JP2004259661A - Membrane/electrode jointed body and its manufacturing method - Google Patents

Membrane/electrode jointed body and its manufacturing method Download PDF

Info

Publication number
JP2004259661A
JP2004259661A JP2003051326A JP2003051326A JP2004259661A JP 2004259661 A JP2004259661 A JP 2004259661A JP 2003051326 A JP2003051326 A JP 2003051326A JP 2003051326 A JP2003051326 A JP 2003051326A JP 2004259661 A JP2004259661 A JP 2004259661A
Authority
JP
Japan
Prior art keywords
layer
membrane
carbon
catalyst layer
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003051326A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kunisa
康弘 国狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003051326A priority Critical patent/JP2004259661A/en
Publication of JP2004259661A publication Critical patent/JP2004259661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode jointed body in which a membrane catalyst layer jointed body and a gas diffusion layer are integrated and which is operated stably for a long period, and is suitable for a solid polymer fuel cell supplied with hydrogen as a fuel, as well as a direct methanol type fuel cell. <P>SOLUTION: This is a fuel cell membrane/electrode jointed body which comprises an anode and a cathode having a gas diffusion layer and a catalyst layer and an ion exchange membrane arranged between these and jointed with respective catalyst layers. At least one of the anode and the cathode has the gas diffusion layer which is made of a porous membrane having a water repellent carbon layer containing carbon black and polytetrafluoroethylene on the surface, and the water repellent carbon layer and the catalyst layer are jointed through a carbon adhesive layer in between, and the carbon adhesive layer is composed of a solvent soluble fluorine containing polymer and carbon black. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水素を含むガスを燃料とする固体高分子型燃料電池(以下、PEFCという)及び直接メタノール型燃料電池(以下、DMFCという)における膜・電極接合体とその製造方法に関する。
【0002】
【従来の技術】
水素・酸素燃料電池は、その反応生成物が原理的に水のみであり、地球環境への悪影響のほとんどない発電システムとして注目されている。近年検討されているPEFCは、作動温度が常温から150℃程度までの低い温度であるが、きわめて高い出力が期待されている。この場合、燃料として純水素ガス又はメタン、メタノール、ガソリン等を改質して得られる、二酸化炭素等を含む水素ガスが想定されている。また、DMFCは通常、燃料としてはメタノールが供給される。DMFCもPEFCも電池の反応部の構成は同様とすることができ、イオン交換膜を電解質膜としてその両面にカソード及びアノードの触媒層が配置されて接合された膜触媒層接合体を有し、ここに燃料ガスと酸素を含むガスが供給される。そして、通常さらにその外側に集電体としての機能と触媒層に効率よくガスを供給するためのガス拡散機能を備えるガス拡散層が配置される。
【0003】
PEFCにおいてもDMFCにおいても、カソードに酸素を含むガスが供給され、カソードにおいては下式の反応が起こり水が生成する。
1/2O+2H+2e→H
したがって、100℃以下の低温作動、高電流密度及び高ガス利用率の条件下でPEFCやDMFCを作動させると、水が生成するカソードにおいて水蒸気の凝縮により電極の閉塞現象(フラッディング)が起こりやすい。また、アノード及びカソードに供給されるガスは、通常固体高分子電解質であるイオン交換膜の導電性を保つため、イオン交換膜が乾燥しないように湿潤して供給されている。したがって、この湿潤ガスによっても両電極においてフラッディングが起こる場合もある。
【0004】
そのため、長期間燃料電池を安定して作動させるには、フラッディングが起こらないように、ガス拡散層に撥水性を付与することが必要である。特に、低温における高出力密度が期待されるPEFCでは、ガス拡散層に撥水性を付与し、触媒層に対する充分なガス供給を確保することが重要である。
【0005】
従来より、PEFCの耐久性を安定化させるために、膜と触媒層からなる膜触媒層接合体とガス拡散層を一体化した技術が提案されている(例えば特許文献1参照)。この方法は、膜触媒層接合体が有する第1の触媒層とは別に、ガス拡散層上に第2の触媒層を形成させ、第2の触媒層中のイオン交換樹脂をバインダとして、第1の触媒層と第2の触媒層を接合させることにより、膜触媒層接合体とガス拡散層とを一体化させる技術である。
【0006】
このように触媒層とガス拡散層とを接合させることで、触媒層とガス拡散層との間の接触抵抗を低減でき、また触媒層とガス拡散層との間の生成水の溜まりを抑制できる。さらにこの方法では、ガス拡散層を膜触媒層接合体と一体化させる際に第1の触媒層と第2の触媒層が容易に接着できるので、イオン交換膜への物理的ダメージが少ないという特徴がある。
【0007】
また、PEFCの耐久性を安定化させるために電極に撥水性を付与する方法として、電極内の触媒層にポリテトラフルオロエチレン(以下、PTFEという)を撥水剤として含有させる方法が知られている。しかし、PTFEの場合、溶媒には溶解しないため分散剤として界面活性剤を使用して分散媒に分散させた液を用いて触媒層中に含有させることになる。しかし触媒層中に界面活性剤が存在すると電極特性を阻害するので、界面活性剤を除去するために触媒層中に含まれるイオン交換樹脂の耐熱温度よりも高温で熱処理が必要であった。これに対し、触媒層に撥水剤としてPTFEのかわりに溶媒可溶性含フッ素重合体を含有させる方法が開示されている(特許文献2参照)。この場合、撥水剤となる含フッ素重合体の溶液を用いて触媒層を作製できるので、低温の熱処理で溶媒を除去するだけで撥水剤を触媒層に付着できる。
【0008】
【特許文献1】
特開2001−345110号公報(2頁18〜21行)
【特許文献2】
特開平9−320611号公報(2頁2〜7行)
【0009】
【発明が解決しようとする課題】
しかし、特許文献1に記載の技術では、膜触媒層接合体とガス拡散層とが容易に接合できるものの、以下の本質的な問題がある。すなわち、ガス拡散層上に形成する第2の触媒層は触媒及びイオン交換樹脂からなるが、イオン交換樹脂は親水性物質であるため、長期発電運転において、特にカソード側では生成水のために第2の触媒層の撥水性が大幅に低下し、濡れてきて電極のフラッディングが起こるのである。さらに、第2の触媒層をガス拡散層上に形成するときに触媒層を形成するための塗工液がガス拡散層内に浸透して、ガス拡散層を一部親水化させるという問題も抱えていた。
【0010】
ここで例えば触媒層に撥水性を付与するために、従来よりバインダ及び撥水剤として知られているPTFEを用いて触媒層とガス拡散層とを接合することを本発明者は試みたが、上述のとおりPTFEは溶媒に溶解しないため、塗工するには分散剤を含むPTFEの分散液を用いなければならない。そして分散剤を除去するには、通常300℃以上の温度での加熱処理が必要である。さらにPTFEは溶融温度が高くイオン交換樹脂の耐熱温度以上であるため、低温ではホットプレス等をしても容易には触媒層とガス拡散層を接着することができない。
【0011】
そこで、本発明は、長期発電運転においてガス拡散層の撥水性を確保できて性能が低下せず安定して運転できるような膜・電極接合体であって、膜にダメージなく触媒層とガス拡散層が接合して一体化されており、水素を燃料とするPEFCに用いてもメタノールを燃料とするDMFCに用いても好適な膜・電極接合体、及びその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、ガス拡散層と触媒層とを有するアノード及びカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置されこれらの触媒層と接合しているイオン交換膜と、を備える燃料電池用膜・電極接合体であって、前記アノード及び前記カソードの少なくとも一方は、前記ガス拡散層がカーボンブラックとポリテトラフルオロエチレンとを含む撥水性カーボン層を表面に有する多孔質基材からなり、前記撥水性カーボン層と前記触媒層とが間にカーボン接着層を介して接合されており、前記カーボン接着層は、溶媒可溶性含フッ素重合体とカーボンブラックとからなる層であることを特徴とする膜・電極接合体を提供する。
【0013】
また、本発明は、ガス拡散層と触媒層とを有するアノード及びカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置され、前記アノード及び前記カソードの触媒層と隣接し接合しているイオン交換膜と、を備える燃料電池用膜・電極接合体の製造方法であって、前記アノード及び前記カソードの少なくとも一方を作製する工程において、溶媒可溶性含フッ素重合体の溶液にカーボンブラックを分散させて塗工液を作製し、多孔質基材上にカーボンブラックとポリテトラフルオロエチレンとを含む撥水性カーボン層が形成されたガス拡散層の前記撥水性カーボン層の上に、前記塗工液を塗工することによりカーボン接着層を作製し、前記カーボン接着層を前記触媒層に積層し、前記カーボン接着層を介して前記触媒層と前記ガス拡散層とを接合させることを特徴とする膜・電極接合体の製造方法を提供する。
【0014】
【発明の実施の形態】
本発明の膜・電極接合体は、例えば本発明の1実施態様を示す断面図である図1によりその構成が説明できる。すなわち、本発明の膜電極接合体9は、イオン交換膜4の片面にカソード6が、もう一方の面にアノード7が配置されている。カソード6には空気等の酸素を含むガスが供給される。アノード7には、PEFCの場合は水素を含むガスが、DMFCの場合はメタノール又はメタノールを水等で希釈した液が供給され、カソード6では電池の反応によりいずれの燃料電池の場合も水が生成される。
【0015】
カソード6及びアノード7は、触媒層3、3’とガス拡散層5、5’とから構成される。ガス拡散層5、5’は集電体の機能と、通常ガス拡散層の外側に配置されるセパレータから供給される燃料を触媒層3、3’に効率よく供給するためのガス拡散の機能を有するものである。ガス拡散層5、5’は、具体的には多孔質基材からなるガス拡散層基材1、1’の表面に、カーボンブラックとPTFEとを含む撥水性カーボン層2、2’が形成されている。ガス拡散層基材1、1’としては、カーボンクロス、カーボンペーパー、カーボンフェルト等が使用できる。撥水性カーボン層2、2’の存在によりガス拡散層5、5’の撥水性は高まり、またガス拡散層5、5’の表面が平坦化されるため集電機能が高まり、ガス拡散層基材1、1’が直接触媒層3、3’に接触することによって触媒層3、3’表面を傷つけたり粗面化することも避けられる。
【0016】
ここで撥水性カーボン層2、2’は、その成分がガス拡散層基材1、1’の空孔部にある程度侵入していると、アンカー効果により撥水性カーボン層がガス拡散層基材1、1’上に固定されるため、密着性が高く好ましい。さらに、撥水性カーボン層2、2’と触媒層3、3’との間には、カーボン接着層8、8’が存在し、カーボン接着層8、8’により撥水性カーボン層2、2’と触媒層3、3’とは接合されている。
【0017】
触媒層3、3’に含まれる触媒としては、白金又は白金合金がカーボンに担持された担持触媒が好ましいが、特にアノード7側には白金ルテニウム合金(Pt−Ru)がカーボンに担持された担持触媒が好ましく、カソード6側には白金がカーボンに担持された担持触媒が好ましい。これらの触媒は、触媒中の金属触媒(白金等)がアノード7の触媒層3’には0.1〜4mg/cmとなるように含まれることが好ましく、カソード6の触媒層3には0.1〜3mg/cmとなるように含まれることが好ましい。
【0018】
触媒層3、3’には、通常さらに高分子電解質となるイオン交換樹脂が含まれる。具体的にはスルホン酸基を有する含フッ素重合体が好ましく、特にスルホン酸基を有するパーフルオロカーボン重合体(ただしエーテル結合性の酸素原子等は含んでいてよい)が耐久性等の点から好ましい。具体的には、ナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等が好ましく使用できるが、特に限定されない。
【0019】
イオン交換膜4としては、例えば触媒層に含まれるスルホン酸基を有する含フッ素重合体と同様のイオン交換樹脂からなる膜が使用できるが、特に限定されない。スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜としては、例えばナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等が使用できる。そのほか、部分フッ素化された炭化水素系のスルホン酸型イオン交換膜(例えば、ETFEのグラフト重合膜でスルホン酸基を有するもの)、炭化水素系のスルホン酸型イオン交換膜(例えばポリエーテルエーテルケトンからなりスルホン酸基を有する膜)等が使用できる。また、DMFC用の膜・電極接合体の場合は、メタノールの透過の抑制を目的とし、シリカとイオン交換樹脂を混合したような無機有機ハイブリッド膜も使用できる。
【0020】
カーボン接着層8、8’に含まれる溶媒可溶性含フッ素重合体(以下、本撥水剤という)は、電池反応に関与したり生成される水やアルコール等の溶媒に対して不溶であることが好ましい。これらの溶媒に可溶であると電池の作動中に溶解し、撥水性が低下するおそれがある。本撥水剤は、特殊な溶媒に対してのみ溶解できることが好ましく、DMFCの使用温度である常温から150℃までの範囲で固体であることが好ましい。また、本撥水剤は実質的にイオン交換基を有しないものである。
【0021】
本撥水剤としては、水素原子が部分的にフッ素化された重合体と全部フッ素化された重合体のいずれもが使用できるが、撥水性については以下の傾向がある。すなわち、撥水剤の撥水性の強さを比較するための尺度として、表面張力が挙げられるが、官能基における臨界表面張力を比較すると、−CF(6)<−CFH(15)<−CF−(18.5)<−CH(24)<−CH−(31)である(括弧内の数値は、臨界表面張力(dyn/cm)を示す)。この数値から、よりフッ素置換されている官能基のほうが臨界表面張力が低い、すなわち撥水性が高いと考えられる。したがって、水素原子が部分的にフッ素置換された含フッ素重合体よりも、全部フッ素置換された含フッ素重合体の方が撥水性が高く本撥水剤として好ましい。
【0022】
本撥水剤としては、主鎖に脂肪族環構造を有する樹脂が好ましく、具体的には以下の式1〜4のいずれかで表される重合単位を含む重合体が好ましく挙げられる。なかでも、特に式5〜13のいずれかで表される重合単位を含む重合体、特に式5〜13のいずれかで表される重合単位からなる重合体が好ましい。ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数、qは0〜4の整数、rは0又は1、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてnは1又は2である。
【0023】
【化3】

Figure 2004259661
【0024】
【化4】
Figure 2004259661
【0025】
これらの重合体は、撥水性の点で好ましく、かつ分子内の主鎖に脂肪族環構造を有するため分子のねじれにより結晶化しにくく、特殊なフッ素系溶媒に可溶である。当該フッ素系溶媒としては、フルオロアルカン類、フルオロトリアルキルアミン類及びフルオロアルキルテトラヒドロフラン類からなる群から選ばれる1種以上が挙げられる。これらの重合体はモノマーに分解しにくいためラジカル伝搬しにくく、耐酸性、耐アルカリ性に優れている。なかでも式11で表わされる重合単位からなる重合体は、撥水性に優れ、溶媒に高濃度で溶解することも可能であり好ましい。
【0026】
本撥水剤を構成する重合体の分子量は通常1万〜20万程度である。分子量が大きいものほど同じ濃度では粘度が高くなる傾向があるが、本発明では本撥水剤はカーボン接着層中のバインダとして機能するので、分子量5万〜10万が適しており好ましい。上記範囲の分子量の溶媒可溶性含フッ素重合体からなる本撥水剤を使用する場合、溶媒に溶解した溶液は濃度を調整すれば粘度を自由に設定できる。また上記範囲の分子量の含フッ素樹脂の溶液は造膜性を有しており、該溶液を乾燥して得られる被膜はカーボンブラック上に薄く形成されるため、PTFEの球状体よりも本撥水剤はカーボンブラックとの接触面積が大きくなり、十分に接着していれば撥水性を長期間維持することができる。
【0027】
また本発明においてカーボン接着層に含まれるカーボンブラックは、導電性を有していれば特に限定されない。高分散性の粒子でなくてもよい。また、カーボンブラックの粒子径は小さい方が一般に導電性が高く好ましいが、特に限定されない。カーボンブラックとしては具体的には例えばキャボット社製のVULCAN P、VULCAN 9A32、VULCAN XC−72R等が挙げられる。また、電気化学工業社製のデンカブラック、ライオン社製のケッチェンEC、等も使用できる。なかでも撥水性の維持力に優れる点からVULCAN XC−72Rが好ましい。
【0028】
カーボン接着層の組成としては、本撥水剤とカーボンブラックとの混合比は質量比で5:95〜60:40が好ましい。本撥水剤が5%より少ないと、十分な撥水性及びバインダ効果を得にくい。逆に60%を超えると、カーボン接着層の抵抗が高くなりすぎたり、また本撥水剤によりカーボン接着層の細孔が閉塞されてガスの拡散性が著しく低下するおそれがある。この観点から、本撥水剤とカーボンブラックとの質量比は15:85〜35:65であることが特に好ましい。
【0029】
本発明では本撥水剤を使用していて本撥水剤の溶液が造膜性を有するため撥水剤とカーボンブラックとの混合比は上記のとおりが好ましいが、例えば本撥水剤のかわりに溶媒不溶性のPTFEをカーボン接着層に含有させて十分な撥水性とバインダ効果を得ようとした場合は異なってくる。PTFEは溶媒に溶けないため分散液を用いてカーボン接着層を形成しなければならず、その粒径はカーボン接着層中ではサブミクロンオーダーとなること、及びPTFEは明確な溶融流動性を示さないことから、撥水性及びバインダ効果を得るには含有量は20%以上必要である。すなわち、本撥水剤はPTFE等に比べて少ない量で撥水効果もバインダ効果を得られる。また、溶液を用いてカーボン接着層を形成できるため、濃度及び粘度の調整により、少ない量の本撥水剤をカーボン接着層中により均一に分散させられる。
【0030】
本発明の膜・電極接合体の製造方法は、アノードの触媒層とカソードの触媒層とそれらの間に配置されそれらと接合しているイオン交換膜とからなる膜触媒層接合体を作製する工程と、溶媒可溶性含フッ素重合体の溶液にカーボンブラックを分散させて塗工液を作製し、ガス拡散層基材上に形成された撥水性カーボン層の上に、この塗工液を塗工することによりカーボン接着層を作製し、カーボン接着層を触媒層に積層してカーボン接着層を介して触媒層とガス拡散層とを接合させる工程とを含んでいる。カーボン接着層はアノード側、カソード側の少なくとも一方に形成されればよいが、特に電池の反応により水が生成するカソード側に形成すると生成水による濡れを防止でき、フラッディングを制御できるので好ましい。また反応させるガスも加湿して燃料電池セルに供給する場合はアノード、カソードともに形成することが好ましい。
【0031】
カーボン接着層を形成するための塗工液は、カーボンブラックと本撥水剤と本撥水剤を溶解できる溶媒とからなる。溶媒は上記で溶媒可溶性含フッ素重合体を溶解できる溶媒として示したフルオロアルカン類、フルオロアルキルテトラヒドロフラン類等が好ましいが、濃度及び粘度調整のために、希釈溶媒としてたの溶媒を添加してもよい。
【0032】
また、カーボン接着層形成用の塗工液中の固形分濃度(カーボンブラックと溶媒可溶性含フッ素重合体の濃度の合量)は、塗工液全質量の1〜20%が好ましい。1%未満であると固形分濃度が低すぎて、ガス拡散層上に塗工しても十分な厚さの層を形成できないおそれがある。一方、20%より高いと、塗工液の粘度が高すぎてガス拡散層上への塗工が著しく難しくなり、さらにカーボン接着層の厚さが厚くなりすぎてガスの拡散性が低下するおそれがある。
【0033】
カーボン接着層形成用の塗工液を塗工した後、乾燥させて溶媒を除去するが、長期間安定した撥水性を確保するためには溶媒可溶性含フッ素重合体のカーボンブラックに対する付着力を高める必要がある。そのため、塗工液の塗工して乾燥させ溶媒を除去した後、真空中又は不活性ガス雰囲気中で加熱することが好ましく、具体的には110〜180℃程度にてアニールすることが好ましい。例えば式11で表わされる重合単位からなる溶媒可溶性含フッ素重合体の場合、熱変形温度(ガラス転移温度)が108℃であるから、それより高い温度でアニールすることが好ましい。一方触媒層中のイオン交換樹脂として例えばCF=CF/CF=CFOCFCF(CF)OCFCFSOH共重合体を使用した場合、分解温度が200℃強であるため、アニール温度はそれより低いことが好ましい。これらを考慮すると上記温度範囲が好ましい。
【0034】
ここでアニールは、カーボン接着層をガス拡散層上に形成した後に行うが、形成後カーボン接着層上に触媒層を積層してからアニールしてもよい。あらかじめ膜触媒層接合体を作製しておき、ガス拡散層上のカーボン接着層に膜触媒層接合体を積層して一体化した後にアニールしてもよい。なお、このようなアニールの工程を考慮すると、本撥水剤は、水素原子が全部フッ素化されているパーフルオロポリマーからなることが酸化・還元雰囲気でも安定であり、さらには耐薬品性にも優れるので好ましい。
【0035】
上述の膜触媒層接合体は、あらかじめ触媒層の構成材料を含む分散液を塗工液として作製しておき、これを用いて触媒層を形成することにより作製できる。膜に直接触媒層形成用塗工液を塗工してもよいし、該塗工液をスプレーしてもよいし、予め触媒層形成用塗工液を別途用意した基材シート上に塗工し乾燥させて溶媒を除去した後にこれを膜にホットプレスし転写してもよい。
【0036】
触媒層形成用塗工液を別途用意した基材シート上に塗工して触媒層を形成する場合そのための基材シートとしては、ポリプロピレン、PTFE、エチレンテトラフルオロエチレン共重合体、ポリエチレンテレフタレート等からなるプラスティックフィルムが好ましいが特に限定されない。ただし、膜に転写するときの耐熱性や触媒層形成用塗工液の塗工性を考慮すると、ポリプロピレンやPTFEが特に好ましい。
【0037】
膜触媒層接合体、カーボン接着層及び撥水性カーボン層が形成されたガス拡散層は、この順に積層されていれば触媒層とカーボン接着層が接合されていない状態も可能であるが、接触抵抗をできるだけ小さくするためには両者が接合され膜触媒層接合体とガス拡散層が一体化していることが好ましい。一体化していれば、スタックに組み込む際にもガス拡散層のずれ等がなく取扱いが容易になり、また触媒層とガス拡散層とが十分に密着しているためにこれらの間に水が溜まることがなく耐久性に優れるため好ましい。
【0038】
触媒層(膜触媒層接合体)とカーボン接着層が形成されたガス拡散層の接合はホットプレス(熱圧着)で行うことが好ましい。ホットプレス条件は、温度は上述のアニールの温度の設定と同じ理由から120〜180℃好ましく、特に130〜160℃が好ましい。圧力は、触媒層やガス拡散層のガス拡散性が低下しないように、0.1〜4.0MPaとすることが好ましい。0.1MPa未満では圧力が不十分で十分に接合できないおそれがあり、4.0MPaより大きいと圧力が強すぎて触媒層やガス拡散層の細孔を押し潰すおそれがあり、その結果細孔容積が減少してガスの拡散性が著しく低減するおそれがある。
【0039】
【実施例】
以下、本発明を実施例(例1)及び比較例(例2)により説明するが、本発明はこれらに限定されない。
【0040】
[例1(実施例)]
以下の手順で、PEFC用膜・電極接合体を作製した。
まず、アノード及びカソードの触媒層を作製するための塗工液を作製した。触媒層に含有させるイオン交換樹脂としては、イオン交換容量1.1ミリ当量/g乾燥樹脂のパーフルオロカーボンスルホン酸型イオン交換樹脂(テトラフルオロエチレンに基づく重合単位とCF=CFOCF(CF)O(CFSOHに基づく重合単位とからなる共重合体)を用いた。このイオン交換樹脂と白金担持カーボン(白金とカーボンが質量比で50:50)とを71.4:28.6の質量比となるようにし、エタノールと1H,1H−ペンタフルオロプロパノールとの混合溶媒(質量比で1:1)に分散させた液を触媒層形成用の塗工液とした。この塗工液を白金付着量が0.35mg/cmとなるように、PTFEシート上に塗布し加熱処理をして十分乾燥させ触媒層を形成した。アノード、カソードともにこの触媒層を用いることとした。
【0041】
次にカーボン接着層を形成するためのペーストを以下のように作製した。まず、溶媒可溶性含フッ素重合体として分子量約5〜6万でCF=CFO(CFCF=CFに基づく重合単位(式11で表わされる重合単位)からなる樹脂を、パーフルオロ(2−ブチルテトラヒドロフラン)に質量比で1.3%の濃度となるように溶解して溶液を作製した。この溶液に対し、カーボンブラック(キャボット社製、商品名:VULCAN XC−72R)を、カーボンブラックと溶媒可溶性含フッ素重合体との質量比が7:3となるように混合し、その後すばやく十分に撹拌してカーボン接着層用ペーストを得た。
【0042】
ガス拡散層としては、市販のガス拡散層(商品名:CARBEL−CL、ジャパンゴアテックス社製)を用いた。このガス拡散層は厚さ約400μmで、PTFEで表面処理されたカーボンクロスの表面に、カーボンブラックと撥水性フッ素樹脂とからなる多孔性のカーボン層が形成されている。このガス拡散層のカーボン層の上に、上記カーボン接着層用ペーストをスクリーン印刷し、空気中80℃で15分間乾燥させ概ね溶媒を除去した後、窒素中180℃で2時間焼成した。この操作によりカーボン接着層中のカーボンブラックとバインダとしての溶媒可溶性含フッ素重合体の密着性を向上させた。得られたカーボン接着層の厚さは約20μmであった。これを所定の大きさに切り出し、アノード、カソード両方のガス拡散層とした。
【0043】
イオン交換膜としては、厚さ50μm、イオン交換容量1.1ミリ当量/g乾燥樹脂のパーフルオロカーボンスルホン酸型イオン交換樹脂膜(商品名:フレミオンHR、旭硝子社製)を用いた。上述の触媒層が形成されたPTFEシート2枚を触媒層側を内側にして対向させ、間にフレミオンHR膜を挟んで130℃、3MPaにて2分間ホットプレスし、触媒層を膜に転写した。その後、両面のPTFEシートのみを剥離して、膜触媒層接合体を作製した。このとき、有効電極面積は25cmとした。
【0044】
次に、上記膜触媒層接合体の両外側にそれぞれ、上述のカーボン接着層が形成されたガス拡散層をカーボン接着層側を内側に向けて配置し、140℃、1MPaにて2分ホットプレスして接合させ、膜・電極接合体を得た。得られた接合体は触媒層とカーボン接着層とが十分に密着しており、容易に剥がれることはなかった。
【0045】
[例2(比較例)]
カーボン接着層のバインダとして、化学式11で表わされる含フッ素重合体のかわりに、テトラフルオロエチレンに基づく重合単位とCF=CFOCF(CF)O(CFSOHに基づく重合単位とからなる共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂)を用い、カーボン接着層形成用のペーストにパーフルオロ(2−ブチルテトラヒドロフラン)のかわりにエタノールを用いた以外は例1と全く同様にして膜・電極接合体を作製した。得られた接合体は触媒層とカーボン接着層とは十分に密着しており、容易に剥がれることはなかった。
【0046】
[電池特性試験]
上記例1、2の膜・電極接合体の両外側にセパレータを配置してPEFC用セルに組み込み、電子負荷装置FK400L(高砂製作所社製)と直流電源装置EX750L(高砂製作所社製)を用いて電流電圧特性の測定試験を行った。測定条件は、アノードに水素、カソードに空気を供給し、水素出口圧力;0.1MPa(常圧)、空気出口圧力;0.1MPa(常圧)、測定セルの作動温度;80℃とし、アノードに供給する水素及びカソードに供給する空気はいずれも80℃の露点とし、電流密度は0.4A/cmで維持した。燃料利用率はアノード側が70%、カソード側が40%で行った。定電流駆動させたときのセル電圧の経時変化を測定した。その試験結果を表1に示す。
【0047】
【表1】
Figure 2004259661
【0048】
例1はセル特性が安定しており、セル電圧の低下が例2に比べて少なかった。これはカーボン接着層内に存在する溶媒可溶性含フッ素重合体が撥水性を有するので、カーボン接着層全体の撥水性が維持されたためと思われる。
【0049】
例2におけるセル電圧の低下が例1に比べて大きいのは、カーボン接着層内に存在するイオン交換樹脂が親水性成分であるため、この層において濡れが進行したためと考えられる。その結果、細孔が閉塞され、水素や空気の供給が妨げられ、濃度過電圧が増大したものと思われる。すなわち、経時的に燃料ガス、空気の触媒層への供給がスムーズに行われ難くなっていき、セル電圧が経時的に低下したものと思われる。
【0050】
【発明の効果】
本発明ではガス拡散層と触媒層との間にカーボン接着層を有しており、そのバインダとして本撥水剤を用いているため、カーボン接着層が耐久性に優れた撥水性を有している。さらに、本撥水剤として例えば式11で表わされる重合単位からなる共重合体のようにガラス転移温度の低いものを使用することにより、低温プレスで容易に触媒層とガス拡散層の接着が可能であり、その結果、触媒層中のイオン交換樹脂を高温下にさらして製造工程中で劣化させることもない。すなわち、本発明の膜・電極接合体は触媒層とガス拡散層が一体化しているいるためハンドリング性もよく、触媒層とガス拡散層との間に水が溜まることもないという利点を有し、かつカーボン接着層が撥水性を有しているために耐久性良く安定した発電特性が得られる。
【0051】
さらに、カーボン接着層は触媒層の緩衝層となってガス拡散層による膜の損傷を抑制できる。また、本撥水剤が溶媒に可溶で分散剤を含有しない溶液を使用できるため、カーボン接着層形成時には高温焼成が不要で、簡便に室温で溶媒を除去するだけでも製造が可能である。さらにカーボン接着層を膜の耐熱温度以下で加熱処理することで、カーボンブラックと撥水剤との接着力を強化でき、撥水性をより長期間維持することができる。
【0052】
このようなカーボン接着層を有する本発明の膜・電極接合体は、低抵抗でかつ長期的に撥水性が高く、出力特性の経時劣化の少なく、PEFC用としてもDMFC用としても好適である。
【図面の簡単な説明】
【図1】本発明の膜・電極接合体の1態様を示す断面図。
【符号の説明】
1、1’:ガス拡散層基材
2、2’:撥水性カーボン層
3、3’:触媒層
4:イオン交換膜
5、5’:ガス拡散層
6:カソード
7:アノード
8、8’:カーボン接着層
9:膜・電極接合体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane / electrode assembly in a polymer electrolyte fuel cell (hereinafter referred to as PEFC) and a direct methanol fuel cell (hereinafter referred to as DMFC) using a gas containing hydrogen as a fuel, and a manufacturing method thereof.
[0002]
[Prior art]
The hydrogen / oxygen fuel cell is attracting attention as a power generation system in which the reaction product is only water in principle and has almost no adverse effect on the global environment. The PEFC being studied in recent years has a low operating temperature from room temperature to about 150 ° C., but an extremely high output is expected. In this case, pure hydrogen gas or hydrogen gas containing carbon dioxide or the like obtained by reforming methane, methanol, gasoline or the like is assumed as fuel. Further, DMFC is usually supplied with methanol as fuel. Both the DMFC and the PEFC have the same configuration of the reaction part of the battery, and have a membrane-catalyst layer assembly in which an ion exchange membrane is used as an electrolyte membrane and cathode and anode catalyst layers are arranged on both sides and joined together. A gas containing fuel gas and oxygen is supplied here. Further, a gas diffusion layer having a function as a current collector and a gas diffusion function for efficiently supplying gas to the catalyst layer is usually disposed on the outer side.
[0003]
In both PEFC and DMFC, a gas containing oxygen is supplied to the cathode, and the reaction of the following formula occurs at the cathode to generate water.
1 / 2O 2 + 2H + + 2e → H 2 O
Therefore, when the PEFC or DMFC is operated under conditions of low temperature operation of 100 ° C. or lower, high current density, and high gas utilization rate, electrode clogging (flooding) is likely to occur due to condensation of water vapor at the cathode where water is generated. Further, the gas supplied to the anode and the cathode is supplied wet so that the ion exchange membrane is not dried in order to maintain the conductivity of the ion exchange membrane which is usually a solid polymer electrolyte. Therefore, the wet gas may cause flooding in both electrodes.
[0004]
Therefore, in order to stably operate the fuel cell for a long period of time, it is necessary to impart water repellency to the gas diffusion layer so as not to cause flooding. In particular, in PEFC, which is expected to have a high power density at low temperatures, it is important to provide water repellency to the gas diffusion layer and ensure sufficient gas supply to the catalyst layer.
[0005]
Conventionally, in order to stabilize the durability of PEFC, a technique in which a membrane / catalyst layer assembly comprising a membrane and a catalyst layer and a gas diffusion layer are integrated has been proposed (see, for example, Patent Document 1). In this method, apart from the first catalyst layer of the membrane catalyst layer assembly, a second catalyst layer is formed on the gas diffusion layer, and the ion exchange resin in the second catalyst layer is used as a binder to form the first catalyst layer. In this technique, the membrane catalyst layer assembly and the gas diffusion layer are integrated by bonding the catalyst layer and the second catalyst layer.
[0006]
By joining the catalyst layer and the gas diffusion layer in this way, the contact resistance between the catalyst layer and the gas diffusion layer can be reduced, and the accumulation of generated water between the catalyst layer and the gas diffusion layer can be suppressed. . Furthermore, in this method, since the first catalyst layer and the second catalyst layer can be easily bonded when the gas diffusion layer is integrated with the membrane catalyst layer assembly, there is little physical damage to the ion exchange membrane. There is.
[0007]
In addition, as a method for imparting water repellency to an electrode in order to stabilize the durability of PEFC, a method in which polytetrafluoroethylene (hereinafter referred to as PTFE) is contained as a water repellent in a catalyst layer in the electrode is known. Yes. However, in the case of PTFE, since it does not dissolve in a solvent, it is contained in the catalyst layer using a liquid dispersed in a dispersion medium using a surfactant as a dispersant. However, the presence of a surfactant in the catalyst layer hinders electrode characteristics, and thus heat treatment is required at a temperature higher than the heat resistant temperature of the ion exchange resin contained in the catalyst layer in order to remove the surfactant. On the other hand, a method of incorporating a solvent-soluble fluoropolymer instead of PTFE as a water repellent in the catalyst layer is disclosed (see Patent Document 2). In this case, since the catalyst layer can be produced using a solution of a fluoropolymer as a water repellent, the water repellent can be attached to the catalyst layer simply by removing the solvent by low-temperature heat treatment.
[0008]
[Patent Document 1]
JP 2001-345110 A (2 pages 18 to 21 lines)
[Patent Document 2]
Japanese Patent Laid-Open No. 9-320611 (2 pages, 2-7 lines)
[0009]
[Problems to be solved by the invention]
However, although the technique described in Patent Document 1 can easily join the membrane catalyst layer assembly and the gas diffusion layer, there are the following essential problems. That is, the second catalyst layer formed on the gas diffusion layer is composed of a catalyst and an ion exchange resin. However, since the ion exchange resin is a hydrophilic substance, in the long-term power generation operation, particularly on the cathode side, the second catalyst layer is formed for generated water. As a result, the water repellency of the second catalyst layer is greatly lowered, and the catalyst layer becomes wet and electrode flooding occurs. Further, when the second catalyst layer is formed on the gas diffusion layer, the coating liquid for forming the catalyst layer permeates into the gas diffusion layer and partially hydrophilizes the gas diffusion layer. It was.
[0010]
Here, for example, in order to impart water repellency to the catalyst layer, the present inventor attempted to join the catalyst layer and the gas diffusion layer using PTFE, which has been conventionally known as a binder and a water repellent, Since PTFE does not dissolve in a solvent as described above, a dispersion of PTFE containing a dispersant must be used for coating. And in order to remove a dispersing agent, the heat processing at the temperature of 300 degreeC or more are normally required. Furthermore, since PTFE has a high melting temperature and is higher than the heat resistance temperature of the ion exchange resin, the catalyst layer and the gas diffusion layer cannot be easily bonded even at a low temperature even by hot pressing or the like.
[0011]
Therefore, the present invention is a membrane / electrode assembly that can ensure the water repellency of the gas diffusion layer in a long-term power generation operation and can be stably operated without degrading the performance. An object of the present invention is to provide a membrane-electrode assembly suitable for use in a PEFC that uses hydrogen as a fuel or a DMFC that uses methanol as a fuel, and a method for manufacturing the same. To do.
[0012]
[Means for Solving the Problems]
The present invention comprises an anode and a cathode having a gas diffusion layer and a catalyst layer, and an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode and bonded to these catalyst layers. A membrane / electrode assembly for a fuel cell, wherein at least one of the anode and the cathode has a water repellent carbon layer on the surface of which the gas diffusion layer contains carbon black and polytetrafluoroethylene The water-repellent carbon layer and the catalyst layer are bonded via a carbon adhesive layer, and the carbon adhesive layer is a layer made of a solvent-soluble fluoropolymer and carbon black. A characteristic membrane-electrode assembly is provided.
[0013]
The present invention also provides an anode and a cathode having a gas diffusion layer and a catalyst layer, and is disposed between the catalyst layer of the anode and the catalyst layer of the cathode and adjacent to and bonded to the catalyst layer of the anode and the cathode. A membrane-electrode assembly for a fuel cell, wherein in the step of producing at least one of the anode and the cathode, carbon black is added to the solvent-soluble fluoropolymer solution. Is applied to the gas diffusion layer of the gas diffusion layer in which the water-repellent carbon layer containing carbon black and polytetrafluoroethylene is formed on the porous substrate. A carbon adhesive layer is prepared by applying a working solution, the carbon adhesive layer is laminated on the catalyst layer, and the catalyst layer and the catalyst are interposed through the carbon adhesive layer. To provide a method of manufacturing a membrane-electrode assembly, characterized in that for joining the gas diffusion layer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The structure of the membrane / electrode assembly of the present invention can be explained by, for example, FIG. 1 which is a cross-sectional view showing one embodiment of the present invention. That is, in the membrane electrode assembly 9 of the present invention, the cathode 6 is arranged on one side of the ion exchange membrane 4 and the anode 7 is arranged on the other side. A gas containing oxygen such as air is supplied to the cathode 6. A gas containing hydrogen is supplied to the anode 7 in the case of PEFC, methanol or a solution obtained by diluting methanol with water or the like in the case of DMFC, and water is generated in the case of any fuel cell at the cathode 6 by the reaction of the battery. Is done.
[0015]
The cathode 6 and the anode 7 are composed of catalyst layers 3, 3 ′ and gas diffusion layers 5, 5 ′. The gas diffusion layers 5 and 5 ′ have the function of a current collector and the function of gas diffusion for efficiently supplying fuel supplied from a separator that is usually disposed outside the gas diffusion layer to the catalyst layers 3 and 3 ′. It is what you have. Specifically, the gas diffusion layers 5, 5 ′ are formed by forming a water-repellent carbon layer 2, 2 ′ containing carbon black and PTFE on the surface of the gas diffusion layer substrate 1, 1 ′ made of a porous substrate. ing. As the gas diffusion layer substrate 1, 1 ′, carbon cloth, carbon paper, carbon felt, or the like can be used. The presence of the water-repellent carbon layers 2 and 2 ′ increases the water repellency of the gas diffusion layers 5 and 5 ′, and the surface of the gas diffusion layers 5 and 5 ′ is flattened so that the current collecting function is enhanced. It is also possible to avoid scratching or roughening the surfaces of the catalyst layers 3 and 3 ′ by directly contacting the materials 1 and 1 ′ with the catalyst layers 3 and 3 ′.
[0016]
Here, when the water-repellent carbon layer 2, 2 ′ penetrates into the pores of the gas diffusion layer base material 1, 1 ′ to some extent, the water-repellent carbon layer becomes the gas diffusion layer base material 1 due to the anchor effect. Since it is fixed on 1 ', its adhesiveness is high and preferable. Further, carbon adhesive layers 8 and 8 ′ exist between the water-repellent carbon layers 2 and 2 ′ and the catalyst layers 3 and 3 ′, and the water-repellent carbon layers 2 and 2 ′ are formed by the carbon adhesive layers 8 and 8 ′. And the catalyst layers 3, 3 ′ are joined.
[0017]
As the catalyst contained in the catalyst layers 3 and 3 ′, a supported catalyst in which platinum or a platinum alloy is supported on carbon is preferable. In particular, a supported catalyst in which a platinum ruthenium alloy (Pt—Ru) is supported on carbon on the anode 7 side. A catalyst is preferable, and a supported catalyst in which platinum is supported on carbon on the cathode 6 side is preferable. In these catalysts, a metal catalyst (such as platinum) in the catalyst is 0.1 to 4 mg / cm in the catalyst layer 3 ′ of the anode 7. 2 The catalyst layer 3 of the cathode 6 is preferably contained in an amount of 0.1 to 3 mg / cm. 2 It is preferable to be included.
[0018]
The catalyst layers 3, 3 ′ usually further contain an ion exchange resin that becomes a polymer electrolyte. Specifically, a fluorinated polymer having a sulfonic acid group is preferable, and a perfluorocarbon polymer having a sulfonic acid group (however, an etheric oxygen atom or the like may be included) is preferable from the viewpoint of durability. Specifically, Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass) and the like can be preferably used, but are not particularly limited.
[0019]
As the ion exchange membrane 4, for example, a membrane made of an ion exchange resin similar to the fluoropolymer having a sulfonic acid group contained in the catalyst layer can be used, but it is not particularly limited. As an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group, for example, Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) and the like can be used. In addition, partially fluorinated hydrocarbon sulfonic acid ion exchange membranes (for example, ETFE graft polymerized membranes having sulfonic acid groups), hydrocarbon sulfonic acid ion exchange membranes (for example, polyetheretherketone) And a membrane having a sulfonic acid group can be used. In the case of a membrane / electrode assembly for DMFC, an inorganic-organic hybrid membrane in which silica and an ion exchange resin are mixed can be used for the purpose of suppressing permeation of methanol.
[0020]
The solvent-soluble fluorine-containing polymer (hereinafter referred to as the present water repellent) contained in the carbon adhesive layers 8 and 8 ′ may be insoluble in solvents such as water and alcohol that are involved in the battery reaction or produced. preferable. If it is soluble in these solvents, it will dissolve during the operation of the battery, and the water repellency may be lowered. The water repellent is preferably soluble only in a special solvent, and is preferably a solid in a range from room temperature to 150 ° C., which is the use temperature of DMFC. The water repellent is substantially free of ion exchange groups.
[0021]
As the water repellent, either a polymer in which hydrogen atoms are partially fluorinated or a polymer in which all hydrogen atoms are fluorinated can be used, but the water repellency has the following tendencies. That is, as a measure for comparing the water repellency of a water repellent, surface tension can be mentioned. When the critical surface tension of a functional group is compared, -CF 3 (6) <-CF 2 H (15) <-CF 2 -(18.5) <-CH 3 (24) <-CH 2 -(31) (numbers in parentheses indicate critical surface tension (dyn / cm)). From this value, it is considered that the functional group substituted with fluorine has a lower critical surface tension, that is, higher water repellency. Therefore, a fluorine-containing polymer in which all of the hydrogen atoms are fluorine-substituted is more preferable as the water-repellent than the fluorine-containing polymer in which hydrogen atoms are partially fluorine-substituted.
[0022]
As this water repellent, a resin having an aliphatic ring structure in the main chain is preferable, and specifically, a polymer containing a polymer unit represented by any one of the following formulas 1 to 4 is preferable. Among these, a polymer containing a polymer unit represented by any one of formulas 5 to 13, particularly a polymer comprising a polymer unit represented by any one of formulas 5 to 13 is preferable. However, in Formula 1, R 1 Is a fluorine atom or a trifluoromethyl group, p is an integer of 0 to 5, q is an integer of 0 to 4, r is 0 or 1, p + q + r is 1 to 6, and in formula 2, s, t, u Are each independently an integer of 0-5, s + t + u is 1-6, 2 , R 3 Are each independently a fluorine atom or a trifluoromethyl group, and in formula 4, n is 1 or 2.
[0023]
[Chemical Formula 3]
Figure 2004259661
[0024]
[Formula 4]
Figure 2004259661
[0025]
These polymers are preferable in terms of water repellency, and since they have an aliphatic ring structure in the main chain in the molecule, they are difficult to crystallize due to molecular twisting and are soluble in special fluorine-based solvents. Examples of the fluorine-based solvent include one or more selected from the group consisting of fluoroalkanes, fluorotrialkylamines, and fluoroalkyltetrahydrofurans. Since these polymers are not easily decomposed into monomers, radical propagation is difficult, and acid resistance and alkali resistance are excellent. Among these, a polymer composed of polymerized units represented by Formula 11 is preferable because it is excellent in water repellency and can be dissolved in a solvent at a high concentration.
[0026]
The molecular weight of the polymer constituting the water repellent is usually about 10,000 to 200,000. The higher the molecular weight, the higher the viscosity at the same concentration. However, in the present invention, the present water repellent functions as a binder in the carbon adhesive layer, and thus a molecular weight of 50,000 to 100,000 is suitable and preferable. When the present water repellent comprising a solvent-soluble fluoropolymer having a molecular weight in the above range is used, the viscosity of the solution dissolved in the solvent can be freely set by adjusting the concentration. In addition, a solution of a fluorine-containing resin having a molecular weight in the above range has a film-forming property, and a film obtained by drying the solution is formed thinly on carbon black. The agent has a large contact area with the carbon black, and can maintain water repellency for a long time if it is sufficiently adhered.
[0027]
In the present invention, the carbon black contained in the carbon adhesive layer is not particularly limited as long as it has conductivity. The particles need not be highly dispersible. In addition, it is generally preferable that the carbon black has a smaller particle diameter because of its high conductivity, but is not particularly limited. Specific examples of carbon black include VULCAN P, VULCAN 9A32, and VULCAN XC-72R manufactured by Cabot Corporation. Moreover, Denka Black manufactured by Denki Kagaku Kogyo, Ketjen EC manufactured by Lion, and the like can be used. Of these, VULCAN XC-72R is preferred because of its excellent water repellency retention.
[0028]
As the composition of the carbon adhesive layer, the mixing ratio of the present water repellent and carbon black is preferably 5:95 to 60:40 by mass ratio. When the water repellent is less than 5%, it is difficult to obtain sufficient water repellency and a binder effect. On the other hand, if it exceeds 60%, the resistance of the carbon adhesive layer may become too high, or the pores of the carbon adhesive layer may be blocked by the present water repellent and the gas diffusibility may be significantly reduced. In this respect, the mass ratio of the water repellent to carbon black is particularly preferably 15:85 to 35:65.
[0029]
In the present invention, the present water repellent is used, and the solution of the present water repellent has film-forming properties, so that the mixing ratio of the water repellent and carbon black is preferably as described above. For example, instead of the present water repellent, This is different when a solvent-insoluble PTFE is contained in the carbon adhesive layer to obtain sufficient water repellency and a binder effect. Since PTFE is insoluble in a solvent, a carbon adhesive layer must be formed using a dispersion liquid, and the particle size thereof is in the order of submicron in the carbon adhesive layer, and PTFE does not exhibit a clear melt fluidity. Therefore, the content of 20% or more is necessary to obtain water repellency and a binder effect. That is, the water repellent can provide a water repellent effect and a binder effect in a smaller amount than PTFE or the like. In addition, since the carbon adhesive layer can be formed using a solution, a small amount of the present water repellent can be more uniformly dispersed in the carbon adhesive layer by adjusting the concentration and viscosity.
[0030]
The method for producing a membrane / electrode assembly of the present invention comprises a step of producing a membrane catalyst layer assembly comprising an anode catalyst layer, a cathode catalyst layer, and an ion exchange membrane disposed between them and bonded thereto. Then, carbon black is dispersed in a solvent-soluble fluoropolymer solution to prepare a coating solution, and this coating solution is applied onto the water-repellent carbon layer formed on the gas diffusion layer base material. Thus, a carbon adhesive layer is prepared, and the carbon adhesive layer is laminated on the catalyst layer, and the catalyst layer and the gas diffusion layer are joined via the carbon adhesive layer. The carbon adhesive layer may be formed on at least one of the anode side and the cathode side, but it is particularly preferable to form the carbon adhesive layer on the cathode side where water is generated by the reaction of the battery because wetting can be prevented and the flooding can be controlled. When the gas to be reacted is also humidified and supplied to the fuel cell, it is preferable to form both the anode and the cathode.
[0031]
The coating liquid for forming the carbon adhesive layer comprises carbon black, the present water repellent, and a solvent capable of dissolving the present water repellent. As the solvent, fluoroalkanes and fluoroalkyltetrahydrofurans shown above as solvents that can dissolve the solvent-soluble fluoropolymer are preferable, but the solvent as a diluting solvent may be added for adjusting the concentration and viscosity. .
[0032]
Further, the solid content concentration in the coating liquid for forming the carbon adhesive layer (the total amount of the carbon black and the solvent-soluble fluoropolymer) is preferably 1 to 20% of the total mass of the coating liquid. If it is less than 1%, the solid concentration is too low, and there is a possibility that a layer having a sufficient thickness cannot be formed even if it is coated on the gas diffusion layer. On the other hand, if it is higher than 20%, the viscosity of the coating solution is too high, and coating on the gas diffusion layer becomes extremely difficult, and the thickness of the carbon adhesive layer becomes too thick, which may reduce the gas diffusibility. There is.
[0033]
After applying the coating solution for forming the carbon adhesive layer, the solvent is removed by drying, but in order to ensure stable water repellency for a long period of time, the adhesion of the solvent-soluble fluoropolymer to carbon black is increased. There is a need. Therefore, it is preferable to apply the coating liquid and dry it to remove the solvent, and then to heat in a vacuum or an inert gas atmosphere. Specifically, it is preferable to anneal at about 110 to 180 ° C. For example, in the case of a solvent-soluble fluoropolymer composed of polymerized units represented by Formula 11, the heat distortion temperature (glass transition temperature) is 108 ° C., so it is preferable to anneal at a higher temperature. On the other hand, as an ion exchange resin in the catalyst layer, for example, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 OCF 2 CF 2 SO 3 When the H copolymer is used, since the decomposition temperature is slightly higher than 200 ° C., the annealing temperature is preferably lower than that. Considering these, the above temperature range is preferable.
[0034]
Here, the annealing is performed after the carbon adhesive layer is formed on the gas diffusion layer. However, after the formation, the catalyst layer may be laminated on the carbon adhesive layer and then annealed. The membrane / catalyst layer assembly may be prepared in advance, and the membrane / catalyst layer assembly may be laminated and integrated on the carbon adhesive layer on the gas diffusion layer and then annealed. In consideration of such an annealing process, the water repellent is composed of a perfluoropolymer in which all of the hydrogen atoms are fluorinated, and is stable in an oxidizing / reducing atmosphere, and also has chemical resistance. Since it is excellent, it is preferable.
[0035]
The above-mentioned membrane / catalyst layer assembly can be prepared by preparing a dispersion containing a constituent material of the catalyst layer in advance as a coating liquid and using this to form a catalyst layer. The coating liquid for forming the catalyst layer may be applied directly to the membrane, or the coating liquid may be sprayed, or the coating liquid for forming the catalyst layer may be applied on a base sheet prepared separately. Then, after drying and removing the solvent, it may be hot-pressed onto the film and transferred.
[0036]
When a catalyst layer is formed by coating a catalyst layer-forming coating solution on a separately prepared substrate sheet, the substrate sheet for that purpose is made of polypropylene, PTFE, ethylene tetrafluoroethylene copolymer, polyethylene terephthalate, etc. However, the plastic film is not particularly limited. However, polypropylene and PTFE are particularly preferable in consideration of heat resistance when transferred to the film and coating properties of the catalyst layer forming coating solution.
[0037]
The gas diffusion layer formed with the membrane-catalyst layer assembly, the carbon adhesive layer, and the water-repellent carbon layer may be in a state where the catalyst layer and the carbon adhesive layer are not bonded as long as they are laminated in this order. In order to make the size as small as possible, it is preferable that both are joined and the membrane catalyst layer assembly and gas diffusion layer are integrated. If they are integrated, the gas diffusion layer will not be misaligned when incorporated into the stack, and handling will be easy, and the catalyst layer and gas diffusion layer will be in close contact with each other, so water will accumulate between them. It is preferable because it has no durability and excellent durability.
[0038]
The joining of the catalyst layer (membrane-catalyst layer assembly) and the gas diffusion layer formed with the carbon adhesive layer is preferably performed by hot pressing (thermocompression bonding). As for the hot press conditions, the temperature is preferably 120 to 180 ° C., particularly 130 to 160 ° C. for the same reason as the setting of the annealing temperature described above. The pressure is preferably 0.1 to 4.0 MPa so that the gas diffusibility of the catalyst layer and the gas diffusion layer does not decrease. If the pressure is less than 0.1 MPa, the pressure may be insufficient and sufficient bonding may not be achieved. If the pressure is greater than 4.0 MPa, the pressure may be too strong and the pores of the catalyst layer or gas diffusion layer may be crushed. There is a risk that gas diffusibility may be significantly reduced.
[0039]
【Example】
EXAMPLES Hereinafter, although an Example (Example 1) and a comparative example (Example 2) demonstrate this invention, this invention is not limited to these.
[0040]
[Example 1 (Example)]
A membrane / electrode assembly for PEFC was produced by the following procedure.
First, a coating solution for preparing the anode and cathode catalyst layers was prepared. As an ion exchange resin to be contained in the catalyst layer, an ion exchange capacity of 1.1 meq / g dry resin perfluorocarbon sulfonic acid type ion exchange resin (tetrafluoroethylene-based polymer unit and CF 2 = CFOCF (CF 3 ) O (CF 2 ) 2 SO 3 A copolymer comprising polymerized units based on H) was used. A mixed solvent of ethanol and 1H, 1H-pentafluoropropanol was prepared by adjusting the ion exchange resin and platinum-supported carbon (platinum and carbon in a mass ratio of 50:50) to a mass ratio of 71.4: 28.6. A liquid dispersed in (by mass ratio of 1: 1) was used as a coating liquid for forming a catalyst layer. This coating solution has a platinum adhesion amount of 0.35 mg / cm. 2 Then, it was coated on a PTFE sheet, heat-treated and sufficiently dried to form a catalyst layer. This catalyst layer was used for both the anode and the cathode.
[0041]
Next, a paste for forming a carbon adhesive layer was prepared as follows. First, a solvent-soluble fluoropolymer having a molecular weight of about 50 to 60,000 and CF 2 = CFO (CF 2 ) 2 CF = CF 2 A resin composed of polymer units based on the above (polymer units represented by Formula 11) was dissolved in perfluoro (2-butyltetrahydrofuran) to a concentration of 1.3% by mass to prepare a solution. Carbon black (manufactured by Cabot, trade name: VULCAN XC-72R) is mixed with this solution so that the mass ratio of carbon black and solvent-soluble fluoropolymer is 7: 3, and then quickly and sufficiently. The carbon adhesive layer paste was obtained by stirring.
[0042]
As the gas diffusion layer, a commercially available gas diffusion layer (trade name: CARBEL-CL, manufactured by Japan Gore-Tex) was used. This gas diffusion layer has a thickness of about 400 μm, and a porous carbon layer made of carbon black and a water repellent fluororesin is formed on the surface of a carbon cloth surface-treated with PTFE. The carbon adhesive layer paste was screen-printed on the carbon layer of the gas diffusion layer, dried in air at 80 ° C. for 15 minutes to substantially remove the solvent, and then baked in nitrogen at 180 ° C. for 2 hours. This operation improved the adhesion between the carbon black in the carbon adhesive layer and the solvent-soluble fluoropolymer as a binder. The thickness of the obtained carbon adhesive layer was about 20 μm. This was cut into a predetermined size and used as a gas diffusion layer for both anode and cathode.
[0043]
As the ion exchange membrane, a perfluorocarbon sulfonic acid type ion exchange resin membrane (trade name: Flemion HR, manufactured by Asahi Glass Co., Ltd.) having a thickness of 50 μm and an ion exchange capacity of 1.1 meq / g dry resin was used. The two PTFE sheets on which the above catalyst layers were formed were opposed to each other with the catalyst layer side inward, and the Flemion HR membrane was sandwiched between them and hot pressed at 130 ° C. and 3 MPa for 2 minutes to transfer the catalyst layer to the membrane. . Thereafter, only the PTFE sheets on both sides were peeled to produce a membrane / catalyst layer assembly. At this time, the effective electrode area is 25 cm. 2 It was.
[0044]
Next, the gas diffusion layer on which the above carbon adhesive layer is formed is arranged on both outer sides of the membrane catalyst layer assembly, with the carbon adhesive layer side facing inward, and hot pressing is performed at 140 ° C. and 1 MPa for 2 minutes. Thus, a membrane / electrode assembly was obtained. In the obtained joined body, the catalyst layer and the carbon adhesive layer were sufficiently adhered, and were not easily peeled off.
[0045]
[Example 2 (comparative example)]
As a binder for the carbon adhesive layer, instead of the fluoropolymer represented by Chemical Formula 11, polymer units based on tetrafluoroethylene and CF 2 = CFOCF (CF 3 ) O (CF 2 ) 2 SO 3 Using a copolymer consisting of polymer units based on H (ion exchange capacity 1.1 meq / g dry resin), instead of perfluoro (2-butyltetrahydrofuran), ethanol was used as the paste for forming the carbon adhesive layer. A membrane / electrode assembly was prepared in exactly the same manner as in Example 1 except that. In the obtained joined body, the catalyst layer and the carbon adhesive layer were sufficiently adhered, and were not easily peeled off.
[0046]
[Battery characteristics test]
Separators are arranged on both outer sides of the membrane / electrode assemblies in Examples 1 and 2 above, and incorporated in the PEFC cell, and an electronic load device FK400L (manufactured by Takasago Seisakusho) and a DC power supply device EX750L (manufactured by Takasago Seisakusho) are used. A measurement test of current-voltage characteristics was performed. The measurement conditions were as follows: hydrogen was supplied to the anode, and air was supplied to the cathode. Hydrogen outlet pressure: 0.1 MPa (normal pressure), air outlet pressure; 0.1 MPa (normal pressure), measurement cell operating temperature: 80 ° C. Hydrogen supplied to the cathode and air supplied to the cathode both have a dew point of 80 ° C., and the current density is 0.4 A / cm. 2 Maintained at. The fuel utilization was 70% on the anode side and 40% on the cathode side. The time-dependent change of the cell voltage when driving at constant current was measured. The test results are shown in Table 1.
[0047]
[Table 1]
Figure 2004259661
[0048]
In Example 1, the cell characteristics were stable, and the cell voltage decreased less than in Example 2. This seems to be because the water-repellent property of the entire carbon adhesive layer was maintained because the solvent-soluble fluoropolymer present in the carbon adhesive layer had water repellency.
[0049]
The decrease in the cell voltage in Example 2 is larger than that in Example 1 because the ion exchange resin present in the carbon adhesive layer is a hydrophilic component and the wetting progresses in this layer. As a result, the pores are blocked, the supply of hydrogen and air is hindered, and the concentration overvoltage seems to have increased. That is, it seems that the supply of the fuel gas and air to the catalyst layer is difficult to be performed smoothly over time, and the cell voltage is decreased over time.
[0050]
【The invention's effect】
In the present invention, since the carbon adhesive layer is provided between the gas diffusion layer and the catalyst layer, and the water repellent is used as the binder, the carbon adhesive layer has a water repellency excellent in durability. Yes. In addition, by using a water repellent having a low glass transition temperature, such as a copolymer composed of polymer units represented by Formula 11, the catalyst layer and the gas diffusion layer can be easily bonded with a low-temperature press. As a result, the ion exchange resin in the catalyst layer is not deteriorated during the production process by being exposed to a high temperature. That is, the membrane / electrode assembly of the present invention has an advantage that the catalyst layer and the gas diffusion layer are integrated, so that the handling property is good and water does not accumulate between the catalyst layer and the gas diffusion layer. In addition, since the carbon adhesive layer has water repellency, stable power generation characteristics with high durability can be obtained.
[0051]
Further, the carbon adhesive layer can serve as a buffer layer for the catalyst layer, and can suppress damage to the film due to the gas diffusion layer. Further, since the water-repellent agent is soluble in a solvent and does not contain a dispersant, a high-temperature firing is not required when forming the carbon adhesive layer, and it can be produced simply by removing the solvent at room temperature. Furthermore, by heat-treating the carbon adhesive layer at a temperature lower than the heat resistant temperature of the film, the adhesive force between the carbon black and the water repellent can be enhanced, and the water repellency can be maintained for a longer period.
[0052]
The membrane / electrode assembly of the present invention having such a carbon adhesive layer has low resistance and high water repellency in the long term, has little deterioration in output characteristics over time, and is suitable for PEFC and DMFC.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a membrane / electrode assembly of the present invention.
[Explanation of symbols]
1, 1 ': Gas diffusion layer base material
2, 2 ': Water-repellent carbon layer
3, 3 ': catalyst layer
4: Ion exchange membrane
5, 5 ': Gas diffusion layer
6: Cathode
7: Anode
8, 8 ': Carbon adhesive layer
9: Membrane / electrode assembly

Claims (7)

ガス拡散層と触媒層とを有するアノード及びカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置されこれらの触媒層と接合しているイオン交換膜と、を備える燃料電池用膜・電極接合体であって、前記アノード及び前記カソードの少なくとも一方は、前記ガス拡散層がカーボンブラックとポリテトラフルオロエチレンとを含む撥水性カーボン層を表面に有する多孔質基材からなり、前記撥水性カーボン層と前記触媒層とが間にカーボン接着層を介して接合されており、前記カーボン接着層は、溶媒可溶性含フッ素重合体とカーボンブラックとからなる層であることを特徴とする膜・電極接合体。An anode and a cathode having a gas diffusion layer and a catalyst layer, and an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode and bonded to these catalyst layers. In the membrane / electrode assembly, at least one of the anode and the cathode is formed of a porous substrate having a water-repellent carbon layer on the surface of which the gas diffusion layer contains carbon black and polytetrafluoroethylene, A film characterized in that a water-repellent carbon layer and the catalyst layer are bonded via a carbon adhesive layer, and the carbon adhesive layer is a layer comprising a solvent-soluble fluoropolymer and carbon black. -Electrode assembly. 前記カーボン接着層には、前記溶媒可溶性含フッ素重合体とカーボンブラックとが質量比で、5:95〜60:40の割合で含まれる請求項1に記載の膜・電極接合体。The membrane / electrode assembly according to claim 1, wherein the carbon-adhering layer contains the solvent-soluble fluoropolymer and carbon black in a mass ratio of 5:95 to 60:40. 前記溶媒可溶性含フッ素重合体は、主鎖に含フッ素脂肪族環構造を有する請求項1又は2に記載の膜・電極接合体。The membrane / electrode assembly according to claim 1 or 2, wherein the solvent-soluble fluoropolymer has a fluorinated aliphatic ring structure in the main chain. 前記溶媒可溶性含フッ素重合体は、下記式1〜4のいずれかで表される重合単位(ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数、qは0〜4の整数、rは0又は1、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてnは1又は2である。)を含む請求項3に記載の膜・電極接合体。
Figure 2004259661
The solvent-soluble fluoropolymer is a polymer unit represented by any one of the following formulas 1 to 4 (wherein, in formula 1, R 1 is a fluorine atom or a trifluoromethyl group, and p is an integer of 0 to 5). , Q is an integer of 0-4, r is 0 or 1, p + q + r is 1-6, and in Formula 2, s, t, u are each independently an integer of 0-5, and s + t + u is 1-6, 4. The membrane / electrode assembly according to claim 3, wherein R 2 and R 3 are each independently a fluorine atom or a trifluoromethyl group in Formula 3, and n is 1 or 2 in Formula 4.
Figure 2004259661
前記溶媒可溶性含フッ素重合体は、下記式5〜13のいずれかで表される重合単位を含むことを特徴とする請求項3に記載の膜・電極接合体。
Figure 2004259661
The membrane-electrode assembly according to claim 3, wherein the solvent-soluble fluoropolymer contains a polymer unit represented by any one of the following formulas (5) to (13).
Figure 2004259661
前記溶媒可溶性含フッ素重合体が、上記式11で表される重合単位からなる請求項5に記載の膜・電極接合体。6. The membrane / electrode assembly according to claim 5, wherein the solvent-soluble fluoropolymer comprises a polymer unit represented by the formula 11. ガス拡散層と触媒層とを有するアノード及びカソードと、前記アノードの触媒層と前記カソードの触媒層との間に配置され、前記アノード及び前記カソードの触媒層と隣接し接合しているイオン交換膜と、を備える燃料電池用膜・電極接合体の製造方法であって、前記アノード及び前記カソードの少なくとも一方を作製する工程において、
溶媒可溶性含フッ素重合体の溶液にカーボンブラックを分散させて塗工液を作製し、
多孔質基材上にカーボンブラックとポリテトラフルオロエチレンとを含む撥水性カーボン層が形成されたガス拡散層の前記撥水性カーボン層の上に、前記塗工液を塗工することによりカーボン接着層を作製し、
前記カーボン接着層を前記触媒層に積層し、前記カーボン接着層を介して前記触媒層と前記ガス拡散層とを接合させることを特徴とする膜・電極接合体の製造方法。
An anode and a cathode having a gas diffusion layer and a catalyst layer, and an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode and adjacent to and joined to the catalyst layer of the anode and the cathode A method for producing a membrane / electrode assembly for a fuel cell comprising: at least one of the anode and the cathode;
Carbon black is dispersed in a solvent-soluble fluoropolymer solution to prepare a coating solution,
A carbon adhesive layer is formed by applying the coating liquid on the water-repellent carbon layer of a gas diffusion layer in which a water-repellent carbon layer containing carbon black and polytetrafluoroethylene is formed on a porous substrate. Make
A method for producing a membrane / electrode assembly, comprising: laminating the carbon adhesive layer on the catalyst layer, and bonding the catalyst layer and the gas diffusion layer through the carbon adhesive layer.
JP2003051326A 2003-02-27 2003-02-27 Membrane/electrode jointed body and its manufacturing method Pending JP2004259661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051326A JP2004259661A (en) 2003-02-27 2003-02-27 Membrane/electrode jointed body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051326A JP2004259661A (en) 2003-02-27 2003-02-27 Membrane/electrode jointed body and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004259661A true JP2004259661A (en) 2004-09-16

Family

ID=33116496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051326A Pending JP2004259661A (en) 2003-02-27 2003-02-27 Membrane/electrode jointed body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004259661A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216559A (en) * 2005-02-04 2006-08-17 Samsung Sdi Co Ltd Fuel cell
JP2007538358A (en) * 2004-11-03 2007-12-27 ビーワイディー カンパニー リミテッド Method for producing membrane electrode assembly of fuel cell
KR100825196B1 (en) * 2005-03-28 2008-04-24 산요덴키가부시키가이샤 Fuel cell
WO2008123350A1 (en) * 2007-03-30 2008-10-16 Jsr Corporation Membrane-electrode assembly for direct methanol fuel cell and direct methanol fuel cell
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP2009087770A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for cylinder type solid alkaline fuel battery
JP2009087742A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for solid alkaline fuel battery
JP2009231217A (en) * 2008-03-25 2009-10-08 Jsr Corp Membrane electrode assembly for direct methanol fuel cell, direct methanol fuel cell, and resin paste for gas diffusion layer
WO2009145231A1 (en) * 2008-05-29 2009-12-03 株式会社 東芝 Fuel cell
WO2009147994A1 (en) * 2008-06-04 2009-12-10 株式会社 東芝 Membrane electrode assembly and fuel cell
JP2010108646A (en) * 2008-10-28 2010-05-13 Asahi Glass Co Ltd Manufacturing method of membrane electrode assembly for solid polymer fuel cell
JP2010244784A (en) * 2009-04-03 2010-10-28 Toyota Motor Corp Fuel cell
JP2011076739A (en) * 2009-09-29 2011-04-14 Gs Yuasa Corp Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
US20120118385A1 (en) * 2009-04-20 2012-05-17 Photovoltaic Cell Photovoltaic cell
JP2012174456A (en) * 2011-02-21 2012-09-10 Nippon Soken Inc Fuel cell
JP2012216416A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Membrane-electrode assembly and manufacturing method thereof
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack
JP5293859B1 (en) * 2012-05-11 2013-09-18 大日本印刷株式会社 Conductive porous layer for battery and method for producing the same
WO2014006957A1 (en) * 2012-07-02 2014-01-09 トヨタ自動車株式会社 Fuel cell gas diffusion layer and method for forming same
JP2015233021A (en) * 2015-09-30 2015-12-24 トヨタ自動車株式会社 Gas diffusion layer for fuel cell
WO2016147941A1 (en) * 2015-03-13 2016-09-22 株式会社村田製作所 Atomic layer deposition-inhibiting material
EP2618414A4 (en) * 2010-09-13 2017-03-01 Toppan Printing Co., Ltd. Membrane electrode assembly, method for producing membrane electrode assembly, and fuel battery

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538358A (en) * 2004-11-03 2007-12-27 ビーワイディー カンパニー リミテッド Method for producing membrane electrode assembly of fuel cell
US8187764B2 (en) 2005-02-04 2012-05-29 Samsung Sdi Co., Ltd. Fuel cell with moisture retentive layer in MEA
JP2006216559A (en) * 2005-02-04 2006-08-17 Samsung Sdi Co Ltd Fuel cell
KR100825196B1 (en) * 2005-03-28 2008-04-24 산요덴키가부시키가이샤 Fuel cell
WO2008123350A1 (en) * 2007-03-30 2008-10-16 Jsr Corporation Membrane-electrode assembly for direct methanol fuel cell and direct methanol fuel cell
JP2008251449A (en) * 2007-03-30 2008-10-16 Jsr Corp Membrane-electrode assembly for direct methanol fuel cell, and direct methanol fuel cell
JP2009037919A (en) * 2007-08-02 2009-02-19 Sharp Corp Fuel cell and its manufacturing method, and fuel-cell stack
JP2009087770A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for cylinder type solid alkaline fuel battery
JP2009087742A (en) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd Cell for solid alkaline fuel battery
JP2009231217A (en) * 2008-03-25 2009-10-08 Jsr Corp Membrane electrode assembly for direct methanol fuel cell, direct methanol fuel cell, and resin paste for gas diffusion layer
WO2009145231A1 (en) * 2008-05-29 2009-12-03 株式会社 東芝 Fuel cell
WO2009147994A1 (en) * 2008-06-04 2009-12-10 株式会社 東芝 Membrane electrode assembly and fuel cell
JP2010108646A (en) * 2008-10-28 2010-05-13 Asahi Glass Co Ltd Manufacturing method of membrane electrode assembly for solid polymer fuel cell
JP2010244784A (en) * 2009-04-03 2010-10-28 Toyota Motor Corp Fuel cell
US20120118385A1 (en) * 2009-04-20 2012-05-17 Photovoltaic Cell Photovoltaic cell
JP2011076739A (en) * 2009-09-29 2011-04-14 Gs Yuasa Corp Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
EP2618414A4 (en) * 2010-09-13 2017-03-01 Toppan Printing Co., Ltd. Membrane electrode assembly, method for producing membrane electrode assembly, and fuel battery
JP2012174456A (en) * 2011-02-21 2012-09-10 Nippon Soken Inc Fuel cell
JP2012216416A (en) * 2011-03-31 2012-11-08 Dainippon Printing Co Ltd Membrane-electrode assembly and manufacturing method thereof
JP5293859B1 (en) * 2012-05-11 2013-09-18 大日本印刷株式会社 Conductive porous layer for battery and method for producing the same
WO2013168810A1 (en) * 2012-05-11 2013-11-14 大日本印刷株式会社 Conductive porous layer for battery, and manufacturing method for same
WO2014006957A1 (en) * 2012-07-02 2014-01-09 トヨタ自動車株式会社 Fuel cell gas diffusion layer and method for forming same
CN104412429A (en) * 2012-07-02 2015-03-11 丰田自动车株式会社 Fuel cell gas diffusion layer and method for forming same
JP2013008687A (en) * 2012-08-24 2013-01-10 Sharp Corp Fuel cell stack
WO2016147941A1 (en) * 2015-03-13 2016-09-22 株式会社村田製作所 Atomic layer deposition-inhibiting material
JPWO2016147941A1 (en) * 2015-03-13 2017-12-21 株式会社村田製作所 Atomic layer deposition inhibitor
US10508337B2 (en) 2015-03-13 2019-12-17 Murata Manufacturing Co., Ltd. Atomic layer deposition-inhibiting material
JP2015233021A (en) * 2015-09-30 2015-12-24 トヨタ自動車株式会社 Gas diffusion layer for fuel cell

Similar Documents

Publication Publication Date Title
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
KR100714361B1 (en) Membrane electrode assembly and method of producing the same
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
US20190280307A1 (en) Composite electrode layer for polymer electrolyte fuel cell
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
WO2009151013A1 (en) Membrane electrode assembly for polymer fuel cell
JP5693208B2 (en) Membrane-electrode assembly for fuel cell, manufacturing method of membrane-electrode assembly for fuel cell, fuel cell system, and stack for fuel cell
JP2008276949A (en) Membrane electrode assembly for solid polymer fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP5532630B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP5194624B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
KR100709220B1 (en) Polymer electrolyte membrane for fuel cell, preparing method thereof and fuel cell system comprising same
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
JP2002260686A (en) Method of manufacturing membrane/electrode jointing body for solid high polymer fuel cell
JP2006286560A (en) Membrane for solid polymer fuel cell and manufacturing method of electrode jointed conjugate
WO2012098606A1 (en) Membrane electrode assembly for fuel cell and fuel cell using same
JP2004234947A (en) Direct methanol type fuel cell and manufacturing method therefor
JP2005019298A (en) Film/electrode junction for solid polymer type fuel cell