JP2003077492A - Proton conductive membrane for fuel cell - Google Patents

Proton conductive membrane for fuel cell

Info

Publication number
JP2003077492A
JP2003077492A JP2001267039A JP2001267039A JP2003077492A JP 2003077492 A JP2003077492 A JP 2003077492A JP 2001267039 A JP2001267039 A JP 2001267039A JP 2001267039 A JP2001267039 A JP 2001267039A JP 2003077492 A JP2003077492 A JP 2003077492A
Authority
JP
Japan
Prior art keywords
membrane
fuel cell
film
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001267039A
Other languages
Japanese (ja)
Inventor
Toshikatsu Sada
佐田俊勝
Yasuhiro Kagiyama
鍵山安弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001267039A priority Critical patent/JP2003077492A/en
Publication of JP2003077492A publication Critical patent/JP2003077492A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a membrane which has a high strength and small anisotropy of strength in the membrane and has good oxidation resistance and heat resistance, and shows a high proton conductivity, and a solid polymer electrolyte type fuel cell using this membrane which has a high output and excellent durability. SOLUTION: An inorganic compound of fine powder is uniformly dispersed in a fluorine-contained system polymer. The fine particle has a particle size of 15 μm or less and is made a ratio of 30-80 parts weight and is made a membrane shape of a thickness of 20-300 μm, thereby, has a high proton conductivity and can be used suitably as an electrolyte for a fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子電解質
型燃料電池に用いる新しいプロトン導電性固体高分子電
解質に関する技術を開示する。
TECHNICAL FIELD The present invention discloses a technique relating to a new proton conductive solid polymer electrolyte used in a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年、プロトン導電性の高分子膜を電解
質として用いる固体高分子電解質型燃料電池の研究開発
が進んでいる。固体高分子電解質型燃料電池は、低温で
作動し、出力密度が高く、小型化できるという特徴を有
し、車載用電源、家庭用電源、その他の用途に適し重要
視されている。
2. Description of the Related Art In recent years, research and development of solid polymer electrolyte fuel cells using a proton conductive polymer membrane as an electrolyte have been advanced. BACKGROUND ART A solid polymer electrolyte fuel cell has characteristics that it operates at a low temperature, has a high output density, and can be miniaturized, and is regarded as suitable for an on-vehicle power source, a household power source and other applications.

【0003】現在固体高分子電解質型燃料電池用の固体
高分子電解質には、通常厚さ20〜200μmのプロト
ン導電性イオン交換膜が用いられている。燃料電池は高
温酸化雰囲気で作動するため、これに用いる電解質には
耐熱性、耐酸化性が求められ、特にスルホン酸基を有す
るパーフルオロカーボン系重合体からなる陽イオン交換
膜がその特性が優れているため広く検討されている。特
に膜には高いプロトン選択透過性が求められる。
Currently, a proton conductive ion exchange membrane having a thickness of 20 to 200 μm is usually used for a solid polymer electrolyte for a solid polymer electrolyte fuel cell. Since the fuel cell operates in a high temperature oxidizing atmosphere, the electrolyte used for this is required to have heat resistance and oxidation resistance. In particular, a cation exchange membrane made of a perfluorocarbon-based polymer having a sulfonic acid group has excellent characteristics. Therefore, it is widely considered. In particular, the membrane is required to have high proton selective permeability.

【0004】燃料電池の内部抵抗を低減するため、上記
陽イオン交換膜の電気抵抗を低減することが必要とさ
れ、その方法としては、膜内のスルホン酸基の量を増加
すること及び膜厚を低減することが行われている。しか
し、スルホン酸基の量が著しく増加すると膜の機械的強
度が低下し、燃料電池の長期運転において膜がクリープ
を起こしやすくなり、燃料電池の耐久性が低下する等の
問題が生じる。一方、膜厚を低減すると膜の機械的強度
が低下し、膜をガス拡散触媒層電極と接合させる場合に
加工しにくくなり、また膜自体が取扱いにくくなる等の
問題が生じ限界がある。その為特開平2001-35508に開示
されているように、フィブリル化したポリ四弗化エチレ
ンを膜内に分散させ、膜の強度を保ち、薄膜化すること
が提案されているがこれにも限界がある。より新しい優
れた材料が求められている。
In order to reduce the internal resistance of the fuel cell, it is necessary to reduce the electric resistance of the cation exchange membrane, and the method is to increase the amount of sulfonic acid groups in the membrane and to reduce the film thickness. Is being reduced. However, when the amount of the sulfonic acid group is remarkably increased, the mechanical strength of the membrane is lowered, the membrane is apt to creep in the long-term operation of the fuel cell, and the durability of the fuel cell is lowered. On the other hand, if the film thickness is reduced, the mechanical strength of the film decreases, and it becomes difficult to process the film when bonding it to the gas diffusion catalyst layer electrode, and the film itself becomes difficult to handle, and there is a limit. Therefore, as disclosed in Japanese Patent Laid-Open No. 2001-35508, it has been proposed to disperse fibrillated polytetrafluoroethylene in the film to maintain the strength of the film and reduce the film thickness. There is. Newer and better materials are needed.

【0005】また固体高分子電解質型燃料電池の燃料と
して通常水素及び酸素が用いられるが、水素の運搬には
問題が残されている。即ち、車輌に水素を搭載すること
は危険であり、その為各種の水素貯蔵運搬方法が検討さ
れているが、同時に水素を使わずメチルアルコールを燃
料とする燃料電池が活発に研究されている。しかしメチ
ルアルコールはパーフルオロカーボン重合体からなる陽
イオン交換膜を透過して燃料電池の発電効率を低下させ
る。その為、特表2000-516014に示されているようにパー
フルオロカーボン重合体からなる陽イオン交換膜にリン
酸ジルコニウム、酸化チタンなどの無機化合物を沈着さ
せ、メタノールの膜透過量を減らすことも行われている
が、膜内に沈着させる無機物の量には限界があり、メタ
ノールの膜透過量の著しい減少は難しい。
Further, hydrogen and oxygen are usually used as fuels for solid polymer electrolyte fuel cells, but problems remain in the transportation of hydrogen. That is, it is dangerous to mount hydrogen on a vehicle, and therefore various hydrogen storage and transportation methods are being studied, but at the same time, fuel cells using methyl alcohol as fuel without using hydrogen are being actively studied. However, methyl alcohol permeates the cation exchange membrane made of a perfluorocarbon polymer and reduces the power generation efficiency of the fuel cell. Therefore, as shown in Table 2000-516014, inorganic compounds such as zirconium phosphate and titanium oxide can be deposited on the cation exchange membrane made of perfluorocarbon polymer to reduce the amount of methanol permeation through the membrane. However, the amount of inorganic substances deposited in the membrane is limited, and it is difficult to significantly reduce the amount of methanol permeating the membrane.

【0006】燃料電池の電解質として無機化合物は材料
の一つとして望ましい材料である。微粉状無機イオン交
換体を膜材料として用いる一つの方法は、特許第117044
4に開示せれている。ポリ四フッ化エチレンと陽イオン
交換性無機イオン交換体の微粉末を加熱加圧成型してブ
ロックを製造したあと、フィルム状にスライスして、耐
酸化性陽イオン交換膜とすることが提案されている。し
かしポリ四フッ化エチレンは溶融しないので、出来る膜
は本質的に多孔質であり、薄膜状にスライスして膜にす
ることは工業的ではない。実際に陽イオンの選択透過性
は極めて低く、プロトンの透過性は何ら評価されていな
い。特許第1303566には含弗素系陰イオン交換性高分子
電解質と100μm以下の無機イオン交換体の微粉末を用
いてイオン交換膜とすることが報告されている。しか
し、食塩の電気分解の隔膜を目的とした膜であり、含弗
素系陰イオン交換性高分子電解質にはパーフルオロカー
ボンスルホン酸のポリマーが使われている。しかし、パ
ーフルオロカーボンスルホン酸のポリマーを用いると膜
の機械的強度が低下したり、燃料電池の長期運転におい
て膜がクリープを起こしやすくなり、燃料電池の耐久性
が低下する等の問題が生じる。膜のプロトン導電性につ
いては何ら評価されていない。
Inorganic compounds are preferable materials as one of the materials for the electrolyte of the fuel cell. One method using a finely divided inorganic ion exchanger as a membrane material is disclosed in Patent No. 117044.
It is disclosed in 4. It has been proposed that after heat-press molding a fine powder of polytetrafluoroethylene and a cation-exchangeable inorganic ion-exchanger to form a block, the block is sliced into an oxidation-resistant cation-exchange membrane. ing. However, since polytetrafluoroethylene does not melt, the resulting film is essentially porous, and slicing into a thin film into a film is not industrial. Actually, the selective permeability of cations is extremely low, and the permeability of protons has not been evaluated at all. Japanese Patent No. 1303566 reports that a fluorine-containing anion-exchange polymer electrolyte and a fine powder of an inorganic ion-exchanger of 100 μm or less are used to form an ion-exchange membrane. However, it is a membrane intended for a diaphragm for electrolysis of sodium chloride, and a polymer of perfluorocarbon sulfonic acid is used as a fluorine-containing anion-exchange polymer electrolyte. However, when a polymer of perfluorocarbon sulfonic acid is used, the mechanical strength of the membrane is lowered, and the membrane is apt to creep during long-term operation of the fuel cell, which causes the durability of the fuel cell to be lowered. There is no evaluation of the proton conductivity of the membrane.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0007】本発明者等は、耐酸化性、耐熱性を有し長
期運転が可能なプロトン導電体について鋭意検討した結
果、一方向の大きさが15μm以下の粒径を有する微粉
状無機化合物を、耐酸化性を有する含弗素高分子と極性
基を有する化合物の存在下に所定の厚みの膜状物にする
ことにより優れた燃料電池の電解質となることを見出し
た。
As a result of intensive investigations by the present inventors on a proton conductor having oxidation resistance and heat resistance and capable of long-term operation, a fine powdery inorganic compound having a particle size of 15 μm or less in one direction was selected. It has been found that forming a film having a predetermined thickness in the presence of a fluorine-containing polymer having oxidation resistance and a compound having a polar group provides an excellent fuel cell electrolyte.

【0008】本発明の膜は、高強度であって、かつ面内
の強度の異方性が少なく耐酸化性、耐熱性を有し、高い
プロトン導電性を示す。本発明の膜を用いることによ
り、出力が高く耐久性に優れる固体高分子電解質型燃料
電池を得ることが出来る。
The membrane of the present invention has high strength, little in-plane strength anisotropy, oxidation resistance and heat resistance, and high proton conductivity. By using the membrane of the present invention, a solid polymer electrolyte fuel cell having high output and excellent durability can be obtained.

【課題を解決するための手段】本発明は、微粉状の無機
化合物で一方向の大きさが15μm以下の粒径を有する
微粒子と含弗素高分子を、極性基を有する低分子化合物
の存在下に膜状に製膜することにより得られる。
According to the present invention, fine particles of an inorganic compound having a particle size of 15 μm or less in one direction and a fluorine-containing polymer are used in the presence of a low-molecular compound having a polar group. It can be obtained by forming a film into a film.

【0009】本発明者らは耐酸化性、耐熱性と高いプロ
トン導電性の観点から無機化合物を燃料電池の電解質と
して用いることを種々検討したが、無機化合物を強度の
ある薄膜にすることは難しい。そこで微粉状の無機化合
物の微粉体を耐熱性、耐酸化性がある弗素系高分子によ
り膜状に成型することを試みたところ意外と高いプロト
ン導電性を有する膜が得られることを見出して本発明を
完成した。即ち、単に無機化合物を含弗素高分子と膜状
に成型してもプロトン導電性を有する膜は得られない。
無機化合物の微粉体の粒径が一方向で少なくとも15μ
m以下の微粒子を用いるときにプロトン導電性が著しく
なる。例えば、光触媒に用いられるアナタース、ルチル
型の15μm以下、特に50nm以下のTiO2を用いた膜
は、理由は解明されていないけれども、著しく高いプロ
トン導電性を示す。このような50nm以下の超微粒子
として好適に用いられるものにBiO2, CeO2, CuO,SnO2,
Y2O3, Nb2O5, MoO3, WO3, B2O5, V2O5, Al2O3, ZrO2, S
iO2, ZnO, Cr2O3,Fe2O3, TaC, TiC, NbC, SiC, AlN, Si
3N4, BN, Zr3N4, TiN, ZrO2, HfO2, ThO 2, Y2O3, Yb
2O3, CdS等がある。また、CsHSeO4, CsHSO4, CsH2PO4
等、例えば、β-Cs3(HSO4)2[H2-x(SxP1-x)O4] (ここで
Xは0, 1) なども極めて有効である。本発明では、従来
公知の方法で作られた公知の成分の微粉体で上記粒径の
ものを用いてプロトン導電性膜状物を製造するに当た
り、必要により一種以上用いることが出来る。
The present inventors have found that they have high oxidation resistance and heat resistance
In terms of conductivity, inorganic compounds are used as fuel cell electrolytes.
Various studies were conducted on the use of the
It is difficult to make a thin film. Therefore, finely divided inorganic compounds
The fine powder of the substance is made of a fluorine-based polymer having heat resistance and oxidation resistance.
When I tried to mold it into a membrane, the unexpectedly high prototype
The present invention was found to find that a film having high conductivity is obtained.
completed. That is, the inorganic compound is simply formed into a film with a fluorine-containing polymer.
A membrane having proton conductivity cannot be obtained even if it is molded into.
The particle size of the fine particles of the inorganic compound is at least 15μ in one direction.
Proton conductivity is remarkable when using fine particles of m or less
Become. For example, anatase and rutile used for photocatalyst
Type TiO less than 15 μm, especially less than 50 nm2Membrane using
Has not been elucidated for the
It exhibits conductivity. Such ultrafine particles of 50 nm or less
BiO is suitable for use as2, CeO2, CuO, SnO2,
Y2O3, Nb2OFive, MoO3, WO3, B2OFive, V2OFive, Al2O3, ZrO2, S
iO2, ZnO, Cr2O3, Fe2O3, TaC, TiC, NbC, SiC, AlN, Si
3NFour, BN, Zr3NFour, TiN, ZrO2, HfO2, ThO 2, Y2O3, Yb
2O3, There are CdS etc. Also, CsHSeOFour, CsHSOFour, CsH2POFour 
Etc., for example, β-Cs3(HSOFour)2[H2-x(SxP1-x) OFour] (here
X is 0, 1) and so on is also very effective. In the present invention,
It is a fine powder of known ingredients made by a known method and has the above particle size.
In producing a proton conductive film
If necessary, one or more can be used.

【0010】陽イオン交換性を有する無機化合物の微粉
体で一方向の大きさが15μm以下の粒径を有する微粒
子は特に有効である。具体的にはリン酸ジルコニウム、
珪酸ジルコニウム、スズ酸ジルコニウム、タングステン
酸ジルコニウム、リン酸チタン、リン酸セリウム、ヒ酸
チタン、アンチモン酸スズなどで代表されるように、Mx
Oy(PzOw)nH2Oxなる構造をもつもので、x, y, n, z,
wは整数、MとしてZr, Ti, Sn, Th, U, セリウム、ニ
オブ、タルタンなどであり、(PzOw)はリン酸、ヒ酸、ア
ンチモン酸、バナジン酸、モリブデン酸、タングステン
酸、シュウ酸、ポリリン酸などが一般的である。
Fine particles of an inorganic compound having a cation exchange property and having a particle size of 15 μm or less in one direction are particularly effective. Specifically, zirconium phosphate,
As represented by zirconium silicate, zirconium stannate, zirconium tungstate, titanium phosphate, cerium phosphate, titanium arsenate, tin antimonate, etc., Mx
Oy (PzOw) nH 2 Ox has a structure of x, y, n, z,
w is an integer, M is Zr, Ti, Sn, Th, U, cerium, niobium, tartan, etc., and (PzOw) is phosphoric acid, arsenic acid, antimonic acid, vanadic acid, molybdic acid, tungstic acid, oxalic acid, Polyphosphoric acid and the like are common.

【0011】水酸化物、含水酸化物も有効である。即ち
一般式MxOy nH2O(x, y,nは正の整数)でしめすもので、
例えば陽イオン交換性を示すものは Mn4+, Nb5+,Ta5+,
Sb5+, Si4+, Mo6+などである。またヘテロポリ酸類と
しては、H2XY12O 40 nH2Oで示されるもので (Xは P, As,
Ge, Si など、Yは Mo, W, Vなど、nは正の整数)、例
えばモリブデン酸アンモニウム、タングストリン酸アン
モニウムなどである。
Hydroxides and hydrous oxides are also effective. I.e.
General formula MxOy nH2O (x, y, n are positive integers),
For example, those exhibiting cation exchange properties are Mn4+, Nb5+, Ta5+,
Sb5+, Si4+, Mo6+And so on. Also with heteropoly acids
Then H2XY12O 40 nH2Is denoted by O (X is P, As,
 Ge, Si, etc., Y is Mo, W, V, etc., n is a positive integer.)
For example, ammonium molybdate and tungstophosphate
Monium, etc.

【0012】シアン化錯体も陽イオン交換体として使用
することが出来る。MX[Y(CN)6]なる一般式で示されるも
のでMはアルカリ金属イオン、水素イオン、XはZn, Cu,
Ni, Mn, Cd, Fe, Ti, WO3, MoO3等の金属イオン、 Yは
Fe(II), Fe(III), Co(II)等が用いられ、例えばフェロ
シアン化ニッケル、フェロシアン化亜鉛などである。
Cyanide complexes can also be used as cation exchangers. It is represented by the general formula MX [Y (CN) 6 ], where M is an alkali metal ion, hydrogen ion, X is Zn, Cu,
Ni, Mn, Cd, Fe, Ti, WO 3 , MoO 3 and other metal ions, Y is
Fe (II), Fe (III), Co (II) and the like are used, and examples thereof include nickel ferrocyanide and zinc ferrocyanide.

【0013】含弗素高分子としては四フッ化エチレン、
三フッ化一塩化エチレン、弗化ビニール、フッ化ビニリ
デン、三フッ化エチレン、パーフルオロプロピレン、パ
ーフルオロブタジェン、パーフルオロアルキルビニルエ
ーテル、パーフルオロジビニルエーテル、2、2‐ビス
(トリフルオロメチル)‐4、5‐ジフルオロ−1、3‐ジ
オキソールなどのイオン交換性或いは容易にイオン交換
基に変換できる官能基を持たない含フッ素ビニール単量
体の重合体、或いは共重合体、必要によっては該含フッ
素ビニール単量体とエチレンのような含フッ素系でない
ビニール単量体を共重合したものなどから一種以上が好
適に用いられる。
The fluorine-containing polymer is tetrafluoroethylene,
Ethylene trifluoride monochloride, vinyl fluoride, vinylidene fluoride, ethylene trifluoride, perfluoropropylene, perfluorobutadiene, perfluoroalkyl vinyl ether, perfluorodivinyl ether, 2,2-bis (trifluoromethyl)- Polymers or copolymers of fluorine-containing vinyl monomers that do not have ion-exchange properties such as 4,5-difluoro-1,3-dioxole or functional groups that can be easily converted into ion-exchange groups, or copolymers, if necessary. One or more of those obtained by copolymerizing a fluorine vinyl monomer and a non-fluorine-containing vinyl monomer such as ethylene are preferably used.

【0014】無機化合物と含弗素高分子を均一に分散
し、且つ多くの無機化合物を膜内に存在させて膜の強度
を出すために、極性基を有する低分子化合物の存在下に
これらを、混合、製膜することが必要である。ここで言
う極性基を有する低分子化合物とはエーテル基、エステ
ル基、カルボン酸基、スルホン酸基、燐酸基、硫酸エス
テル基、チオール基、アミノ基、アンモニウム基等の極
性基を持つ分子量100乃至20000の化合物をいう。具体的
にはステアリルカルボン酸及びその塩などの長鎖アルキ
ル基をもつカルボン酸及びその塩、スルホン酸及びその
塩、リン酸及びその塩、ドデシルアルコールなどの長鎖
アルキル基をもつ脂肪族、芳香族、脂環族などのアルコ
ール類、ジオクチルフタレートなどのフタール酸エステ
ル類などである。
In order to uniformly disperse the inorganic compound and the fluorine-containing polymer, and to make many inorganic compounds exist in the film to enhance the strength of the film, these are added in the presence of a low molecular compound having a polar group, It is necessary to mix and form a film. The low-molecular compound having a polar group referred to here is an ether group, an ester group, a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, a sulfuric ester group, a thiol group, an amino group, a molecular weight of 100 or more having a polar group such as an ammonium group. It refers to 20000 compounds. Specifically, carboxylic acids and salts thereof having long-chain alkyl groups such as stearylcarboxylic acid and salts thereof, sulfonic acids and salts thereof, phosphoric acid and salts thereof, and aliphatic and aromatic compounds having long-chain alkyl groups such as dodecyl alcohol. Examples thereof include alcohols such as group and alicyclic groups, and phthalic acid esters such as dioctyl phthalate.

【0015】微粉状の無機化合物は陽イオン交換性を有
するもの、実質的に陽イオン交換性を有さないものを必
要により混合して用いることが出来る。例えば、微粉状
のリン酸ジルコニウムと微粉状の酸化チタン、酸化珪素
などを混合して用いることなどである。微粉状の無機化
合物と含弗素高分子の割合は無機化合物の量が多いと出
来た膜の電気抵抗は低く、即ち電気伝導度は高いが機械
的に弱い膜となる。また、含弗素高分子の割合を多くす
ると機械的に強い膜となるが、電気抵抗は高くなる。無
機化合物30重量部乃至80重量部とイオン交換基を実
質的に有さない含弗素高分子を70重量部乃至20重量
部の割合で含有する膜が本発明で好適に用いることが出
来る。
As the finely powdered inorganic compound, those having a cation exchange property and those having substantially no cation exchange property can be mixed and used as necessary. For example, it is possible to use a mixture of finely powdered zirconium phosphate and finely powdered titanium oxide, silicon oxide or the like. As for the ratio of the finely divided inorganic compound and the fluorine-containing polymer, when the amount of the inorganic compound is large, the resulting film has a low electric resistance, that is, a film having a high electric conductivity but a mechanically weak film. Further, if the proportion of the fluorine-containing polymer is increased, the film becomes mechanically strong, but the electric resistance becomes high. A film containing 30 parts by weight to 80 parts by weight of an inorganic compound and 70 parts by weight to 20 parts by weight of a fluorine-containing polymer having substantially no ion exchange group can be suitably used in the present invention.

【0016】また、無機化合物を含弗素高分子に均一に
分散させるために、極性基を有する低分子化合物を重量
比で含弗素高分子100部に対して、2乃至400部含有せし
めて製膜することが望ましいが、この極性基を有する低
分子化合物は膜状に製膜後、適切な溶媒、例えばメチル
アルコール、エチルアルコール、アセトン、テトラハイ
ドロフランなどの該極性基を有する低分子化合物が溶解
し、含弗素系高分子が溶解しない溶媒で抽出、除去する
ことが望ましい。
In order to uniformly disperse the inorganic compound in the fluorine-containing polymer, the low-molecular weight compound having a polar group is contained in an amount of 2 to 400 parts by weight per 100 parts of the fluorine-containing polymer to form a film. It is desirable that the low molecular weight compound having the polar group is formed into a film, and then a suitable solvent, for example, a low molecular weight compound having the polar group such as methyl alcohol, ethyl alcohol, acetone or tetrahydrofuran is dissolved. However, it is desirable to extract and remove with a solvent that does not dissolve the fluorine-containing polymer.

【0017】これら微粉状の無機化合物、含弗素高分子
及び極性基を有する低分子化合物を用いて膜を形成する
方法は限定的でなく、従来公知の膜状物を製造する方法
が何ら制限されること無く用いられる。
The method for forming a film using these finely powdered inorganic compound, fluorine-containing polymer and low molecular weight compound having a polar group is not limited, and any conventionally known method for producing a film-shaped product is not limited. Used without any.

【0018】上記三種の成分を混合し、混練する場合に
は、ゴムや樹脂材料の混練に用いられる二本ロール、カ
レンダーロール、単軸又は二軸の押出し機、高速ミキサ
ー、ニーダー、ニーダールーダー等が使用できるが、単
軸又は二軸の押出し機やニーダールーダーは、ペレタイ
ザーなどの装置と同時に用いることにより、押出しフィ
ルム化工程に使用しやすい粒状物の形(ペレット)に成
形加工できるので好ましい。
When the above three components are mixed and kneaded, a double roll, a calender roll, a single-screw or twin-screw extruder, a high speed mixer, a kneader, a kneader rudder, etc. used for kneading rubber and resin materials, etc. However, a single-screw or twin-screw extruder or a kneader ruder is preferable because it can be formed into a granular material (pellet) which can be easily used in an extrusion film forming process by using it simultaneously with an apparatus such as a pelletizer.

【0019】また、カレンダーロールの場合には直接フ
ィルム状の膜を成形できるが、この場合にはフィルムが
ロールを連続的に通過する方向に沿って、フィルムの強
度に異方性が生じる可能性があるので、温度、成型速度
等に配慮する必要がある。
Further, in the case of a calendar roll, a film-like film can be directly formed, but in this case, anisotropy may occur in the strength of the film along the direction in which the film continuously passes through the roll. Therefore, it is necessary to consider temperature, molding speed, etc.

【0020】上記の工程でフィルムの強度異方性を制御
する一つの方法としては、例えば押出し成形においてチ
ューブ状フィルムを成形する方法であるインフレーショ
ン成形法を用い、金型から吐出されるチューブに内圧を
かけて膨らませることにより、押出し方向だけではな
く、押出し方向と垂直の方向にフィルムを延伸させる方
法が有効である。同時に延伸する場合には無機化合物と
含弗素系高分子の間に隙間を生じる場合があるので、フ
イルムを再度加熱加圧プレスすることが望ましい。
As one method of controlling the strength anisotropy of the film in the above step, for example, an inflation molding method, which is a method of molding a tubular film in extrusion molding, is used, and the internal pressure is applied to the tube discharged from the mold. It is effective to stretch the film not only in the extrusion direction but also in the direction perpendicular to the extrusion direction by inflating the film. When the film is stretched at the same time, a gap may be formed between the inorganic compound and the fluorine-containing polymer, so it is desirable to heat and press the film again.

【0021】また、含弗素系高分子が溶媒に溶解すると
きには、これの粘性のある溶液に極性基を有する低分子
化合物を混合し、これに微粉状の無機化合物を分散させ
た流動性があるもの、或いは塑性のある混合物を膜状に
して、溶媒を除去することが望ましい。液状の場合には
連続的或いは、バッチで平板上に流延し、溶媒を飛散さ
せ残った膜を用いることが出来る。例えば、粘性のある
混合物を耐酸化性のある織布、不織布、多孔膜他の多孔
性基材に塗布し、連続的に溶媒を飛散させ膜とすること
も出来る。
Further, when the fluorine-containing polymer is dissolved in a solvent, a low-molecular compound having a polar group is mixed with a viscous solution of the polymer, and a fine powdery inorganic compound is dispersed in the solution to obtain a fluidity. It is desirable to remove the solvent by forming a substance or a plastic mixture into a film. In the case of a liquid, it is possible to use a film that is cast continuously or in a batch on a flat plate and the solvent is scattered to leave the film. For example, a viscous mixture may be applied to a woven fabric, a non-woven fabric, a porous film or other porous substrate having oxidation resistance, and the solvent may be continuously dispersed to form a film.

【0022】また、いずれの製膜方法でも膜の機械的強
度を出すために、耐酸化性のある織布、不織布、多孔
膜、短繊維などを膜の電気抵抗の著しい増加のない範囲
で膜内に存在させることが出来る。また、このようにし
て製膜したイオン交換膜の表面は一般にイオン交換体よ
りも弗素系高分子の方がミクロン単位の厚みで多く存在
している場合が多い。これが膜の電気伝導度を低下させ
る。また、電極触媒を付着せしめる際の接着性の向上と
も関連して、膜の両表面を研磨、或いは両表面にサンド
ブラストなどを実施して数ミクロンの表面層を削除する
ことが望ましい場合が多い。
Further, in any of the film forming methods, in order to obtain the mechanical strength of the film, an oxidation resistant woven fabric, non-woven fabric, porous film, short fiber or the like is used within a range where the electric resistance of the film does not significantly increase. It can exist inside. In addition, the surface of the ion-exchange membrane formed in this manner generally has a larger amount of the fluorine-based polymer in the thickness of micron than the ion-exchanger in many cases. This reduces the electrical conductivity of the membrane. In addition, it is often desirable to remove the surface layer of several microns by polishing both surfaces of the film or performing sandblasting on both surfaces in association with the improvement of the adhesiveness when the electrode catalyst is attached.

【0023】本発明の膜の一般的な製法を説明したが、
膜の電気抵抗を低減するために、本発明の膜は、膜の断
面に関して不均質であってもよい。即ち逆浸透膜のよう
に膜の一方の表層部だけが緻密構造で内部及び反対側表
面が多孔質であっても良い。特にこの場合望ましい構造
は膜の両表層部が緻密構造で内部は多孔質である場合で
ある。
Having described the general method of making the membranes of the present invention,
In order to reduce the electrical resistance of the membrane, the membrane of the invention may be heterogeneous with respect to the membrane cross section. That is, like a reverse osmosis membrane, only one surface layer of the membrane may have a dense structure and the inside and the opposite surface may be porous. Particularly desirable structure in this case is a case where both surface layers of the film are dense and the inside is porous.

【0024】膜状物の厚みは燃料電池の内部抵抗、機械
的強度、燃料、ガスの膜を通しての拡散、取り扱いの点
から10-300μmの範囲であることが望ましく、更に望ま
しくは20-150μmである。
From the viewpoint of internal resistance of the fuel cell, mechanical strength, diffusion of fuel and gas through the membrane, and handling, the thickness of the membrane is preferably in the range of 10-300 μm, more preferably 20-150 μm. is there.

【0025】膜状物に触媒層を形成する方法は限定的で
なく、従来公知の方法を何ら制限無く適用することが出
来る。即ち、可溶性白金族塩の溶液に膜を浸漬し、該塩
を膜内、膜面に吸着、イオン交換させ、次いでヒドラジ
ン、Na2BO4のような還元剤溶液に浸漬して、膜面に金属
を析出させる方法、予めポリ四弗化エチレンとトーマス
法等で合成した白金黒を均一に混合し薄膜に加圧成型
後、本発明のプロトン導電性膜の両面に加圧圧着する方
法、白金族金属をターゲットにして高真空下でスパッタ
により白金族金属を膜面上に析出させる方法、また、特
表2000-516014記載の方法によりイオン交換基を有する
パーフルオロカーボンポリマー、白金族触媒、微粉状炭
素(カーボンブラック)その他添加物で調整した触媒層
からなる組成物をプロトン導電性膜状物面上に、塗布、
噴霧、印刷などや他の何らかの方法で存在せしめる方法
などで、特に限定されるものではない。例えば塗布する
場合には液の粘度を1から102ポイズの範囲に調節し
ておくことが望ましい。この粘度は、(i)粒子サイズ
を選択するか、(ii)触媒活性粒子と結合剤の組成を
利用するか、(iii)水の含有量を調整するか、或は
(iv)好適には粘度調節剤、例えばカルボキシメチル
セルロース、メチルセルロース、ヒドロキシエチルセル
ロースおよびセルロースなど、およびポリエチレングリ
コール、ポリビニルアルコール、ポリビニルピロリド
ン、ポリアクリル酸ナトリウムおよびポリメチルビニル
エーテルなどを添加することなどで調節可能である。触
媒層は多孔質でなければならない。一般に平均孔直径は
好適には0.01から50μm、最も好適には0.1か
ら30μmの範囲にする。それの間隙率は一般に10か
ら99%、好適には10から60%の範囲にする。ま
た、触媒の付着方法により担持する量は異なるが、上記
膜の表面に触媒粒子を約0.02mg/cm2から約20m
g/cm2の範囲で付着されていればその方法は限定さ
れるものではない。
The method for forming the catalyst layer on the film-like material is not limited, and conventionally known methods can be applied without any limitation. That is, the membrane is immersed in a solution of a soluble platinum group salt, the salt is adsorbed on the membrane surface of the membrane, ion-exchanged, and then immersed in a reducing agent solution such as hydrazine and Na 2 BO 4 to form a membrane surface. A method of precipitating a metal, a method of uniformly mixing platinum tetrafluoride and platinum black previously synthesized by the Thomas method, etc., followed by pressure molding into a thin film, and then pressure bonding to both sides of the proton conductive membrane of the present invention, platinum A method of depositing a platinum group metal on a film surface by sputtering with a group metal as a target under high vacuum, and a perfluorocarbon polymer having an ion exchange group, a platinum group catalyst, and a fine powder by the method described in Tokuyo 2000-516014. Applying a composition comprising a catalyst layer adjusted with carbon (carbon black) and other additives onto the surface of the proton conductive film,
There is no particular limitation on the method such as spraying, printing, etc., and the method of making it exist by some other method. For example, when applying, it is desirable to adjust the viscosity of the liquid in the range of 1 to 10 2 poise. This viscosity can be determined by (i) selecting particle size, (ii) utilizing the composition of catalytically active particles and binder, (iii) adjusting the water content, or (iv) preferably It can be adjusted by adding viscosity modifiers such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose and cellulose, and polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, sodium polyacrylate and polymethyl vinyl ether. The catalyst layer must be porous. Generally, the average pore diameter is preferably in the range of 0.01 to 50 μm, most preferably 0.1 to 30 μm. Its porosity is generally in the range of 10 to 99%, preferably 10 to 60%. Further, although the amount of the catalyst to be supported varies depending on the method of depositing the catalyst, the catalyst particles are present on the surface of the membrane in an amount of about 0.02 mg / cm 2 to about 20 m.
The method is not limited as long as it is deposited in the range of g / cm 2 .

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0026】本発明のプロトン導電性膜状物は両面に多
孔質の触媒層を付着させ、その触媒層に接触して多孔質
の導電性集電体を配し、膜の両側の部屋の一方には常圧
或いは加圧された水素ガス或いはメタノール水溶液を配
し、他方の部屋には常圧或いは加圧された酸素或いは空
気を配して、水素或いはメタノールと酸素が反応して生
じる電気エネルギーを取り出す。またこれを単位として
直列或いは並列に多数の上記単位を配して、必要な電力
を取り出すものである。
The proton-conducting membrane of the present invention has a porous catalyst layer attached on both sides, and a porous conductive current collector is arranged in contact with the catalyst layer to provide a catalyst on one side of the membrane. Atmospheric pressure or pressurized hydrogen gas or aqueous methanol solution is placed in the room, and atmospheric pressure or pressurized oxygen or air is placed in the other room, and electric energy generated by the reaction of hydrogen or methanol with oxygen. Take out. In addition, a large number of the above units are arranged in series or in parallel with this as a unit to take out the required electric power.

【0027】[0027]

【実施例】以下に本発明の内容を実施例によって具体的
に説明するが、これら実施例によって本発明は何ら拘束
されるものではない。尚、実施例中で膜の電気抵抗は膜
を1.0規定塩酸に平衡にして1000サイクル交流(Hewlett
Packard社製 LCR Meter 4263)で25.0℃において測定
した値である。また、機械的強度はミューレン破裂試験
機(株式会社東洋精機製作所)で室温にて測定した値で
ある。イオン交換容量は膜を1.0規定塩酸に平衡にした
後、メチルアルコールで洗浄し、該メチルアルコールが
pH指示薬メチルオレンジで着色しなくなるまで洗浄し、
次いで0.5規定食塩水に浸漬し、ナトリウムとイオン交
換した水素イオンを指示薬としてメチルオレンジを用い
て、0.1規定苛性ソーダで滴定して求めた値を膜の乾燥
重量で除して求めた。膜の含水量は上記で測定に使用し
た膜を純水で洗浄した後、膜の両面を濾紙で拭き過剰の
水を除いた後、秤量して、これを膜の湿潤重量とした。
次いで、100℃の空気乾燥機で5時間乾燥した後、秤量
した。これを膜の乾燥重量とし、湿潤重量と乾燥重量の
差を乾燥重量で除した値を含水量とした。また、メタノ
ールの膜透過性については、脱イオン水に10体積%の
メタノ-ルが溶解している溶液の加圧下(10 Mpa)での
膜透過液中のメタノールの割合をガスクロマトグラフで
測定したものである。
EXAMPLES The contents of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, the electric resistance of the membrane is 1000 cycles of alternating current (Hewlett
It is the value measured at 25.0 ° C. by Packard LCR Meter 4263). The mechanical strength is a value measured at room temperature with a Murren burst tester (Toyo Seiki Seisakusho Co., Ltd.). The ion exchange capacity was measured by equilibrating the membrane to 1.0 N hydrochloric acid and then washing with methyl alcohol.
Wash with the pH indicator methyl orange until it no longer colors,
Then, it was dipped in 0.5N saline and the hydrogen ion ion-exchanged with sodium was titrated with 0.1N caustic soda using methyl orange as an indicator to divide the value by the dry weight of the membrane. The water content of the membrane was determined by washing the membrane used in the above measurement with pure water, wiping both sides of the membrane with filter paper to remove excess water, and then weighing the wet weight of the membrane.
Then, after drying with an air dryer at 100 ° C. for 5 hours, it was weighed. This was taken as the dry weight of the membrane, and the value obtained by dividing the difference between the wet weight and the dry weight by the dry weight was taken as the water content. Regarding the membrane permeability of methanol, the proportion of methanol in the membrane permeate under pressure (10 Mpa) of a solution in which 10% by volume of methanol was dissolved in deionized water was measured by gas chromatography. It is a thing.

【0028】[0028]

【実施例1】ポリ弗化ビニリデン(呉羽化学、KFポリマ
ー、#1300)をNメチルピロリドンに12wt%として溶解
し、均一粘稠なポリマー溶液とした。この溶液200部
にジブチルフタレートを30部加えて均一に混合した。次
いで、平均粒径約1μm弱の六角燐片状のリン酸ジルコ
ニウム(東亜合成製)30部を加え均一に混合した。この
粘稠な混合物を水平にしたガラス板上に流延し、加熱し
て溶媒を飛散させた。残ったフィルムをメチルアルコー
ルに浸漬し、膜内のジブチルフタレートを抽出してプロ
トン導電性膜状物とした。得られた膜は厚みが80μm
で、1.0規定塩酸に平衡にして電気抵抗を測定したとこ
ろ0.13Ωcm2であった。膜のイオン交換容量は1.82ミリ
当量/グラム(乾燥膜)で、含水量は0.35であった。ま
た、機械的強度は0.8kgf/cmであった。この膜を銀―
塩化銀電極を備えた有効通電面積10cmのアクリル樹脂
製の二室電気透析槽に組み込み、両室に0.50Nの食塩水
溶液を入れて電流密度1A/dm2で一時間電気透析した。電
気透析後陽極室と陰極室の濃度変化とデジタル電量計
(日厚計測、デジタルクーロメーター、NDCM-4)で測定
した通電電気量から輸率(電流効率)を求めたところ、
95%であった。
Example 1 Polyvinylidene fluoride (Kureha Chemical Co., Ltd., KF polymer, # 1300) was dissolved in N-methylpyrrolidone in an amount of 12 wt% to prepare a uniform viscous polymer solution. To 200 parts of this solution, 30 parts of dibutyl phthalate was added and uniformly mixed. Then, 30 parts of hexagonal scaly zirconium phosphate (manufactured by Toagosei) having an average particle size of slightly less than about 1 μm was added and mixed uniformly. The viscous mixture was cast on a horizontal glass plate and heated to disperse the solvent. The remaining film was immersed in methyl alcohol, and dibutyl phthalate in the film was extracted to obtain a proton conductive film. The film obtained has a thickness of 80 μm.
The electric resistance was 0.13 Ωcm 2 when equilibrated with 1.0 N hydrochloric acid and the electric resistance was measured. The ion exchange capacity of the membrane was 1.82 meq / g (dry membrane) and the water content was 0.35. The mechanical strength was 0.8 kgf / cm 2 . This film is silver
It was installed in a two-chamber electrodialysis tank made of acrylic resin with an effective current-carrying area of 10 cm 2 equipped with a silver chloride electrode, 0.50 N saline solution was put into both chambers, and electrodialysis was performed at a current density of 1 A / dm 2 for 1 hour. After electrodialysis, when the transport number (current efficiency) was calculated from the concentration changes in the anode chamber and cathode chamber and the energized electricity measured with a digital coulometer (day thickness measurement, digital coulometer, NDCM-4),
It was 95%.

【0029】[0029]

【実施例2】ダイキン製PFA(4弗化エチレンとパーフル
オロアルキルビニールエーテルの共重合体、ネオフロン
PFAペレットAP-201)200部に3弗化1塩化エチレンのオ
リゴマー(ダイフロイル #20、ダイキン製)200部
を混合し、ミキサーで溶融混錬して後、平均粒径約1μ
m弱の六角燐片状のリン酸ジルコニウム(東亜合成製)
を350部加えて更に均一混錬し、ペレタイザーでペレッ
トとした。これをTダイにかけて押出し、厚みが200μm
のフイルムに成型した。更にこのフイルムを加圧ローラ
ーにかけ、50μmのフイルムとした。この膜をジクロロ
エチレンに浸漬してオリゴマーを抽出除去した。次いで
得られたプロトン導電性膜状物を加圧した温水(110
℃)のなかで加熱膨潤させたのち、1.0規定塩酸に平衡
にして測定した電気抵抗は、0.2Ωcm2であった。膜の
イオン交換容量と機械的強度はそれぞれ1.54ミリ当量/
グラム(乾燥膜)と0.6kgf/cmあった、含水量は0.32
であった。実施例1と同様にして膜の輸率を求めたとこ
ろ、93%であった。
Example 2 Daikin PFA (copolymer of ethylene tetrafluoride and perfluoroalkyl vinyl ether, NEOFLON
200 parts of PFA pellets AP-201) and 200 parts of an oligomer of ethylene trifluoride monochloride (Daifloyl # 20, made by Daikin) are mixed, melted and kneaded with a mixer, and then the average particle diameter is about 1 μ
Hexagonal scale-like zirconium phosphate of a little m (manufactured by Toa Gosei)
Was added to 350 parts and kneaded further uniformly, and pelletized with a pelletizer. This is applied to a T-die and extruded to a thickness of 200 μm.
It was molded into a film. Further, this film was applied to a pressure roller to give a film of 50 μm. This membrane was immersed in dichloroethylene to extract and remove the oligomer. Next, hot water (110
After heated swell among ° C.), 1.0 the electric resistance measured by equilibrium N hydrochloric acid was 0.2Ωcm 2. The ion exchange capacity and mechanical strength of the membrane are 1.54 meq /
Gram (dry film) and 0.6 kgf / cm 2 , water content was 0.32
Met. When the transport number of the membrane was determined in the same manner as in Example 1, it was 93%.

【0030】[0030]

【実施例3】ZrOCl 8H2Oを1規定塩酸に溶解し、4規定
の塩化ジルコニウム溶液とした。これにPO4/Zr比で2倍
当量のリン酸を加えリン酸ジルコニウムの沈殿を得た。
これをろ過、水洗、乾燥後、ボールミルで粉砕し分級し
て約粒径1μm以下の微粉末を得た。これとポリ弗化ビ
ニリデンビン(呉羽化学、KFポリマー、#1300)を表1
の割合でNメチルピロリドンに分散及び溶解した。これに
シクロヘキサノンをポリ弗化ビニリデンに対して30部
加えて、ホモジナイザーで均一に攪拌し極めて粘稠な混
合物とした。これを水平にした平板上に流延し、加熱し
溶媒を飛散させた。得られた膜はエチルアルコール中に
浸漬し、抽出可能な成分を除去した後、1規定塩酸中に
平衡にしてプロトン導電性膜状物を得た。
Example 3 ZrOCl 8H 2 O was dissolved in 1N hydrochloric acid to prepare a 4N zirconium chloride solution. To this, twice the equivalent of phosphoric acid in PO 4 / Zr ratio was added to obtain a precipitate of zirconium phosphate.
This was filtered, washed with water, dried, pulverized with a ball mill and classified to obtain a fine powder having a particle size of about 1 μm or less. Table 1 shows this and polyvinylidene fluoride (Kureha Chemical, KF Polymer, # 1300).
Was dispersed and dissolved in N-methylpyrrolidone. To this, 30 parts of cyclohexanone was added to polyvinylidene fluoride and uniformly stirred with a homogenizer to obtain an extremely viscous mixture. This was cast on a horizontal plate and heated to disperse the solvent. The obtained membrane was immersed in ethyl alcohol to remove extractable components, and then equilibrated in 1N hydrochloric acid to obtain a proton conductive membrane.

【表1】 1) 重量による。 2) ポリフッ化ビニリデン 3) 平均粒径約1μmのリン酸ジルコニウム 4) 比抵抗を示す。(Ωcm) 5) kgf/cm2 6) ミリ当量/グラム(乾燥膜) 7) 加圧下での膜透過液中のメタノールの割合(体積
%)。
[Table 1] 1) By weight. 2) Polyvinylidene fluoride 3) Zirconium phosphate with an average particle size of about 1 μm 4) It shows a specific resistance. (Ωcm) 5) kgf / cm 2 6) Milli-equivalent / gram (dry membrane) 7) Proportion of methanol (volume%) in the membrane permeate under pressure.

【0031】[0031]

【実施例4】ポリ弗化ビニリデンビン(呉羽化学、KFポ
リマー、#1300)40部を300部のNメチルピロリド
ンに溶解した。このポリ弗化ビニリデンに対して平均粒
径約4μm弱のリン酸チタニウム(東亜合成製)を60
部加え、均一に混合分散した。ついで、これにジブチル
フタレートをポリ弗化ビニリデンビンに対して表2の割
合で加えて、ホモジナイザーで均一に攪拌し極めて粘稠
なスラリー状の混合物を得た。これを水平にした平板上
に流延し、100℃に加熱し溶媒を飛散させた。得られ
た膜はエチルアルコール中に浸漬し、抽出成分を除去し
た後、1.0規定塩酸中に平衡にしてプロトン導電性膜状
物とした。なお、表中電気抵抗は1.0規定塩酸に平衡に
して25.0℃で測定した値である。
Example 4 40 parts of polyvinylidene fluoride (Kureha Chemical Co., KF polymer, # 1300) was dissolved in 300 parts of N-methylpyrrolidone. To this polyvinylidene fluoride, 60 parts of titanium phosphate (made by Toa Gosei) having an average particle diameter of about 4 μm is used.
Part of the mixture was added and uniformly mixed and dispersed. Then, dibutyl phthalate was added to this at a ratio of Table 2 to polyvinylidene fluoride and uniformly stirred with a homogenizer to obtain an extremely viscous slurry mixture. This was cast on a horizontal flat plate and heated to 100 ° C. to scatter the solvent. The obtained membrane was immersed in ethyl alcohol to remove extracted components, and then equilibrated in 1.0N hydrochloric acid to give a proton conductive membrane. The electric resistance in the table is a value measured at 25.0 ° C. after equilibrating with 1.0 N hydrochloric acid.

【表2】 1) 重量による。 2) ポリフッ化ビニリデン 3) 平均粒径約4μm弱のリン酸チタニウム 4) ジブチルフタレート 5) 比抵抗(Ωcm) 6) kgf/cm2 7)ミリ当量/g(乾燥膜)[Table 2] 1) By weight. 2) Polyvinylidene fluoride 3) Titanium phosphate with an average particle size of less than 4 μm 4) Dibutyl phthalate 5) Specific resistance (Ωcm) 6) kgf / cm 2 7) Meq / g (dry film)

【0032】[0032]

【実施例5】粒径7nmのアナタース型酸化チタン(石原
産業(株)製、ST-01)30部を弗化ビニリデンの12%N-
メチルピロリドン溶液の400部に分散し、これにジオク
チルフタレート30部を加え、充分に攪拌、混合したのち
水平にした平板上に流延し、80℃に加熱乾燥して、厚さ
60μmのフイルムを得た。これをアセトンに浸漬してジ
オクチルフタレートを除去してプロトン導電性膜状物と
した。これを1.0規定の塩酸水溶液に平衡にして電気抵抗
を測定したところ0.2Ωcm2であった。膜の含水量は0.30
であった。
[Example 5] 30 parts of anatase-type titanium oxide (ST-01 manufactured by Ishihara Sangyo Co., Ltd.) having a particle size of 7 nm was mixed with 12% N- of vinylidene fluoride.
Disperse in 400 parts of methylpyrrolidone solution, add 30 parts of dioctyl phthalate to this, stir and mix well, cast on a flat plate that has been leveled, heat and dry to 80 ° C, and thickness
A 60 μm film was obtained. This was immersed in acetone to remove dioctyl phthalate to obtain a proton conductive film. When this was equilibrated with a 1.0 N aqueous hydrochloric acid solution and the electrical resistance was measured, it was 0.2 Ωcm 2 . The water content of the membrane is 0.30
Met.

【0033】[0033]

【実施例6】酸化チタンの粒径の異なるものを合成し
た。粒径の制御は結晶成長の際の熟成時間を制御して行
った。生成した酸化チタン60部に対してジメチルフォル
ムアミドの10%溶液となったポリフッ化ビニリデン溶液
700部を均一に混合し、これにジオクチルフタレート50
部を加え粘稠、均一なスラリー状のものとした。これら
を水平にした平板に流し、加熱して溶媒を飛散させ、厚
さ100μmのフイルムとした。次いでこれをエチルアル
コールに浸漬してプロトン導電性膜状物とした。これの
電気抵抗と機械的強度及び加圧下での透水量を測定し
た。
Example 6 Titanium oxides having different particle sizes were synthesized. The grain size was controlled by controlling the aging time during crystal growth. Polyvinylidene fluoride solution that is a 10% solution of dimethylformamide in 60 parts of titanium oxide
Mix 700 parts uniformly and add 50 parts of dioctyl phthalate
Parts were added to make a viscous, uniform slurry. These were poured onto a horizontal flat plate and heated to disperse the solvent to obtain a film having a thickness of 100 μm. Then, this was immersed in ethyl alcohol to obtain a proton conductive film. The electrical resistance, mechanical strength, and water permeation amount under pressure of this were measured.

【表3】 1)Ωcm2 2)kgf/cm2 3)cm3/sec. cm2.Mpa ×105 4)(乾燥膜重量−湿潤膜重量)/乾燥膜重量)[Table 3] 1) Ω cm 2 2) kgf / cm 2 3) cm 3 / sec. Cm 2. Mpa × 10 5 4) (dry film weight-wet film weight) / dry film weight)

【0034】[0034]

【実施例7】平均粒径1μmの燐酸ジルコニウムと粒径
5nmの酸化珪素(レオロシル、MT-10,(株)トクヤマ製)
を3:2で混合し、これの300部に対して4弗化エチレンと
パーフルオロアルキルビニールエーテルの共重合体240
部を混合し、これにパーフルオロプロピレンのオリゴマ
ー300部を加え400℃に加熱混合溶融してペレットとし
た。これをインフレーション成形機で押出し成型し厚み
が150μmの膜とした。これを更に二軸方向に延伸し,更
に加熱圧延ロールにかけて、厚み30μmの膜とした。膜
を1、1、3トリクロロトリフルオロエチレンで充分に抽
出してパーフルオロプロピレンのオリゴマーを除去し、
本発明のプロトン導電性膜状物とした。電気抵抗を上と
同様の条件で測定したところ、0.25Ωcmで、含水
量は0.45であった。陽イオンの輸率は94%であった。
Example 7 Zirconium phosphate having an average particle size of 1 μm and silicon oxide having a particle size of 5 nm (Leorosyl, MT-10, manufactured by Tokuyama Corp.)
Was mixed in a ratio of 3: 2, and to 300 parts of this, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether 240
300 parts of a perfluoropropylene oligomer was added thereto, and the mixture was heated and mixed at 400 ° C. to be melted into pellets. This was extruded by an inflation molding machine to form a film having a thickness of 150 μm. The film was further biaxially stretched and further heated and rolled to obtain a film having a thickness of 30 μm. The membrane is thoroughly extracted with 1,1,3 trichlorotrifluoroethylene to remove the perfluoropropylene oligomers,
The proton-conducting film of the present invention is used. When the electric resistance was measured under the same conditions as above, it was 0.25 Ωcm 2 and the water content was 0.45. The cation transport number was 94%.

【0035】[0035]

【実施例8】平均粒径約4μm弱のリン酸チタニウム(東
亜合成製)と粒径7nmのアナタース型酸化チタンを4:2
で混合し、これの300部に対して4弗化エチレンとパーフ
ルオロアルキルビニールエーテルの共重合体240部を混
合し、これにパーフルオロプロピレンのオリゴマー300
部を加え400℃に加熱混合してペレットとした。これをT
ダイで押出成型し厚みが150μmの膜とした。これを更
に二軸方向に延伸し,更に加熱圧延ロールにかけて、厚
み30μmの膜とした。膜を1、1、3トリクロロトリフルオ
ロエチレンで充分に抽出して本発明の膜とした。電気抵
抗を上と同様の条件で測定したところ、0.20Ωcm
で、含水量は0.32であった。陽イオンの輸率を実施例1
と同様にして測定したところ、95%であった。
Example 8 Titanium phosphate (produced by Toagosei) having an average particle diameter of about 4 μm and anatase type titanium oxide having a particle diameter of 7 nm are 4: 2.
And 400 parts of a copolymer of ethylene tetrafluoride and perfluoroalkyl vinyl ether is mixed with 300 parts of this, and the perfluoropropylene oligomer 300
Parts were added, and the mixture was heated and mixed at 400 ° C. to obtain pellets. This is T
It was extruded with a die to form a film having a thickness of 150 μm. The film was further biaxially stretched and further heated and rolled to obtain a film having a thickness of 30 μm. The membrane was sufficiently extracted with 1,1,3 trichlorotrifluoroethylene to obtain the membrane of the present invention. The electric resistance was measured under the same conditions as above, and it was 0.20 Ωcm 2.
The water content was 0.32. Example 1 for the transport number of cations
It was 95% when measured in the same manner as.

【0036】[0036]

【発明の効果】本発明により水素―酸素、メタノール―
酸素燃料電池の作動温度を向上させ、且つ安定して運転
できる。
According to the present invention, hydrogen-oxygen, methanol-
The operating temperature of the oxygen fuel cell can be improved, and stable operation can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1に本発明の膜の表面に電極を形成させた膜
電極一体化物と燃料電池の電解質としての使用の例を示
す。特に本発明の膜表面に電極を形成させた膜電極一体
化物はプロトンが膜を透過する電気化学装置で何ら制限
なく使用できる。燃料電池では、矢印6で示す燃料源、
例えば、陽極室から供給される水素ガス、メタノール
(典型的にはメタノール/水溶液)などと矢印7で示す
酸化剤、例えば、陰極室に供給される空気または酸素な
どを利用する。膜1は電解質(プロトン導電体)として
働き、かつ陽極室を陰極室から分離している。この電池
から発生する電流を取り出す目的で、多孔質の陽極電流
集電体4と多孔質の陰極電流集電体5を設ける。陰極と
して機能する触媒層3を、触媒層を担持した膜1の陰極
に面する表面と陰極電流集電体5を接触させる。陽極と
して機能する触媒層2を、膜1の陽極に面する表面と陽
極電流集電体4を接触させる。陰極電流集電体5を正端
子8に電気的に接続し、そして陽極電流集電体4を負端
子9に電気的に接続する。
FIG. 1 shows an example of a membrane electrode integrated product having an electrode formed on the surface of the membrane of the present invention and use as an electrolyte of a fuel cell. In particular, the integrated membrane electrode having an electrode formed on the membrane surface of the present invention can be used without any limitation in an electrochemical device in which protons permeate the membrane. In the fuel cell, the fuel source indicated by arrow 6,
For example, hydrogen gas supplied from the anode chamber, methanol (typically methanol / aqueous solution) and the oxidant indicated by the arrow 7 are used, for example, air or oxygen supplied to the cathode chamber. The membrane 1 acts as an electrolyte (proton conductor) and separates the anode chamber from the cathode chamber. A porous anode current collector 4 and a porous cathode current collector 5 are provided for the purpose of extracting the current generated from this battery. The catalyst layer 3 functioning as the cathode is brought into contact with the cathode-side surface of the catalyst layer-carrying membrane 1 facing the cathode. The catalyst layer 2 functioning as an anode is brought into contact with the anode-facing surface of the membrane 1 and the anode current collector 4. Cathode current collector 5 is electrically connected to positive terminal 8 and anode current collector 4 is electrically connected to negative terminal 9.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 7/00 C08K 7/00 C08L 27/12 C08L 27/12 H01M 8/10 H01M 8/10 Fターム(参考) 4F071 AA24 AA26 AA27X AA30X AB18 AB25 AC10 AH15 BB02 BB06 BC01 BC12 4J002 BD141 BD151 BE041 DE138 DH046 EH147 GQ00 5H026 AA06 CX05 EE11 EE19 HH03 HH05 Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) C08K 7/00 C08K 7/00 C08L 27/12 C08L 27/12 H01M 8/10 H01M 8/10 F term (reference) 4F071 AA24 AA26 AA27X AA30X AB18 AB25 AC10 AH15 BB02 BB06 BC01 BC12 4J002 BD141 BD151 BE041 DE138 DH046 EH147 GQ00 5H026 AA06 CX05 EE11 EE19 HH03 HH05

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】微粉状無機化合物30重量部乃至80重量
部とイオン交換基を実質的に有さない含弗素高分子を7
0重量部乃至20重量部の割合で含有する組成物よりな
る緻密構造を有することを特徴とする燃料電池用隔膜。
1. 30 to 80 parts by weight of a finely powdered inorganic compound and 7 parts by weight of a fluorine-containing polymer having substantially no ion exchange group.
A membrane for a fuel cell, which has a dense structure made of a composition containing 0 to 20 parts by weight.
【請求項2】微粉状無機化合物が一方向の大きさが15
μm以下の粒径を有する微粒子である請求項1記載の燃
料電池用隔膜。
2. The finely divided inorganic compound has a unidirectional size of 15
The membrane for a fuel cell according to claim 1, which is fine particles having a particle diameter of not more than μm.
【請求項3】無機化合物が陽イオン交換性を有する微粒
子である請求項1、2記載の燃料電池用隔膜。
3. The membrane for a fuel cell according to claim 1, wherein the inorganic compound is fine particles having a cation exchange property.
【請求項4】無機化合物が酸化チタンである請求項1及
び2の燃料電池用隔膜。
4. The membrane for a fuel cell according to claim 1, wherein the inorganic compound is titanium oxide.
【請求項5】組成物が、含弗素高分子100重量部に対し
て、極性基を有する低分子化合物を2乃至400重量部を
含有せしめて製膜した請求項1、2、3及び4記載の燃
料電池用隔膜。
5. The composition according to claim 1, 2, 3 or 4, wherein 2 to 400 parts by weight of a low molecular weight compound having a polar group is contained in 100 parts by weight of a fluorine-containing polymer to form a film. Membrane for fuel cells.
【請求項6】膜状物の厚みが10-300μmである請求項1
−4にいずれか記載の燃料電池用隔膜。
6. The thickness of the membranous material is 10-300 μm.
4. The membrane for a fuel cell according to any one of 4 above.
【請求項7】膜状物の両面に白金族元素を主成分とする
触媒層を備えた請求項1−6のいずれかに記載の燃料電
池用隔膜。
7. The membrane for a fuel cell according to claim 1, wherein a catalyst layer containing a platinum group element as a main component is provided on both sides of the membrane material.
【請求項8】請求項1−7記載の燃料電池用隔膜を使用
した燃料電池。
8. A fuel cell using the diaphragm for a fuel cell according to claim 1.
JP2001267039A 2001-09-04 2001-09-04 Proton conductive membrane for fuel cell Pending JP2003077492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001267039A JP2003077492A (en) 2001-09-04 2001-09-04 Proton conductive membrane for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001267039A JP2003077492A (en) 2001-09-04 2001-09-04 Proton conductive membrane for fuel cell

Publications (1)

Publication Number Publication Date
JP2003077492A true JP2003077492A (en) 2003-03-14

Family

ID=19093228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001267039A Pending JP2003077492A (en) 2001-09-04 2001-09-04 Proton conductive membrane for fuel cell

Country Status (1)

Country Link
JP (1) JP2003077492A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011697A (en) * 2003-06-19 2005-01-13 Toyota Motor Corp Proton exchange material and fuel cell electrode using the same
WO2005020357A1 (en) * 2003-08-22 2005-03-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid polymer fuel cell
WO2005060039A1 (en) * 2003-12-17 2005-06-30 Ballard Power Systems Inc. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
JP2009016156A (en) * 2007-07-04 2009-01-22 National Institute For Materials Science Proton conductor for fuel cell and its manufacturing method
CN100466348C (en) * 2004-06-22 2009-03-04 旭硝子株式会社 Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2009514174A (en) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー High durability fuel cell components with cerium oxide additive
JP2009521579A (en) * 2005-12-22 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for producing chemically stabilized ionomers containing inorganic fillers
KR100972525B1 (en) 2003-12-17 2010-07-28 비디에프 아이피 홀딩스 리미티드 Membrane electrode assembly for reducing degradation of ion-exchange membranes in electrochemical fuel cells, fuel cells comprising the same, and fuel cell stacks comprising the fuel cells
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005011697A (en) * 2003-06-19 2005-01-13 Toyota Motor Corp Proton exchange material and fuel cell electrode using the same
WO2005020357A1 (en) * 2003-08-22 2005-03-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Solid polymer fuel cell
JP2005071760A (en) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc Solid high polymer fuel cell
CN100413135C (en) * 2003-08-22 2008-08-20 丰田自动车株式会社 Solid polymer fuel cell
US7537857B2 (en) 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
WO2005060039A1 (en) * 2003-12-17 2005-06-30 Ballard Power Systems Inc. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
KR100972525B1 (en) 2003-12-17 2010-07-28 비디에프 아이피 홀딩스 리미티드 Membrane electrode assembly for reducing degradation of ion-exchange membranes in electrochemical fuel cells, fuel cells comprising the same, and fuel cell stacks comprising the fuel cells
CN100466348C (en) * 2004-06-22 2009-03-04 旭硝子株式会社 Liquid composition, method for producing the same, and method for producing membrane electrode assembly for solid polymer fuel cell
JP2006210349A (en) * 2005-01-26 2006-08-10 Samsung Sdi Co Ltd Polymer electrolyte film for fuel cell, its manufacturing method, and fuel cell system containing this
US7803495B2 (en) 2005-01-26 2010-09-28 Samsung Sdi Co., Ltd. Polymer electrolyte membrane for fuel cell, method for preparing the same, and fuel cell system comprising the same
US9847533B2 (en) 2005-09-26 2017-12-19 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US8652705B2 (en) 2005-09-26 2014-02-18 W.L. Gore & Associates, Inc. Solid polymer electrolyte and process for making same
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
JP2009514174A (en) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー High durability fuel cell components with cerium oxide additive
JP2016129139A (en) * 2005-10-28 2016-07-14 スリーエム イノベイティブ プロパティズ カンパニー High durability fuel cell component with cerium oxide additive
JP2009521579A (en) * 2005-12-22 2009-06-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Process for producing chemically stabilized ionomers containing inorganic fillers
JP2007280688A (en) * 2006-04-04 2007-10-25 Tokuyama Corp Diaphragm for direct liquid type fuel cell
JP2009016156A (en) * 2007-07-04 2009-01-22 National Institute For Materials Science Proton conductor for fuel cell and its manufacturing method
US8241814B2 (en) 2007-12-14 2012-08-14 W. L. Gore & Associates, Inc. Highly stable fuel cell membranes and methods of making them
US7989115B2 (en) 2007-12-14 2011-08-02 Gore Enterprise Holdings, Inc. Highly stable fuel cell membranes and methods of making them

Similar Documents

Publication Publication Date Title
EP1066656B1 (en) Ion conductive matrixes and their use
US9627702B2 (en) Electrolyte emulsion and process for producing same
KR101257117B1 (en) Durable Fuel Cell
EP1760812B1 (en) Liquid composition, process for its production, and process for producing membrane electrode assembly for polymer electrolyte fuel cell
KR101870064B1 (en) Ionomer having high oxygen permeability
EP3076465A1 (en) Polymer electrolyte membrane
EP1998393A1 (en) Electrolyte membrane and solid polymer fuel cell
CN112144076B (en) Integrated membrane electrode and preparation method and application thereof
JP2003077492A (en) Proton conductive membrane for fuel cell
JPH09251857A (en) Solid ion conductor
EP1912272A1 (en) Electrolyte membrane for use in solid polymer-type fuel cell, process for production of the membrane and membrane electrode assembly for use in solid polymer-type fuel cell
JPWO2010044436A1 (en) Reinforcing electrolyte membrane for fuel cell, membrane-electrode assembly for fuel cell, and polymer electrolyte fuel cell including the same
JPH06231779A (en) Solid high polymer electrolytic type fuel cell
CN113454270A (en) Laminated electrolyte membrane, membrane electrode assembly, water electrolysis type hydrogen generator, and method for producing laminated electrolyte membrane
US9631105B2 (en) PPS electrode reinforcing material/crack mitigant
WO2007024003A1 (en) Ion-conductive material, solid polymer electrolyte membrane, and fuel battery
JP2013095757A (en) Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode composite, and solid polymer electrolyte fuel cell
JP6890467B2 (en) Polymer electrolyte membrane, electrode catalyst layer, membrane electrode assembly, and polymer electrolyte fuel cell
JPWO2002072694A1 (en) Fluorine ion exchange resin precursor composition
JP2010138325A (en) Proton conductive composite electrolyte membrane, and membrane electrode assembly and fuel cell using the same
CN101797483B (en) Doped and crosslinked multilayer perfluorinated ionic membrane and preparation method thereof
US20140045093A1 (en) Imbibing PolyPhenyleneSulfide (PPS) and Sulfonated-PPS Fibers with Ionomer
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JP7106002B2 (en) Polymer electrolyte membrane, membrane electrode assembly, solid polymer electrolyte fuel cell, and method for producing polymer electrolyte membrane
KR20170063008A (en) Polymer electrolyte composite membrane with low permeability and high proton conductivity for redox flow battery and redox flow battery comprising the same