JP4398021B2 - Method for recovering useful metals from alkaline secondary batteries - Google Patents

Method for recovering useful metals from alkaline secondary batteries Download PDF

Info

Publication number
JP4398021B2
JP4398021B2 JP31511399A JP31511399A JP4398021B2 JP 4398021 B2 JP4398021 B2 JP 4398021B2 JP 31511399 A JP31511399 A JP 31511399A JP 31511399 A JP31511399 A JP 31511399A JP 4398021 B2 JP4398021 B2 JP 4398021B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
active material
alkaline secondary
negative electrode
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31511399A
Other languages
Japanese (ja)
Other versions
JP2001131647A (en
Inventor
康 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP31511399A priority Critical patent/JP4398021B2/en
Publication of JP2001131647A publication Critical patent/JP2001131647A/en
Application granted granted Critical
Publication of JP4398021B2 publication Critical patent/JP4398021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を負極活物質とするアルカリ二次電池から水素吸蔵合金の原料として使用可能な有用金属を回収するアルカリ二次電池からの有用金属回収方法に関する。
【0002】
【従来の技術】
近年、ニッケル−カドミウム二次電池に代わる高容量の電池として、希土類金属−ニッケル合金をはじめとする水素吸蔵合金を負極活物質とする金属水素化物二次電池(以下MH電池ということがある)が注目されている。MH電池は、負極活物質として水素吸蔵合金を使用しているため、ニッケル−カドミウム電池のように公害物質であるカドミウムを含まず、環境に配慮した電池である。
MH電池に使用される負極活物質としての水素吸蔵合金は、希土類金属元素、ニッケル、コバルト、チタン、ジルコニウム、バナジウム等の高価な金属を多く含むため、使用後等のMH電池からそれらの有用金属を回収するためのさまざまな方法が従来提案されている。
【0003】
例えば、MH電池から正極活物質と負極活物質とを比重差分離により別々に回収する方法が提案されている(特許第2866005号、特開平10−189063号公報、特開平10−21969号公報)。この方法は、それぞれの極の活物質を分離して回収することができるが、そのためには、活物質だけをまず分離する必要があり、破砕した電池を洗浄し、乾式で篩分した後、湿式で再び篩分し、活物質とそれ以外を分離し、その後に比重差分離で正極と負極の活物質を分離する等、多くの工程が必要である。また、回収した負極活物質は、使用済み電池の場合、水素吸蔵合金が酸化等により劣化していることが多いため、そのまま負極活物質として使用することは困難な上、電極内に含まれている導電助剤や結着材等を分離することができないため、原料合金として使用するためには、さらに多くの工程が必要となり、煩雑でコストもかかる。
また、活物質成分を塩類として回収する方法として、正極及び負極の混合活物質を酸溶解し、希土類金属成分をフッ化物や硫酸複塩などの形で選択的に回収する方法(特開平6−340930号公報、特開平9−82371号公報)や、正極及び負極の混合活物質から希土類金属成分を選択的に溶出させて回収する方法(特開平9−217133号公報)が提案されている。これらの方法は、電池を解体して活物質とそれ以外とに分離した後、活物質をいったん溶解して溶液とし、分別沈殿法や選択溶解法を用いて個々の元素毎に分離回収する方法であり、高純度で回収できる利点がある。しかし、多くの工程と副資材が必要となる上、水素吸蔵合金の原料とするためには、それぞれの化合物を還元するところから始めなければならず、多くの工程が必要となり、煩雑でコストもかかる。
更に、活物質成分を合金として回収する方法として、電池から負極活物質を分離した後に溶解し、溶湯中に酸素を導入して希土類金属成分を酸化物として回収し、その他の成分をメタルとして回収する方法(特開平8−143984、特開平9−71825号公報)や、負極活物質を真空溶解後、希土類金属を添加して脱酸素、高品位化する方法(特開平10−30132号公報)等が提案されている。これらの方法は、電池から負極活物質を分離する工程が必要となる上、正極活物質には適用できない。
【0004】
【発明が解決しようとする課題】
従って、本発明の目的は、水素吸蔵合金を負極活物質とするアルカリ二次電池から、簡便な手法で水素吸蔵合金の原料として使用可能な有用金属を回収することができる有用金属回収方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討した結果、まず、電池から正極と負極の活物質を分離することなく、水素吸蔵合金の原料として使用可能な、不純物の少ない有用金属の回収方法について還元焼成法に着目した。そして、系内の雰囲気及び温度を段階的に特定範囲に維持することにより、水分除去、金属の還元および高揮発性金属の除去が同一系内で可能であることを見出し本発明を完成するに至った。
すなわち、本発明によれば、水素吸蔵合金を負極活物質とするアルカリ二次電池からの有用金属回収方法であって、希土類系水素吸蔵合金を負極活物質とするアルカリ二次電池を、粉砕及び/又は解体する工程(a)と、工程(a)で得られた粉砕物及び/又は解体物を、還元剤の存在下、200℃以上の条件で、露点を0℃以下に制御しながら加熱分解及び還元する工程(b)と、800℃以上の温度において、工程(b)で得られた物質から亜鉛、リチウム、カリウム等の高揮発性金属及びその化合物を揮発除去する工程(c)とを含むことを特徴とする、希土類系水素吸蔵合金の原料として使用可能な有用金属を回収するアルカリ二次電池からの有用金属回収方法が提供される。
【0006】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明の回収方法では、まず、希土類系水素吸蔵合金を負極活物質とするアルカリ二次電池を、粉砕及び/又は解体する工程(a)を行う。
工程(a)において、アルカリ二次電池は、希土類系水素吸蔵合金を負極活物質として用いている電池であれば特に限定されず、通常、使用後の電池を用いることができる。該水素吸蔵合金は、通常、希土類金属及び遷移金属を含む合金で構成される。
【0007】
前記電池の破砕及び/又は解体(以下、単に、破砕という場合がある)は、公知の破砕及び解体の方法を使用することができる。希土類系の水素吸蔵合金を用いた電池では、水素吸蔵合金が酸化し易く、また、充電状態の水素吸蔵合金は発火の恐れがあるため、不活性ガス雰囲気中や湿式で破砕及び解体を行なうことが好ましく、常温付近で行なうことが特に好ましい。
破砕する大きさは特に制限されない。次の工程(b)の効率を考慮すれば、表面積が大きくなるよう細かく粉砕するほうがよいが、電池缶体等を分離し易くするためには大きなほうがよい。従って、これら双方のバランスを考慮し、通常は、3〜10mm程度の範囲に破砕することが好ましい。
【0008】
本発明の回収方法では、次に、工程(a)で得られた粉砕物及び/又は解体物を、還元剤の存在下、200℃以上の条件で、露点を0℃以下に制御しながら加熱分解及び還元する工程(b)を行う。
工程(b)では、主に水素吸蔵合金等の金属の酸化を抑制しながら、破砕物や解体物中に含まれる水分を除去し、同時にニッケル、コバルト、亜鉛等の遷移金属化合物を金属に還元する。
【0009】
工程(b)に用いる還元剤としては、上記遷移金属化合物を還元できるものであればよく、固体では炭素等、気体では水素ガス、一酸化炭素ガス等が好ましく挙げられる。これらの還元剤は、単体で用いても、複数を組合せて用いてもよい。
工程(b)は、前記還元剤の存在下、工程(a)で得られた粉砕物及び/又は解体物を、200℃以上の条件で、露点を0℃以下の雰囲気に制御しながら加熱分解及び還元する必要がある。
露点が0℃より高くなると水素吸蔵合金等の金属が激しく酸化される。好ましくは、露点が−5℃以下、より好ましくは−10℃以下である。露点の制御はガスによる希釈や減圧によって行なうことができる。
この露点の制御は、還元反応を進行させるために200℃以上、好ましくは300℃以上、より好ましくは400℃以上で制御する必要がある。温度が200℃未満の場合、水分の除去や還元反応に時間を要するか、反応が進行しない恐れがある。一方、温度が高すぎる場合、露点の制御が困難になるため、800℃以下がよく、好ましくは700℃以下、より好ましくは600℃以下とすることが望ましい。
【0010】
工程(b)において、上記雰囲気における露点の制御は、上述のとおり、温度と圧力制御により行うことができ、通常の露点計により測定しながら制御することができる。この際、制御を行わなくても露点が実質的に一定になった後に急激な圧力低下や露点の低下が見られた時点で還元反応がほぼ終了していることになるので、次の工程に移ることができる。
【0011】
工程(b)に用いる破砕物や解体物の含水量が多い場合には、上記温度条件においても露点の制御が困難になる場合があるため、例えば、200℃より低い温度で水分の除去を行なった後に、温度を200℃以上にして露点を制御しても良いし、前記工程(a)終了後に脱水処理を行なった後に工程(b)に供することもできる。
【0012】
本発明の回収方法では、次に、工程(b)で得られた物質から亜鉛、リチウム、カリウム等の高揮発性金属及びその化合物を揮発除去する工程(c)を行う。
工程(c)では、主に、工程(b)で得られた還元物中に含まれる、リチウム、カリウム、亜鉛等の高揮発性金属およびその化合物の揮発除去を行なう。上記工程(c)によって、水素吸蔵合金の原料として使用可能とするために不必要な上記高揮発性金属を、簡易な方法で水素吸蔵合金の原料となる程度のレベルまで除去することができる。また、この工程(c)は、例えば、工程(b)を焼成炉等で行った場合、同一系内で行うことが可能である。
【0013】
工程(c)において、上記高揮発性金属及びその化合物を揮発除去する条件は、通常、800℃以上、好ましくは900℃以上、特に好ましくは1000℃以上である。温度が低い場合には揮発除去に時間を要し、更には、充分な除去ができない恐れがあるため好ましくない。
【0014】
工程(c)は、高揮発性金属等の除去を効率的に行なうために、非酸化性雰囲気中減圧下で行なうのが好ましい。雰囲気ガスは、不活性ガスでもよいし、工程(b)における還元物の還元が充分でない場合等は、水素ガス等の還元性ガスを使用して行うことができる。また、圧力が高い場合には、揮発除去に時間を要したり、充分に除去できない恐れがあるため、通常、10kPa以下の条件が良く、好ましくは1kPa以下、より好ましくは600Pa以下、さらに好ましくは200Pa以下が望ましい。
【0015】
工程(c)により得られる処理物は、水素吸蔵合金の原料として使用可能な有用金属として、例えば、酸化した水素吸蔵合金中に含まれるCo、Ni、Mn等の遷移金属や、正極中に含まれるNi等が還元された金属、未酸化の水素吸蔵合金又はこれらの混合物等が挙げられる。
本発明の回収方法では、回収物を実際に水素吸蔵合金の原料として使用する際に、必要に応じて、更に種々の公知の精製法を組合せることができる。
【0016】
【発明の効果】
本発明のアルカリ二次電池からの有用金属回収方法では、特に、工程(b)を行うので、工程(a)において特別な選別が必要なく、しかも、工程(c)における水素吸蔵合金の原料として不必要な高揮発性金属及びその化合物の除去を簡易な方法で効率良く行うことができ、簡便な手法で水素吸蔵合金を負極活物質とするアルカリ二次電池から水素吸蔵合金の原料として使用可能な有用金属が回収できる。
【0017】
【実施例】
以下、本発明を実施例及び比較例によりさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
希土類系水素吸蔵合金を負極活物質とする使用済みアルカリ二次電池を、大気中で水を噴霧しながら一軸破砕機を用い、10mmメッシュを通過するように破砕した。
得られた含水状態の破砕物500gをステンレス製のバットに入れ、露点計を排出ガス経路に備えた焼成炉内に設置した。続いて、炉内の圧力を10Paまで減圧した後、減圧を続けながら、露点が−5℃になるように水素ガスの導入量及び温度を制御し、400℃まで加温した。400℃到達後、露点が安定したところで水素ガス流量を2リットル/分に固定し、炉内圧力が100Paになるまで400℃で保持した。
炉内圧力が100Paになったところで、水素ガスを流したまま900℃に昇温し、5Paの圧力減少が見られるまで900℃を保持した。900℃での保持終了後、炉内にアルゴンガスを導入して大気圧とし、室温まで冷却し、炉内より処理物を取出し、目開き500μmのふるいにて粉末とそれ以外とを分離した。得られた粉末を、ICP発光分光分析装置(セイコーインスツルメンツ(株)製、商品名SPS−1700HVR)及び酸素窒素分析装置((株)堀場製作所製、商品名EMGA−550FA)により測定した。結果を表1に示す。
【0018】
実施例2
400℃での保持までを実施例1と同様に行なった後、水素ガスの代わりにアルゴンガスを導入し、炉内圧力が100Paになったところで、アルゴンガスを流したまま1300℃に昇温し、5Paの圧力減少が見られるまで1300℃を保持した。1300℃での保持終了後、炉内をアルゴンガスにより大気圧とし、室温まで冷却し、炉内より処理物を取出し、目開き500μmのふるいにて分離し、回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。
【0019】
実施例3
希土類系水素吸蔵合金を負極活物質とする使用済みアルカリ二次電池を、大気中で水を噴霧しながら一軸破砕機を用い、10mmのメッシュを通過するように破砕した。
この含水状態の破砕物500gをステンレス製のバットに入れ、還元剤として炭素粉末20gを添加、混合した後、焼成炉内に設置した。続いて、炉内の圧力をを10Paまで減圧し、減圧を続けながら、露点が0℃になるようにアルゴンガスの導入量及び温度を制御し、600℃まで加温した。600℃到達後、露点が安定したところでアルゴンガス流量を2リットル/分に固定し、炉内圧力が100Paになるまで600℃で保持した。炉内圧力が100Paになったところで1000℃に昇温し、5Paの圧力減少が見られるまで1000℃に保持した。1000℃での保持終了後、アルゴンガスにて大気圧とし、室温まで冷却、炉内より処理物を取出し、目開き500μmのふるいにて分離し、回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。
【0020】
実施例4
還元剤として水素ガスの代わりに一酸化炭素ガスを使用した以外は実施例1と同様の操作を行ない、回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。
【0021】
比較例1
水素ガスの代わりにアルゴンガスを用いた以外は実施例1と同様にして回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。なお、比較例1は、工程(b)において還元剤を用いない例である。
【0022】
比較例2
希土類系水素吸蔵合金を負極活物質とする使用済みアルカリ二次電池を、大気中で水を噴霧しながら一軸破砕機を用い、10mmメッシュを通過するように破砕した。
この含水状態の破砕物500gをステンレス製のバットに入れ、焼成炉内に設置した。続いて、炉内を10Paまで減圧した後、減圧を続けながら、露点が−5℃になるように水素ガスの導入量及び温度を制御し、400℃まで加温した。400℃到達後、露点が安定したところで水素ガス流量を2リットル/分に固定し、炉内圧力が100Paになるまで400℃で保持した。
400℃での保持終了後、炉内にアルゴンガスを導入して大気圧とし、室温まで冷却した。次いで、炉内より処理物を取出し、目開き500μmのふるいにて分離し、回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。なお、この比較例2は工程(c)を行わない例である。
【0023】
比較例3
露点を5℃とした以外は実施例1と同様にして回収粉末を得た。得られた回収粉末について、実施例1と同様に各測定を行った。結果を表1に示す。なお、比較例3は、露点を0℃を超える条件とした例である。
【表1】

Figure 0004398021
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for recovering a useful metal from an alkaline secondary battery that recovers a useful metal that can be used as a raw material for the hydrogen storage alloy from an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material.
[0002]
[Prior art]
In recent years, metal hydride secondary batteries (hereinafter sometimes referred to as MH batteries) using a hydrogen storage alloy such as a rare earth metal-nickel alloy as a negative electrode active material have been used as high-capacity batteries to replace nickel-cadmium secondary batteries. Attention has been paid. Since the MH battery uses a hydrogen storage alloy as the negative electrode active material, it does not contain cadmium, which is a pollutant, unlike the nickel-cadmium battery, and is an environmentally friendly battery.
Hydrogen storage alloys as negative electrode active materials used in MH batteries contain a lot of expensive metals such as rare earth metal elements, nickel, cobalt, titanium, zirconium, vanadium, etc., so those useful metals from MH batteries after use etc. Various methods have been proposed in the past for recovering.
[0003]
For example, methods have been proposed in which a positive electrode active material and a negative electrode active material are separately recovered from a MH battery by specific gravity difference separation (Japanese Patent No. 2866005, Japanese Patent Laid-Open Nos. 10-189063, and 10-21969). . This method can separate and recover the active material of each electrode, but for that purpose, it is necessary to first separate only the active material, after the crushed battery is washed and sieved dry, Many steps are required, such as sieving again with a wet method, separating the active material and the others, and then separating the active material of the positive electrode and the negative electrode by separation of specific gravity. In addition, in the case of a used battery, the collected negative electrode active material is often difficult to use as a negative electrode active material as it is because the hydrogen storage alloy is often deteriorated due to oxidation or the like. Since the conductive auxiliary agent, the binder, and the like that are present cannot be separated, more steps are required for use as a raw material alloy, which is complicated and expensive.
Further, as a method of recovering the active material component as a salt, a method of recovering the rare earth metal component selectively in the form of fluoride or sulfuric acid double salt by dissolving the mixed active material of the positive electrode and the negative electrode with an acid (Japanese Patent Laid-Open No. 6-1994) No. 340930, JP-A-9-82371) and a method of selectively eluting rare earth metal components from a mixed active material of a positive electrode and a negative electrode and recovering them (JP-A-9-217133) have been proposed. In these methods, the battery is disassembled and separated into the active material and the rest, and then the active material is dissolved once to form a solution, which is separated and recovered for each element using a fractional precipitation method or a selective dissolution method. There is an advantage that it can be recovered with high purity. However, many processes and auxiliary materials are required, and in order to use as a raw material for the hydrogen storage alloy, it is necessary to start from reducing each compound, which requires many processes, and is complicated and costly. Take it.
Furthermore, as a method of recovering the active material component as an alloy, the negative electrode active material is separated from the battery and then dissolved, oxygen is introduced into the molten metal, and the rare earth metal component is recovered as an oxide, and the other components are recovered as metal. (Japanese Patent Laid-Open No. Hei 8-143984, Japanese Patent Laid-Open No. 9-71825) or a method in which a negative electrode active material is dissolved in a vacuum and then deoxygenated by adding a rare earth metal to improve the quality (Japanese Patent Laid-Open No. 10-30132) Etc. have been proposed. These methods require a step of separating the negative electrode active material from the battery and are not applicable to the positive electrode active material.
[0004]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a useful metal recovery method capable of recovering useful metals that can be used as raw materials for hydrogen storage alloys from an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material by a simple method. There is to do.
[0005]
[Means for Solving the Problems]
As a result of diligent investigations to solve the above problems, the present inventors firstly used a useful metal with few impurities that can be used as a raw material for a hydrogen storage alloy without separating the positive electrode and negative electrode active materials from the battery. The recovery method was focused on the reduction firing method. Then, by maintaining the atmosphere and temperature in the system in a specific range step by step, it is found that moisture removal, metal reduction, and removal of highly volatile metals can be performed in the same system to complete the present invention. It came.
That is, according to the present invention, a useful metal recovery method from an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material, the alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material, And / or heating step (a) and the pulverized product and / or disassembled product obtained in step (a) in the presence of a reducing agent while controlling the dew point to 0 ° C. or lower under the condition of 200 ° C. or higher. A step (b) of decomposing and reducing, and a step (c) of volatilizing and removing a highly volatile metal such as zinc, lithium and potassium and a compound thereof from the material obtained in the step (b) at a temperature of 800 ° C. or higher. A useful metal recovery method from an alkaline secondary battery for recovering a useful metal that can be used as a raw material for a rare earth-based hydrogen storage alloy is provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
In the recovery method of the present invention, first, the step (a) of pulverizing and / or disassembling an alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material is performed.
In the step (a), the alkaline secondary battery is not particularly limited as long as it uses a rare earth-based hydrogen storage alloy as a negative electrode active material, and normally used batteries can be used. The hydrogen storage alloy is usually composed of an alloy containing a rare earth metal and a transition metal.
[0007]
The battery can be crushed and / or disassembled (hereinafter sometimes simply referred to as crushing) using a known crushing and disassembling method. In batteries using rare earth hydrogen storage alloys, the hydrogen storage alloys are easily oxidized, and charged hydrogen storage alloys may ignite, so they should be crushed and disassembled in an inert gas atmosphere or wet. It is particularly preferable to carry out at around room temperature.
The size to be crushed is not particularly limited. Considering the efficiency of the next step (b), it is better to finely pulverize the surface area, but it is better to make it easier to separate the battery can body and the like. Therefore, in consideration of the balance of both, it is usually preferable to crush in a range of about 3 to 10 mm.
[0008]
In the recovery method of the present invention, next, the pulverized product and / or the disassembled product obtained in step (a) are heated in the presence of a reducing agent while controlling the dew point to 0 ° C. or lower under the condition of 200 ° C. or higher. Step (b) of decomposing and reducing is performed.
In step (b), moisture contained in the crushed material and dismantled material is removed while suppressing oxidation of the metal such as hydrogen storage alloy, and at the same time, transition metal compounds such as nickel, cobalt, and zinc are reduced to metal. To do.
[0009]
The reducing agent used in the step (b) is not particularly limited as long as it can reduce the above-mentioned transition metal compound. Preferred examples thereof include carbon for solids, and hydrogen gas and carbon monoxide gas for gases. These reducing agents may be used alone or in combination.
In the step (b), in the presence of the reducing agent, the pulverized product and / or the disassembled product obtained in the step (a) is thermally decomposed under the condition of 200 ° C. or higher and controlling the dew point to 0 ° C. or lower. And need to be reduced.
When the dew point is higher than 0 ° C., a metal such as a hydrogen storage alloy is violently oxidized. The dew point is preferably −5 ° C. or lower, more preferably −10 ° C. or lower. The dew point can be controlled by dilution with gas or reduced pressure.
The dew point must be controlled at 200 ° C. or higher, preferably 300 ° C. or higher, more preferably 400 ° C. or higher in order to advance the reduction reaction. When the temperature is lower than 200 ° C., it may take time for water removal or reduction reaction, or the reaction may not proceed. On the other hand, when the temperature is too high, it becomes difficult to control the dew point, so 800 ° C. or lower is preferable, preferably 700 ° C. or lower, more preferably 600 ° C. or lower.
[0010]
In step (b), the dew point in the atmosphere can be controlled by temperature and pressure control as described above, and can be controlled while measuring with a normal dew point meter. At this time, the reduction reaction is almost completed at the time when a sudden pressure drop or dew point decrease is observed after the dew point becomes substantially constant without control, so the next step is performed. Can move.
[0011]
When the water content of the crushed material and the dismantled material used in step (b) is large, it may be difficult to control the dew point even under the above temperature conditions. For example, moisture is removed at a temperature lower than 200 ° C. After that, the dew point may be controlled by setting the temperature to 200 ° C. or higher, or after the dehydration treatment after the completion of the step (a), the dew point may be used.
[0012]
In the recovery method of the present invention, next, a step (c) of volatilizing and removing a highly volatile metal such as zinc, lithium and potassium and its compound from the material obtained in the step (b) is performed.
In the step (c), volatile removal of highly volatile metals such as lithium, potassium and zinc and their compounds contained in the reduced product obtained in the step (b) is mainly performed. By the step (c) , the highly volatile metal that is unnecessary to be usable as a raw material for the hydrogen storage alloy can be removed to a level that can be a raw material for the hydrogen storage alloy by a simple method. Further, the step (c), for example, in the case of performing step (b) is firing furnace or the like, it is possible to line Ukoto in the same system.
[0013]
In the step (c), the conditions for volatilizing and removing the highly volatile metal and its compound are usually 800 ° C. or higher, preferably 900 ° C. or higher, particularly preferably 1000 ° C. or higher. If the temperature is low, it takes time to remove the volatilization, and further, there is a possibility that sufficient removal cannot be performed.
[0014]
Step (c) is preferably performed under reduced pressure in a non-oxidizing atmosphere in order to efficiently remove highly volatile metals and the like. The atmosphere gas may be an inert gas, and when the reduction product in the step (b) is not sufficiently reduced, a reducing gas such as hydrogen gas can be used. In addition, when the pressure is high, it may take time for volatilization removal or may not be sufficiently removed. Therefore, the condition is usually 10 kPa or less, preferably 1 kPa or less, more preferably 600 Pa or less, and still more preferably 200 Pa or less is desirable.
[0015]
The treated product obtained in the step (c) is included in the positive electrode as a useful metal that can be used as a raw material for the hydrogen storage alloy, for example, transition metals such as Co, Ni, and Mn contained in the oxidized hydrogen storage alloy. Or a metal obtained by reducing Ni or the like, an unoxidized hydrogen storage alloy, or a mixture thereof.
In the recovery method of the present invention, when the recovered material is actually used as a raw material for the hydrogen storage alloy, various known purification methods can be combined as required.
[0016]
【The invention's effect】
In the method for recovering useful metals from the alkaline secondary battery according to the present invention, in particular, since step (b) is performed, no special sorting is required in step (a), and as a raw material for the hydrogen storage alloy in step (c). Unnecessary highly volatile metals and their compounds can be efficiently removed by a simple method, and can be used as a raw material for hydrogen storage alloys from alkaline secondary batteries using hydrogen storage alloys as negative electrode active materials by a simple method. Useful metals can be recovered.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these.
Example 1
A used alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material was crushed so as to pass through a 10 mm mesh using a uniaxial crusher while spraying water in the atmosphere.
500 g of the obtained hydrated crushed material was placed in a stainless steel vat, and a dew point meter was installed in a firing furnace provided in the exhaust gas path. Subsequently, after the pressure in the furnace was reduced to 10 Pa, the amount and temperature of hydrogen gas introduced were controlled so that the dew point was −5 ° C. while continuing the pressure reduction, and the temperature was increased to 400 ° C. After reaching 400 ° C., the hydrogen gas flow rate was fixed at 2 liters / minute when the dew point was stabilized, and maintained at 400 ° C. until the pressure in the furnace reached 100 Pa.
When the pressure in the furnace reached 100 Pa, the temperature was raised to 900 ° C. while flowing hydrogen gas, and maintained at 900 ° C. until a pressure decrease of 5 Pa was observed. After completion of the holding at 900 ° C., argon gas was introduced into the furnace to atmospheric pressure, cooled to room temperature, the treated product was taken out from the furnace, and the powder and the others were separated with a sieve having an opening of 500 μm. The obtained powder was measured with an ICP emission spectroscopic analyzer (trade name SPS-1700HVR, manufactured by Seiko Instruments Inc.) and an oxygen nitrogen analyzer (trade name EMGA-550FA, manufactured by Horiba, Ltd.). The results are shown in Table 1.
[0018]
Example 2
After carrying out to the hold | maintenance at 400 degreeC similarly to Example 1, argon gas was introduce | transduced instead of hydrogen gas, and when the pressure in a furnace became 100 Pa, it heated up at 1300 degreeC with flowing argon gas. The temperature was maintained at 1300 ° C. until a pressure decrease of 5 Pa was observed. After completion of the holding at 1300 ° C., the inside of the furnace was brought to atmospheric pressure with argon gas, cooled to room temperature, the treated product was taken out from the inside of the furnace, and separated with a sieve having an opening of 500 μm to obtain a recovered powder. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1.
[0019]
Example 3
A used alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material was crushed so as to pass through a 10 mm mesh using a uniaxial crusher while spraying water in the atmosphere.
500 g of this hydrated crushed material was put into a stainless steel vat, 20 g of carbon powder was added and mixed as a reducing agent, and then placed in a firing furnace. Subsequently, the pressure in the furnace was reduced to 10 Pa, and while continuing the pressure reduction, the amount and temperature of argon gas introduced were controlled so that the dew point was 0 ° C., and the temperature was increased to 600 ° C. After reaching 600 ° C., the flow rate of argon gas was fixed at 2 liters / minute when the dew point was stabilized, and the temperature was maintained at 600 ° C. until the pressure in the furnace reached 100 Pa. When the pressure in the furnace reached 100 Pa, the temperature was raised to 1000 ° C. and kept at 1000 ° C. until a pressure decrease of 5 Pa was observed. After completion of the holding at 1000 ° C., the pressure was changed to atmospheric pressure with argon gas, cooled to room temperature, the treated product was taken out from the furnace, and separated with a sieve having an opening of 500 μm to obtain a recovered powder. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1.
[0020]
Example 4
The recovered powder was obtained in the same manner as in Example 1 except that carbon monoxide gas was used instead of hydrogen gas as the reducing agent. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1.
[0021]
Comparative Example 1
A recovered powder was obtained in the same manner as in Example 1 except that argon gas was used instead of hydrogen gas. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 is an example in which no reducing agent is used in step (b).
[0022]
Comparative Example 2
A used alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material was crushed so as to pass through a 10 mm mesh using a uniaxial crusher while spraying water in the atmosphere.
500 g of this hydrated crushed material was placed in a stainless steel vat and placed in a firing furnace. Subsequently, after reducing the pressure in the furnace to 10 Pa, the amount and temperature of hydrogen gas introduced were controlled so that the dew point was −5 ° C. while continuing the pressure reduction, and the temperature was increased to 400 ° C. After reaching 400 ° C., the hydrogen gas flow rate was fixed at 2 liters / minute when the dew point was stabilized, and maintained at 400 ° C. until the pressure in the furnace reached 100 Pa.
After completion of the holding at 400 ° C., argon gas was introduced into the furnace to atmospheric pressure and cooled to room temperature. Next, the processed product was taken out from the furnace and separated with a sieve having an opening of 500 μm to obtain a recovered powder. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1. In addition, this comparative example 2 is an example which does not perform a process (c).
[0023]
Comparative Example 3
A recovered powder was obtained in the same manner as in Example 1 except that the dew point was 5 ° C. Each measurement was performed on the obtained recovered powder in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 is an example in which the dew point is set to a condition exceeding 0 ° C.
[Table 1]
Figure 0004398021

Claims (2)

水素吸蔵合金を負極活物質とするアルカリ二次電池からの有用金属回収方法であって、
希土類系水素吸蔵合金を負極活物質とするアルカリ二次電池を、粉砕及び/又は解体する工程(a)と、
工程(a)で得られた粉砕物及び/又は解体物を、還元剤の存在下、200℃以上の条件で、露点を0℃以下に制御しながら加熱分解及び還元する工程(b)と、
800℃以上の温度において、工程(b)で得られた物質から亜鉛、リチウム、カリウム等の高揮発性金属及びその化合物を揮発除去する工程(c)とを含むことを特徴とする、希土類系水素吸蔵合金の原料として使用可能な有用金属を回収するアルカリ二次電池からの有用金属回収方法。
A useful metal recovery method from an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material,
A step (a) of crushing and / or disassembling an alkaline secondary battery using a rare earth-based hydrogen storage alloy as a negative electrode active material;
A step (b) of thermally decomposing and reducing the pulverized product and / or the disassembled product obtained in the step (a) in the presence of a reducing agent while controlling the dew point to 0 ° C. or lower under the condition of 200 ° C. or higher;
A rare earth system comprising a step (c) of volatilizing and removing a highly volatile metal such as zinc, lithium and potassium and a compound thereof from the material obtained in step (b) at a temperature of 800 ° C. or higher. A method for recovering useful metals from alkaline secondary batteries, which recovers useful metals that can be used as raw materials for hydrogen storage alloys.
工程(c)の揮発除去を非酸化性雰囲気中、10kPa以下の条件で行うことを特徴とする請求項1記載の回収方法。The recovery method according to claim 1 , wherein the volatilization removal in the step (c) is performed under a condition of 10 kPa or less in a non-oxidizing atmosphere .
JP31511399A 1999-11-05 1999-11-05 Method for recovering useful metals from alkaline secondary batteries Expired - Fee Related JP4398021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31511399A JP4398021B2 (en) 1999-11-05 1999-11-05 Method for recovering useful metals from alkaline secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31511399A JP4398021B2 (en) 1999-11-05 1999-11-05 Method for recovering useful metals from alkaline secondary batteries

Publications (2)

Publication Number Publication Date
JP2001131647A JP2001131647A (en) 2001-05-15
JP4398021B2 true JP4398021B2 (en) 2010-01-13

Family

ID=18061582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31511399A Expired - Fee Related JP4398021B2 (en) 1999-11-05 1999-11-05 Method for recovering useful metals from alkaline secondary batteries

Country Status (1)

Country Link
JP (1) JP4398021B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187328B1 (en) * 2007-09-18 2012-10-05 시마네켄 Metal-coated carbon material and carbon-metal composite material using the same
JP5535716B2 (en) * 2009-09-30 2014-07-02 Dowaエコシステム株式会社 Lithium recovery method
JP5957780B2 (en) * 2011-12-08 2016-07-27 住友化学株式会社 Battery disposal method
JP5678231B2 (en) * 2012-02-27 2015-02-25 株式会社アサカ理研 Separation of rare earth elements from waste optical glass
JP5987757B2 (en) * 2013-04-02 2016-09-07 トヨタ自動車株式会社 Method for recovering positive electrode active material particles

Also Published As

Publication number Publication date
JP2001131647A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
KR102575339B1 (en) Method for recovering valuable metals from waste lithium ion batteries
JP3563897B2 (en) Method for recovering nickel and cobalt from used lithium secondary battery
JP5535717B2 (en) Lithium recovery method
JP2023015047A (en) Method for recycling lithium batteries
JP5535716B2 (en) Lithium recovery method
JP6940003B2 (en) Alloy powder and its manufacturing method
JP3425206B2 (en) Method for recovering valuable resources from used lithium secondary batteries
JP2018197385A (en) Phosphorus removing method, and valuable metal recovering method
JP2004011010A (en) Method for recovering lithium and cobalt from lithium cobaltate
EP4230753A1 (en) Method for recovering lithium and method for producing lithium carbonate
JP4398021B2 (en) Method for recovering useful metals from alkaline secondary batteries
JP4850297B2 (en) Method for producing hydrogen storage alloy composition
JP2021161453A (en) Method for recovering valuable metal from waste lithium-ion battery
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
JPH09157769A (en) Method for recovering compound containing reutilizable rare-earth element
KR100438473B1 (en) Process of recovering valuable metal
CN115852152A (en) Method for cooperatively treating battery black powder and nickel-cobalt hydroxide
JPH1088250A (en) Method for recovering valuable metal from used nickel-hydrogen secondary battery
JP4418129B2 (en) Collection method of valuable metals
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
JP2002339023A (en) Method for recovering valuable metal
JP4700269B2 (en) Method for recovering constituent elements of hydrogen storage alloy
WO2024048247A1 (en) Method for recovering valuable metals
JP3591134B2 (en) Recovery method of platinum group elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees