and is composed of only carbon atoms and hydrogen atoms excluding oxygen atoms of the phenol groups. A compound comprising 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane and 4,4′-butylidenebis (6-tert-butyl-3-methylphenol) A proton compound for a polymer electrolyte fuel cell , wherein the total thickness of the pair of buffer layers is smaller than the thickness of the polymer electrolyte membrane. Conductive composite polymer electrolyte membrane.
前記緩衝層は、前記イオン導伝性物質が主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物であり、該イオン導伝性物質100重量部に対して、前記酸化防止剤を0.1〜10重量部の範囲で含むことを特徴とする請求項6記載の固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜。The buffer layer is a polymer sulfonated product in which the ion conductive material has an aromatic group in the main chain and / or side chain, and the antioxidant is used with respect to 100 parts by weight of the ion conductive material. The proton conductive composite polymer electrolyte membrane for a polymer electrolyte fuel cell according to claim 6, comprising 0.1 to 10 parts by weight. 前記緩衝層は、前記イオン導伝性物質がパーフルオロアルキレンスルホン酸高分子化合物であり、該イオン導伝性物質100重量部に対して、前記酸化防止剤を0.01〜5重量部の範囲で含むことを特徴とする請求項6記載の固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜。In the buffer layer, the ion conductive material is a perfluoroalkylenesulfonic acid polymer compound, and the antioxidant is in a range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the ion conductive material. The proton-conducting composite polymer electrolyte membrane for a polymer electrolyte fuel cell according to claim 6, comprising: 主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜と、該高分子電解質膜を挟持する1対の緩衝層とからなり、該緩衝層はイオン導伝性物質と酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であって、前記1対の緩衝層の合計の厚さが該高分子電解質膜の厚さよりも小である固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜と、該固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜を挟持する1対の電極とを備えることを特徴とする膜電極構造体。It comprises a polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, and a pair of buffer layers sandwiching the polymer electrolyte membrane. A compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding oxygen atoms of the phenol group, and 1,1 , 3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (6-tert-butyl-3-methylphenol) a compound, a proton-conductive polymer electrolyte composite membrane for a polymer electrolyte fuel cell is smaller than the thickness of the pair of the total thickness of the buffer layer is the polymer electrolyte membrane, the solid high Proton conductive composite for molecular fuel cells A membrane electrode structure comprising a pair of electrodes sandwiching a molecular electrolyte membrane. 主鎖及び/または側鎖に芳香族基を有する重合体のスルホン化物からなる高分子電解質膜と、該高分子電解質膜を挟持する1対の緩衝層とからなり、該緩衝層はイオン導伝性物質と酸化防止剤とを含み、該酸化防止剤は複数のフェノール基を有し、かつ、フェノール基の酸素原子を除いて炭素原子及び水素原子のみから構成される化合物であり、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、4,4’−ブチリデンビス(6−t−ブチル−3−メチルフェノール)からなる群から選択される1種の化合物であって、前記1対の緩衝層の合計の厚さが該高分子電解質膜の厚さよりも小である固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜と、該固体高分子型燃料電池用プロトン導伝性複合高分子電解質膜を挟持する1対の電極とを備える、膜電極構造体を備えることを特徴とする固体高分子型燃料電池。It comprises a polymer electrolyte membrane made of a sulfonated polymer having an aromatic group in the main chain and / or side chain, and a pair of buffer layers sandwiching the polymer electrolyte membrane. A compound having a plurality of phenol groups and composed only of carbon atoms and hydrogen atoms excluding oxygen atoms of the phenol group, and 1,1 , 3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 4,4′-butylidenebis (6-tert-butyl-3-methylphenol) a compound, a proton-conductive polymer electrolyte composite membrane for a polymer electrolyte fuel cell is smaller than the thickness of the pair of the total thickness of the buffer layer is the polymer electrolyte membrane, the solid high Proton conductive composite for molecular fuel cells A solid polymer fuel cell comprising a membrane electrode structure comprising a pair of electrodes sandwiching a molecular electrolyte membrane.
JP2002001707A 2002-01-08 2002-01-08 POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE Expired - Fee Related JP4399586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001707A JP4399586B2 (en) 2002-01-08 2002-01-08 POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001707A JP4399586B2 (en) 2002-01-08 2002-01-08 POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE

Publications (2)

Publication Number Publication Date
JP2003201352A JP2003201352A (en) 2003-07-18
JP4399586B2 true JP4399586B2 (en) 2010-01-20

Family

ID=27641770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001707A Expired - Fee Related JP4399586B2 (en) 2002-01-08 2002-01-08 POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE

Country Status (1)

Country Link
JP (1) JP4399586B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799485B2 (en) 2004-07-09 2010-09-21 Nissan Motor Co., Ltd. Fuel cell system and composition for electrode
JP4876407B2 (en) * 2005-02-28 2012-02-15 日産自動車株式会社 Electrolyte for polymer electrolyte fuel cell, polymer electrolyte fuel cell, polymer electrolyte fuel cell system and fuel cell vehicle
JP4830357B2 (en) * 2004-09-06 2011-12-07 日産自動車株式会社 Solid polymer fuel cell system and fuel cell vehicle
US7833676B2 (en) 2004-07-09 2010-11-16 Nissan Motor Co., Ltd. Fuel cell system and solid polymer electrolyte film
JP4876389B2 (en) * 2004-07-09 2012-02-15 日産自動車株式会社 Electrolyte for polymer electrolyte fuel cell, polymer electrolyte fuel cell, polymer electrolyte fuel cell system and fuel cell vehicle
JP4910310B2 (en) * 2004-07-09 2012-04-04 日産自動車株式会社 Electrode composition, electrode, air electrode composition, fuel cell air electrode, fuel cell, fuel cell system and fuel cell vehicle
JP5023475B2 (en) * 2004-12-14 2012-09-12 日産自動車株式会社 Electrode system, fuel cell, fuel cell system, home appliance, portable device and transportation device
JP5205694B2 (en) 2005-12-15 2013-06-05 日産自動車株式会社 Fuel, fuel cell system and fuel cell vehicle
KR102602408B1 (en) * 2018-06-15 2023-11-14 현대자동차주식회사 Composite of electrolyte membrane for fuel cell of vehicle and the manufacturing method of the electrolyte membrane for fuel cell of vehicle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470516B2 (en) * 1996-10-02 2003-11-25 ソニー株式会社 Polymer electrolyte composition aqueous solution and method for producing the same
AU2142400A (en) * 1998-08-28 2000-05-15 Foster-Miller Inc. Novel ion-conducting materials suitable for use in electrochemical applications and methods related thereto
JP2000223135A (en) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd Solid polymer electrolyte film and fuel cell
JP3925764B2 (en) * 1999-10-19 2007-06-06 株式会社豊田中央研究所 High durability solid polymer electrolyte
JP3748753B2 (en) * 2000-01-31 2006-02-22 株式会社デンソー Non-aqueous electrolyte secondary battery
DE10010001A1 (en) * 2000-03-02 2001-09-06 Celanese Ventures Gmbh Membranes useful in fuel cells comprise a blend of sulfonated aryl polymer, aminated or nitrated polyether(ether)sulfone and plasticizer
JP2003183526A (en) * 2001-12-25 2003-07-03 Jsr Corp Polyarylene composition and proton conductive membrane

Also Published As

Publication number Publication date
JP2003201352A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
Heinzel et al. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells
JP4588035B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, MANUFACTURING METHOD THEREOF, AND FUEL CELL
US20060068268A1 (en) Membrane and membrane electrode assembly with adhesion promotion layer
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
US8202664B2 (en) Membrane electrode assembly, fuel cell stack and fuel cell system
US8206873B2 (en) Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell system
US20040180250A1 (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
JP4221164B2 (en) Polymer electrolyte fuel cell
CA2444647A1 (en) High-durability polymer electrolyte, high-durability polymer electrolyte composite, electrode, and fuel cell
JP4399586B2 (en) POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE
JP2009252721A (en) Proton conductive polyelectrolyte film, its manufacturing method, and membrane-electrode assembly and polyelectrolyte fuel cell using it
Oh et al. A hydrophobic blend binder for anti-water flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
EP2169748A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
EP2169751A1 (en) Membrane-electrode assembly, method for producing the same and solid polymer fuel cell
JP2006155924A (en) Polymer electrolyte laminated membrane
JP5068610B2 (en) Ionic polymer particle dispersion and method for producing the same
KR100745740B1 (en) Cathode electrode for fuel cell and fuel cell using the same
JP3779171B2 (en) Polymer electrolyte fuel cell
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
Amin et al. An overview of chemical and mechanical stabilities of polymer electrolytes membrane
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP5870495B2 (en) POLYMER ELECTROLYTE, MEMBRANE ELECTRODE ASSEMBLY USING THE POLYMER ELECTROLYTE, AND FUEL CELL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070508

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070530

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Ref document number: 4399586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees