JP4850297B2 - Method for producing hydrogen storage alloy composition - Google Patents

Method for producing hydrogen storage alloy composition Download PDF

Info

Publication number
JP4850297B2
JP4850297B2 JP2010103457A JP2010103457A JP4850297B2 JP 4850297 B2 JP4850297 B2 JP 4850297B2 JP 2010103457 A JP2010103457 A JP 2010103457A JP 2010103457 A JP2010103457 A JP 2010103457A JP 4850297 B2 JP4850297 B2 JP 4850297B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
recovered
electrode main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010103457A
Other languages
Japanese (ja)
Other versions
JP2011108618A (en
Inventor
慎也 蔭井
啓祐 宮之原
秀利 井上
真吾 菊川
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2010103457A priority Critical patent/JP4850297B2/en
Priority to CN201080046077.2A priority patent/CN102576919B/en
Priority to PCT/JP2010/068558 priority patent/WO2011049160A1/en
Publication of JP2011108618A publication Critical patent/JP2011108618A/en
Application granted granted Critical
Publication of JP4850297B2 publication Critical patent/JP4850297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、使用済の廃ニッケル水素二次電池から新たに水素吸蔵合金組成物を製造する方法に関する。   The present invention relates to a method for newly producing a hydrogen storage alloy composition from a used waste nickel metal hydride secondary battery.

廃ニッケル水素二次電池から有価金属であるニッケル、コバルト及び希土類金属等を回収する方法として、例えば、電池を破砕、解砕、篩分した後、粗粒部(プラスチック、鉄、ニッケル基板等)と細粒部(水酸化ニッケル、水素吸蔵合金)とに分離し、細粒部をアルカリ金属を含んだ硫酸で溶解し、コバルト含有ニッケル溶解液から不純物を除去した後、電解処理して金属ニッケル及びニッケル−コバルト合金を回収する方法が提案されている(特許文献1)。   As a method of recovering valuable metals such as nickel, cobalt, and rare earth metals from waste nickel metal hydride secondary batteries, for example, after crushing, crushing, and sieving the battery, coarse particles (plastic, iron, nickel substrate, etc.) And fine-grained parts (nickel hydroxide, hydrogen storage alloy), the fine-grained parts are dissolved in sulfuric acid containing alkali metal, impurities are removed from the cobalt-containing nickel solution, and then electrolytically treated to obtain nickel metal And a method for recovering the nickel-cobalt alloy has been proposed (Patent Document 1).

このようにして廃ニッケル水素二次電池から有価金属を回収する際、回収した有価金属中の炭素含有量を少なくすることで回収有価金属の用途が広くなるため、有価金属、特に水素吸蔵合金構成元素の回収に当たっては回収される有価金属中の炭素含有量を少なくすることが好ましいという知見が報告されている。例えば特許文献2には、不活性ガス雰囲気或いは水素ガス雰囲気で回収した有価物を脱炭素すると、酸化され易い希土類元素(La、Ce、Pr、Nd、Sm等の希土類元素)などを比較的酸化することなく、該有価物中に含まれる炭素を除去することができるという知見が開示されている。   When recovering valuable metals from waste nickel metal hydride secondary batteries in this way, the use of recovered valuable metals is broadened by reducing the carbon content in the recovered valuable metals. It has been reported that it is preferable to reduce the carbon content in valuable metals to be recovered when recovering elements. For example, in Patent Document 2, a rare-earth element (such as La, Ce, Pr, Nd, and Sm) that is easily oxidized when a valuable material recovered in an inert gas atmosphere or a hydrogen gas atmosphere is decarbonized is relatively oxidized. The knowledge that carbon contained in the valuables can be removed without the need to do so is disclosed.

しかし、廃ニッケル水素電池から水素吸蔵合金構成元素を回収する場合に、負極活物質を多く含む負極主体回収物を水素ガス雰囲気で加熱処理すると、その中に僅かに含まれる正極活物質、特に水酸化ニッケルなどの水酸化物が希土類(La、Ce、Pr、Nd、Sm等)を酸化するため、他の水素吸蔵合金構成元素に比べ希土類の回収率が低くなることが次第に分かってきた。
そこで特許文献3に係る発明は、希土類の回収率を高く維持することができる水素吸蔵合金構成元素の回収方法として、水素吸蔵合金構成元素を含有した負極主体回収物を還元雰囲気中で加熱処理することにより当該負極主体回収物中の水酸化物を還元させた後、当該負極主体回収物を非酸化性雰囲気で加熱して炭素を除去する工程を包含する水素吸蔵合金構成元素の回収方法を提案している。
However, when recovering the constituent elements of the hydrogen storage alloy from the waste nickel metal hydride battery, if the negative electrode mainly recovered material containing a large amount of the negative electrode active material is heat-treated in a hydrogen gas atmosphere, the positive electrode active material, particularly water, contained in the negative electrode active material is slightly contained therein. Since hydroxides such as nickel oxide oxidize rare earths (La, Ce, Pr, Nd, Sm, etc.), it has been gradually found that the recovery rate of rare earths is lower than other hydrogen storage alloy constituent elements.
In view of this, the invention according to Patent Document 3 is a method for recovering a constituent element of a hydrogen storage alloy capable of maintaining a high recovery rate of rare earths, and heat-treats a negative electrode-mainly recovered material containing the constituent element of a hydrogen storage alloy in a reducing atmosphere. Proposed a method for recovering the constituent elements of the hydrogen storage alloy, including the step of reducing the hydroxide in the anode-mainly recovered material and then heating the anode-mainly recovered material in a non-oxidizing atmosphere to remove carbon. is doing.

また、特許文献4は、水素吸蔵合金を負極活物質とするアルカリ二次電池から有用金属を回収方法として、水素吸蔵合金を負極活物質とするアルカリ二次電池を、粉砕及び/又は解体し、得られた粉砕物及び/又は解体物を、還元剤の存在下、200℃以上の条件で、露点を0℃以下に制御しながら加熱分解及び還元し、得られた物質から亜鉛、リチウム、カリウム等の高揮発性金属及びその化合物を揮発除去する有用金属回収方法を提案している。   Patent Document 4 discloses a method for recovering a useful metal from an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material, pulverizing and / or disassembling an alkaline secondary battery using a hydrogen storage alloy as a negative electrode active material, The obtained pulverized product and / or dismantled product is thermally decomposed and reduced in the presence of a reducing agent under the condition of 200 ° C. or higher while controlling the dew point to 0 ° C. or lower. From the obtained material, zinc, lithium, potassium A useful metal recovery method that volatilizes and removes highly volatile metals such as the above and their compounds is proposed.

特開平9−82371号公報JP-A-9-82371 特開2002−327215号公報JP 2002-327215 A 特開2005−113226号公報JP 2005-113226 A 特開2001−131647号公報JP 2001-131647 A

ところで、廃ニッケル水素二次電池から新たに水素吸蔵合金組成物を製造(リサイクル)する場合、廃ニッケル水素二次電池から、負極を多く含む負極主体回収物を回収し、当該回収物を前述のように還元処理や脱炭素処理した後、これを負極活物質構成元素の溶湯(「合金溶湯」とも称する)に投入して加熱溶解させ、得られた溶湯を鋳造して新たな水素吸蔵合金組成物を製造することが考えられる。しかし、実際に合金溶湯に負極主体回収物を投入して加熱溶解させてみると、負極主体回収物の溶解が進まず、歩留りを高めることが難しいという課題が明らかになってきた。   By the way, when a new hydrogen storage alloy composition is manufactured (recycled) from a waste nickel metal hydride secondary battery, a negative electrode mainly recovered material containing a large amount of a negative electrode is recovered from the waste nickel metal hydride secondary battery, and the recovered material is recovered as described above. After the reduction treatment and decarbonization treatment as described above, this is put into a molten metal of the negative electrode active material constituent element (also referred to as “alloy molten metal”), heated and melted, and the obtained molten metal is cast to obtain a new hydrogen storage alloy composition. It is conceivable to produce a product. However, when the negative electrode main body recovered material is actually put into the molten alloy and melted by heating, the problem that the dissolution of the negative electrode main body recovered does not proceed and it is difficult to increase the yield.

そこで本発明は、廃ニッケル水素電池から回収された負極主体回収物を、負極活物質構成元素の合金溶湯に投入して加熱溶解させる際の溶解効率を高めることができる新たな方法を提供せんとするものである。   Therefore, the present invention provides a new method capable of increasing the melting efficiency when the negative electrode main body recovered from the waste nickel metal hydride battery is charged into the molten alloy of the negative electrode active material constituent element and heated and melted. To do.

本発明は、廃ニッケル水素二次電池から得られた負極主体回収物を、水素吸蔵合金構成元素からなる溶湯に加えて加熱溶解させて水素吸蔵合金組成物を製造する方法において、負極主体回収物と同時又は順次にアルミニウムを溶湯に加えることを特徴とする水素吸蔵合金組成物の製造方法を提案する。   The present invention relates to a negative electrode-mainly recovered material in a method for producing a hydrogen storage alloy composition by heating and dissolving a negative electrode-mainly recovered material obtained from a waste nickel metal hydride secondary battery to a molten metal composed of a hydrogen storage alloy constituent element. A method for producing a hydrogen storage alloy composition is proposed in which aluminum is added to the molten metal simultaneously or sequentially.

廃ニッケル水素二次電池から得られた負極主体回収物を、水素吸蔵合金構成元素からなる溶湯に加える際、負極主体回収物と同時又は順次にアルミニウムを溶湯に加えることにより、負極主体回収物の溶解効率を飛躍的に高めることができることが分かった。   When the negative electrode main body recovered from the waste nickel metal hydride secondary battery is added to the molten metal comprising the hydrogen storage alloy constituent elements, aluminum is added to the molten metal simultaneously or sequentially with the negative electrode main body recovered, so that the negative electrode main body recovered It was found that the dissolution efficiency can be dramatically increased.

次に、本発明の好適な実施形態の一例として、廃ニッケル水素電池から水素吸蔵合金構成元素を回収して新たな水素吸蔵合金組成物を製造する方法について説明する。ただし、本発明の範囲が下記説明する実施形態に限定するものではない。   Next, as an example of a preferred embodiment of the present invention, a method for producing a new hydrogen storage alloy composition by collecting a hydrogen storage alloy constituent element from a waste nickel metal hydride battery will be described. However, the scope of the present invention is not limited to the embodiment described below.

本発明の好適な実施形態の一例(以下「本実施形態」という)としての水素吸蔵合金組成物の製造方法は、廃ニッケル水素電池を必要に応じて失活化させた後、水素吸蔵合金構成元素を含有する組成物、すなわち負極活物質を多く含む負極主体回収物(「本負極主体回収物」と称する)を選別し(負極回収工程)、次に必要に応じて、水等の極性溶液で本負極主体回収物を洗浄してアルカリ金属塩濃度を低減させ(洗浄工程)、次にさらに必要に応じて乾燥させた後(乾燥工程)、本負極主体回収物中に含まれる正極活物質を還元し(還元工程)、次いで本負極主体回収物から炭素を除去し(脱炭素工程)、得られた本負極主体回収物と共にアルミニウムを、水素吸蔵合金構成元素からなる溶湯(「合金溶湯」と称する)に加えて加熱溶解させ(溶解工程)、そして、必要に応じて溶解した本負極主体回収物等を鋳造することにより(鋳造工程)、新たな水素吸蔵合金組成物を製造するという方法である。   A method for producing a hydrogen storage alloy composition as an example of a preferred embodiment of the present invention (hereinafter referred to as “the present embodiment”) is a method of deactivating a waste nickel metal hydride battery, if necessary, A composition containing an element, that is, a negative electrode main recovery material containing a large amount of the negative electrode active material (referred to as “this negative electrode main recovery material”) is selected (negative electrode recovery step), and then a polar solution such as water if necessary. The negative electrode mainly recovered material is washed to reduce the alkali metal salt concentration (cleaning step), and further dried as necessary (drying step), and then the positive electrode active material contained in the negative electrode mainly recovered material (Reduction process), and then carbon is removed from the main negative electrode recovery (decarbonization process), and the resulting negative electrode main recovery is combined with aluminum and a molten metal composed of hydrogen storage alloy constituent elements (“alloy melt”). In addition to dissolution by heating (Dissolution step), and, (casting process) by casting the negative electrode mainly recovery, etc. dissolved as needed, a method of producing a new hydrogen absorbing alloy composition.

ここで、本発明において「負極主体回収物」とは、負極活物質を多く含む回収物の意であり、具体的には負極構成物質を50質量%以上、好ましくは負極活物質を50質量%以上、特に好ましくは負極活物質を80質量%以上含む回収物であり、負極構成物質からなる回収物も包含する。   Here, in the present invention, the “negative electrode mainly recovered material” means a recovered material containing a large amount of the negative electrode active material. Specifically, the negative electrode constituent material is 50% by mass or more, preferably 50% by mass of the negative electrode active material. As described above, particularly preferably, the recovered material contains 80% by mass or more of the negative electrode active material, and also includes a recovered material made of a negative electrode constituent material.

(負極回収工程)
廃ニッケル水素電池から本負極主体回収物を選別回収するには、例えば廃ニッケル水素電池を失活化させた後に解体し、その中から水素吸蔵合金構成元素をより多く含有する本負極主体回収物を選別回収すればよい。
(Negative electrode recovery process)
In order to selectively collect and recover the main negative electrode recovered material from the waste nickel metal hydride battery, for example, the waste nickel metal hydride battery is deactivated and then disassembled, and the main negative electrode recovered material containing a larger amount of the constituent elements of the hydrogen storage alloy. Can be sorted and recovered.

ニッケル水素電池から本負極主体回収物を回収する方法としては、従来方法と同様に行えばよい。例えば、該電池を失活化させた後、剪断破砕機を用いて破砕し、解砕機を用いて湿式法で解砕を行い、次いで所定の篩(例えば24メッシュ)で分級すれば、分級物として負極主体回収物を選別することができる。一般的に分級後、細かい方に負極活物質が多く含まれ、粗い方に正極活物質が多く含まれる傾向がある。但し、本負極主体回収物の回収方法をかかる方法に限定するものではない。   The method for recovering the main negative electrode collection from the nickel metal hydride battery may be performed in the same manner as in the conventional method. For example, after the battery is deactivated, it is crushed using a shear crusher, pulverized by a wet method using a pulverizer, and then classified by a predetermined sieve (for example, 24 mesh). As such, the negative electrode mainly recovered material can be selected. In general, after classification, the finer ones contain more negative electrode active material and the coarser ones contain more positive electrode active material. However, the method for recovering the main negative electrode collection material is not limited to this method.

なお、負極活物質は、ミッシュメタル(「Mm」ともいう)を含有する水素吸蔵合金であることが重要であり、ミッシュメタル及びニッケルを含有する水素吸蔵合金であるのが好ましい。より具体的には、Mmを含有するAB型水素吸蔵合金、Mmを含有するAB型水素吸蔵合金、中でも、Bサイトの金属として、例えばNi及びAlを含有し、その他にMn、Co、Fe、Ti、Mg、V、Zn及びZrのいずれか、或いはこれらの二種類以上の組合せを含有する合金を例示することができる。
ミッシュメタル(Mm)とは、希土類元素(レア・アース)が含まれた合金であり、AB型水素吸蔵合金においてはAサイトを構成する金属であり、本発明においては、La、Ce、Nd及びPrからなる群のうちの一種又は二種以上を含む合金を意図している。
It is important that the negative electrode active material is a hydrogen storage alloy containing misch metal (also referred to as “Mm”), and is preferably a hydrogen storage alloy containing misch metal and nickel. More specifically, AB 5 type hydrogen storage alloy containing Mm, AB 2 type hydrogen storage alloy containing Mm, among them, for example, containing Ni and Al as B site metals, in addition to Mn, Co, Examples of the alloy include any one of Fe, Ti, Mg, V, Zn, and Zr, or a combination of two or more of these.
Misch metal (Mm) is an alloy containing a rare earth element (rare earth). In the AB 5 type hydrogen storage alloy, it is a metal constituting the A site. In the present invention, La, Ce, Nd And an alloy containing one or more of the group consisting of Pr.

電池を失活化させるとは、電池として機能させなくすることを意味する。失活化させる方法としては、液体窒素や冷凍機などで電解液を凍らせて機能させなくする方法や、酸性溶液に入れて故意に短絡させる方法など、任意である。   To deactivate a battery means not to function as a battery. As a method of deactivation, there are arbitrary methods such as a method of freezing the electrolyte solution with liquid nitrogen or a refrigerator to make it non-functional, or a method of intentionally short-circuiting in an acidic solution.

(洗浄工程)
殆どのニッケル水素電池では、電解液として水酸化カリウムを含むアルカリ性水溶液が用いられているため、本負極主体回収物にはアルカリ性水溶液が付着している可能性がある。アルカリ性水溶液が付着した本負極主体回収物を加熱処理すると、ミッシュメタル(Mm)が酸化してミッシュメタル(Mm)の回収率が低下するばかりか、後の溶解工程で溶解性が低下したり、ドロスが生じたりするため、還元工程の前に予め本負極主体回収物からアルカリ金属塩を除去しておくのが好ましい。
(Washing process)
In most nickel metal hydride batteries, an alkaline aqueous solution containing potassium hydroxide is used as the electrolytic solution, and therefore there is a possibility that the alkaline aqueous solution is adhered to the negative electrode main recovery material. When heat treatment is performed on the negative electrode main body recovered with the alkaline aqueous solution, the misch metal (Mm) is oxidized to reduce the recovery rate of the misch metal (Mm), and the solubility is lowered in the subsequent dissolution step. Since dross may occur, it is preferable to remove the alkali metal salt from the negative electrode main body recovered in advance before the reduction step.

アルカリ金属塩を除去する方法としては、0℃〜100℃の水や弱酸性の水溶液等の極性溶液を用いて、本負極主体回収物を洗浄することにより、水酸化カリウム(KOH)などのアルカリ金属塩を除去するのが好ましい。この際、洗浄処理は必要に応じて繰り返し行うのが好ましい。
但し、水酸化カリウム(KOH)などのアルカリ金属塩を除去することができれば、他の方法を採用してもよい。
As a method for removing the alkali metal salt, an alkaline substance such as potassium hydroxide (KOH) is obtained by washing the negative electrode mainly recovered with a polar solution such as water at 0 ° C. to 100 ° C. or a weakly acidic aqueous solution. It is preferred to remove the metal salt. At this time, it is preferable to repeat the washing treatment as necessary.
However, other methods may be adopted as long as an alkali metal salt such as potassium hydroxide (KOH) can be removed.

本工程後、Kの含有量を0.02%未満、特に0.015%未満、中でも特に0.01%未満とするのが好ましい。K量が0.02%未満であれば、歩留りをさらに良くすることができるほか、潮解性により合金表面が酸化され難いため、後の水酸基除去工程において雰囲気の露点を0℃以下に制御する必要がない。   After this step, the K content is preferably less than 0.02%, particularly preferably less than 0.015%, and particularly preferably less than 0.01%. If the amount of K is less than 0.02%, the yield can be further improved, and the surface of the alloy is hardly oxidized due to deliquescence. Therefore, it is necessary to control the dew point of the atmosphere to 0 ° C. or lower in the subsequent hydroxyl group removal step. There is no.

(乾燥工程)
上記のように水或いは他の極性溶液を用いて本負極主体回収物を洗浄する場合には、その後に乾燥を行うのが好ましい。
なお、前記工程で付着した水或いは他の極性溶液は、次の還元工程でも除去することが可能であるから、本乾燥工程を省略することは可能であるが、次工程では低減させる目的物質が異なるため、効率を考えると本乾燥工程を介在させるのが好ましい。
(Drying process)
In the case where the negative electrode main product is washed with water or other polar solution as described above, it is preferable to perform drying thereafter.
The water or other polar solution adhering in the above step can be removed in the next reduction step, so that this drying step can be omitted, but the target substance to be reduced in the next step is Because of the difference, it is preferable to interpose this drying step in view of efficiency.

乾燥方法は任意であり、自然乾燥させてもよいし、乾燥装置内に保管乃至通過させて乾燥させるようにしてもよい。   The drying method is arbitrary and may be naturally dried or may be stored or passed through a drying apparatus and dried.

(還元工程)
次に、本負極主体回収物を還元雰囲気中で加熱処理して、当該回収物中に含まれる正極活物質、特に水酸化物、中でも特に水酸化ニッケル(例えばNiOOH)や水酸化コバルトなどを還元するのが好ましい。
(Reduction process)
Next, the negative electrode-mainly recovered material is heat-treated in a reducing atmosphere to reduce the positive electrode active material, particularly hydroxides, particularly nickel hydroxide (eg, NiOOH), cobalt hydroxide, etc. contained in the recovered material. It is preferable to do this.

還元方法としては、還元雰囲気中で加熱処理すればよいが、好ましくは水素雰囲気中で100℃〜350℃、好ましくは160℃〜240℃、更に好ましくは200℃±20℃で加熱する。この際、加熱温度が100℃以上であれば、反応速度が著しく遅くなることがない。また、加熱温度が220℃以下であれば、希土類の酸化を約100%程度防ぐことができるが、X線回折によるCeOのピーク強度から推定すると、250℃では希土類の約1割程度が、400℃では約2割程度が酸化する可能性があるから、少なくとも2割程度の希土類の酸化損失を許容する場合は、350℃までの温度で加熱して反応促進を図るのが好ましい。
水素雰囲気は、水分や酸素等の酸化性不純物が少ない高純度の水素ガスからなる雰囲気が好ましいが、特に制限するものではない。
As a reduction method, heat treatment may be performed in a reducing atmosphere. Preferably, heating is performed in a hydrogen atmosphere at 100 ° C. to 350 ° C., preferably 160 ° C. to 240 ° C., and more preferably 200 ° C. ± 20 ° C. At this time, if the heating temperature is 100 ° C. or higher, the reaction rate is not significantly reduced. Further, if the heating temperature is 220 ° C. or less, the oxidation of rare earth can be prevented by about 100%. However, if estimated from the peak intensity of CeO 2 by X-ray diffraction, about 10% of the rare earth at 250 ° C. Since about 20% may be oxidized at 400 ° C., it is preferable to promote the reaction by heating at a temperature up to 350 ° C. when at least about 20% rare earth oxidation loss is allowed.
The hydrogen atmosphere is preferably an atmosphere made of high-purity hydrogen gas with little oxidizing impurities such as moisture and oxygen, but is not particularly limited.

反応装置としては、ガスを密閉する密閉式、ガスを流動させる流動式のいずれも使用可能であるが、密閉式の場合には水蒸気等によって還元ガスの分圧が徐々に低下することになるから工業的には流動式の方が好ましい。
また、加熱手段としては、電熱加熱、ガス燃焼加熱、その他の加熱手段のいずれでもよい。
なお、還元ガスとしては、水素ガスのほかにも、アンモニア分解ガス、その他のガスを使用することができるが、一酸化炭素は450℃以下ではNi及びCoを還元することができない。水素ガスは、次の工程の脱炭素工程にも使用できるため共通の反応炉(一炉)で処理することができる点からも特に好ましい。
As the reaction apparatus, either a closed type that seals gas or a fluid type that flows gas can be used, but in the case of a closed type, the partial pressure of the reducing gas gradually decreases due to water vapor or the like. Industrially, the fluid type is preferable.
The heating means may be any of electric heating, gas combustion heating, and other heating means.
In addition to hydrogen gas, ammonia decomposition gas and other gases can be used as the reducing gas. However, carbon monoxide cannot reduce Ni and Co at 450 ° C. or lower. Hydrogen gas is particularly preferable because it can be used in a decarbonization step of the next step and can be processed in a common reactor (one furnace).

(脱炭素工程)
次に、前記の如く還元処理された本負極主体回収物を、非酸化性雰囲気中で加熱処理し、負極主体回収物中に含まれる炭素を、少なくともその一部を炭化水素ガス化させて除去するのが好ましい。
(Decarbonization process)
Next, the negative electrode main recovered material reduced as described above is heat-treated in a non-oxidizing atmosphere to remove at least part of the carbon contained in the negative electrode main recovered material by converting it into a hydrocarbon gas. It is preferable to do this.

非酸化性雰囲気とは、加熱により、実質的に金属や合金を酸化することなく炭素を還元等により除去できる雰囲気を意味し、不活性ガス雰囲気、水素ガス雰囲気、水蒸気雰囲気、不活性ガス−水蒸気雰囲気及び不活性ガス−水蒸気−水素ガス雰囲気の中から適宜選択することができる。不活性ガスには、アルゴン、窒素及びヘリウム等が含まれ、非酸化性雰囲気としては還元雰囲気である水素ガス雰囲気が特に好ましい。   The non-oxidizing atmosphere means an atmosphere in which carbon can be removed by reduction or the like without substantially oxidizing metal or alloy by heating, and an inert gas atmosphere, a hydrogen gas atmosphere, a water vapor atmosphere, or an inert gas-water vapor. It can be appropriately selected from an atmosphere and an inert gas-water vapor-hydrogen gas atmosphere. The inert gas includes argon, nitrogen, helium and the like, and the non-oxidizing atmosphere is particularly preferably a hydrogen gas atmosphere which is a reducing atmosphere.

脱炭素工程における加熱条件は、好ましくは350〜1050℃で5分〜10時間である。この際、750℃以上で加熱することにより、反応速度を速めることができる。   The heating conditions in the decarbonizing step are preferably 350 to 1050 ° C. and 5 minutes to 10 hours. At this time, the reaction rate can be increased by heating at 750 ° C. or higher.

不活性ガス雰囲気下での加熱処理により、本負極主体回収物中に含まれる酸素、水素及び水蒸気が還元的又は酸化的に作用し、少なくとも一部の炭素を炭化水素や二酸化炭素などのガスとして除去することができる。なお、水素ガス雰囲気では、本負極主体回収物中の少なくとも一部の炭素が水素により還元されて低級炭化水素等に転化され回収物から除去されることになる。   By heat treatment under an inert gas atmosphere, oxygen, hydrogen, and water vapor contained in the negative electrode main recovery material act reductively or oxidatively, and at least a part of carbon is used as a gas such as hydrocarbon or carbon dioxide. Can be removed. In the hydrogen gas atmosphere, at least a part of the carbon in the negative electrode mainly recovered product is reduced by hydrogen, converted into lower hydrocarbons, etc., and removed from the recovered product.

このように脱炭素工程を行うことにより、炭素濃度を1000ppm(0.1質量%)以下、条件によっては100ppm(0.01質量%)以下に低減することができる。   By performing the decarbonization process in this way, the carbon concentration can be reduced to 1000 ppm (0.1 mass%) or less, and depending on conditions, to 100 ppm (0.01 mass%) or less.

(溶解工程)
次に、本負極主体回収物と共に、すなわち本負極主体回収物と同時又は順次にアルミニウムを、水素吸蔵合金構成元素からなる合金溶湯に加えて加熱溶解させることが重要であり、必要に応じて当該工程において所望の組成となるように調合(「組成調合」という)するのが好ましい。
(Dissolution process)
Next, it is important to add and heat-melt aluminum together with the negative electrode main body recovery material, that is, simultaneously or sequentially with the negative electrode main body recovery material, to the molten alloy composed of the hydrogen storage alloy constituent elements. It is preferable to prepare (referred to as “composition preparation”) so as to obtain a desired composition in the process.

この際、本負極主体回収物と同時又は順次にアルミニウムを合金溶湯に加える手段としては、例えば、本負極主体回収物にアルミニウム(Al)を混合し、混合状態のまま合金溶湯に加えてもよいし、或いは、アルミニウムを先に合金溶湯に加え、その直後に本負極主体回収物を合金溶湯に順次加えてもよいし、或いは、本負極主体回収物を先に合金溶湯に加え、その直後にアルミニウムを溶湯に順次加えるようにしてもよい。いずれにしても、合金溶湯中において、アルミニウムが溶湯中で溶融した付近に本負極主体回収物を存在させることが重要である。   At this time, as means for adding aluminum to the molten alloy simultaneously or sequentially with the negative electrode main recovery material, for example, aluminum (Al) may be mixed with the negative electrode main recovery material and added to the molten alloy in a mixed state. Alternatively, aluminum may be added to the molten alloy first, and immediately after that, the negative electrode main recovered material may be sequentially added to the molten alloy, or the negative electrode main recovered material may be added to the molten alloy first and immediately thereafter. Aluminum may be sequentially added to the molten metal. In any case, in the molten alloy, it is important that the negative electrode mainly recovered material is present in the vicinity of the aluminum melted in the molten metal.

なお、アルミニウムを先に溶湯に添加し、“その直後に”本負極主体回収物を溶湯に順次加える、或いは、本負極主体回収物を先に溶湯に添加し、“その直後に”アルミニウムを溶湯に順次加える場合の“直後”とは、いずれを先に添加しても一定時間溶湯上に浮いた状態となるため、それらが浮いている間に、好ましくは浮いている範囲内に加えるという意味である。   In addition, aluminum is added to the molten metal first, and the negative electrode main body recovered material is sequentially added to the molten metal “immediately after that”, or the negative electrode main body recovered material is first added to the molten metal, and “immediately thereafter” the molten aluminum material is molten. “Immediately” in the case of sequentially adding to each other means that any of them added first will float on the molten metal for a certain period of time, so that they are preferably added within the floating range while they are floating It is.

加熱溶解を行う装置(炉を含む)は任意である。例えば、高周波溶解炉、低周波溶解炉を用いて加熱溶解することができる。
また、本負極主体回収物を加える合金溶湯は、水素吸蔵合金構成元素からなる溶湯であればよく、その組成は適宜調整可能である。負極活物質を溶融してなる溶湯であっても、負極活物質を作製するための母合金からなる溶湯であってもよい。
An apparatus (including a furnace) for performing heating and melting is arbitrary. For example, heat melting can be performed using a high frequency melting furnace or a low frequency melting furnace.
Moreover, the molten alloy to which the present negative electrode mainly recovered material is added may be a molten metal composed of a hydrogen storage alloy constituent element, and the composition thereof can be adjusted as appropriate. Even a molten metal obtained by melting the negative electrode active material may be a molten metal made of a mother alloy for producing the negative electrode active material.

このように本負極主体回収物と同時又は順次にアルミニウムを合金溶湯に加えて加熱溶解させることで、本負極主体回収物の溶解効率、特に溶解率を顕著に高めることができる。なぜ溶解効率が高まるのかの原因を究明できている訳ではないが、次のように推察することができる。すなわち、本負極主体回収物が合金溶湯に加えられて溶解するのは、単純に熱溶融されているのではなく、表面の酸化物などが還元されて溶湯に溶解されるものと考えられる。アルミニウムは水素吸蔵合金構成元素の中では比較的融点が低い。また、溶解時には高い反応熱により金属酸化物を還元する性質がある。よって、高温の溶湯中で溶融したアルミニウムによって溶湯の粘性が低下すると共に、溶解時の反応熱により混合状態の本負極主体回収物が還元されて負極主体回収物の溶解効率が飛躍的に高まるものと推察することができる。   In this way, by adding aluminum to the molten alloy at the same time or sequentially with the main negative electrode recovered material and dissolving it by heating, the dissolution efficiency of the main negative electrode recovered material, in particular, the dissolution rate can be significantly increased. Although the reason why the dissolution efficiency is increased has not been investigated, it can be inferred as follows. That is, it is considered that the negative electrode mainly recovered material is added to the molten alloy and melted, not simply being melted by heat, but the oxides on the surface are reduced and dissolved in the molten metal. Aluminum has a relatively low melting point among the constituent elements of hydrogen storage alloys. In addition, when dissolved, it has the property of reducing the metal oxide with high reaction heat. Therefore, the viscosity of the molten metal is reduced by the aluminum melted in the high-temperature molten metal, and the main negatively recovered material in the mixed state is reduced by the heat of reaction at the time of melting, and the dissolution efficiency of the negatively recovered material is dramatically increased. Can be inferred.

本負極主体回収物と共に合金溶湯に加えるアルミニウムは、金属アルミニウム或いはアルミニウム合金であればよい。効果の観点から、金属アルミニウムであるのがより好ましい。
本負極主体回収物と共に合金溶湯に加えるアルミニウムは、粒状又は粉状であるのが好ましく、中でも粒度が2mm〜10mm、すなわち網目の大きさが2mm〜10mmの篩を使って分級されるアルミニウム粒であるのが好ましい。
この際、加えるアルミニウム量は、本負極主体回収物の溶解率を高める観点から、負本負極主体回収物の10質量%以上、特に20質量%以上、中でも特に30質量%以上とするのが好ましい。
The aluminum added to the molten alloy together with the negative electrode main body recovered may be metal aluminum or an aluminum alloy. From the viewpoint of the effect, metal aluminum is more preferable.
The aluminum added to the molten alloy together with the negative electrode main body recovered is preferably granular or powdery, among which aluminum particles are classified using a sieve having a particle size of 2 mm to 10 mm, that is, a mesh size of 2 mm to 10 mm. Preferably there is.
At this time, the amount of aluminum to be added is preferably 10% by mass or more, particularly 20% by mass or more, particularly 30% by mass or more of the negative negative electrode main body recovery material from the viewpoint of increasing the dissolution rate of the main negative electrode main body recovery material. .

本負極主体回収物とアルミニウムとを混合し、混合状態のまま合金溶湯に加える場合、混合状態のまま直接、合金溶湯に投入してもよいが、そのまま溶湯に投入すると溶湯上に当該混合物が浮いてしまって溶解が進まない可能性があるため、アルミニウムやニッケル、マグネシウムなどの水素吸蔵合金構成元素の一種又は二種以上からなる部材で、当該混合物を束ねて溶湯に投入するのがより一層好ましい。
この際、本負極主体回収物を束ねる部材の形状は、特に限定するものではなく、例えば袋状、筒状、紐状、バンド状、リボン状、その他の形状であればよく、網や箔で包むようにしてもよい。具体的には、アルミニウム箔で当該混合物を包んで溶湯中に投入すればよい。
When this negative electrode mainly recovered material and aluminum are mixed and added to the molten alloy in a mixed state, it may be poured directly into the molten alloy in the mixed state. However, when it is poured into the molten metal as it is, the mixture floats on the molten metal. It is even more preferable to bundle the mixture into a molten metal with a member composed of one or more of hydrogen-absorbing alloy constituent elements such as aluminum, nickel, and magnesium. .
At this time, the shape of the member for bundling the negative electrode mainly collected material is not particularly limited, and may be, for example, a bag shape, a cylindrical shape, a string shape, a band shape, a ribbon shape, or other shapes, such as a net or a foil. You may make it wrap. Specifically, the mixture may be wrapped in aluminum foil and poured into the molten metal.

本負極主体回収物を溶解する温度、言い換えれば合金溶湯の溶湯温度は1200〜1600℃であるのが好ましく、特に1300〜1550℃、中でも特に1400〜1500℃であるのが好ましい。
また、溶解工程は、有価金属、すなわち水素吸蔵合金構成元素の酸化を抑制するために、アルゴン中等の不活性ガス雰囲気で行うのが好ましい。
The temperature at which the negative electrode main product is melted, in other words, the melt temperature of the molten alloy is preferably 1200 to 1600 ° C, particularly 1300 to 1550 ° C, and particularly preferably 1400 to 1500 ° C.
Moreover, it is preferable to perform a melt | dissolution process in inert gas atmosphere, such as in argon, in order to suppress the oxidation of a valuable metal, ie, a hydrogen storage alloy constituent element.

また、本溶解工程において組成調合する場合には、予め本負極主体回収物の元素量を分析しておき、この本負極主体回収物の元素量と、本負極主体回収物と共に加えるAl量と、合金溶湯の元素量との合計値が目的とする製造物の組成となるように、合金溶湯の組成及び量と、本負極主体回収物と共に加えるAl量と、本負極主体回収物の投入量とを調整するようにするのが好ましい。
また、水素吸蔵合金元素の一種又は二種以上からなる部材で束ねて溶湯に投入する場合には、束ねる部材の元素量を分析しておき、これを加えた合計元素量を調整するのが好ましい。
この際、本負極主体回収物と共にAlを加えて短時間で加熱溶解させた後、さらにNiやCo等の水素吸蔵合金構成元素を添加して、目的とする組成となるように調整してもよい。
In addition, when the composition is prepared in this melting step, the element amount of the negative electrode main recovery material is analyzed in advance, the element amount of the negative electrode main recovery material, the amount of Al added together with the negative electrode main recovery material, The composition and amount of the molten alloy, the amount of Al added together with the main negative electrode recovery, and the input amount of the main negative electrode recovery so that the total value of the element amount of the molten alloy is the target product composition Is preferably adjusted.
In addition, when bundled with a member consisting of one or more hydrogen storage alloy elements and put into the molten metal, it is preferable to analyze the element amount of the member to be bundled and adjust the total element amount added thereto. .
At this time, after adding Al together with the negative electrode main body recovered and heating and dissolving in a short time, a hydrogen storage alloy constituent element such as Ni or Co is further added to adjust the target composition. Good.

(鋳造工程)
前記溶解工程において本負極主体回収物を加熱溶解して得られた溶湯は、必要に応じて鋳型に注入し、所望の形状に鋳造することができる。
但し、鋳造工程を省略することもできる。
また、例えば本実施形態の製造目的が母合金、すなわち、そのまま負極活物質として使用可能な水素吸蔵合金を製造するのではなく、後で適宜成分を加えて組成調整して水素吸蔵合金を製造するための中間材料としての合金(「母合金」と称する)を製造することにある場合は、上述のように鋳造することもできるし、また、母合金の溶湯を一旦製造した後、この母合金に適宜成分を加えて水素吸蔵合金の組成に調製した後、上述のように鋳造することもできる。
(Casting process)
In the melting step, the molten metal obtained by heating and melting the main negative electrode recovered material can be poured into a mold as necessary and cast into a desired shape.
However, the casting process can be omitted.
Further, for example, the production purpose of this embodiment is not to produce a mother alloy, that is, a hydrogen storage alloy that can be used as a negative electrode active material as it is, but a hydrogen storage alloy is manufactured by adjusting the composition by appropriately adding components later. In the case of manufacturing an alloy as an intermediate material (referred to as “mother alloy”), it can be cast as described above, or once the molten alloy of the mother alloy is manufactured, The composition can be appropriately casted to prepare a hydrogen storage alloy composition, and then cast as described above.

鋳造工程においても、有価金属、すなわち水素吸蔵合金構成元素の酸化を抑制するために、アルゴン中等の不活性ガス雰囲気で行うのが好ましい。   Also in the casting process, it is preferable to perform in an inert gas atmosphere such as in argon in order to suppress oxidation of valuable metals, that is, hydrogen storage alloy constituent elements.

(製品としての水素吸蔵合金組成物)
本実施形態で製造する水素吸蔵合金組成物は、前述の組成調合によって、ニッケル水素電池の負極活物質として利用することができる水素吸蔵合金組成物とすることもできるし、また、母合金、すなわち負極活物質用母合金として利用することができる水素吸蔵合金組成物とすることもできる。
ニッケル水素電池の負極活物質として利用することができる水素吸蔵合金組成物を製造する場合には、適宜成分、すなわち例えばLa、Ce、Nd、Pr、Ni、Al、Mn、Co、Fe、Ti、V、Zn、Mg、Cu、Y、Rb、Gd、Tm、Lu及びZrなどのいずれか、或いはこれらの二種類以上の組合せを加えて溶解して合金を製造し、ニッケル水素電池の負極活物質として利用することができる水素吸蔵合金組成物を製造すればよい。
(Hydrogen storage alloy composition as a product)
The hydrogen storage alloy composition produced in the present embodiment can be made into a hydrogen storage alloy composition that can be used as a negative electrode active material of a nickel-metal hydride battery by the above-described composition preparation. It can also be set as the hydrogen storage alloy composition which can be utilized as a mother alloy for negative electrode active materials.
When producing a hydrogen storage alloy composition that can be used as a negative electrode active material of a nickel metal hydride battery, appropriate components such as La, Ce, Nd, Pr, Ni, Al, Mn, Co, Fe, Ti, V, Zn, Mg, Cu, Y, Rb, Gd, Tm, Lu, Zr, etc., or a combination of two or more of these is added and melted to produce an alloy. What is necessary is just to manufacture the hydrogen storage alloy composition which can be utilized as.

(その他)
本実施形態では、廃ニッケル水素電池から取り出した原料回収物を出発原料としているが、水素吸蔵合金元素の一種又は二種以上からなる基板と水素吸蔵合金層とからなる部材を選択的に取り出すことができれば廃ニッケル水素電池から取り出した原料に限定するものではない。例えば、ヒートポンプ、太陽・風力などの自然エネルギーの貯蔵装置、水素貯蔵装置、アクチュエータ、燃料電池などにおいて、水素吸蔵合金元素の一種又は二種以上からなる基板と水素吸蔵合金層とからなる部材を選択的に取り出すことができれば、これを出発原料とすることも可能である。
(Other)
In this embodiment, the raw material recovered from the waste nickel metal hydride battery is used as a starting material. However, a member composed of one or more hydrogen storage alloy elements and a hydrogen storage alloy layer is selectively extracted. If possible, it is not limited to the raw material taken out from the waste nickel metal hydride battery. For example, in heat pumps, storage devices for natural energy such as solar and wind power, hydrogen storage devices, actuators, fuel cells, etc., a member consisting of one or more hydrogen storage alloy elements and a hydrogen storage alloy layer is selected. It can be used as a starting material if it can be taken out.

(用語の説明)
本発明において、「水素吸蔵合金」とは、LaNiに代表されるAB型合金、ZrV0.4Ni1.5に代表されるAB型合金、そのほかAB型合金やAB型(A含む)合金など様々な合金を包含する。
「水素吸蔵合金構成元素」とは、水素吸蔵合金を構成する元素のうちの一種又は二種以上の組み合わせからなる元素を意味する。中でも、CaCu型の結晶構造を有するAB型水素吸蔵合金、詳しくはAサイトに希土類系の混合物であるMm(ミッシュメタル)を用い、BサイトにNi、Al、Mn、Co等の金属元素を用いた水素吸蔵合金及びその構成元素が本発明の対象として好ましい。
「水素吸蔵合金組成物」とは、水素吸蔵合金構成元素からなる組成物であり、その形状は塊状、成形体状、粉体状の何れであってもよい。
(Explanation of terms)
In the present invention, the “hydrogen storage alloy” means an AB 5 type alloy represented by LaNi 5 , an AB 2 type alloy represented by ZrV 0.4 Ni 1.5 , an AB type alloy or an A 2 B type ( A variety of alloys such as alloys including A 2 B 7 are included.
The “hydrogen storage alloy constituent element” means an element composed of one or a combination of two or more of the elements constituting the hydrogen storage alloy. Among them, an AB 5 type hydrogen storage alloy having a CaCu 5 type crystal structure, specifically, Mm (Misch metal), which is a rare earth-based mixture, is used at the A site, and metal elements such as Ni, Al, Mn, and Co are used at the B site. A hydrogen storage alloy using bismuth and its constituent elements are preferred as the object of the present invention.
The “hydrogen storage alloy composition” is a composition composed of a hydrogen storage alloy constituent element, and the shape thereof may be any of a block shape, a molded body shape, and a powder shape.

また、本発明において、「X〜Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意であり、「好ましくはXより大きく、Yより小さい」の意を包含するものである。
さらにまた、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Y未満であるのが好ましい」旨の意図も包含する。
In addition, in the present invention, when “X to Y” (X and Y are arbitrary numbers) is described, it means “X or more and Y or less” unless otherwise specified. It includes the meaning of “small”.
Furthermore, when “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number) is described, it is “preferably greater than X” or “preferably less than Y”. The intention of

以下、実施例に基づいて本発明について説明するが、本発明が実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to an Example.

<定量元素分析>
250mlビーカーに測定サンプル(水素吸蔵合金組成物)を0.2gを入れ、これに硝酸10mlを加えて加熱溶解させた後、さらに塩酸を10ml加えて完全溶解させ、その後100mlのメスフラスコに移し、水を加えて100mlの水溶液を得た。その水溶液を50倍に希釈して、ICP発光分析装置(SIIナノテク社製型式SPS-3100)を用いて、各元素の定量を行った。
<Quantitative elemental analysis>
Put 0.2 g of a measurement sample (hydrogen storage alloy composition) in a 250 ml beaker, add 10 ml of nitric acid to dissolve it with heating, add 10 ml of hydrochloric acid to completely dissolve it, and then transfer it to a 100 ml volumetric flask. Water was added to obtain 100 ml of an aqueous solution. The aqueous solution was diluted 50 times, and each element was quantified using an ICP emission spectrometer (model SPS-3100 manufactured by SII Nanotech).

<炭素濃度測定>
測定サンプル(水素吸蔵合金組成物)の炭素濃度の測定は、0.5gに秤量したサンプルについて行った。但し、負極主体回収物の測定時は、サンプル燃焼時の急激な発熱反応により試料ボードが破損するため、0.2gに秤量したサンプルについて行った。また、分析装置及び測定条件は次に示すとおりである。
<Measurement of carbon concentration>
The carbon concentration of the measurement sample (hydrogen storage alloy composition) was measured on a sample weighed to 0.5 g. However, the measurement of the negative electrode mainly collected material was performed on a sample weighed to 0.2 g because the sample board was damaged due to a rapid exothermic reaction during sample combustion. The analyzer and measurement conditions are as follows.

・分析装置:固体中炭素分析装置(堀場製作所製、EMIA-110)
・キャリアーガス:酸素(純度99.95%以上)、ガス圧0.75±0.05kgf/cm2
・測定条件:EMIA-110取扱説明書に記載の標準的な設定条件(燃焼設定時間は60秒に変更)
・ Analyzer: Carbon analyzer in solids (Horiba, EMIA-110)
・ Carrier gas: Oxygen (purity 99.95% or more), gas pressure 0.75 ± 0.05kgf / cm 2
・ Measurement conditions: Standard setting conditions described in the EMIA-110 instruction manual (combustion setting time is changed to 60 seconds)

<酸素濃度測定>
測定サンプルの酸素濃度の測定は、0.02gに秤量したサンプルについて下記分析装置を使用し、下記条件下で行った。
<Oxygen concentration measurement>
The oxygen concentration of the measurement sample was measured under the following conditions using the following analyzer for the sample weighed to 0.02 g.

・分析装置:固体中酸素窒素分析装置(堀場製作所製、EMGA-620W)
・キャリアーガス:He(純度99.995%以上)、ガス圧0.35±0.02Mpa
・るつぼ:黒鉛るつぼ
・測定条件:EMGA-620W取扱説明書に記載の標準設定条件(1モード分析条件(1)5.00、500kw;75secの条件に変更)
・測定モード:BLOCKモードのSTANDARD BLOCK動作モード
・ Analyzer: Solid oxygen oxygen analyzer (Horiba, EMGA-620W)
・ Carrier gas: He (purity 99.995% or more), gas pressure 0.35 ± 0.02Mpa
・ Crucible: Graphite crucible ・ Measurement conditions: Standard setting conditions described in the EMGA-620W instruction manual (1 mode analysis conditions (1) 5.00, 500 kW; changed to 75 sec)
・ Measurement mode: STANDARD BLOCK operation mode in BLOCK mode

(実施例1)
使用済の廃ニッケル水素電池を液体窒素で冷凍失活させた後、2軸剪断破砕機を用いて乾式破砕を行い、次いで、解砕機を用いて湿式法で解砕を行った後、水洗によりプラスチックや紙などを除去し、その後篩(28メッシュ)で分級し、篩上の非分級物を2000〜3000ガウスで磁力選別して負極Fe基板を除去した。篩下の分級物は、負極の水素吸蔵合金が濃縮した負極活物質主体の回収物(負極主体回収物)であった。
Example 1
A used waste nickel metal hydride battery is frozen and deactivated with liquid nitrogen, dry crushed using a biaxial shear crusher, then crushed by a wet method using a crusher, and then washed with water. Plastic, paper, and the like were removed, and then classified with a sieve (28 mesh). The unclassified material on the sieve was magnetically sorted with 2000 to 3000 gauss to remove the negative electrode Fe substrate. The classified product under the sieve was a negative electrode active material-based recovered material (negative electrode-based recovered material) in which the negative electrode hydrogen storage alloy was concentrated.

この負極主体回収物(「リサイクル原料」とも称する)は、負極活物質の比率が88質量%で、残りは正極活物質などが混在しており、Co濃度は9.6質量%であった。
また、この負極主体回収物(リサイクル原料)の各元素濃度を化学分析(ICP法及び炭素分析装置)した結果、各元素量の質量%は;Mm:30.6%、Ni:52.7%、Mn:4.4%、Al:1.5%、Co:9.6%、C:1.2%であった。また酸素濃度は5.0%であった。なお、Mmは、La、Ce、Nd及びPrなどの希土類混合物であるミッシュメタルであり、Mm中の各成分量(回収物中の質量%)は、La:10.3%、Ce:14.3%、Nd:4.5%、Pr:1.5%であった。
In this negative electrode mainly recovered material (also referred to as “recycled raw material”), the ratio of the negative electrode active material was 88 mass%, the remainder was mixed with the positive electrode active material, and the Co concentration was 9.6 mass%.
In addition, as a result of chemical analysis (ICP method and carbon analyzer) of the concentration of each element in the negative electrode main collection (recycled raw material), the mass% of each element amount is: Mm: 30.6%, Ni: 52.7% , Mn: 4.4%, Al: 1.5%, Co: 9.6%, C: 1.2%. The oxygen concentration was 5.0%. Mm is a misch metal that is a rare earth mixture of La, Ce, Nd, and Pr, and the amount of each component in Mm (mass% in the recovered material) is La: 10.3%, Ce: 14. The results were 3%, Nd: 4.5%, and Pr: 1.5%.

このように得た負極主体回収物(リサイクル原料)を、流動式回転炉(1rpm)を用いて高純度水素雰囲気(H99.99999%、O<0.02ppm、HO(露点)−80℃、CO<0.01ppm)中で、200℃、3時間加熱処理し、負極主体回収物中に混入している正極活物質を還元した後、引続き該水素雰囲気中で900℃、1時間加熱処理して炭素除去を行い、処理済負極主体回収物を得た。
得られた処理済負極主体回収物の炭素濃度は0.03%、酸素濃度は4.0%であった。
The negative electrode mainly recovered material (recycle raw material) obtained in this way was used in a high-purity hydrogen atmosphere (H 2 99.9999999%, O 2 <0.02 ppm, H 2 O (dew point)) using a fluid rotary furnace (1 rpm). Heat treatment at −80 ° C., CO 2 <0.01 ppm) at 200 ° C. for 3 hours to reduce the positive electrode active material mixed in the negative electrode main body recovered, followed by 900 ° C. in the hydrogen atmosphere, The carbon was removed by heat treatment for 1 hour to obtain a treated negative electrode main body recovered material.
The obtained treated negative electrode main product had a carbon concentration of 0.03% and an oxygen concentration of 4.0%.

上記の処理済負極主体回収物200gと、網目2mmの篩及び網目10mmの篩で分級された粒径2mm〜10mmの粒状アルミニウム162.8gとを混合し、混合状態の混合物362.8gを2等分してそれぞれアルミニウム箔(3.7g)で包んだ。このようにアルミニウム箔で包んだ2つの包みを、高周波誘導炉チャンバー内の原料投入容器にセットした。   200 g of the above treated negative electrode main body recovered material and 162.8 g of granular aluminum having a particle size of 2 mm to 10 mm classified by a 2 mm mesh sieve and a 10 mm mesh sieve are mixed, and 362.8 g of the mixture in a mixed state is 2 etc. Each was wrapped in aluminum foil (3.7 g). Two packages wrapped with aluminum foil in this way were set in a raw material charging container in a high frequency induction furnace chamber.

他方、高周波誘導炉チャンバーを用いて次のように合金溶湯を調製した。
すなわち、各元素の質量比率で、水素吸蔵合金構成元素の原料であるMm(MmはLa、Ce、Nd及びPrなどの希土類混合物であるミッシュメタルであり、Mm中の各成分量(回収物中の質量%)は、La:11.0%、Ce:15.4%、Nd:5.0%、Pr:1.6%):33.12%と、Ni:59.7%と、Mn:5.2%(残りが添加したAl)となるように、各元素金属を秤量及び混合した。得られた混合物をルツボに入れて高周波誘導炉に固定し、その後、10-4〜10-5Torrまで減圧にした後、アルゴンガスを導入し、アルゴンガス雰囲気中1400℃で加熱溶解させて合金溶湯を調製した。
On the other hand, molten alloy was prepared as follows using a high-frequency induction furnace chamber.
That is, the mass ratio of each element is Mm (Mm is a misch metal that is a rare earth mixture of La, Ce, Nd, and Pr, etc.), and the amount of each component in Mm (in the recovered material) %), La: 11.0%, Ce: 15.4%, Nd: 5.0%, Pr: 1.6%): 33.12%, Ni: 59.7%, Mn : Each elemental metal was weighed and mixed so as to be 5.2% (the balance was Al added). The obtained mixture is put in a crucible and fixed to a high-frequency induction furnace, and after that, the pressure is reduced to 10 −4 to 10 −5 Torr, argon gas is introduced, and the alloy is heated and melted at 1400 ° C. in an argon gas atmosphere. A molten metal was prepared.

このように調製した合金溶湯の湯面に、前述の原料投入容器からアルミニウム箔で包んだ前記混合物を投入し、アルゴンガス雰囲気中で加熱溶解させた。得られた溶湯約9kgを、総質量200kgの水冷式銅鋳型に4kg/秒で注入し、室温まで冷却した(鋳造)。得られた合金塊をジョークラッシャーで粗砕後、ディスクミルで粉砕、分級を行って製品(水素吸蔵合金組成物)を製造した。   The mixture wrapped in aluminum foil from the above-described raw material charging vessel was charged into the molten alloy surface thus prepared, and was heated and dissolved in an argon gas atmosphere. About 9 kg of the obtained molten metal was poured at a rate of 4 kg / second into a water-cooled copper mold having a total mass of 200 kg and cooled to room temperature (casting). The obtained alloy lump was roughly crushed with a jaw crusher and then pulverized and classified with a disk mill to produce a product (hydrogen storage alloy composition).

得られた製品(水素吸蔵合金組成物)を定量元素分析したところ、Co:0.15質量%、La:10.49質量%、Ce:15.47質量%、Nd:4.95質量%、Pr:1.61質量%、Ni:60.2質量%、Al:1.87質量%、Mn:5.26質量%であった。   When the obtained product (hydrogen storage alloy composition) was quantitatively analyzed, Co: 0.15 mass%, La: 10.49 mass%, Ce: 15.47 mass%, Nd: 4.95 mass%, They were Pr: 1.61 mass%, Ni: 60.2 mass%, Al: 1.87 mass%, Mn: 5.26 mass%.

(比較例1)
実施例1において、処理済負極主体回収物に粒状アルミニウムを混合しなかった(アルミ箔も当然使用していない)以外は、実施例1と同様に製品(水素吸蔵合金組成物)を得た。
(Comparative Example 1)
In Example 1, a product (hydrogen storage alloy composition) was obtained in the same manner as in Example 1 except that granular aluminum was not mixed in the treated negative electrode main body recovered material (aluminum foil was naturally used).

得られた製品(水素吸蔵合金組成物)をICP分析したところ、Co:0.05質量%、La:10.93質量%、Ce:15.46質量%、Nd:4.80質量%、Pr:1.54質量%、Ni:60.1質量%、Al:1.85質量%、Mn:5.27質量%であった。   When the obtained product (hydrogen storage alloy composition) was analyzed by ICP, Co: 0.05% by mass, La: 10.93% by mass, Ce: 15.46% by mass, Nd: 4.80% by mass, Pr : 1.54% by mass, Ni: 60.1% by mass, Al: 1.85% by mass, and Mn: 5.27% by mass.

(実施例2−6・比較例2)
粒状アルミニウムの添加量、これを包むアルミ箔の質量、並びにこれらを添加する合金溶湯の組成を表2に示すように変化させた以外は、実施例1と同様に製品(水素吸蔵合金組成物)を得た。
得られた製品(水素吸蔵合金組成物)をICP分析したところ、次の表1のような結果であった。 表1の各数値は質量%である。
(Example 2-6 / Comparative Example 2)
The product (hydrogen storage alloy composition) in the same manner as in Example 1 except that the amount of granular aluminum added, the mass of the aluminum foil enclosing it, and the composition of the molten alloy to which these were added were changed as shown in Table 2. Got.
When the obtained product (hydrogen storage alloy composition) was analyzed by ICP, the results were as shown in Table 1 below. Each numerical value of Table 1 is mass%.

Figure 0004850297
Figure 0004850297

下記表2の処理済負極主体回収物の溶解率(質量%)は、次の式で算出された値である。
Coの溶解率(%)=(鋳造後の水素吸蔵合金組成物中のCo含有量/リサイクル原料中のCo含有量)×100
The dissolution rate (mass%) of the treated negative electrode main body recovered in Table 2 below is a value calculated by the following formula.
Co dissolution rate (%) = (Co content in the hydrogen storage alloy composition after casting / Co content in the recycled material) × 100

Figure 0004850297
Figure 0004850297

(考察)
これより、負極主体回収物を、水素吸蔵合金構成元素からなる合金溶湯に投入する際、負極主体回収物と共にアルミニウムを合金溶湯に投入することにより、負極主体回収物の溶解効率を飛躍的に高めることができることが分かった。
投入した負極主体回収物が溶解する様子を観察した結果、投入したアルミニウムが溶融して溶湯上に浮き上がってアルミニウムの膜を作り、このアルミニウムの膜と負極主体回収物とが反応して負極主体回収物の溶解が促進されることが分かった。
また、投入するアルミニウムの量は、負極活物質主体の回収物に対して10質量%以上、特に20質量%以上、中でも特に30質量%以上とするのが好ましいことが分かった。
なお、上記実施例では、液体窒素で失活化を行ったが、−150℃の冷凍機で冷凍して失活化を行った場合も同様な効果が得られることを確認している。
(Discussion)
As a result, when the negative electrode mainly recovered material is introduced into the molten alloy composed of the hydrogen storage alloy constituent elements, the melting efficiency of the negative electrode mainly recovered material is dramatically increased by introducing aluminum into the alloy molten metal together with the negative electrode mainly recovered material. I found out that I could do it.
As a result of observing the state that the negative electrode main body recovered melts, the input aluminum melts and floats on the molten metal to form an aluminum film, and the aluminum film reacts with the negative electrode main body recovery to recover the negative electrode main body. It was found that dissolution of the product was promoted.
Further, it was found that the amount of aluminum to be added is preferably 10% by mass or more, particularly 20% by mass or more, and particularly preferably 30% by mass or more with respect to the recovered material mainly composed of the negative electrode active material.
In addition, in the said Example, although it deactivated with liquid nitrogen, it has confirmed that the same effect is acquired also when it freezes with -150 degreeC refrigerator and deactivated.

さらに、実施例2−6及び比較例2について、Mmの溶解率を検討した結果を表3に示す。
表3において、Ce及びLaの溶解率(%)は次のように算出した。
Ceの溶解率(%)=(鋳造後の水素吸蔵合金組成物中のCe含有量/リサイクル原料中のCe含有量)×100
Laの溶解率(%)=(鋳造後の水素吸蔵合金組成物中のLa含有量/リサイクル原料中のLa含有量)×100
Furthermore, about Example 2-6 and Comparative Example 2, the result of having examined the dissolution rate of Mm is shown in Table 3.
In Table 3, the dissolution rate (%) of Ce and La was calculated as follows.
Ce dissolution rate (%) = (Ce content in the hydrogen storage alloy composition after casting / Ce content in the recycled material) × 100
La dissolution rate (%) = (La content in hydrogen storage alloy composition after casting / La content in recycled material) × 100

Figure 0004850297
Figure 0004850297

(考察)
これより、負極主体回収物を、水素吸蔵合金構成元素からなる合金溶湯に投入する際、負極主体回収物と共にアルミニウムを合金溶湯に投入することにより、負極主体回収物におけるミッシュメタル(Mm)の溶解をも促進することができ、ミッシュメタル(Mm)の回収率を飛躍的に高めることができることが分かった。
上記実施例では、La及びCeについて試験したが、Nd及びPrについてもほぼ同様の効果を確認することができた。

(Discussion)
From this, when the negative electrode main body recovery material is thrown into the molten alloy composed of the hydrogen storage alloy constituent elements, the misch metal (Mm) is dissolved in the negative electrode main body recovery material by introducing aluminum into the molten alloy together with the negative electrode main body recovery material. It was found that the recovery rate of misch metal (Mm) can be dramatically increased.
In the above examples, La and Ce were tested, but almost the same effect could be confirmed for Nd and Pr.

Claims (4)

廃ニッケル水素二次電池から得られた負極主体回収物を、水素吸蔵合金構成元素からなる溶湯に加えて加熱溶解させて水素吸蔵合金組成物を製造する方法において、負極主体回収物と同時又は順次にアルミニウムを溶湯に加えることを特徴とする水素吸蔵合金組成物の製造方法。   In the method of producing a hydrogen storage alloy composition by adding a negatively recovered material obtained from a waste nickel metal hydride secondary battery to a molten metal composed of a hydrogen storage alloy constituent element and heating and dissolving the same, sequentially or sequentially with the negative electrode recovered material A method for producing a hydrogen storage alloy composition, comprising adding aluminum to the molten metal. 廃棄された水素ニッケル電池を解体し、その中から選別回収した負極主体回収物を、還元雰囲気中で加熱処理することにより当該回収物中の水酸化物を還元させた後、当該回収物を非酸化性雰囲気で加熱して炭素を除去した後に得られる負極主体回収物と同時又は順次にアルミニウムを溶湯に加えることを特徴とする請求項1記載の水素吸蔵合金組成物の製造方法。   The discarded nickel metal hydride battery is disassembled, and the negative electrode-mainly collected material selected and recovered from the battery is heat treated in a reducing atmosphere to reduce the hydroxide in the recovered material, and then the recovered material is removed. The method for producing a hydrogen-absorbing alloy composition according to claim 1, wherein aluminum is added to the molten metal simultaneously or sequentially with a negative electrode main body recovered after heating in an oxidizing atmosphere to remove carbon. 廃ニッケル水素電池から負極主体回収物を選別する負極回収工程と、該負極主体回収物中に含まれる正極活物質を還元する還元工程と、負極主体回収物から炭素を除去する脱炭素工程と、負極主体回収物と同時又は順次にアルミニウムを、水素吸蔵合金構成元素からなる溶湯に加えて加熱溶解させる溶解工程と、溶解した本負極主体回収物等を鋳造する鋳造工程と、を備えた水素吸蔵合金組成物の製造方法。 A negative electrode recovery step of selecting the negative electrode main recovery from the waste nickel metal hydride battery, a reduction step of reducing the positive electrode active material contained in the negative electrode main recovery, and a decarbonization step of removing carbon from the negative electrode main recovery; Simultaneously or sequentially with the negative electrode main recovery material, aluminum is added to the molten metal composed of the hydrogen storage alloy constituent element and heated and dissolved, and the hydrogen storage unit includes a casting process for casting the main negative electrode main recovery material and the like. A method for producing an alloy composition. 廃ニッケル水素電池を失活化させた後、負極主体回収物を選別する負極回収工程と、極性溶液で本負極主体回収物のアルカリ塩を低減する洗浄工程と、次に乾燥させる乾燥工程と、該負極主体回収物中に含まれる正極活物質を還元する還元工程と、負極主体回収物から炭素を除去する脱炭素工程と、負極主体回収物と同時又は順次にアルミニウムを、水素吸蔵合金構成元素からなる溶湯に加えて加熱溶解させる溶解工程と、溶解した本負極主体回収物等を鋳造する鋳造工程と、を備えた水素吸蔵合金組成物の製造方法。
After deactivating the waste nickel metal hydride battery, a negative electrode recovery step of selecting the negative electrode main recovery material, a cleaning step of reducing the alkali salt of the negative electrode main recovery material with a polar solution, and a drying step of drying next, A reduction step of reducing the positive electrode active material contained in the negative electrode main recovery material, a decarbonization step of removing carbon from the negative electrode main recovery material, and aluminum in the hydrogen storage alloy constituent element simultaneously or sequentially with the negative electrode main recovery material A method for producing a hydrogen-absorbing alloy composition, comprising: a melting step of heating and melting in addition to a molten metal comprising: a casting step of casting the melted main negative electrode recovered material and the like.
JP2010103457A 2009-10-23 2010-04-28 Method for producing hydrogen storage alloy composition Active JP4850297B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010103457A JP4850297B2 (en) 2009-10-23 2010-04-28 Method for producing hydrogen storage alloy composition
CN201080046077.2A CN102576919B (en) 2009-10-23 2010-10-21 Process for production of hydrogen-storing alloy composition
PCT/JP2010/068558 WO2011049160A1 (en) 2009-10-23 2010-10-21 Process for production of hydrogen-storing alloy composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009244249 2009-10-23
JP2009244249 2009-10-23
JP2010103457A JP4850297B2 (en) 2009-10-23 2010-04-28 Method for producing hydrogen storage alloy composition

Publications (2)

Publication Number Publication Date
JP2011108618A JP2011108618A (en) 2011-06-02
JP4850297B2 true JP4850297B2 (en) 2012-01-11

Family

ID=43900383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010103457A Active JP4850297B2 (en) 2009-10-23 2010-04-28 Method for producing hydrogen storage alloy composition

Country Status (3)

Country Link
JP (1) JP4850297B2 (en)
CN (1) CN102576919B (en)
WO (1) WO2011049160A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146957B (en) * 2013-02-18 2015-02-25 先进储能材料国家工程研究中心有限责任公司 Method for making hydrogen storage alloy through utilizing non-serviceable nickel-metal hydride battery
CN103555954A (en) * 2013-11-04 2014-02-05 湖南格瑞普新能源有限公司 Method for recovering rare earth elements from waste nickel-metal hydride batteries
WO2015145884A1 (en) * 2014-03-26 2015-10-01 三井金属鉱業株式会社 Hydrogen storage alloy
SE540849C2 (en) * 2016-05-25 2018-11-27 Nilar Int Ab Pyrometallurgical process for recycling of NiMH batteries
EP3561092A4 (en) 2016-12-26 2020-05-13 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy
SE541537C2 (en) * 2017-11-28 2019-10-29 Nilar Int Ab Milling of recovered negative electrode material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183619B2 (en) * 1995-10-26 2001-07-09 三井金属鉱業株式会社 Method for recovering valuable resources from secondary batteries for electric vehicles
JP2000067935A (en) * 1998-08-25 2000-03-03 Mitsui Mining & Smelting Co Ltd Valuable matter recovering method from waste nickel- hydrogen secondary battery
EP1049190A4 (en) * 1998-10-27 2005-05-25 Mitsui Mining & Smelting Co Method and system for recovering valuable metal from waste storage battery
JP4700269B2 (en) * 2003-10-09 2011-06-15 三井金属鉱業株式会社 Method for recovering constituent elements of hydrogen storage alloy

Also Published As

Publication number Publication date
CN102576919B (en) 2014-07-02
CN102576919A (en) 2012-07-11
WO2011049160A1 (en) 2011-04-28
JP2011108618A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
Wang et al. Effective separation and recovery of valuable metals from waste Ni-based batteries: A comprehensive review
Xiao et al. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy
JP6587861B2 (en) Lithium-ion battery processing method
JP4850297B2 (en) Method for producing hydrogen storage alloy composition
CN101831548B (en) Method for recovering valuable metals from waste lithium manganese oxide battery
CN104538696B (en) The method that metal is reclaimed from the used Li ion cell of nickel-cobalt lithium manganate cathode material
CN108384955A (en) A method of from selectively carrying lithium in waste material containing lithium battery
WO2007018292A1 (en) Hydrogen-storage alloy, hydrogen-storage alloy electrode, secondary cell, and process for producing hydrogen-storage alloy
EP3951979B1 (en) Method for separating transition metal from waste cathode material
CN108190883B (en) A kind of method of purification of diamond
JP2023530325A (en) Cathode material recovery method
Rostami et al. Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process
JP2023518880A (en) Reuse of batteries by reduction and carbonylation
WO2022085222A1 (en) Method for recovering lithium and method for producing lithium carbonate
Ding et al. Stepwise recycling of valuable metals from spent lithium-ion batteries based on in situ thermal reduction and ultrasonic-assisted water leaching
JP5709552B2 (en) Method for producing hydrogen storage alloy composition
JP3777226B2 (en) Method for recovering reusable rare earth-containing compounds
Yasa et al. Recycling valuable materials from the cathodes of spent lithium-ion batteries: A comprehensive review
JP5909600B2 (en) Hydrogen storage alloy
JP5308120B2 (en) Method for producing hydrogen storage alloy composition
JP4700269B2 (en) Method for recovering constituent elements of hydrogen storage alloy
CN115852152A (en) Method for cooperatively treating battery black powder and nickel-cobalt hydroxide
Zhou et al. Preferential lithium extraction and simultaneous ternary cathode precursor synthesis from spent lithium-Ion batteries using a spray pyrolysis-based process
JP4398021B2 (en) Method for recovering useful metals from alkaline secondary batteries
CN114058850B (en) Process for leaching nickel from sintered nickel alloy body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110602

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111018

R150 Certificate of patent or registration of utility model

Ref document number: 4850297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250