JP2005011697A - Proton exchange material and fuel cell electrode using the same - Google Patents

Proton exchange material and fuel cell electrode using the same Download PDF

Info

Publication number
JP2005011697A
JP2005011697A JP2003175029A JP2003175029A JP2005011697A JP 2005011697 A JP2005011697 A JP 2005011697A JP 2003175029 A JP2003175029 A JP 2003175029A JP 2003175029 A JP2003175029 A JP 2003175029A JP 2005011697 A JP2005011697 A JP 2005011697A
Authority
JP
Japan
Prior art keywords
proton exchange
exchange material
fuel cell
inorganic phosphate
phosphate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003175029A
Other languages
Japanese (ja)
Inventor
Masayoshi Takami
昌宜 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003175029A priority Critical patent/JP2005011697A/en
Publication of JP2005011697A publication Critical patent/JP2005011697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the durability of a proton exchange material while maintaining the performance of a fuel cell. <P>SOLUTION: The proton exchange material contains an inorganic phosphate compound. The fuel cell electrode contains the proton exchange material, a catalyst-carrying conductor, and the inorganic phosphate compound. The fuel cell uses the fuel cell electrode. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池電極等に好適な耐酸化性等に優れた高耐久性プロトン交換材料に関するものである。又、該プロトン交換材料を用いた高耐久性燃料電池電極に関する。
【0002】
【従来の技術】
プロトン交換材料の代表例は、高分子鎖中にスルホン酸基等の電解質基を有する固体高分子材料であり、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有していることから、粒子、繊維、あるいは膜状に成形し、電気透析、拡散透析、電池隔膜等、各種の用途に利用されている。
【0003】
例えば、固体高分子型燃料電池は、プロトン伝導性の固体高分子電解質膜の両面に一対の電極を設け、水素ガスを燃料ガスとして一方の電極(燃料極)へ供給し、酸素ガスあるいは空気を酸化剤として異なる電極(空気極)へ供給し、起電力を得るものである。また、水電解は、固体高分子電解質膜を用いて水を電気分解することにより水素と酸素を製造する方法である。
【0004】
燃料電池や水電解の場合、プロトン交換材料である固体高分子電解質膜と電極の界面に形成された触媒層において過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって劣化反応を起こすので、耐酸化性に乏しい炭化水素系電解質膜を使用することが困難である。そのため、燃料電池や水電解においては、一般に、高いプロトン伝導性を有し、高い耐酸化性を有するパーフルオロスルホン酸膜が用いられている。
【0005】
また、食塩電解は、固体高分子電解質膜を用いて塩化ナトリウム水溶液を電気分解することにより、水酸化ナトリウムと、塩素と、水素を製造する方法である。この場合、固体高分子電解質膜は、塩素と高温、高濃度の水酸化ナトリウム水溶液にさらされるので、これらに対する耐性の乏しい炭化水素系電解質膜を使用することができない。そのため、食塩電解用の固体高分子電解質膜には、一般に、塩素及び高温、高濃度の水酸化ナトリウム水溶液に対して耐性があり、さらに、発生するイオンの逆拡散を防ぐために表面に部分的にカルボン酸基を導入したパーフルオロスルホン酸膜が用いられている。
【0006】
ところで、パーフルオロスルホン酸膜に代表されるフッ素系電解質は、C−F結合を有しているために化学的安定性が非常に高く、上述した燃料電池用、水電解用、あるいは食塩電解用の固体高分子電解質膜の他、ハロゲン化水素酸電解用の固体高分子電解質膜としても用いられ、さらにはプロトン伝導性を利用して、湿度センサ、ガスセンサ、酸素濃縮器等にも広く応用されているものである。
【0007】
特に、Nafion(登録商標、デュポン社製)の商品名で知られるパーフルオロスルホン酸膜に代表されるフッ素系電解質膜は、化学的安定性が非常に高いことから、過酷な条件下で使用される電解質膜として使用されている。
【0008】
元来、フッ素系高分子の場合、炭素−フッ素の分子間結合が強いため化学的に安定であり、該フッ素系高分子に安定化の方策を取ることは通常考えられていなかった。しかし、本発明者らが得た知見によると、該フッ素系高分子でも、系内に過酸化水素ラジカル等が発生すると、側鎖の含フッ素エーテル単位の分解が連鎖的に生じるとともに、一旦分解が始まると原子間の結合エネルギーの高さゆえに発熱量が大きく、一気に熱分解が進行するという現象があった。
【0009】
以下、白金触媒を例にとって、触媒上に活性中間体の発生機構を説明する。
酸素極Pt触媒上にて、
Pt+O+H+e→[HO
[HO]+H+e→[H]⇔H+Pt
[H]+Pt⇔2[OH]
2[OH]+2H+e⇔2HO+2Pt
(ここで、[ ]は触媒上に生成した活性中間体を示す。)
水素極Pt触媒上にて、
→2[H・]
[H・]+O→[HO・]
[HO・]+[H・]→H
【0010】
各中間体は電子を受けて水まで還元されるので、酸化剤として作用する。また、中間体[H]から生成する過酸化水素も酸化剤である。過酸化水素は水に対する溶解性も十分にあるため、水に溶解した状態で濃度差を駆動力にして拡散移動すると考えられる。
【0011】
このように、電池作動時に発生すると考えられるラジカルにより、電解質成分が攻撃を受け、酸化劣化を起こし、初期の電池特性が保てなくなる。この現象が連続的に続くと、電解質膜に穴が空いたり、電極中の電解質溶液が消失する可能性がある。
【0012】
一方、フッ素系電解質は製造が困難で、非常に高価であるという欠点がある。そのため、炭化水素系電解質の系内で生成された過酸化水素ラジカルを抑制して耐酸化性を向上させることが検討された。
【0013】
炭化水素系電解質膜は、Nafionに代表されるフッ素系電解質膜と比較すると、製造が容易で低コストという利点がある。しかしその一方で、炭化水素系電解質膜は、上述したように耐酸化性が低いという問題が残されていた。耐酸化性が低い理由は、炭化水素化合物は一般にラジカルに対する耐久性が低く、炭化水素骨格を有する電解質はラジカルによる劣化反応(過酸化物ラジカルによる酸化反応)を起こしやすいためである。
【0014】
そこで、フッ素系電解質と同等以上、もしくは実用上十分な耐酸化性を有し、しかも低コストで製造可能な高耐久性固体高分子電解質を提供することを目的として、炭化水素部を有する高分子化合物からなり、燐を含む官能基を導入した高耐久性固体高分子電解質(下記特許文献1)、電解質基及び炭化水素部を有する高分子化合物と、燐を含む化合物とを混合することにより得られる高耐久性固体高分子電解質組成物(下記特許文献2)が出願されている。
【0015】
しかしながら、炭化水素系電解質からなるプロトン交換材料を燃料電池に用いた場合、下記特許文献1及び2に開示されたプロトン交換材料は耐酸化性は向上するものの、燐を含む官能基の導入率が高くなったり(下記特許文献1)、燐を含む化合物の混合率が高くなったり(下記特許文献2)すると、プロトン伝導性能に影響を与え、性能が低下するという問題があり、絶対的な耐熱性が低いという問題があった。
【0016】
【特許文献1】
特開2000−11755号公報
【特許文献2】
特開2000−11756号公報
【0017】
【発明が解決しようとする課題】
このように、フッ素系電解質や炭化水素系電解質からなるプロトン交換材料を燃料電池に用いた場合、電池作動時に発生すると考えられるラジカルにより、電解質成分が攻撃を受け、酸化劣化を起こし、初期の電池特性が保てなくなる。この現象が連続的に続くと、電解質膜に穴が空いたり、電極中の電解質溶液が消失する可能性がある。
【0018】
上記問題に鑑み、本発明は、燃料電池等に用いられるプロトン交換材料の耐久性を向上させつつ、その発電性能を高く維持することを目的とする。
【0019】
【発明を解決するための手段】
本発明者らは、鋭意研究した結果、上記特許文献1及び2に開示されたプロトン交換材料において、導入される燐を含む官能基や混合される燐を含む化合物がリンを含む有機物であることが、燃料電池性能に影響を与え、性能が低下する原因であることを見出し、本発明に到達した。
即ち、第1に、本発明は、無機リン酸化合物を含有するプロトン交換材料である。
【0020】
無機リン酸化合物の持つリン酸基POはラジカルを捕捉する能力があり、燃料電池等の作動中に生成すると考えられる過酸化水素ラジカルを捕捉し、プロトン交換材料及びプロトン交換材料溶液が過酸化水素ラジカルの攻撃を受けて酸化劣化する現象を防ぐことが可能となる。この無機リン酸化合物は無機粒子であるが故に、有機系の抗酸化剤に比べて絶対的な耐熱性に優れているという利点もある。
【0021】
本発明のプロトン交換材料において、前記無機リン酸化合物の平均粒径が10nm〜100μmであることが好ましい。無機リン酸化合物の平均粒径が10nm未満又は100μmを越えると、プロトン交換材料への均一な高分散性が低下する。
【0022】
本発明のプロトン交換材料において、前記無機リン酸化合物として特に限定されないが、リン酸ジルコニウム又はリン酸ホウ素が好ましく例示される。
【0023】
本発明において、プロトン交換材料としては、フッ素系電解質又は炭化水素系電解質のいずれに対しても適用できる。
【0024】
本発明では、フッ素系高分子電解質に、無機リン酸化合物を分散させることにより、該無機リン酸化合物が系内に発生した過酸化水素ラジカルをクエンチするのみならず、フッ素系高分子電解質の分解過程で生じる分解ラジカルをクエンチして、フッ素系高分子電解質の耐酸化安定性を飛躍的に向上させる。
【0025】
フッ素系高分子電解質とは、フッ素系高分子化合物に、スルホン酸基、カルボン酸基等の電解質基が導入されているものである。
【0026】
第2に、本発明は、高分子電解質膜の発明であり、上記のプロトン交換材料からなる高分子電解質膜である。
【0027】
本発明の高分子電解質膜は、耐酸化性に優れており、燃料電池、水電解、ハロゲン化水素酸電解、食塩電解、酸素濃縮器、湿度センサ、ガスセンサ等に好適に用いられる。
【0028】
第3に、本発明は、燃料電池電極の発明であり、プロトン交換材料と、触媒担持導電体と、無機リン酸化合物を含有する。
【0029】
無機リン酸化合物粒子を電極触媒層中に多分散させた本発明の燃料電池用電極は、無機リン酸化合物の持つリン酸基(PO)がラジカルを捕捉する能力があり、燃料電池作動中に生成すると考えられる過酸化水素ラジカルを捕捉し、電解質膜及び電解質溶液がラジカルの攻撃を受けて酸化劣化する現象を防ぐことが可能となる。又、無機リン酸化合物はプロトン伝導性を持つため、同様の極性基を持つ電解質膜溶液部位に多くの無機リン酸化合物粒子を集中させることが可能であり、燃料電池性能への影響を小さくすることができる。更に、電極反応により、局所的に高温になる部位が存在した場合でも、無機化合物であるため耐熱的な不具合が生じない。
【0030】
第4に、本発明は、燃料電池電極の製造方法の発明であり、触媒担持導電体と無機リン酸化合物を混合し、該混合物にプロトン交換材料溶液を練り込む工程を含むことを特徴とする。この燃料電池電極の製造方法においては、無機リン酸化合物の含有率は白金担持カーボンに対して27体積%以下とするのが好ましい。
【0031】
第5に、本発明は、燃料電池電極の別の製造方法の発明であり、予めプロトン交換材料溶液が練り込まれた触媒担持導電体に、ゾル−ゲル法で前記プロトン交換材料溶液中に選択的に無機リン酸化合物を生成させる工程を含むことを特徴とする。この燃料電池電極の製造方法においては、電解質膜/触媒層界面近傍へ無機リン酸化合物を集中的に分散させることが可能となり、電極の導電性能への影響を最小限に抑制できる。
【0032】
第6に、本発明は、上記の燃料電池電極を用いた燃料電池である。上記のように、無機リン酸化合物の持つリン酸基(PO)が燃料電池等の作動中に生成すると考えられる過酸化水素ラジカルを捕捉し、プロトン交換材料及びプロトン交換材料溶液が過酸化水素ラジカルの攻撃を受けて酸化劣化する現象を防ぐことが可能となる。これにより、本発明の燃料電池は、高い発電性能を維持しつつ、耐久性の優れたものとなっている。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0034】
本発明でプロトン交換材料として用いられるフッ素系高分子電解質とは、フルオロカーボン骨格あるいはヒドロフルオロカーボン骨格に置換基としてスルホン酸基等の電解質基が導入されているポリマーであって、分子内にエーテル基や塩素やカルボン酸基やリン酸基や芳香環を有していてもよい。一般的にはパーフルオロカーボンを主鎖骨格とし、パーフルオロエーテルや芳香環等のスペーサーを介してスルホン酸基を有するポリマーが用いられる。具体的には、デュポン社製の「ナフィオン(Nafion;登録商標)」や旭化成工業(株)製の「アシプレックス−S(登録商標)」等が知られている。
【0035】
本発明でプロトン交換材料として用いられる炭化水素系高分子電解質とは、高分子化合物を構成する分子鎖のいずれかに炭化水素部を有し、かつ電解質基が導入されたものである。ここで、電解質基として、スルホン酸基、カルボン酸基等が例示される。
【0036】
炭化水素部を有する高分子化合物の具体例としては、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、直鎖型フェノール−ホルムアルデヒド樹脂、架橋型フェノール−ホルムアルデヒド樹脂、直鎖型ポリスチレン樹脂、架橋型ポリスチレン樹脂、直鎖型ポリ(トリフルオロスチレン)樹脂、架橋型(トリフルオロスチレン)樹脂、ポリ(2、3−ジフェニル−1、4−フェニレンオキシド)樹脂、ポリ(アリルエーテルケトン)樹脂、ポリ(アリレンエーテルスルホン)樹脂、ポリ(フェニルキノサンリン)樹脂、ポリ(ベンジルシラン)樹脂、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂、ポリスチレン−グラフト−ポリフッ化ビニリデン樹脂、ポリスチレン−グラフト−テトラフルオロエチレン樹脂、等が一例として挙げられる。これらの中でも、ポリスチレン−グラフト−エチレンテトラフルオロエチレン樹脂に代表される、エチレンテトラフルオロスチレン樹脂を主鎖とし、電解質基を導入可能な炭化水素系高分子を側鎖とするエチレンテトラフルオロエチレン樹脂のグラフト共重合体は、安価であり、薄膜化したときに十分な強度を有し、しかも電解質基の種類及び導入量を調節することにより導電率を容易に制御することができるので、炭化水素部を有する高分子化合物として特に好適である。
【0037】
本発明のプロトン交換材料は、無機リン酸化合物の混合量が多くなるほど、耐酸化性は向上する。しかし、無機リン酸化合物は一般的に弱酸性基であるために、混合量が増大するに伴い、材料全体の導電率が低下する。従って、耐酸化性のみを問題とし、高い導電率が要求されないような用途に用いられる場合には、プロトン交換材料に対して無機リン酸化合物を多量に混合すればよい。
【0038】
一方、燃料電池や水電解のように、高い耐酸化性に加え、高い導電率特性が要求される場合には、無機リン酸化合物を所定の比率で混合すればよい。
【0039】
但し、無機リン酸化合物が、全電解質基の0.1mol%未満になると、耐酸化性向上効果が十分ではなくなる。従って、無機リン酸化合物の混合量は、電解質基の0.1以上、100mol%未満の範囲とする必要がある。特に、燃料電池、水電解、食塩電解等、過酷な条件下で使用される固体高分子電解質の場合、無機リン酸化合物は5〜100mol%の範囲が好適である。
【0040】
プロトン交換材料と無機リン酸化合物との混合方法は、特に限定されるものではなく、種々の方法を用いることができる。例えば、溶液によるドープ又はブレンドでもよい。
【0041】
水電解用あるいは燃料電池用の電解質膜のように膜表面の触媒層で過酸化物が生成し、生成した過酸化物が拡散しながら過酸化物ラジカルとなって劣化反応を起こす環境では、無機リン酸化合物が膜中に均一に分散している必要はない。この場合には、プロトン交換材料に対して無機リン酸化合物をドープすることにより、酸化劣化反応の最も激しい膜の表面部分のみをプロトン交換材料と無機リン酸化合物の混合物とすればよい。
【0042】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
(実施例1)
白金担持カーボンと所定体積比となるようにリン酸ジルコニウムを混合した。混合には、ボールミルを用いた。得られた混合体に、電解質溶液を加える。遠心器及び超音波ホモジナイザーで十分に撹拌した液体を電解質インクとし、MEAを作製した。
【0043】
(実施例2)
白金担持カーボンと電解質溶液を所定量混合し、遠心器及び超音波ホモジナイザーで十分に撹拌し、作製したインクをPTFE基材に塗布し、真空乾燥することで、溶媒を除去した。PTFE上に作製した電極を80℃の塩化ジルコニウム水溶液ZrOClに1時間浸した。電極を取り出した後、十分な蒸留水で洗浄後、本電極をリン酸水溶液に浸した。生成させるリン酸ジルコニウムの量はリン酸濃度、リン酸水溶液温度、含浸時間により調整した。リン酸処理後、蒸留水で洗浄し、真空乾燥した。
【0044】
[電池評価]
リン酸ジルコニウム未混入Nafion111(比較例)とリン酸ジルコニウム18%混入Nafion111(実施例)について、電池評価を行った。条件は以下の通りである。
セル温度:80℃
加湿条件:両極無加湿
電流密度:0.5A/cm固定
反応ガス:水素/空気
図1に、評価結果を示す。
【0045】
Nafion111を電解質に用いた時、フル加湿の条件下では、1−V特性は全く変化なしであった。
【0046】
セル温度80℃、低加湿下でも、リン酸ジルコニウム未混入時とほとんど特性に変化が無く、リン酸ジルコニウムが抵抗として働いていないことが判明した。
【0047】
図2に、ラジカルクエンチ剤として、リン酸ジルコニウムを13%混入した場合と、同じくラジカルクエンチ剤として、ポリマー1(PVPA:ポリビニルホスホン酸)5%を混入した場合とポリマー2(P−PES)1%を混入した場合の、I−V特性結果を示す。
【0048】
図2から、無機リン酸化合物粒子の場合は混入比率が高い時にも、電池性能への影響がポリマー系に比べて小さいという利点があることが分る。又、無機リン酸化合物粒子の場合は耐熱性には大きく優れる。
【0049】
[TG−MS分析]
リン酸ジルコニウム粒子の混入効果を調べるために、リン酸ジルコニウム粒子混入電極と未混入電極の各TG−MSを測定した。電解質成分の分解の指標として、スルホン酸基の離脱に起因すると考えられるSO成分の発生量に注目した結果、リン酸ジルコニウムを混入することで、0.68wt%→0.51wt%に減少しており、リン酸ジルコニウム粒子の混入効果が確認できた。又、全フッ化水素発生量も、リン酸ジルコニウムの混入により、約1/10に抑制されていた。
【0050】
下記表1にHe雰囲気下、室温〜400℃条件下での電極からの気体発生量を記す。尚、全フッ化水素発生量の導出には、HFに加え、SiF3+が全てフッ化水素に由来するものとして計算した。
【0051】
【表1】

Figure 2005011697
【0052】
【発明の効果】
プロトン交換材料に無機リン酸化合物を含有させることにより、高熱条件下等で過酸化水素ラジカルが発生する場合においてもラジカルを抑制することが可能となり、プロトン交換材料の耐久性が向上する。また、燃料電池電極に用いた場合、電池性能を維持することができる。
【図面の簡単な説明】
【図1】リン酸ジルコニウム未混入Nafion111(比較例)とリン酸ジルコニウム18%混入Nafion111(実施例)について、電池評価を示すグラフである。
【図2】ラジカルクエンチ剤として、リン酸ジルコニウムを混入した場合と、同じくラジカルクエンチ剤として、ポリマー1(PVPA)とポリマー2(P−PES)を混入した場合の、I−V特性結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly durable proton exchange material excellent in oxidation resistance suitable for a fuel cell electrode or the like. The present invention also relates to a highly durable fuel cell electrode using the proton exchange material.
[0002]
[Prior art]
A typical example of a proton exchange material is a solid polymer material having an electrolyte group such as a sulfonic acid group in a polymer chain, and is firmly bonded to a specific ion or selectively transmits a cation or an anion. Because of its properties, it is formed into particles, fibers, or membranes, and is used for various applications such as electrodialysis, diffusion dialysis, and battery membranes.
[0003]
For example, in a polymer electrolyte fuel cell, a pair of electrodes is provided on both sides of a proton conductive solid polymer electrolyte membrane, hydrogen gas is supplied to one electrode (fuel electrode) as a fuel gas, and oxygen gas or air is supplied. It is supplied to different electrodes (air electrodes) as an oxidant to obtain an electromotive force. Water electrolysis is a method for producing hydrogen and oxygen by electrolyzing water using a solid polymer electrolyte membrane.
[0004]
In the case of fuel cells and water electrolysis, peroxide is generated in the catalyst layer formed at the interface between the solid polymer electrolyte membrane, which is a proton exchange material, and the electrode, and the generated peroxide diffuses and forms peroxide radicals. Therefore, it is difficult to use a hydrocarbon-based electrolyte membrane having poor oxidation resistance. Therefore, in a fuel cell or water electrolysis, a perfluorosulfonic acid membrane having high proton conductivity and high oxidation resistance is generally used.
[0005]
The salt electrolysis is a method of producing sodium hydroxide, chlorine, and hydrogen by electrolyzing a sodium chloride aqueous solution using a solid polymer electrolyte membrane. In this case, since the solid polymer electrolyte membrane is exposed to chlorine, high temperature and high concentration sodium hydroxide aqueous solution, a hydrocarbon electrolyte membrane having poor resistance to these cannot be used. For this reason, solid polymer electrolyte membranes for salt electrolysis are generally resistant to chlorine and high-temperature, high-concentration sodium hydroxide aqueous solution, and in addition, partly on the surface to prevent back diffusion of generated ions. A perfluorosulfonic acid film into which a carboxylic acid group is introduced is used.
[0006]
By the way, the fluorine-based electrolyte typified by the perfluorosulfonic acid membrane has a very high chemical stability because it has a C—F bond. For the above-described fuel cell, water electrolysis, or salt electrolysis In addition to these solid polymer electrolyte membranes, they are also used as solid polymer electrolyte membranes for hydrohalic acid electrolysis, and further widely applied to humidity sensors, gas sensors, oxygen concentrators, etc. using proton conductivity. It is what.
[0007]
In particular, fluorine-based electrolyte membranes represented by the perfluorosulfonic acid membrane known under the trade name Nafion (registered trademark, manufactured by DuPont) are used under severe conditions because of their extremely high chemical stability. It is used as an electrolyte membrane.
[0008]
Originally, in the case of a fluorinated polymer, since the carbon-fluorine intermolecular bond is strong, it is chemically stable, and it has not been generally considered to take a stabilization measure for the fluorinated polymer. However, according to the knowledge obtained by the present inventors, even in the fluorine-based polymer, when hydrogen peroxide radicals or the like are generated in the system, the side chain fluorine-containing ether units are decomposed in a chain and once decomposed. When the process started, the amount of heat generated was large due to the high bond energy between atoms, and there was a phenomenon in which thermal decomposition proceeded at once.
[0009]
Hereinafter, taking the platinum catalyst as an example, the generation mechanism of the active intermediate on the catalyst will be described.
On the oxygen electrode Pt catalyst,
Pt + O 2 + H + + e → [HO 2 ]
[HO 2 ] + H + + e → [H 2 O 2 ] ⇔H 2 O 2 + Pt
[H 2 O 2 ] + Pt⇔2 [OH]
2 [OH] + 2H + + e ⇔2H 2 O + 2Pt
(Here, [] represents an active intermediate formed on the catalyst.)
On the hydrogen electrode Pt catalyst,
H 2 → 2 [H ・]
[H •] + O 2 → [HO 2 •]
[HO 2 ·] + [H ·] → H 2 O 2
[0010]
Since each intermediate receives electrons and is reduced to water, it acts as an oxidizing agent. Hydrogen peroxide generated from the intermediate [H 2 O 2 ] is also an oxidizing agent. Since hydrogen peroxide has sufficient solubility in water, it is considered that the hydrogen peroxide diffuses and moves with the concentration difference as a driving force in the state of being dissolved in water.
[0011]
Thus, the radicals that are considered to be generated during battery operation attack the electrolyte component, causing oxidative degradation, and the initial battery characteristics cannot be maintained. When this phenomenon continues continuously, there is a possibility that a hole is formed in the electrolyte membrane or the electrolyte solution in the electrode disappears.
[0012]
On the other hand, the fluorine-based electrolyte has a drawback that it is difficult to produce and is very expensive. Therefore, it has been studied to suppress the hydrogen peroxide radicals generated in the hydrocarbon electrolyte system to improve the oxidation resistance.
[0013]
The hydrocarbon-based electrolyte membrane has advantages in that it is easy to manufacture and low in cost as compared with a fluorine-based electrolyte membrane typified by Nafion. On the other hand, however, the hydrocarbon electrolyte membrane has a problem of low oxidation resistance as described above. The reason why the oxidation resistance is low is that hydrocarbon compounds generally have low durability against radicals, and electrolytes having a hydrocarbon skeleton are liable to cause degradation reactions due to radicals (oxidation reactions due to peroxide radicals).
[0014]
Therefore, for the purpose of providing a highly durable solid polymer electrolyte that is equal to or higher than that of a fluorine-based electrolyte or has practically sufficient oxidation resistance and can be produced at low cost, a polymer having a hydrocarbon portion. It is obtained by mixing a high-durability solid polymer electrolyte (comprising Patent Document 1 below) composed of a compound and containing a functional group containing phosphorus, a polymer compound having an electrolyte group and a hydrocarbon part, and a compound containing phosphorus. A highly durable solid polymer electrolyte composition (Patent Document 2 below) has been filed.
[0015]
However, when a proton exchange material comprising a hydrocarbon electrolyte is used in a fuel cell, the proton exchange materials disclosed in Patent Documents 1 and 2 below have improved oxidation resistance, but the introduction rate of functional groups containing phosphorus is high. If it becomes high (the following patent document 1) or the mixing ratio of the phosphorus-containing compound becomes high (the following patent document 2), there is a problem that the proton conduction performance is affected and the performance is lowered, which is absolutely heat resistant. There was a problem of low nature.
[0016]
[Patent Document 1]
JP 2000-11755 A [Patent Document 2]
JP 2000-11756 A
[Problems to be solved by the invention]
As described above, when a proton exchange material composed of a fluorine-based electrolyte or a hydrocarbon-based electrolyte is used for a fuel cell, an electrolyte component is attacked and oxidized and deteriorated by radicals that are considered to be generated during the operation of the cell. Characteristics cannot be maintained. When this phenomenon continues continuously, there is a possibility that a hole is formed in the electrolyte membrane or the electrolyte solution in the electrode disappears.
[0018]
In view of the above problems, an object of the present invention is to maintain the power generation performance high while improving the durability of a proton exchange material used in a fuel cell or the like.
[0019]
[Means for Solving the Invention]
As a result of intensive studies, the present inventors have found that in the proton exchange material disclosed in Patent Documents 1 and 2, the functional group containing phosphorus to be introduced or the compound containing phosphorus to be mixed is an organic substance containing phosphorus. However, it has been found that the fuel cell performance is affected and the performance is reduced, and the present invention has been achieved.
That is, first, the present invention is a proton exchange material containing an inorganic phosphate compound.
[0020]
Phosphoric group PO 4 possessed by inorganic phosphate compounds has the ability to capture radicals, capture hydrogen peroxide radicals that are thought to be generated during the operation of fuel cells and the like, and proton exchange materials and proton exchange material solutions are peroxidized. It is possible to prevent the phenomenon of oxidative degradation due to the attack of hydrogen radicals. Since this inorganic phosphoric acid compound is an inorganic particle, it also has an advantage that it is superior in absolute heat resistance as compared with an organic antioxidant.
[0021]
In the proton exchange material of the present invention, it is preferable that the inorganic phosphate compound has an average particle size of 10 nm to 100 μm. When the average particle size of the inorganic phosphate compound is less than 10 nm or exceeds 100 μm, uniform high dispersibility in the proton exchange material is lowered.
[0022]
In the proton exchange material of the present invention, the inorganic phosphate compound is not particularly limited, but preferred examples include zirconium phosphate and boron phosphate.
[0023]
In the present invention, the proton exchange material can be applied to either a fluorine-based electrolyte or a hydrocarbon-based electrolyte.
[0024]
In the present invention, by dispersing the inorganic phosphate compound in the fluorine-based polymer electrolyte, the inorganic phosphate compound not only quenches hydrogen peroxide radicals generated in the system, but also decomposes the fluorine-based polymer electrolyte. By quenching the decomposition radical generated in the process, the oxidation resistance stability of the fluorine-based polymer electrolyte is dramatically improved.
[0025]
A fluorine-based polymer electrolyte is one in which an electrolyte group such as a sulfonic acid group or a carboxylic acid group is introduced into a fluorine-based polymer compound.
[0026]
Secondly, the present invention is an invention of a polymer electrolyte membrane, which is a polymer electrolyte membrane made of the above proton exchange material.
[0027]
The polymer electrolyte membrane of the present invention has excellent oxidation resistance and is suitably used for fuel cells, water electrolysis, hydrohalic acid electrolysis, salt electrolysis, oxygen concentrators, humidity sensors, gas sensors, and the like.
[0028]
3rdly, this invention is invention of a fuel cell electrode, and contains a proton exchange material, a catalyst carrying | support conductor, and an inorganic phosphate compound.
[0029]
The electrode for a fuel cell of the present invention in which inorganic phosphate compound particles are polydispersed in an electrode catalyst layer has the ability of the phosphate group (PO 4 ) of the inorganic phosphate compound to capture radicals, and the fuel cell is operating. It is possible to capture hydrogen peroxide radicals that are thought to be generated in a short time, and to prevent a phenomenon in which the electrolyte membrane and the electrolyte solution undergo oxidative degradation due to radical attack. In addition, since inorganic phosphate compounds have proton conductivity, it is possible to concentrate a large number of inorganic phosphate compound particles in the electrolyte membrane solution portion having the same polar group, thereby reducing the influence on fuel cell performance. be able to. Furthermore, even when there is a locally high temperature site due to the electrode reaction, since it is an inorganic compound, there is no heat-resistant defect.
[0030]
4thly, this invention is invention of the manufacturing method of a fuel cell electrode, The catalyst carrying | support conductor and an inorganic phosphoric acid compound are mixed, The process of kneading a proton exchange material solution to this mixture is characterized by the above-mentioned. . In this method for producing a fuel cell electrode, the content of the inorganic phosphate compound is preferably 27% by volume or less with respect to the platinum-supported carbon.
[0031]
Fifth, the present invention is an invention of another method for producing a fuel cell electrode, wherein a catalyst-carrying conductor into which a proton exchange material solution has been previously kneaded is selected in the proton exchange material solution by a sol-gel method. And a step of generating an inorganic phosphate compound. In this fuel cell electrode manufacturing method, the inorganic phosphate compound can be intensively dispersed in the vicinity of the electrolyte membrane / catalyst layer interface, and the influence on the conductive performance of the electrode can be minimized.
[0032]
Sixth, the present invention is a fuel cell using the above fuel cell electrode. As described above, the phosphate group (PO 4 ) of the inorganic phosphate compound captures hydrogen peroxide radicals that are considered to be generated during the operation of the fuel cell or the like, and the proton exchange material and the proton exchange material solution become hydrogen peroxide. It is possible to prevent the phenomenon of oxidative degradation due to radical attack. Thereby, the fuel cell of the present invention has excellent durability while maintaining high power generation performance.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0034]
The fluorine-based polymer electrolyte used as a proton exchange material in the present invention is a polymer in which an electrolyte group such as a sulfonic acid group is introduced as a substituent in a fluorocarbon skeleton or a hydrofluorocarbon skeleton, and an ether group or It may have a chlorine, carboxylic acid group, phosphoric acid group or aromatic ring. In general, a polymer having perfluorocarbon as a main chain skeleton and having a sulfonic acid group via a spacer such as perfluoroether or an aromatic ring is used. Specifically, “Nafion (registered trademark)” manufactured by DuPont, “Aciplex-S (registered trademark)” manufactured by Asahi Kasei Kogyo Co., Ltd., and the like are known.
[0035]
The hydrocarbon-based polymer electrolyte used as a proton exchange material in the present invention has a hydrocarbon part in any of the molecular chains constituting the polymer compound and has an electrolyte group introduced. Here, examples of the electrolyte group include a sulfonic acid group and a carboxylic acid group.
[0036]
Specific examples of the polymer compound having a hydrocarbon portion include polyimide resin, polyether sulfone resin, polyether ether ketone resin, linear phenol-formaldehyde resin, cross-linked phenol-formaldehyde resin, linear polystyrene resin, cross-linked Polystyrene resin, linear poly (trifluorostyrene) resin, cross-linked (trifluorostyrene) resin, poly (2,3-diphenyl-1,4-phenylene oxide) resin, poly (allyl ether ketone) resin, poly (Arylene ether sulfone) resin, poly (phenylquinosan phosphorus) resin, poly (benzylsilane) resin, polystyrene-graft-ethylenetetrafluoroethylene resin, polystyrene-graft-polyvinylidene fluoride resin, polystyrene-graft-tetrafluoro Ethylene resins, and the like as an example. Among these, an ethylene tetrafluoroethylene resin represented by polystyrene-graft-ethylenetetrafluoroethylene resin, having an ethylenetetrafluorostyrene resin as a main chain and a hydrocarbon polymer capable of introducing an electrolyte group as a side chain. The graft copolymer is inexpensive, has sufficient strength when thinned, and the conductivity can be easily controlled by adjusting the type and amount of the electrolyte group. It is particularly suitable as a polymer compound having
[0037]
In the proton exchange material of the present invention, the oxidation resistance is improved as the amount of the inorganic phosphate compound is increased. However, since the inorganic phosphate compound is generally a weakly acidic group, the conductivity of the entire material decreases as the mixing amount increases. Therefore, when used only in applications where oxidation resistance is a problem and high conductivity is not required, a large amount of an inorganic phosphate compound may be mixed with the proton exchange material.
[0038]
On the other hand, when high conductivity characteristics are required in addition to high oxidation resistance, such as fuel cells and water electrolysis, an inorganic phosphate compound may be mixed at a predetermined ratio.
[0039]
However, when the inorganic phosphate compound is less than 0.1 mol% of the total electrolyte group, the effect of improving the oxidation resistance is not sufficient. Therefore, the mixing amount of the inorganic phosphate compound needs to be in the range of 0.1 or more and less than 100 mol% of the electrolyte group. In particular, in the case of a solid polymer electrolyte used under severe conditions such as a fuel cell, water electrolysis, and salt electrolysis, the range of 5 to 100 mol% of the inorganic phosphate compound is suitable.
[0040]
The mixing method of the proton exchange material and the inorganic phosphate compound is not particularly limited, and various methods can be used. For example, a solution dope or blend may be used.
[0041]
In an environment where a peroxide is generated in the catalyst layer on the surface of the membrane, such as an electrolyte membrane for water electrolysis or fuel cell, and the generated peroxide diffuses and becomes a peroxide radical to cause a degradation reaction, it is inorganic. It is not necessary that the phosphoric acid compound is uniformly dispersed in the film. In this case, the proton exchange material may be doped with an inorganic phosphate compound so that only the surface portion of the membrane having the most oxidative degradation reaction is made a mixture of the proton exchange material and the inorganic phosphate compound.
[0042]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
(Example 1)
Zirconium phosphate was mixed with platinum-supporting carbon so as to have a predetermined volume ratio. A ball mill was used for mixing. An electrolyte solution is added to the resulting mixture. A liquid sufficiently stirred with a centrifuge and an ultrasonic homogenizer was used as an electrolyte ink to prepare an MEA.
[0043]
(Example 2)
A predetermined amount of platinum-supporting carbon and an electrolyte solution were mixed, and the mixture was sufficiently stirred with a centrifuge and an ultrasonic homogenizer. The prepared ink was applied to a PTFE substrate, and the solvent was removed by vacuum drying. The electrode prepared on PTFE was immersed in an aqueous zirconium chloride solution ZrOCl 2 at 80 ° C. for 1 hour. The electrode was taken out, washed with sufficient distilled water, and then immersed in an aqueous phosphoric acid solution. The amount of zirconium phosphate produced was adjusted by the phosphoric acid concentration, the phosphoric acid aqueous solution temperature, and the impregnation time. After the phosphoric acid treatment, it was washed with distilled water and vacuum dried.
[0044]
[Battery evaluation]
The battery evaluation was performed for Nafion 111 (comparative example) not containing zirconium phosphate and Nafion 111 (Example) containing 18% zirconium phosphate. The conditions are as follows.
Cell temperature: 80 ° C
Humidification conditions: Bipolar unhumidified current density: 0.5 A / cm 2 fixed reaction gas: hydrogen / air FIG. 1 shows the evaluation results.
[0045]
When Nafion 111 was used as the electrolyte, the 1-V characteristics did not change at all under the condition of full humidification.
[0046]
Even at a cell temperature of 80 ° C. and under low humidification, it was found that there was almost no change in characteristics when zirconium phosphate was not mixed, and zirconium phosphate did not work as a resistance.
[0047]
In FIG. 2, the case where 13% of zirconium phosphate is mixed as a radical quencher, and the case where polymer 1 (PVPA: polyvinylphosphonic acid) 5% is mixed as the radical quencher and polymer 2 (P-PES) 1 The IV characteristic result when% is mixed is shown.
[0048]
From FIG. 2, it can be seen that the inorganic phosphate compound particles have an advantage that the influence on the battery performance is smaller than that of the polymer system even when the mixing ratio is high. In the case of inorganic phosphate compound particles, the heat resistance is greatly excellent.
[0049]
[TG-MS analysis]
In order to investigate the mixing effect of the zirconium phosphate particles, each TG-MS of the zirconium phosphate particle mixed electrode and the non-mixed electrode was measured. As an index of decomposition of the electrolyte component, attention was paid to the amount of SO 2 component that is considered to be caused by the detachment of the sulfonic acid group. As a result, the incorporation of zirconium phosphate decreased the content to 0.68 wt% → 0.51 wt%. The mixing effect of zirconium phosphate particles was confirmed. Further, the total amount of hydrogen fluoride generated was suppressed to about 1/10 due to the incorporation of zirconium phosphate.
[0050]
Table 1 below shows the amount of gas generated from the electrode under the He atmosphere and at room temperature to 400 ° C. In order to derive the total hydrogen fluoride generation amount, it was calculated that all SiF 3+ was derived from hydrogen fluoride in addition to HF.
[0051]
[Table 1]
Figure 2005011697
[0052]
【The invention's effect】
By including an inorganic phosphate compound in the proton exchange material, radicals can be suppressed even when hydrogen peroxide radicals are generated under high heat conditions and the like, and the durability of the proton exchange material is improved. Moreover, when it uses for a fuel cell electrode, battery performance can be maintained.
[Brief description of the drawings]
FIG. 1 is a graph showing battery evaluation for Nafion 111 not mixed with zirconium phosphate (comparative example) and Nafion 111 mixed with 18% zirconium phosphate (Example).
FIG. 2 shows IV characteristic results when zirconium phosphate is mixed as a radical quencher and when Polymer 1 (PVPA) and Polymer 2 (P-PES) are mixed as radical quenchers. .

Claims (10)

無機リン酸化合物を含有するプロトン交換材料。A proton exchange material containing an inorganic phosphate compound. 前記無機リン酸化合物の平均粒径が10nm〜100μmであることを特徴とする請求項1に記載のプロトン交換材料。2. The proton exchange material according to claim 1, wherein an average particle diameter of the inorganic phosphate compound is 10 nm to 100 μm. 前記無機リン酸化合物がリン酸ジルコニウム又はリン酸ホウ素であることを特徴とする請求項1又は2に記載のプロトン交換材料。The proton exchange material according to claim 1 or 2, wherein the inorganic phosphate compound is zirconium phosphate or boron phosphate. 請求項1乃至3のいずれかに記載のプロトン交換材料からなる高分子電解質膜。A polymer electrolyte membrane comprising the proton exchange material according to claim 1. プロトン交換材料と、触媒担持導電体と、無機リン酸化合物を含有する燃料電池電極。A fuel cell electrode comprising a proton exchange material, a catalyst-supporting conductor, and an inorganic phosphate compound. 前記無機リン酸化合物の平均粒径が10nm〜100μmであることを特徴とする請求項5に記載の燃料電池電極。6. The fuel cell electrode according to claim 5, wherein the inorganic phosphoric acid compound has an average particle size of 10 nm to 100 [mu] m. 前記無機リン酸化合物がリン酸ジルコニウム又はリン酸ホウ素であることを特徴とする請求項5又は6に記載の燃料電池電極。The fuel cell electrode according to claim 5 or 6, wherein the inorganic phosphate compound is zirconium phosphate or boron phosphate. 触媒担持導電体と無機リン酸化合物を混合し、該混合物にプロトン交換材料溶液を練り込む工程を含むことを特徴とする燃料電池電極の製造方法。A method for producing a fuel cell electrode, comprising: mixing a catalyst-carrying conductor and an inorganic phosphate compound, and kneading a proton exchange material solution into the mixture. 予めプロトン交換材料溶液が練り込まれた触媒担持導電体に、ゾル−ゲル法で前記プロトン交換材料溶液中に選択的に無機リン酸化合物を生成させる工程を含むことを特徴とする燃料電池電極の製造方法。A fuel cell electrode characterized by comprising a step of selectively producing an inorganic phosphate compound in the proton exchange material solution by a sol-gel method on a catalyst-supported conductor in which a proton exchange material solution has been previously kneaded. Production method. 請求項5乃至7のいずれかに記載の燃料電池電極を用いた燃料電池。A fuel cell using the fuel cell electrode according to claim 5.
JP2003175029A 2003-06-19 2003-06-19 Proton exchange material and fuel cell electrode using the same Pending JP2005011697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003175029A JP2005011697A (en) 2003-06-19 2003-06-19 Proton exchange material and fuel cell electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003175029A JP2005011697A (en) 2003-06-19 2003-06-19 Proton exchange material and fuel cell electrode using the same

Publications (1)

Publication Number Publication Date
JP2005011697A true JP2005011697A (en) 2005-01-13

Family

ID=34098350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003175029A Pending JP2005011697A (en) 2003-06-19 2003-06-19 Proton exchange material and fuel cell electrode using the same

Country Status (1)

Country Link
JP (1) JP2005011697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2006261004A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Fuel cell and fuel cell system
JP2008192505A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Fuel cell
WO2012039236A1 (en) * 2010-09-22 2012-03-29 株式会社クラレ Polyelectrolyte composition, polyelectrolyte membrane, and membrane/electrode assembly
JP2012079415A (en) * 2010-09-30 2012-04-19 Toyobo Co Ltd Polymer electrolyte membrane, and membrane/electrode assembly using the same and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
JP2002352818A (en) * 2001-05-28 2002-12-06 Toyota Central Res & Dev Lab Inc Inorganic material composite polymer film and manufacturing method therefor
JP2003077492A (en) * 2001-09-04 2003-03-14 Toshikatsu Sada Proton conductive membrane for fuel cell
JP2003272637A (en) * 2002-03-14 2003-09-26 Asahi Glass Co Ltd Electrode junction body for solid polymer fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
JP2002352818A (en) * 2001-05-28 2002-12-06 Toyota Central Res & Dev Lab Inc Inorganic material composite polymer film and manufacturing method therefor
JP2003077492A (en) * 2001-09-04 2003-03-14 Toshikatsu Sada Proton conductive membrane for fuel cell
JP2003272637A (en) * 2002-03-14 2003-09-26 Asahi Glass Co Ltd Electrode junction body for solid polymer fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
JP2006261004A (en) * 2005-03-18 2006-09-28 Toyota Motor Corp Fuel cell and fuel cell system
JP2008192505A (en) * 2007-02-06 2008-08-21 Toyota Motor Corp Fuel cell
WO2012039236A1 (en) * 2010-09-22 2012-03-29 株式会社クラレ Polyelectrolyte composition, polyelectrolyte membrane, and membrane/electrode assembly
JP5718930B2 (en) * 2010-09-22 2015-05-13 株式会社クラレ Polymer electrolyte composition, polymer electrolyte membrane, and membrane-electrode assembly
JP2012079415A (en) * 2010-09-30 2012-04-19 Toyobo Co Ltd Polymer electrolyte membrane, and membrane/electrode assembly using the same and fuel cell

Similar Documents

Publication Publication Date Title
JP4917794B2 (en) Membrane / electrode assembly for fuel cell and fuel cell system including the same
JP3925764B2 (en) High durability solid polymer electrolyte
KR100978609B1 (en) Proton exchange membrane using surface treatment technique based on direct fluorination, membrane-electrode assembly, and fuel cell comprising the same
JP5498643B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2006114502A (en) Polymer electrolyte film for direct oxidation type fuel cell, its manufacturing method, and direct oxidation type fuel cell system including this
WO2008030198A1 (en) Electrode composite material
JP6889735B2 (en) Fuel Cell Membrane-Electrode Assembly
US20120312695A1 (en) Composite membrane for polymer electrolyte membrane fuel cell
Oh et al. A hydrophobic blend binder for anti-water flooding of cathode catalyst layers in polymer electrolyte membrane fuel cells
JP2004152615A (en) Solid polymer electrolyte film, its manufacturing method, and film electrode assembly
JP5286651B2 (en) Liquid composition, process for producing the same, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
JP4870360B2 (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
JP6556843B2 (en) Method for producing cathode catalyst layer for fuel cell and method for producing membrane-electrode assembly for fuel cell including the same
KR20160118817A (en) Catalyst for fuel cell, method of preparing the same, and membrane-electrode assembly for fuel cell including the same
KR100975357B1 (en) Tailored catalyst binder of non-perfluorinated type, membrane-electrode assembly comprising thereof, and fuel cell comprising the same
JP2005011697A (en) Proton exchange material and fuel cell electrode using the same
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
KR20160094819A (en) Catalyst for fuel cell, method of preparing the same, and membrane-electrode assembly for fuel cell including the same
Vani et al. Analysis of crosslinked polyvinyl alcohol membranes with silica fillers in polymer electrolyte membrane fuel cells
JP2007287343A (en) Fuel cell and cathode electrode therefor
JP4798974B2 (en) Method for producing solid polymer electrolyte membrane
JP4530635B2 (en) Electrocatalyst layer for fuel cells
JP4437663B2 (en) Proton conducting polymer electrolyte, proton conducting polymer electrolyte membrane and membrane-electrode assembly, and solid polymer fuel cell
JP2014234445A (en) Polymer electrolyte composition, as well as polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell using the same
JP2009187799A (en) Membrane-electrode assembly and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406