JP3925764B2 - High durability solid polymer electrolyte - Google Patents

High durability solid polymer electrolyte Download PDF

Info

Publication number
JP3925764B2
JP3925764B2 JP29619199A JP29619199A JP3925764B2 JP 3925764 B2 JP3925764 B2 JP 3925764B2 JP 29619199 A JP29619199 A JP 29619199A JP 29619199 A JP29619199 A JP 29619199A JP 3925764 B2 JP3925764 B2 JP 3925764B2
Authority
JP
Japan
Prior art keywords
electrolyte
polymer electrolyte
solid polymer
membrane
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29619199A
Other languages
Japanese (ja)
Other versions
JP2001118591A (en
Inventor
友 森本
拓未 谷口
昌弥 川角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP29619199A priority Critical patent/JP3925764B2/en
Publication of JP2001118591A publication Critical patent/JP2001118591A/en
Application granted granted Critical
Publication of JP3925764B2 publication Critical patent/JP3925764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高耐久性固体高分子電解質に関し、さらに詳しくは、固体高分子形燃料電池や水電解セルなどの固体高分子電解質膜などに好適に用いられる耐酸化性に優れた高耐久性固体高分子電解質に関するものである。
【0002】
【従来の技術】
固体高分子電解質は、高分子鎖中にスルホン酸基やカルボン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過させる性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されているものである。
【0003】
そうした中で、例えば、固体高分子形燃料電池や水電解セルでは、固体高分子電解質膜として利用される。この場合、固体高分子形燃料電池は、プロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、純水素あるいは改質水素ガスを燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として異なる電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造するものである。
【0004】
ところで、これらの固体高分子形燃料電池や水電解セルにおいては、電池反応によって固体高分子電解質膜と電極との界面に形成された触媒層において過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって電解質を劣化させる。例えば、燃料電池では燃料極で燃料の酸化、空気極で酸素の還元が行われるが、水素を燃料とし、酸性の電解質を用いる場合の理想的な反応式は、次の数1に示したように表される。
【0005】
【数1】
燃料(水素)極 : H→2H+2e
空 気 極 : O+4H+4e→2H
【0006】
しかしながら、実際の燃料電池ではこれらの主反応の他に副反応が起こる。その代表的なものが過酸化水素(H)の生成である。その生成のメカニズムについては必ずしも完全に理解されているわけではないが、考えられるメカニズムは次のようである。すなわち、過酸化水素の生成は、燃料極、空気極のどちらの極でも起こりうるものであるが、例えば、空気極では、酸素の不完全還元反応により次の数2に示した式1によって過酸化水素が生じると考えられる。
【0007】
【数2】
+2H+2e→2H(式1)
【0008】
また、燃料極では、ガス中に不純物としてあるいは意図的に混ぜることによって入っている酸素、もしくは、空気極で電解質にとけ込み燃料極に拡散してきた酸素が反応に関与すると考えられ、その反応式は上述の式1と同一か、もしくは次の数3に示した式2で表されると考えられる。
【0009】
【数3】
2M−H+O2−→2M+H(式2)
【0010】
ここにMは、燃料極に用いられている触媒金属を示し、M−Hはその触媒金属に水素が吸着した状態を示す。通常、触媒金属には白金(Pt)等の貴金属が用いられる。
【0011】
一方、水電解ではそれぞれ、主反応としては燃料電池反応の逆反応が起こる。その反応式は、次の数4に示したように表される。
【0012】
【数4】
空気極 : 2HO→O+4H+4e
燃料極 : 2H+2e→H
【0013】
しかしながら、ここでも同様に過酸化水素(H)を生成する副反応が起こりうる。そのメカニズムは完全に理解されているわけではないが、そのメカニズムは次のようである。すなわち、空気極においては次の数5に示した水の不完全酸化反応が起こり、燃料極では、空気極で発生した酸素が拡散もしくは対流により燃料極側に運ばれ、前述した式1もしくは式2の反応で過酸化水素が発生すると考えられる。
【0014】
【数5】
2HO→H+2H+2e
【0015】
そして、これらの電極上で発生した過酸化水素は、電極から拡散等のため離れ、電解質中に移動する。この過酸化水素は酸化力の強い物質で、電解質を構成する多くの有機物を酸化する。その詳しいメカニズムは必ずしも明らかになっていないが、多くの場合、過酸化水素がラジカル化し、生成した過酸化水素ラジカルが酸化反応の直接の反応物質になっていると考えられる。すなわち、次の数6のような反応で発生したラジカルが、電解質の有機物から水素を引き抜いたり、他の結合を切断すると考えられる。ラジカル化する原因は、必ずしも明らかでないが、重金属イオンとの接触が触媒作用を有していると考えられている。このほか、熱、光等でもラジカル化すると考えられる。
【0016】
【数6】
→2・OH もしくは
→・H+・OOH
【0017】
このような技術的背景にあって、固体高分子形燃料電池が初めて実用化されたのは、アメリカのジェミニ宇宙飛行船にそれが電源として採用された時である。このときはスチレン−ジビニルベンゼン重合体をスルホン化した膜が電解質として用いられた。しかし、性能が長時間維持できず、その原因として電解質膜の酸化劣化が上げられた。その後、パーフルオロスルホン酸ポリマー(商品名デュポン社Nafion)がこれに変わって用いられるようになった。これは、炭化水素の水素をすべてフッ素に置換したパーフルオロ型のポリマーであり、多くの化学物質に対して、反応性が極めて乏しく、過酸化水素に対してもほとんど酸化を受けないという特徴を有し、燃料電池に用いたときの性能は長期間維持されるものであった。
【0018】
一方、この全フッ素系のパーフルオロスルホン酸ポリマーに対抗する材料も種々検討されており、例えば、フッ素系電解質以外の固体高分子電解質の検討例としては、スイス特許Appl.02 636/93−6の、スルホン酸基を導入した架橋型ポリスチレングラフト樹脂膜や、特開平10−45913号公報のスルホン酸基を導入したポリエーテルスルホン樹脂膜等がある。また例えば、特開平9−102322号公報には、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖と、スルホン酸基を有する炭化水素系側鎖とから構成される、スルホン酸型ポリスチレン−グラフト−エチレン−テトラフルオロエチレン共重合体(ETFE)膜が提案されている。
【0019】
さらに、米国特許第4,012,303号及び米国特許第4,605,685号には、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた膜に、α,β,β-トリフルオロスチレンをグラフト重合させ、これにスルホン酸基を導入して固体高分子電解質膜とした、スルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE膜が提案されている。これは、前記のスルホン酸基を導入したポリスチレン側鎖部の化学的安定性が十分ではないとの認識を前提に、スチレンの代わりに、スチレンをフッ素化したα,β,β-トリフルオロスチレンを用いたものである。
【0020】
【発明が解決しようとする課題】
しかしながら、上述のデュポン社のNafionで代表されるの全フッ素系のパーフルオロスルホン酸ポリマーは一般に極めて高価である。また、含水率が高い、機械的強度が低いなどの望ましくない特徴も有している。そしてその化学的不活性さの故に、化学的修飾を受けにくいため、改良の余地がほとんどなかった。
【0021】
一方、このパーフルオロスルホン酸ポリマー以外の電解質も、例えば、上述のスイス特許Appl.02 636/93−6の架橋型スルホン酸基導入型ポリスチレングラフト樹脂膜や特開平10−45913号公報に示されるスルホン酸基導入型ポリエーテルスルホン樹脂膜等の非フッ素系電解質膜は、ナフィオンに代表される全フッ素系電解質膜と比較すると、製造が容易で低コストという利点がある一方で、上述したように耐酸化性が低いという問題が残されていた。耐酸化性が低い理由は、非フッ素系化合物は一般にラジカルに対する耐久性が低く、炭化水素を骨格とするため、ラジカルによる劣化反応(過酸化物ラジカルによる酸化反応)を起こしやすいことに因る。
【0022】
また、特開平9−102322号公報に開示されているスルホン酸型ポリスチレン−グラフト−ETFE膜は、安価であり、燃料電池用の固体高分子電解質膜として十分な強度を有し、しかもスルホン酸基導入量を増やすことによって導電率を向上させることが可能とされているが、炭化フッ素系ビニルモノマと炭化水素系ビニルモノマとの共重合によって作られた主鎖部分の耐酸化性は高い反面、スルホン酸基を導入した側鎖部分は、酸化劣化を受けやすい炭化水素系高分子であることから、これを燃料電池に用いた場合には、膜全体の耐酸化性が不十分であり、耐久性に乏しいという問題がある。
【0023】
さらに、米国特許第4,012,303号等に開示されているスルホン酸型ポリ(トリフルオロスチレン)−グラフト−ETFE膜は、側鎖部分をフッ素系高分子で構成しているために、上述の問題を解決していると思われるが、側鎖部分の原料となるα,β,β−トリフルオロスチレンは、合成が困難であるため、燃料電池用の固体高分子電解質膜として応用することを考えた場合には、前述のナフィオンの場合と同様にコストの問題がある。また、α,β,β−トリフルオロスチレンは劣化しやすいために取り扱いが困難で、重合反応性が低いという性質がある。そのため、グラフト側鎖として導入できる量が低く、得られる膜の導電率が低いという問題が残されている。
【0024】
さらにまた、架橋型スルホン酸型ポリスチレングラフト膜の耐久性は、架橋を導入していないスルホン酸型ポリスチレングラフト膜と比較すると高いが、その理由は、物理的結合を増やすことによって、劣化によって生じた成分の脱離を防ぐものであり、高分子の耐久性そのものが改善されてはおらず、本質的改善とは言えない。
【0025】
また一方、炭化水素系のイオン交換膜が過酸化水素(H)等の過酸化物ラジカルによって劣化することを抑制するため、例えば、特開平6−103992号公報には、電解質内に触媒金属を担持し、過酸化物を分解する技術も開示されている。しかし、この公報に記述されている触媒金属は、水素と酸素とを直接反応させることを目的としており、通常白金等の貴金属であり、コストが高くなる欠点を有する。またこれらの触媒金属は、電解質を劣化させる過酸化水素を分解する作用も有するが、また酸素と水素とが共存する環境下では、酸素と水素との直接反応により過酸化水素を生成する触媒作用も有しており、必ずしも電解質の劣化を効果的に抑制しないという問題がある。
【0026】
その他に、例えば、J.Membrane Science,56(1991)143では、ポリスチレン系の電解質に代え、メチルスチレン系の電解質を用いた試みが紹介されているが、効果は限定的であった。また、DOE Report FSEC-CR-857-95では、主鎖に芳香族系のポリマーを用い、これらをスルホン化した炭化水素系電解質膜が調べられている。これは主鎖が単鎖型のポリマーよりも高い耐酸化性を期待したものだが、それだけでは効果が充分でない。さらに、特開平7−050170号公報には、ポリオレフィンを主鎖とする高分子電解質の技術が開示されているが、耐久性は低かった。
【0027】
そして、これらの従来技術では、電解質である高分子を立体障害的にアタックされにくい構造にしたり、化学結合を多くして高分子そのものがアタックに対して強い防御をするという考えに基づくものであるが、過酸化水素等から発生する酸化性ラジカルの酸化力は極めて強く、必ずしも電解質の劣化を効果的に抑制しないものであった。
【0028】
本発明を解決しようとする課題は、固体高分子形燃料電池や水電解装置などの固体高分子電解質として用いた時に、電池反応によって発生する過酸化水素(H)のような過酸化物が生じても、それがラジカル化しなければ電解質膜を攻撃しないことに着目し、過酸化物に対する耐酸化性に優れた高耐久性固体高分子電解質を安価に提供することにある。
【0029】
【課題を解決するための手段】
この課題を解決するために本発明の高耐久性固体高分子電解質は、固体高分子電解質材料中に、電池反応により発生する過酸化物を接触分解する触媒能を有する遷移金属酸化物が分散配合されていることを要旨とするものである。
【0030】
この場合に固体高分子電解質材料は、電解質基と炭化水素部とを有するものであって、電解質基には、スルホン酸基、カルボン酸基等の電解質イオンを有する官能基を言う。さらに、炭化水素部を有する高分子化合物には、電解質基を導入することが可能な部分に対し、上述の電解質基が所定の導入率で導入されている。
【0031】
炭化水素部を有する高分子化合物の具体例としては、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹脂、架橋型フェノールホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2、3−ジフェニル−1、4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂等が一例として挙げられる。
【0032】
中でも、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂に代表される、エチレンテトラフルオロスチレン樹脂を主鎖とし、電解質基を導入可能な炭化水素系高分子を側鎖とするエチレンテトラフルオロエチレン樹脂のグラフト共重合体、ポリエーテルスルホン樹脂及びポリエーテルエーテルケトン樹脂は、安価であり、薄膜化したときに十分な強度を有し、しかも電解質基の種類及び導入量を調節することにより導電率を容易に制御することができるので、炭化水素部を有する高分子化合物として特に好適である。
【0033】
そしてこの固体高分子電解質に含まれる遷移金属酸化物は、過酸化水素(H)のような過酸化物を接触分解する触媒活性を持ったものである。遷移金属が固体高分子電解質材料中に含まれることにより、電池反応により発生するHが水(HO)と酸素(O)とに分解され、過酸化水素のラジカル化による電解質の劣化が回避される。
【0034】
この遷移金属酸化物としては、特に、酸化コバルト、酸化ニッケル、酸化クロム、酸化イリジウム、酸化鉛が好適である。酸化物は、含水物でもよく、結晶体でも非晶質体でもいい。遷移金属酸化物の分散法は、酸化物を高分子電解質の溶液に分散後、固体高分子電解質を固化させてもよいし、当該遷移金属を溶解性もしくは非溶解性の塩または他の化合物の形で高分子電解質に含有させた後、加水分解、ゾルゲル反応、酸化還元反応、あるいは他の反応によって固体の酸化物の形にしても良い。
【0035】
【発明の実施の形態】
以下に本発明の実施例について詳細に説明する。初めに、参考例1および参考例2は、固体高分子電解質材料中に遷移金属酸化物として酸化ルテニウム(RuO)、二酸化マンガン(MnO)を分散配合した例を示している。
【0036】
参考例1)
市販のスチレンジビニルベンゼンスルホン酸系のカチオン交換膜(厚さ100μm)を入手した。そして、この膜を塩化ルテニウム(含水)をエタノールに0.1Mになるよう溶解した溶液に3時間浸漬した。次いで、この膜を90℃の1M水酸化ナトリウム水溶液に30分浸漬し、さらに0.01M硫酸水溶液に室温で8時間浸漬して、不溶化したルテニウム酸化物(RuO)が膜中に微粒子として分散した電解質膜を得た。
【0037】
(比較例1)
参考例1と同一の膜を用い、この膜を塩化白金酸(含水)をエタノールに0.1Mになるよう溶解した溶液に3時間浸漬し、次いでこの膜を90℃の1M水酸化ナトリウム水溶液に30分浸漬し、さらに0.01M硫酸水溶液に室温で8時間浸漬することにより、白金(Pt)の微粒子を分散させた膜を得た。
【0038】
次に、参考例1で得られたRuO触媒分散膜、比較例1で得られたPt触媒分散膜、および無処理の膜(触媒なし)について耐酸化性の評価試験を行った。この試験は、100℃の3%過酸化水素(H)水に塩化第二鉄(Fe2+)2ppmを添加した水溶液中にそれぞれの膜を浸漬し、10分経過後の膜の重量変化を測定することにより耐酸化性の評価を行うものである。その結果を次の表1に示す。表1において、重量維持率(%)は、浸漬10分経過後の膜の重量を浸漬前の重量で除した値×100(%)で示している。
【0039】
【表1】

Figure 0003925764
【0040】
その結果、表1に示されるように、無処理の膜で重量維持率が22%、比較例1の膜で35%と低い値であるのに対して、参考例1のRuO触媒分散膜の重量維持率は76%と高い値を示した。このことより非フッ素系の固体高分子電解質膜の耐酸化性向上に、遷移金属酸化物であるRuO触媒を固体高分子電解質材料中に分散配合することが有効であることが明らかとなった。
【0041】
また、参考例1の膜、比較例1の膜、および無処理の膜をそれぞれ電解質として、既知の方法により白金多孔体を電極とする水電解セルを組み、80℃水中で100mA/cmで水電解を行ったときの電圧の経時的変化を測定した。その結果を図1に示す。横軸に時間(h)を採り、縦軸に電圧(V)を採っている。
【0042】
その結果、図1に示されるように、無処理の膜および比較例1の膜の場合には電解開始直後から電圧の上昇が認められ、100時間経過した時点では電圧の顕著な上昇が認められたのに対して、参考例1の膜では電圧の上昇がほとんど認められなかった。このことより無処理膜や比較例1の膜では電池反応により電解質の劣化が生じているのに、参考例1の電解質膜はRuO触媒の配合により膜の劣化が抑制されることが明らかとなった。
【0043】
参考例2)
スルホン化ポリエーテルエーテルケトンのジメチルホルムアミドの溶液を調製し、これに固形分の0.5wt%の二酸化マンガンを配合し、均一な溶液になるよう撹拌後、キャスト法により二酸化マンガン(MnO)が膜中に微粒子として分散する膜(厚さ50μm)を得た。
【0044】
(比較例2)
参考例2と同様な方法で、スルホン化ポリエーテルエーテルケトンのジメチルホルムアミドの溶液に0.5wt%の白金黒の微粒子を分散させた膜を得た。
【0045】
次に、参考例2で得られたMnO触媒分散膜、比較例2で得られた白金黒分散膜、および無処理の膜をそれぞれ電解質として、既知の方法により固体高分子形燃料電池を作製した。そして、加湿した1.5気圧の純水素および加湿した1.5気圧の純酸素を作用ガスとして、80℃の作動温度で500時間開路状態で保持した。そして、500時間開路保持前後の燃料電池の内部抵抗を測定した。その結果を次の表2に示す。
【0046】
【表2】
Figure 0003925764
【0047】
その結果、表2に示されるように、無処理膜および比較例2の膜の場合には、電池の内部抵抗が大幅に上昇したのに対して、参考例2の場合には、電池の内部抵抗の上昇はほとんど認められなかった。このことより、無処理膜や比較例2の膜では電池反応により電解質の劣化が生じているのに、参考例2の電解質膜は、MnO触媒の配合により膜の劣化が抑制されることが明らかとなった。
【0048】
そして上記参考例1および2については、高分子電解質に酸化ルテニウム(RuO)や二酸化マンガン(MnO)等の遷移金属酸化物を分散させることにより、電池反応により発生した過酸化水素(H)などの過酸化物が速やかに分解して水(HO)と酸素(O)になり、これにより過酸化物がラジカル化することが阻止され、電解質膜の損壊も生じないことから、電池反応における電解質膜の内部抵抗の上昇もなく、安定して高い電気出力が得られたものである。
【0049】
そして、実際に自動車用の動力源として耐久試験において、従来のスチレン系の電解質膜を使用した燃料電池では100時間の耐用時間であったものが、これに遷移金属酸化物を配合した固体高分子電解質膜を使用すると2000時間にまで耐用時間が延びるという結果も得られている。これは自動車の走行距離にして数万Km〜10万Kmに相当するものである。
【0050】
そして本発明は、本発明の趣旨を逸脱しない範囲で種々の改変が可能であることは勿論である。例えば、上記参考例で用いた電解質膜は、スチレンジビニルベンゼンスルホン酸系、およびスルホン化ポリエーテルエーテルケトン/ジメチルホルムアミドのものであったが、それ以外の従来から知られている、あるいは今後新規に開発される各種の電解質材料にも適用できるものである。
【0051】
また、電解質膜に分散配合される遷移金属酸化物も、過酸化水素(H)のような過酸化物を接触分解する触媒活性を持ったものとして、上記参考例のRuOやMnO以外の各種の遷移金属酸化物が適用されることは言うまでもない。
【0052】
【発明の効果】
本発明の高耐久性固体高分子電解質によれば、燃料電池や水電解などの電池反応により発生する過酸化水素(H)のような過酸化物が、その電解質に分散配合される遷移金属酸化物によって接触分解されるものであるから電解質そのものの劣化が回避され、恒久的使用が可能となるものである。
【0053】
そして、このように電池反応により発生する過酸化物に対する耐酸化性が著しく向上するものであるから、高価なフッ素系のパーフルオロスルホン酸電解質膜を使用しなくとも、比較的安価なポリスチレン系、ポリエーテル系、その他の非フッ素系電解質膜、あるいは各種の炭化水素系電解質膜に適用することは極めて有効である。しかも、電解質に配合される物質が、遷移金属の酸化物であることから、従来一般的に水素と酸素との反応触媒として用いられてきた白金(Pt)触媒ような高価な触媒を用いる必要はなく、その経済的効果は大きい。
【0054】
したがって、この電解質を宇宙用や軍用の燃料電池等の特殊な用途に限らず、例えば、自動車用の低公害動力源としての燃料電池等の民生用への適用も大いに期待されるものである。
【図面の簡単な説明】
【図1】 参考に係る遷移金属酸化物配合の固体高分子電解質膜を使った水電解セルの電圧の経時的変化を比較例との対比において示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly durable solid polymer electrolyte, and more specifically, a highly durable solid excellent in oxidation resistance, which is suitably used for a solid polymer electrolyte membrane such as a solid polymer fuel cell or a water electrolysis cell. The present invention relates to a polymer electrolyte.
[0002]
[Prior art]
A solid polymer electrolyte is a solid polymer material having an electrolyte group such as a sulfonic acid group or a carboxylic acid group in a polymer chain, and is firmly bonded to a specific ion or selectively cation or anion. Since it has a permeating property, it is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, and battery membranes.
[0003]
Among them, for example, in a polymer electrolyte fuel cell and a water electrolysis cell, it is used as a solid polymer electrolyte membrane. In this case, the polymer electrolyte fuel cell is provided with a pair of electrodes on both sides of a proton conductive solid polymer electrolyte membrane and supplies pure hydrogen or reformed hydrogen gas as fuel gas to one electrode (fuel electrode). Then, oxygen gas or air is supplied as an oxidizing agent to different electrodes (air electrodes) to obtain an electromotive force. In water electrolysis, hydrogen and oxygen are produced by electrolyzing water using a solid polymer electrolyte membrane.
[0004]
By the way, in these polymer electrolyte fuel cells and water electrolysis cells, peroxide is generated in the catalyst layer formed at the interface between the polymer electrolyte membrane and the electrode by the battery reaction, and the generated peroxide is While diffusing, it becomes a peroxide radical and degrades the electrolyte. For example, in a fuel cell, fuel is oxidized at the fuel electrode and oxygen is reduced at the air electrode. The ideal reaction formula when hydrogen is used as the fuel and an acidic electrolyte is used is as shown in the following equation (1). It is expressed in
[0005]
[Expression 1]
Fuel (hydrogen) electrode: H 2 → 2H + + 2e
Air electrode: O 2 + 4H + + 4e → 2H 2 O
[0006]
However, in an actual fuel cell, side reactions occur in addition to these main reactions. A typical example is the generation of hydrogen peroxide (H 2 O 2 ). The mechanism of its generation is not necessarily fully understood, but possible mechanisms are: That is, the generation of hydrogen peroxide can occur at both the fuel electrode and the air electrode. For example, at the air electrode, the hydrogen peroxide is excessively expressed by the following equation (2) due to the incomplete reduction reaction of oxygen. It is thought that hydrogen oxide is generated.
[0007]
[Expression 2]
O 2 + 2H + + 2e → 2H 2 O 2 (Formula 1)
[0008]
Also, at the fuel electrode, oxygen contained in the gas as impurities or intentionally mixed, or oxygen that has penetrated into the electrolyte at the air electrode and diffused into the fuel electrode is considered to be involved in the reaction. Is considered to be the same as the above formula 1 or represented by the formula 2 shown in the following equation 3.
[0009]
[Equation 3]
2M−H + O 2− → 2M + H 2 O 2 (Formula 2)
[0010]
Here, M represents a catalyst metal used for the fuel electrode, and MH represents a state in which hydrogen is adsorbed on the catalyst metal. Usually, a noble metal such as platinum (Pt) is used as the catalyst metal.
[0011]
On the other hand, in water electrolysis, the reverse reaction of the fuel cell reaction occurs as the main reaction. The reaction formula is expressed as shown in the following equation (4).
[0012]
[Expression 4]
Air electrode: 2H 2 O → O 2 + 4H + + 4e
Fuel electrode: 2H + + 2e → H 2
[0013]
However, a side reaction that generates hydrogen peroxide (H 2 O 2 ) may occur here as well. The mechanism is not fully understood, but the mechanism is as follows. That is, the incomplete oxidation reaction of water shown in the following equation 5 occurs at the air electrode, and oxygen generated at the air electrode is carried to the fuel electrode side by diffusion or convection at the fuel electrode, and the above-described formula 1 or formula It is considered that hydrogen peroxide is generated by the reaction of 2.
[0014]
[Equation 5]
2H 2 O → H 2 O 2 + 2H + + 2e
[0015]
Then, the hydrogen peroxide generated on these electrodes moves away from the electrodes due to diffusion or the like and moves into the electrolyte. This hydrogen peroxide is a substance having a strong oxidizing power and oxidizes many organic substances constituting the electrolyte. Although the detailed mechanism is not necessarily clear, in many cases, it is considered that hydrogen peroxide is radicalized, and the generated hydrogen peroxide radical is a direct reactant of the oxidation reaction. That is, it is considered that radicals generated by the reaction of the following formula 6 extract hydrogen from the organic substance of the electrolyte or cut other bonds. The cause of radicalization is not necessarily clear, but contact with heavy metal ions is considered to have a catalytic action. In addition, it is considered that the radical is also formed by heat, light or the like.
[0016]
[Formula 6]
H 2 O 2 → 2.OH or H 2 O 2 → .H + .OOH
[0017]
In such a technical background, the first polymer electrolyte fuel cell was put to practical use when it was adopted as a power source in an American Gemini spaceship. At this time, a sulfonated membrane of styrene-divinylbenzene polymer was used as the electrolyte. However, the performance could not be maintained for a long time, which was caused by oxidative degradation of the electrolyte membrane. Thereafter, perfluorosulfonic acid polymer (trade name: Nafion, DuPont) was used instead. This is a perfluoro-type polymer in which all hydrocarbon hydrogens are replaced with fluorine. It is very reactive to many chemicals and hardly oxidized to hydrogen peroxide. And when used in a fuel cell, the performance was maintained for a long time.
[0018]
On the other hand, various materials that counteract this perfluorinated perfluorosulfonic acid polymer have been studied. For example, as a study example of a solid polymer electrolyte other than a fluorine-based electrolyte, Swiss Patent Appl. 02 636 / 93-6, a cross-linked polystyrene graft resin film into which a sulfonic acid group is introduced, and a polyether sulfone resin film into which a sulfonic acid group is introduced as described in JP-A-10-45913. Further, for example, in JP-A-9-102322, it is composed of a main chain made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer, and a hydrocarbon side chain having a sulfonic acid group. A sulfonic acid type polystyrene-graft-ethylene-tetrafluoroethylene copolymer (ETFE) membrane has been proposed.
[0019]
Further, U.S. Pat. No. 4,012,303 and U.S. Pat. No. 4,605,685 disclose a film made by copolymerization of a fluorinated vinyl monomer and a hydrocarbon vinyl monomer with α, β, β- There has been proposed a sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane in which trifluorostyrene is graft-polymerized and a sulfonic acid group is introduced into this to form a solid polymer electrolyte membrane. This is based on the recognition that the chemical stability of the polystyrene side chain introduced with the sulfonic acid group is not sufficient, instead of styrene, α, β, β-trifluorostyrene obtained by fluorinating styrene. Is used.
[0020]
[Problems to be solved by the invention]
However, the perfluorinated perfluorosulfonic acid polymer represented by the above-mentioned Dupont Nafion is generally very expensive. It also has undesirable features such as high moisture content and low mechanical strength. And because of its chemical inertness, it was difficult to undergo chemical modification, so there was little room for improvement.
[0021]
On the other hand, electrolytes other than the perfluorosulfonic acid polymer are also disclosed in, for example, the aforementioned Swiss Patent Appl. Non-fluorine electrolyte membranes such as 02 636 / 93-6 cross-linked sulfonic acid group-introduced polystyrene graft resin membranes and sulfonic acid group-introduced polyether sulfone resin membranes disclosed in JP-A-10-45913 are used in Nafion. Compared with a representative perfluorinated electrolyte membrane, there is an advantage that the production is easy and the cost is low. However, as described above, there remains a problem that the oxidation resistance is low. The reason why the oxidation resistance is low is that non-fluorine compounds generally have low durability against radicals and have hydrocarbon as a skeleton, so that they are liable to cause deterioration reaction by radicals (oxidation reaction by peroxide radicals).
[0022]
The sulfonic acid type polystyrene-graft-ETFE membrane disclosed in JP-A-9-102322 is inexpensive, has sufficient strength as a solid polymer electrolyte membrane for fuel cells, and has a sulfonic acid group. Although the conductivity can be improved by increasing the amount introduced, the main chain portion made by copolymerization of a fluorocarbon vinyl monomer and a hydrocarbon vinyl monomer has high oxidation resistance, but sulfonic acid Since the side chain portion into which the group has been introduced is a hydrocarbon polymer that is susceptible to oxidative degradation, when used in a fuel cell, the oxidation resistance of the entire membrane is insufficient and durability is improved. There is a problem of being scarce.
[0023]
Furthermore, the sulfonic acid type poly (trifluorostyrene) -graft-ETFE membrane disclosed in US Pat. No. 4,012,303 and the like has a side chain portion made of a fluorine-based polymer. However, α, β, β-trifluorostyrene, which is a raw material for the side chain, is difficult to synthesize, so it should be applied as a solid polymer electrolyte membrane for fuel cells. When considering the above, there is a problem of cost as in the case of Nafion described above. In addition, α, β, β-trifluorostyrene is easily deteriorated and therefore difficult to handle and has a property of low polymerization reactivity. Therefore, the problem that the amount that can be introduced as a graft side chain is low and the conductivity of the resulting film is low remains.
[0024]
Furthermore, the durability of the cross-linked sulfonic acid-type polystyrene graft membrane is higher than that of the sulfonic acid-type polystyrene graft membrane that does not introduce cross-linking, and the reason is caused by deterioration by increasing the physical bonds. This is to prevent the detachment of the component, and the durability itself of the polymer has not been improved, and it cannot be said that it is an essential improvement.
[0025]
On the other hand, in order to suppress the deterioration of hydrocarbon-based ion exchange membranes by peroxide radicals such as hydrogen peroxide (H 2 O 2 ), for example, JP-A-6-103992 discloses that the A technique for supporting a catalytic metal and decomposing a peroxide is also disclosed. However, the catalyst metal described in this publication is intended to cause hydrogen and oxygen to react directly, and is usually a noble metal such as platinum, and has the disadvantage of increasing costs. These catalytic metals also have the action of decomposing hydrogen peroxide, which degrades the electrolyte, but in the environment where oxygen and hydrogen coexist, the catalytic action of producing hydrogen peroxide by the direct reaction of oxygen and hydrogen. However, there is a problem that the deterioration of the electrolyte is not necessarily effectively suppressed.
[0026]
In addition, for example, in J. Membrane Science, 56 (1991) 143, an attempt using a methylstyrene electrolyte instead of a polystyrene electrolyte was introduced, but the effect was limited. In DOE Report FSEC-CR-857-95, hydrocarbon electrolyte membranes using aromatic polymers in the main chain and sulfonated from these are being investigated. This is expected to have higher oxidation resistance than a polymer having a single-chain main chain, but it is not sufficient in itself. Furthermore, Japanese Patent Application Laid-Open No. 7-050170 discloses a polymer electrolyte technology having a polyolefin as a main chain, but its durability is low.
[0027]
And these conventional technologies are based on the idea that the polymer, which is an electrolyte, has a structure that is difficult to attack sterically hindered, or that the polymer itself provides a strong defense against attack by increasing the number of chemical bonds. However, the oxidizing power of oxidizing radicals generated from hydrogen peroxide or the like is extremely strong and does not necessarily effectively suppress the deterioration of the electrolyte.
[0028]
The problem to be solved by the present invention is to produce a peroxidation such as hydrogen peroxide (H 2 O 2 ) generated by a cell reaction when used as a solid polymer electrolyte such as a solid polymer fuel cell or a water electrolysis device. If an object is generated, it is focused on not attacking the electrolyte membrane unless it is radicalized, and an object is to provide a highly durable solid polymer electrolyte excellent in oxidation resistance against peroxide at low cost.
[0029]
[Means for Solving the Problems]
In order to solve this problem, the highly durable solid polymer electrolyte of the present invention includes a solid polymer electrolyte material in which a transition metal oxide having catalytic ability to catalytically decompose a peroxide generated by a battery reaction is dispersed and blended It is the gist of what is being done.
[0030]
In this case, the solid polymer electrolyte material has an electrolyte group and a hydrocarbon portion, and the electrolyte group is a functional group having an electrolyte ion such as a sulfonic acid group or a carboxylic acid group. Furthermore, in the polymer compound having a hydrocarbon portion, the above-described electrolyte group is introduced at a predetermined introduction rate with respect to a portion where the electrolyte group can be introduced.
[0031]
Specific examples of the polymer compound having a hydrocarbon portion include polyether sulfone resin, polyether ether ketone resin, linear phenol-formaldehyde resin, cross-linked phenol formaldehyde resin, linear polystyrene resin, cross-linked polystyrene resin, Linear poly (trifluorostyrene) resin, cross-linked (trifluorostyrene) resin, poly (2,3-diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (arylene ether) Sulfone) resin, poly (phenylquinosanline) resin, poly (benzylsilane) resin, polystyrene-graft-ethylenetetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoroethylene resin, etc. Cited .
[0032]
Among them, graft copolymer of ethylene tetrafluoroethylene resin, which is represented by polystyrene-graft-ethylenetetrafluoroethylene resin, has ethylene tetrafluorostyrene resin as the main chain and hydrocarbon-based polymer that can introduce electrolyte group as side chain. Polymers, polyethersulfone resins and polyetheretherketone resins are inexpensive, have sufficient strength when thinned, and easily control conductivity by adjusting the type and amount of electrolyte groups Therefore, it is particularly suitable as a polymer compound having a hydrocarbon part.
[0033]
The transition metal oxide contained in the solid polymer electrolyte has a catalytic activity for catalytically decomposing a peroxide such as hydrogen peroxide (H 2 O 2 ). When the transition metal is contained in the solid polymer electrolyte material, H 2 O 2 generated by the battery reaction is decomposed into water (H 2 O) and oxygen (O 2 ), and the electrolyte is formed by radicalization of hydrogen peroxide. Deterioration is avoided.
[0034]
As the transition metal oxide, in particular, acid, cobalt, nickel oxide, chromium oxide, iridium oxide, lead oxide Ru preferred der. The oxide may be hydrated, and may be crystalline or amorphous. In the method of dispersing the transition metal oxide, the solid polymer electrolyte may be solidified after the oxide is dispersed in the polymer electrolyte solution, or the transition metal is dissolved in a soluble or insoluble salt or other compound. After being contained in the polymer electrolyte in a form, it may be converted into a solid oxide form by hydrolysis, sol-gel reaction, oxidation-reduction reaction, or other reaction.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described in detail below. First , Reference Example 1 and Reference Example 2 show examples in which ruthenium oxide (RuO 2 ) and manganese dioxide (MnO 2 ) are dispersed and blended as a transition metal oxide in a solid polymer electrolyte material.
[0036]
( Reference Example 1)
A commercially available styrene divinylbenzenesulfonic acid cation exchange membrane (thickness: 100 μm) was obtained. Then, this membrane was immersed in a solution of ruthenium chloride (containing water) dissolved in ethanol to a concentration of 0.1 M for 3 hours. Next, this film was immersed in a 1 M sodium hydroxide aqueous solution at 90 ° C. for 30 minutes, and further immersed in a 0.01 M sulfuric acid aqueous solution at room temperature for 8 hours to disperse the insolubilized ruthenium oxide (RuO 2 ) as fine particles in the film. An electrolyte membrane was obtained.
[0037]
(Comparative Example 1)
Using the same membrane as in Reference Example 1, this membrane was immersed in a solution of chloroplatinic acid (containing water) dissolved in ethanol to a concentration of 0.1 M for 3 hours, and then this membrane was immersed in a 1 M sodium hydroxide aqueous solution at 90 ° C. The film was immersed for 30 minutes and further immersed in a 0.01 M sulfuric acid aqueous solution at room temperature for 8 hours to obtain a film in which platinum (Pt) fine particles were dispersed.
[0038]
Next, an oxidation resistance evaluation test was performed on the RuO 2 catalyst dispersion film obtained in Reference Example 1, the Pt catalyst dispersion film obtained in Comparative Example 1, and the untreated film (no catalyst). This test was performed by immersing each film in an aqueous solution in which 2 ppm of ferric chloride (Fe 2+ ) was added to 3% hydrogen peroxide (H 2 O 2 ) water at 100 ° C., and the weight of the film after 10 minutes. The oxidation resistance is evaluated by measuring the change. The results are shown in Table 1 below. In Table 1, the weight retention rate (%) is indicated by a value x 100 (%) obtained by dividing the weight of the film after 10 minutes of immersion by the weight before immersion.
[0039]
[Table 1]
Figure 0003925764
[0040]
As a result, as shown in Table 1, the untreated membrane had a weight retention rate of 22% and the comparative example 1 had a low value of 35%, whereas the RuO 2 catalyst dispersion membrane of Reference Example 1 The weight retention rate of was as high as 76%. From this, it became clear that it is effective to disperse and blend the RuO 2 catalyst, which is a transition metal oxide, in the solid polymer electrolyte material in order to improve the oxidation resistance of the non-fluorine-based solid polymer electrolyte membrane. .
[0041]
In addition, a water electrolysis cell in which the membrane of Reference Example 1, the membrane of Comparative Example 1 and the non-treated membrane are used as electrolytes and a platinum porous body as an electrode is assembled by a known method, and 100 mA / cm 2 in 80 ° C. water. The change with time of voltage when water electrolysis was performed was measured. The result is shown in FIG. Time (h) is taken on the horizontal axis, and voltage (V) is taken on the vertical axis.
[0042]
As a result, as shown in FIG. 1, in the case of the untreated film and the film of Comparative Example 1, an increase in voltage was observed immediately after the start of electrolysis, and a significant increase in voltage was observed after 100 hours. On the other hand, almost no increase in voltage was observed in the film of Reference Example 1. From this fact, it is clear that the untreated film and the film of Comparative Example 1 are deteriorated by the battery reaction, but the electrolyte film of Reference Example 1 is suppressed by the incorporation of the RuO 2 catalyst. became.
[0043]
( Reference Example 2)
Prepare a solution of sulfonated polyetheretherketone dimethylformamide, mix it with 0.5 wt% manganese dioxide, stir to make a homogeneous solution, and then cast manganese dioxide (MnO 2 ) by casting method. A film (thickness 50 μm) dispersed as fine particles in the film was obtained.
[0044]
(Comparative Example 2)
In the same manner as in Reference Example 2, a membrane in which 0.5 wt% of platinum black fine particles were dispersed in a dimethylformamide solution of sulfonated polyetheretherketone was obtained.
[0045]
Next, a polymer electrolyte fuel cell is manufactured by a known method using the MnO 2 catalyst dispersion film obtained in Reference Example 2, the platinum black dispersion film obtained in Comparative Example 2 and the untreated film as electrolytes, respectively. did. Then, humidified 1.5 atm pure hydrogen and humidified 1.5 atm pure oxygen were used as working gases, and maintained at an operating temperature of 80 ° C. for 500 hours. Then, the internal resistance of the fuel cell before and after the open circuit was maintained for 500 hours was measured. The results are shown in Table 2 below.
[0046]
[Table 2]
Figure 0003925764
[0047]
As a result, as shown in Table 2, in the case of the untreated film and the film of Comparative Example 2, the internal resistance of the battery was significantly increased, whereas in the case of Reference Example 2, the inside of the battery was Little increase in resistance was observed. Thus, in the untreated film and the film of Comparative Example 2, the deterioration of the electrolyte was caused by the battery reaction, but in the electrolyte film of Reference Example 2, the deterioration of the film was suppressed by the blending of the MnO 2 catalyst. It became clear.
[0048]
In Reference Examples 1 and 2, hydrogen peroxide (H 2) generated by the battery reaction is obtained by dispersing transition metal oxides such as ruthenium oxide (RuO 2 ) and manganese dioxide (MnO 2 ) in the polymer electrolyte. Peroxide such as O 2 ) is rapidly decomposed into water (H 2 O) and oxygen (O 2 ), which prevents the peroxide from radicalizing and does not cause damage to the electrolyte membrane. Thus, there was no increase in the internal resistance of the electrolyte membrane in the battery reaction, and a high electric output was stably obtained.
[0049]
In the endurance test as a power source for automobiles, a conventional fuel cell using a styrenic electrolyte membrane has a service life of 100 hours. The results also show that the service life is extended to 2000 hours when the electrolyte membrane is used. This is equivalent to tens of thousands of kilometers to 100,000 kilometers as the mileage of an automobile.
[0050]
Of course , the present invention can be variously modified without departing from the spirit of the present invention. For example, the electrolyte membrane used in the above reference example was of styrene divinylbenzene sulfonic acid type and sulfonated polyether ether ketone / dimethylformamide, but is otherwise known or newly developed in the future. It can be applied to various electrolyte materials to be developed.
[0051]
Also, transition metal oxides dispersed therein the electrolyte membrane also as having a peroxide catalytically cracking catalytic activity, such as hydrogen peroxide (H 2 O 2), RuO 2 and MnO in Reference Example It goes without saying that various transition metal oxides other than 2 are applied.
[0052]
【The invention's effect】
According to the highly durable solid polymer electrolyte of the present invention, a peroxide such as hydrogen peroxide (H 2 O 2 ) generated by a cell reaction such as a fuel cell or water electrolysis is dispersed and blended in the electrolyte. Since it is catalytically decomposed by the transition metal oxide, deterioration of the electrolyte itself is avoided, and permanent use becomes possible.
[0053]
And, since the oxidation resistance to the peroxide generated by the battery reaction is remarkably improved as described above, a relatively inexpensive polystyrene system without using an expensive fluorine-based perfluorosulfonic acid electrolyte membrane, Application to polyether-based, other non-fluorine-based electrolyte membranes, or various hydrocarbon-based electrolyte membranes is extremely effective. Moreover, since the substance blended in the electrolyte is an oxide of a transition metal, it is necessary to use an expensive catalyst such as a platinum (Pt) catalyst that has been conventionally used as a reaction catalyst for hydrogen and oxygen. The economic effect is great.
[0054]
Therefore, this electrolyte is not limited to special applications such as space and military fuel cells, but is expected to be applied to consumer applications such as fuel cells as a low-pollution power source for automobiles.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change with time in voltage of a water electrolysis cell using a solid polymer electrolyte membrane containing a transition metal oxide according to Reference Example 1 in comparison with Comparative Example 1. FIG.

Claims (1)

固体高分子電解質材料中に、
酸化コバルト、酸化ニッケル、酸化クロム、酸化イリジウムおよび酸化鉛から選択される1種または2種以上の遷移金属酸化物が分散配合されていることを特徴とする高耐久性固体高分子電解質。
In the solid polymer electrolyte material,
A highly durable solid polymer electrolyte, wherein one or more transition metal oxides selected from cobalt oxide, nickel oxide, chromium oxide, iridium oxide and lead oxide are dispersedly blended.
JP29619199A 1999-10-19 1999-10-19 High durability solid polymer electrolyte Expired - Fee Related JP3925764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29619199A JP3925764B2 (en) 1999-10-19 1999-10-19 High durability solid polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29619199A JP3925764B2 (en) 1999-10-19 1999-10-19 High durability solid polymer electrolyte

Publications (2)

Publication Number Publication Date
JP2001118591A JP2001118591A (en) 2001-04-27
JP3925764B2 true JP3925764B2 (en) 2007-06-06

Family

ID=17830360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29619199A Expired - Fee Related JP3925764B2 (en) 1999-10-19 1999-10-19 High durability solid polymer electrolyte

Country Status (1)

Country Link
JP (1) JP3925764B2 (en)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161174A1 (en) 2001-02-15 2002-10-31 Sumitomo Chemical Company, Limited Aromatic polymer phosphonic acid derivative and process for production the same
DE10117687A1 (en) 2001-04-09 2002-10-17 Celanese Ventures Gmbh Proton-conducting membrane and its use
DE10117686A1 (en) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Proton-conducting membrane for use e.g. in fuel cells, is made by coating a support with a solution of aromatic tetra-amine and aromatic polycarboxylic acid in polyphosphoric acid and then heating the coating
DE10130828A1 (en) * 2001-06-27 2003-01-16 Basf Ag fuel cell
TW589760B (en) 2001-08-09 2004-06-01 Sumitomo Chemical Co Polymer electrolyte composition and fuel cell
DE10140147A1 (en) 2001-08-16 2003-03-06 Celanese Ventures Gmbh Process for producing a blend membrane from bridged polymer and fuel cell
JP2003086187A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP4399586B2 (en) * 2002-01-08 2010-01-20 本田技研工業株式会社 POLYMER ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE STRUCTURE PROVIDED WITH THE POLYMER ELECTROLYTE MEMBRANE, AND SOLID POLYMER TYPE FUEL CELL HAVING THE MEMBRANE ELECTRODE STRUCTURE
KR100933647B1 (en) 2002-01-15 2009-12-23 스미또모 가가꾸 가부시끼가이샤 Polymer Electrolyte Compositions and Uses thereof
KR20030075773A (en) * 2002-03-20 2003-09-26 한국과학기술원 Manufacturing Method for Polymer Electrolyte of Direct Fuel Cell
DE10228657A1 (en) 2002-06-27 2004-01-15 Celanese Ventures Gmbh Proton-conducting membrane and its use
US7112386B2 (en) * 2002-09-04 2006-09-26 Utc Fuel Cells, Llc Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
US7507494B2 (en) * 2004-03-04 2009-03-24 Utc Power Corporation Extended catalyzed layer for minimizing cross-over oxygen and consuming peroxide
US7473485B2 (en) 2002-09-04 2009-01-06 Utc Power Corporation Extended electrodes for PEM fuel cell applications
DE10242708A1 (en) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Proton-conducting membranes and their use
ATE541330T1 (en) 2003-06-24 2012-01-15 Asahi Glass Co Ltd MEMBRANE ELECTRODE ASSEMBLY FOR A SOLID POLYMER FUEL CELL AND PRODUCTION METHOD THEREOF
US7834131B2 (en) 2003-07-11 2010-11-16 Basf Fuel Cell Gmbh Asymmetric polymer film, method for the production and utilization thereof
JP4845077B2 (en) * 2003-08-19 2011-12-28 株式会社豊田中央研究所 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP4979179B2 (en) * 2003-08-22 2012-07-18 株式会社豊田中央研究所 Solid polymer fuel cell and manufacturing method thereof
JP4574149B2 (en) * 2003-09-17 2010-11-04 株式会社豊田中央研究所 Electrolyte membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
US8057847B2 (en) 2003-10-31 2011-11-15 Utc Fuel Cells, Llc Method for preparing membranes and membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP5021885B2 (en) * 2003-11-13 2012-09-12 東芝燃料電池システム株式会社 Fuel cell
KR100972525B1 (en) 2003-12-17 2010-07-28 비디에프 아이피 홀딩스 리미티드 Membrane electrode assembly for reducing degradation of ion-exchange membranes in electrochemical fuel cells, fuel cells comprising the same, and fuel cell stacks comprising the fuel cells
US7537857B2 (en) * 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
DE10361932A1 (en) 2003-12-30 2005-07-28 Celanese Ventures Gmbh Proton-conducting membrane and its use
DE112005000196T5 (en) * 2004-01-20 2006-11-30 E.I. Dupont De Nemours And Co., Wilmington A process for producing stable proton exchange membranes and a catalyst for use therein
JP4969025B2 (en) * 2004-01-30 2012-07-04 三菱重工業株式会社 Membrane electrode for fuel cell and fuel cell
CN100541887C (en) * 2004-04-26 2009-09-16 东芝燃料电池动力系统公司 The manufacture method of fuel cell and fuel cell
CN100466348C (en) * 2004-06-22 2009-03-04 旭硝子株式会社 Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
WO2005124911A1 (en) * 2004-06-22 2005-12-29 Asahi Glass Company, Limited Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
CA2567305C (en) 2004-06-22 2013-10-08 Asahi Glass Co Ltd Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
KR100970358B1 (en) 2004-06-22 2010-07-15 아사히 가라스 가부시키가이샤 Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP4830357B2 (en) * 2004-09-06 2011-12-07 日産自動車株式会社 Solid polymer fuel cell system and fuel cell vehicle
JP4876407B2 (en) * 2005-02-28 2012-02-15 日産自動車株式会社 Electrolyte for polymer electrolyte fuel cell, polymer electrolyte fuel cell, polymer electrolyte fuel cell system and fuel cell vehicle
WO2006006501A1 (en) * 2004-07-09 2006-01-19 Nissan Motor Co., Ltd. Fuel cell system and composition for electrode
JP4910310B2 (en) * 2004-07-09 2012-04-04 日産自動車株式会社 Electrode composition, electrode, air electrode composition, fuel cell air electrode, fuel cell, fuel cell system and fuel cell vehicle
WO2006006502A1 (en) * 2004-07-09 2006-01-19 Nissan Motor Co., Ltd. Fuel cell system and solid polymer electrolyte film
JP4876389B2 (en) * 2004-07-09 2012-02-15 日産自動車株式会社 Electrolyte for polymer electrolyte fuel cell, polymer electrolyte fuel cell, polymer electrolyte fuel cell system and fuel cell vehicle
JP4997971B2 (en) * 2004-07-12 2012-08-15 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
WO2006006607A1 (en) * 2004-07-13 2006-01-19 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
US8101317B2 (en) * 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
JP2006099999A (en) * 2004-09-28 2006-04-13 Asahi Glass Co Ltd Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
KR100836383B1 (en) * 2004-10-15 2008-06-09 마쯔시다덴기산교 가부시키가이샤 Fuel cell system
CA2494424C (en) * 2004-11-11 2009-09-08 Mitsubishi Heavy Industries, Ltd. Solid polymer electrolyte membrane electrode assembly and solid polymer electrolyte fuel cell using same
JP5002890B2 (en) * 2004-12-10 2012-08-15 トヨタ自動車株式会社 Fuel cell
JP5023475B2 (en) * 2004-12-14 2012-09-12 日産自動車株式会社 Electrode system, fuel cell, fuel cell system, home appliance, portable device and transportation device
JP2008525981A (en) * 2004-12-28 2008-07-17 ユーティーシー パワー コーポレイション Membrane electrode assembly with hydrogen peroxide decomposition catalyst
JP4682629B2 (en) * 2005-01-28 2011-05-11 旭硝子株式会社 Electrolyte membrane for polymer electrolyte fuel cell and membrane / electrode assembly for polymer electrolyte fuel cell
JP4519669B2 (en) * 2005-02-02 2010-08-04 三菱重工業株式会社 Solid polymer electrolyte membrane, solid polymer electrolyte membrane electrode assembly, and solid polymer electrolyte fuel cell
JP5118803B2 (en) * 2005-03-02 2013-01-16 株式会社豊田中央研究所 Fuel cell system and solid polymer fuel cell operating method
JP5166690B2 (en) 2005-06-02 2013-03-21 三菱重工業株式会社 Solid polymer electrolyte fuel cell
EP1908520A4 (en) 2005-06-28 2009-06-10 Sumitomo Chemical Co Peroxide-degrading catalyst
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
JP4743696B2 (en) * 2005-10-26 2011-08-10 ペルメレック電極株式会社 Oxygen reducing gas diffusion cathode for salt electrolysis and salt electrolysis method
CN101346839B (en) 2005-10-27 2012-06-13 Utc电力公司 Alloy catalyst used for prolonging service life of fuel cell film and ionomer
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
JP5205694B2 (en) 2005-12-15 2013-06-05 日産自動車株式会社 Fuel, fuel cell system and fuel cell vehicle
JP2007188706A (en) * 2006-01-12 2007-07-26 Asahi Glass Co Ltd Electrolyte membrane for polymer electrolyte fuel cell, and membrane-electrode assembly for polymer electrolyte fuel cell
US8722569B2 (en) * 2006-03-13 2014-05-13 E I Du Pont De Nemours And Company Peroxide decomposition catalyst particles
US8663866B2 (en) 2006-03-13 2014-03-04 E I Du Pont De Nemours And Company Stable proton exchange membranes and membrane electrode assemblies
EP2078317A1 (en) * 2006-10-05 2009-07-15 Basf Se Membrane-electrode unit comprising a barrier junction
US9083049B2 (en) * 2006-10-16 2015-07-14 GM Global Technology Operations LLC Additives for fuel cell layers
JP4797942B2 (en) * 2006-11-08 2011-10-19 トヨタ自動車株式会社 Power storage device and method of using the same
JP4765908B2 (en) 2006-11-22 2011-09-07 旭硝子株式会社 Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
WO2008132875A1 (en) 2007-04-25 2008-11-06 Japan Gore-Tex Inc. Method for producing polymer electrolyte membrane for solid polymer fuel cell, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP5166842B2 (en) 2007-06-11 2013-03-21 トヨタ自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE ELECTRODE CATALYST
JP5473273B2 (en) 2007-08-10 2014-04-16 日本ゴア株式会社 Reinforced polymer electrolyte composite membrane, membrane electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
JP4600500B2 (en) * 2007-11-26 2010-12-15 トヨタ自動車株式会社 Manufacturing method of fuel cell
US8338052B2 (en) 2007-11-26 2012-12-25 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a membrane-electrode assembly, with folding process
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
WO2009093719A1 (en) * 2008-01-22 2009-07-30 Sumitomo Chemical Company, Limited Polymer electrolyte composition and battery using the same
WO2009110052A1 (en) * 2008-03-03 2009-09-11 東洋紡績株式会社 Polymer electrolyte membrane, use thereof and method for producing the same
JP5354935B2 (en) * 2008-03-05 2013-11-27 旭化成イーマテリアルズ株式会社 POLYMER ELECTROLYTIC COMPOSITION AND USE THEREOF
GB0804185D0 (en) * 2008-03-07 2008-04-16 Johnson Matthey Plc Ion-conducting membrane structures
CA2718893A1 (en) * 2008-03-24 2009-10-01 Takuya Imai Method for producing fuel cell catalyst and fuel cell catalyst
US8685580B2 (en) 2008-06-20 2014-04-01 GM Global Technology Operations LLC Fuel cell with an electrolyte stabilizing agent and process of making the same
US8846133B2 (en) 2008-12-06 2014-09-30 Basf Se Method for producing a proton-conducting membrane
US9011738B2 (en) 2009-01-14 2015-04-21 Basf Se Monomer beads for producing a proton-conducting membrane
WO2011078310A1 (en) * 2009-12-25 2011-06-30 Jsr株式会社 Hydrogen-powered fuel cell
JP2011222268A (en) * 2010-04-08 2011-11-04 Honda Motor Co Ltd Membrane for solid polymer fuel cell-electrode structure and method of manufacturing the same
JP5693125B2 (en) 2010-10-05 2015-04-01 日本ゴア株式会社 Polymer electrolyte fuel cell
DE102012007178A1 (en) 2011-04-14 2012-10-18 Basf Se Proton conducting polymer membrane based on polyoxazole, useful in membrane-electrode unit, obtainable by e.g. mixing aromatic diamino-dihydroxy compound and aromatic carboxylic acid, heating, and applying layer of mixture on carrier
US9325025B2 (en) 2011-04-14 2016-04-26 Basf Se Membrane electrode assemblies and fuel cells with long lifetime
JP2013067686A (en) * 2011-09-21 2013-04-18 Toray Ind Inc Polymer electrolyte composition, polymer electrolyte molding, and polymer electrolyte fuel cell
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
JP5568111B2 (en) * 2012-06-22 2014-08-06 株式会社豊田中央研究所 Polymer electrolyte fuel cell
JP6174890B2 (en) * 2013-04-02 2017-08-02 旭化成株式会社 Oxygen reduction catalyst, oxygen reduction electrode, and fuel cell
JP2014234445A (en) * 2013-05-31 2014-12-15 旭化成イーマテリアルズ株式会社 Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
DE102017220554A1 (en) 2017-11-17 2019-05-23 Audi Ag Carbon-supported noble metal catalyst, electrode structure, fuel cell and fuel cell system
CN113812024B (en) 2019-05-31 2024-06-04 旭化成株式会社 Polymer electrolyte membrane, membrane electrode assembly, solid polymer electrolyte fuel cell, and method for producing polymer electrolyte membrane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768377B2 (en) * 1987-07-20 1995-07-26 東燃株式会社 Electrolyte thin film
JP3375200B2 (en) * 1993-06-18 2003-02-10 田中貴金属工業株式会社 Polymer solid electrolyte composition
JP3035885B2 (en) * 1996-03-15 2000-04-24 工業技術院長 Solid ionic conductor
JP3470516B2 (en) * 1996-10-02 2003-11-25 ソニー株式会社 Polymer electrolyte composition aqueous solution and method for producing the same
JP2000106203A (en) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd Solid polymer electrolyte membrane, electrode for fuel cell, and solid polymer electrolyte fuel cell
JP2000223135A (en) * 1999-01-27 2000-08-11 Aisin Seiki Co Ltd Solid polymer electrolyte film and fuel cell

Also Published As

Publication number Publication date
JP2001118591A (en) 2001-04-27

Similar Documents

Publication Publication Date Title
JP3925764B2 (en) High durability solid polymer electrolyte
JP5287969B2 (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP3915846B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof, and membrane electrode assembly for polymer electrolyte fuel cell
EP2499692B1 (en) Composite proton conducting membrane with low degradation and membrane electrode assembly for fuel cells including the same
JP4997971B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP2001223015A (en) Highly durable solid polyelectrolyte and electrode- electrolyte joint body using it as well as electrochemical device using the electrode-electrolyte joint body
JP5247974B2 (en) Method for producing electrolyte membrane for polymer electrolyte hydrogen / oxygen fuel cell
Berretti et al. Direct alcohol fuel cells: a comparative review of acidic and alkaline systems
CA2614876A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP2006099999A (en) Electrolyte membrane for solid polymer fuel cell, its manufacturing method, and membrane electrode assembly for solid polymer fuel cell
JP4972867B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, production method thereof and membrane electrode assembly for polymer electrolyte fuel cell
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2007031718A5 (en)
KR100970358B1 (en) Liquid composition, method for producing same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2005011697A (en) Proton exchange material and fuel cell electrode using the same
Fujiwara Electrochemical Devices with Metal-Polymer Electrolyte Membrane Composites
Du et al. 12 materials for Proton exchange membrane fuel Cells
FUJIWARA Excellent Woman Researcher Award of The Electrochemical Society of Japan Electrochemical Devices with Metal-Polymer Electrolyte Membrane Composites
Mokrani The development of inorganic and organic/inorganic membranes for DMFC application

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees