JP4397872B2 - Iron-based high hardness shot material and method for producing the same - Google Patents

Iron-based high hardness shot material and method for producing the same Download PDF

Info

Publication number
JP4397872B2
JP4397872B2 JP2005272576A JP2005272576A JP4397872B2 JP 4397872 B2 JP4397872 B2 JP 4397872B2 JP 2005272576 A JP2005272576 A JP 2005272576A JP 2005272576 A JP2005272576 A JP 2005272576A JP 4397872 B2 JP4397872 B2 JP 4397872B2
Authority
JP
Japan
Prior art keywords
iron
solid solution
hardness
boride
bcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005272576A
Other languages
Japanese (ja)
Other versions
JP2007084858A5 (en
JP2007084858A (en
Inventor
俊之 澤田
新吾 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2005272576A priority Critical patent/JP4397872B2/en
Publication of JP2007084858A publication Critical patent/JP2007084858A/en
Publication of JP2007084858A5 publication Critical patent/JP2007084858A5/en
Application granted granted Critical
Publication of JP4397872B2 publication Critical patent/JP4397872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高硬度、高靱性で安価な鉄基高硬度ショット材およびその製造方法に関するものである。 The present invention relates to a high hardness, high toughness and inexpensive iron-based high hardness shot material and a method for producing the same.

一般に、ショットピーニングは被処理材の表面に圧縮残留応力を付与させて、疲労強度を改善できる有効な表面処理方法であり、ばねやギヤ等の自動車部品、あるいは金型材などにも適用されている。近年、浸炭焼入れ処理を行ったギヤなど、被処理材の高硬度化が進んでおり、これら部材へのショット材にも高硬度化が求められている。すなわち、表面硬度の高い被処理材に対し、低硬度なショット材を用いたショットピーニングでは高い圧縮残留応力が得られない。   In general, shot peening is an effective surface treatment method that can improve the fatigue strength by applying compressive residual stress to the surface of the material to be treated, and is also applied to automobile parts such as springs and gears or mold materials. . In recent years, materials to be processed such as gears that have been subjected to carburizing and quenching have been increased in hardness, and shot materials for these members are also required to have increased hardness. That is, a high compressive residual stress cannot be obtained by shot peening using a shot material having a low hardness with respect to a material having a high surface hardness.

また、自動車等の更なる軽量化に伴い、益々高硬度な被処理材をショットピーニングする必要があるため、さらに高硬度を有するショット材が求められている。高硬度なショット材としては、ガラスビーズやアルミナビーズなどのセラミックスがあるが、これらのセラミックスは金属粉末と比較し脆性であるため、ショットピーニングにより破砕しやすく、ショット材の寿命が短いという問題がある。   In addition, with further weight reduction of automobiles and the like, it is necessary to shot peening a material having a higher hardness, and therefore a shot material having a higher hardness is required. High-hardness shot materials include ceramics such as glass beads and alumina beads. However, these ceramics are more brittle than metal powders, so they are easily crushed by shot peening and have a short life span. is there.

上記のような課題に対し、HV1400を超えるような高硬度および高靱性を有する超硬製ショット材として、例えば特開平8−323626号公報(特許文献1)が提案されているが、しかし、鋳鉄製ショット材などと比較して非常に高価である。また、特開2002−36115号公報(特許文献2)に開示されているように、高硬度および高靱性を有する鉄系アモルファスショット材が提案されているが、硬度の上限はHV1100で、実施例においてはHV1000が最も高硬度となっており、HV1100を超えるような金属粉末を製造するのは非常に困難である。   For example, Japanese Patent Laid-Open No. 8-323626 (Patent Document 1) has been proposed as a cemented carbide shot material having high hardness and high toughness exceeding HV1400, however, cast iron It is very expensive as compared with shot material made of steel. Further, as disclosed in Japanese Patent Application Laid-Open No. 2002-36115 (Patent Document 2), an iron-based amorphous shot material having high hardness and high toughness has been proposed, but the upper limit of hardness is HV1100. In HV1000, HV1000 has the highest hardness, and it is very difficult to produce a metal powder exceeding HV1100.

一方、高硬度なセラミックス相を、高靱性な金属相で結合した材料としてサーメットがあるが、一般的に造粒、焼結により製造するため、アトマイズ法や急冷リボン粉砕法と比較すると製造コストが高くなってしまう。また、アトマイズ法や急冷リボン粉砕法は安価、かつ大量に粉末を製造できる手段であるが、いずれも耐火物中で溶解するため、WCやTiCのような高融点セラミックスを製造することは不可能であるという問題がある。   On the other hand, cermet is a material that combines a high-hardness ceramic phase with a high-toughness metal phase. However, since it is generally manufactured by granulation and sintering, the manufacturing cost is lower than the atomization method or the quenching ribbon pulverization method. It will be high. In addition, the atomization method and the quenching ribbon pulverization method are inexpensive and capable of producing a large amount of powder. However, since both dissolve in a refractory, it is impossible to produce a high melting point ceramic such as WC or TiC. There is a problem that.

特開平8−323626号公報JP-A-8-323626 特開2002−36115号公報JP 2002-36115 A

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、HV1000を超える高硬度とセラミックスショット材以上の高靱性を有し、かつ安価に製造することができるショット材を開発した。すなわち、比較的低融点で、かつ高硬度を有するセラミックスとしてFe2 B系鉄基硼化物(以下、Fe2 Bという)に着目し、さらにFe−Fe2 B系過共晶組織(一部他元素により置換しても良い)をアトマイズ法もしくは急冷リボン粉砕法により製造することにより、初晶となる高硬度なFe2 Bを、高靱性なbccおよび/またはfccの鉄基固溶体(以下、鉄基固溶体という)もしくは該鉄基固溶体とFe2 Bの共晶物が取り囲む組織とし、高硬度と高靱性を有するショットピーニングに好適な粉末を開発し発明に至ったものである。 In order to solve the above-mentioned problems, the inventors have intensively developed, and as a result, obtained a shot material that has a high hardness exceeding HV1000 and a high toughness higher than a ceramic shot material, and can be manufactured at low cost. developed. That is, as a ceramic having a relatively low melting point and high hardness, attention is focused on Fe 2 B iron-based boride (hereinafter referred to as Fe 2 B), and Fe—Fe 2 B hypereutectic structure (some others) By manufacturing an element of which may be replaced by an element by an atomizing method or a quenching ribbon pulverization method, high-hardness Fe 2 B as an initial crystal is converted into a tough bcc and / or fcc iron-based solid solution (hereinafter referred to as iron). an organization that eutectic of groups solid solution hereinafter) or iron group solid solution and Fe 2 B surround, which has led to the development invented a suitable powder shot peening with high hardness and high toughness.

その発明の要旨とするところは、
(1)面積率で50〜90%のFe2 B系鉄基硼化物と10〜50%のbccおよび/またはfccの鉄基固溶体よりなり、Fe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体が取り囲んだミクロ組織、またはFe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe 2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を有し、B:5〜8質量%、残部Feおよび不可避的不純物からなることを特徴とする鉄基高硬度ショット材。
(2)面積率で50〜90%のFe2 B系鉄基硼化物と10〜50%のbccおよび/またはfccの鉄基固溶体よりなり、Fe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体が取り囲んだミクロ組織、またはFe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe 2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を有し、B:5〜8質量%、Ti≦10%、Mo≦10%のいずれか1種または2種を含み、残部Feおよび不可避的不純物からなることを特徴とする鉄基高硬度ショット材。
)Cr:25質量%以下、Ni:10質量%以下のいずれか1種または2種を含むことを特徴とする前記(1)または)に記載の鉄基高硬度ショット材。
)前記(1)〜()のいずれか1項に記載の鉄基高硬度ショット材をアトマイズ法または急冷リボン粉砕法により製造したことを特徴とする鉄基高硬度ショット材の製造方法にある。
The gist of the invention is that
(1) An area ratio of 50 to 90% Fe 2 B-based iron-based boride and 10 to 50% bcc and / or fcc iron-based solid solution, wherein the Fe 2 B-based iron-based boride is bcc and / or fcc microstructure surrounds the iron-based solid solution, or have a Fe 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc and, B: 5 to 8% by weight, iron-based high hardness shot material, characterized in that the balance Fe and unavoidable impurities.
(2) It consists of 50 to 90% Fe 2 B iron-based boride and 10 to 50% bcc and / or fcc iron-based solid solution in area ratio, and Fe 2 B iron-based boride is bcc and / or fcc microstructure surrounds the iron-based solid solution, or have a Fe 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc and, B: 5 to 8 wt%, Ti ≦ 10%, comprise one or any of Mo ≦ 10%, iron-based high hardness shot material, characterized in that the balance Fe and unavoidable impurities.
( 3 ) The iron-based high-hardness shot material according to (1) or ( 2 ) above, comprising any one or two of Cr: 25% by mass or less and Ni: 10% by mass or less.
( 4 ) A method for producing an iron-based high hardness shot material, wherein the iron-based high hardness shot material according to any one of (1) to ( 3 ) is produced by an atomizing method or a quenching ribbon pulverizing method. It is in.

以上述べたように、本発明による、Feを主成分とし、Bを5〜8質量%添加することで鉄基固溶体相とFe2 B相の過共晶組織とし、かつアトマイズ法もしくは急冷リボン粉砕法により急冷凝固により、高硬度なFe2 Bを高靱性な鉄基固溶体もしくは該鉄基固溶体とFe2 Bの共晶物を取り囲むミクロ組織を有することにより、高硬度、高靱性で安価なショットピーニング材を製造することができる極めて優れた効果を奏するものである。 As described above, according to the present invention, Fe is the main component, and 5 to 8% by mass of B is added to form a hypereutectic structure of the iron-based solid solution phase and the Fe 2 B phase, and the atomization method or quench ribbon pulverization High-hardness, high-toughness and low-cost shot by having high-hardness Fe 2 B with a tough iron-base solid solution or a microstructure surrounding the eutectic of the iron-base solid solution and Fe 2 B by rapid solidification by the method The peening material can be produced with extremely excellent effects.

以下、本発明について詳細に説明する。
上述したように、本発明の特徴は、Feを主成分とし、Bを5〜8質量%添加することで鉄基固溶体相とFe2 B相の過共晶組織とし、かつアトマイズ法もしくは急冷リボン粉砕法により急冷凝固により、高硬度なFe2 Bを高靱性な鉄基固溶体もしくは鉄基固溶体とFe2 Bの共晶物が取り囲むミクロ組織を有することにより、高硬度と高靱性を両立させたものである。図1は、Fe2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を示す光学顕微鏡写真である。この図に示すように、Fe2 B系鉄基硼化物1をbccおよび/またはfccの鉄基固溶体相とFe2 B系鉄基硼化物相の共晶物2を取り囲むミクロ組織を示している。
Hereinafter, the present invention will be described in detail.
As described above, the present invention is characterized in that Fe is a main component, and 5 to 8% by mass of B is added to form a hypereutectic structure of an iron-based solid solution phase and an Fe 2 B phase, and an atomization method or a quenching ribbon. the rapid solidification by a pulverization method, by having a microstructure of high hardness Fe 2 B eutectic having a high toughness iron-based solid solution or iron solid solution and Fe 2 B surrounds were both high hardness and high toughness Is. Figure 1 is an optical micrograph showing the Fe 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc. As shown in this figure, Fe 2 B-based iron-based boride 1 shows a microstructure surrounding the eutectic 2 of bcc and / or fcc iron-based solid solution phase and Fe 2 B-based iron-based boride phase. .

また、Fe、Bを主元素とし、アトマイズ法や急冷リボン粉砕法で製造することでコストを安価に抑えることができる。なお、本発明合金を鋳造粉砕法で製造すると、凝固組織の粗大化により、ショット材として好適な数百μmで使用する場合、個々の粉末中でFe2 Bを鉄基固溶体もしくは鉄基固溶体とFe2 Bの共晶物を取り囲んだミクロ組織にはなりにくい。従って、特にアトマイズ法や急冷リボン粉砕法を適用することを条件とする。 Further, the cost can be reduced at a low cost by using Fe and B as main elements and producing them by an atomizing method or a quenching ribbon crushing method. In addition, when the alloy of the present invention is produced by a casting pulverization method, Fe 2 B is used as an iron-based solid solution or an iron-based solid solution in individual powders when used as a shot material suitable for several hundred μm due to coarsening of a solidified structure. It is difficult to form a microstructure surrounding the eutectic of Fe 2 B. Accordingly, the atomizing method and the quenching ribbon pulverizing method are particularly applied.

本発明に係るFe2 B系鉄基硼化物とは、FeおよびBを主元素とした、C16(Al2 Cu)の結晶構造をもつ正方晶系化合物であり、本発明ではこのうちFeが33原子%以下の範囲でTi,Cr,Ni,Moなどの他元素と置換したものも含むものである。
また、本発明に係るbccおよび/またはfccの鉄基固溶体は、Feを50原子%以上含むものとし、Ti,Cr,Ni,Moなどの他元素が固溶したものも含むものである。また、Fe2 B系鉄基硼化物の面積率とは、初晶であるFe2 B系鉄基硼化物の面積は勿論のことだが、もしこの硼化物を取り囲む相が鉄基固溶体とFe2 Bの共晶物である場合にはその共晶物中のFe2 Bの面積も含んだ面積率である。
The Fe 2 B iron-based boride according to the present invention is a tetragonal compound having a crystal structure of C16 (Al 2 Cu) with Fe and B as main elements. Including those substituted with other elements such as Ti, Cr, Ni and Mo within the range of atomic% or less.
Further, the iron-based solid solution of bcc and / or fcc according to the present invention contains 50 atomic% or more of Fe, and includes those in which other elements such as Ti, Cr, Ni, and Mo are dissolved. Further, Fe 2 The B system area ratio of the iron-based boride, the area of the Fe 2 B-type iron-based boride is primary crystal is but of course, if the phase surrounding the borides iron-based solid solution and Fe 2 In the case of a B eutectic, the area ratio includes the area of Fe 2 B in the eutectic.

本発明において、アトマイズ法もしくは急冷リボン粉砕法とした理由は、安価に大量の粉末を製造できる製造法であり、かつ本発明においてはFe−Fe2 B系過共晶組織(一部他元素により置換しても良い)の溶湯を急冷凝固させることにより、高硬度なFe2 Bを高靱性な鉄基固溶体または鉄基固溶体とFe2 Bが共晶物が取り囲んだミクロ組織にできるため、高硬度と高靱性を両立させた粉末が得られるためである。 In the present invention, the reason why the atomization method or the quenching ribbon pulverization method is used is a production method capable of producing a large amount of powder at a low cost, and in the present invention, an Fe—Fe 2 B-based hypereutectic structure (partially depending on other elements). By rapidly cooling and solidifying the molten metal (which may be substituted), high hardness Fe 2 B can be formed into a tough iron-based solid solution or a microstructure in which the iron-based solid solution and Fe 2 B surround the eutectic. This is because a powder having both hardness and high toughness can be obtained.

また、Fe2 B系鉄基硼化物とした理由は、Fe2 Bは融点が比較的低温(1400℃前後)のため、アトマイズ法や急冷リボン粉砕法による製造が可能であると共に、高硬度(HV1400程度)であり、さらに安価な原材料を用いて製造できるためである。
さらに、Fe2 B系鉄基硼化物の面積率50〜90%とした理由は、Fe2 B系鉄基硼化物の面積率が50%未満では充分な硬度が得られず、90%を超えると充分な靱性が得られないことから、その範囲を50〜90%とした。
The reason why the Fe 2 B iron-based boride is used is that Fe 2 B has a relatively low melting point (around 1400 ° C.), so that it can be produced by an atomization method or a rapid ribbon pulverization method and has a high hardness ( This is because it can be manufactured using cheaper raw materials.
Furthermore, the reason why the area ratio of the Fe 2 B iron-based boride is 50 to 90% is that when the area ratio of the Fe 2 B iron-based boride is less than 50%, sufficient hardness cannot be obtained and exceeds 90%. And sufficient toughness cannot be obtained, so the range was made 50 to 90%.

bccおよび/またはfccの鉄基固溶体とした理由は、上記Fe2 B系鉄基硼化物のの理由より硬質相としてFe2 Bを利用していることから、最終凝固部位は高靱性な鉄基固溶体あるいは鉄基固溶体とFe2 Bの共晶物となる。また、この鉄基固溶体の構成相は固溶元素や冷却速度、熱処理などにより、bccおよび/またはfccとなり得るが、両相ともに充分な靱性を有しているため特に限定はされない。 The reason why the iron-based solid solution of bcc and / or fcc is used is that Fe 2 B is used as the hard phase because of the Fe 2 B-based iron-based boride, so that the final solidification site is a high-toughness iron group. It becomes a eutectic of a solid solution or an iron-based solid solution and Fe 2 B. The constituent phase of the iron-based solid solution can be bcc and / or fcc depending on the solid solution element, cooling rate, heat treatment, etc., but both phases have sufficient toughness and are not particularly limited.

bccおよび/またはfccの鉄基固溶体の面積率を10〜50%とした理由は、bccおよび/またはfccの鉄基固溶体の面積率が10%未満では充分な靱性が得られず、50%を超えると充分な硬度が得られないことから、その範囲を10〜50%とした。
また、B:5〜8質量%とした理由は、BはFe2 B系鉄基硼化物を形成するための成分であるが、5質量%未満ではFe2 Bが少なく、充分な硬度が得られず、また、8質量%を超えるとFe2 Bが多く生成しすぎるため、充分な靱性が得られないためである。従って、その範囲を5〜8質量%とした。
The reason why the area ratio of the iron-based solid solution of bcc and / or fcc is 10 to 50% is that if the area ratio of the iron-based solid solution of bcc and / or fcc is less than 10%, sufficient toughness cannot be obtained, and 50% If it exceeds, sufficient hardness cannot be obtained, so the range was made 10 to 50%.
The reason why B is 5 to 8% by mass is that B is a component for forming an Fe 2 B-based iron-based boride, but if it is less than 5% by mass, Fe 2 B is small and sufficient hardness is obtained. In addition, when the amount exceeds 8% by mass, a large amount of Fe 2 B is generated, and sufficient toughness cannot be obtained. Therefore, the range was 5-8 mass%.

Fe2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体が取り囲んだミクロ組織、あるいはFe2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織とした理由は、高硬度相を高靱性相が取り囲むことにより、高硬度と高靱性を両立することができるからである。 Fe 2 B-type iron-based boride the bcc and / or microstructure surrounds the iron-based solid solution of fcc, or Fe 2 B-type iron-based boride the bcc and / or iron-based solid solution of the fcc and Fe 2 B Keitetsumoto The reason why the microstructure is surrounded by the eutectic of the boride is that high hardness and high toughness can be achieved by surrounding the high hardness phase with the high toughness phase.

Cr:25質量%以下
Cr:25質量%以下とした理由は、ショット材は大気中で保管されることが多く、保管および使用環境下で発銹しないことが必要である。本発明合金において、Crは特に耐食性を改善する効果が高いため、発銹が問題となる場合には、25質量%以下の範囲で添加することが好ましい。しかし、25質量%を超えると融点が上昇し、アトマイズ法や急冷リボン粉砕法による製造が困難となることから、25質量%以下とした。
Cr: 25% by mass or less The reason for Cr: 25% by mass or less is that shot materials are often stored in the atmosphere, and it is necessary not to sprout in the storage and use environment. In the alloy of the present invention, Cr has a particularly high effect of improving corrosion resistance. Therefore, when glazing is a problem, it is preferably added in a range of 25% by mass or less. However, if it exceeds 25% by mass, the melting point increases, and it becomes difficult to produce by the atomizing method or the quenching ribbon pulverization method.

さらに、Ti:10質量%以下、Mo:10質量%以下
Ti:10質量%以下、Mo:10質量%以下とした理由は、いずれも硬度を向上させる目的で添加するものである。しかし、10質量%を超えると融点が上昇し、アトマイズ法や急冷リボン粉砕法による製造が困難であることから、いずれも10質量%以下とした。
Further, Ti: 10% by mass or less, Mo: 10% by mass or less, Ti: 10% by mass or less, and Mo: 10% by mass or less are all added for the purpose of improving hardness. However, if it exceeds 10% by mass, the melting point rises and it is difficult to produce by the atomizing method or the quenching ribbon pulverization method.

以下、本発明について実施例によって具体的に説明する。
表1および表2に示す成分組成の各試料を秤量した25kgの原料をアルミナ製坩堝でAr中にて誘導溶解し、坩堝底部のφ5mm出湯ノズルより、1650℃にて出湯し、窒素ガスアトマイズにて粉末を製造した。その結果を表1、2に示す。なお、表1に示す比較例No.12は市販のアルミナ粉末、比較例No.13は鋳造粉砕法により作製した。
Hereinafter, the present invention will be specifically described with reference to examples.
25 kg of raw materials weighed each sample of the component composition shown in Table 1 and Table 2 were induction-dissolved in Ar with an alumina crucible, discharged at 1650 ° C. from a φ5 mm hot water discharge nozzle at the bottom of the crucible, and nitrogen gas atomized. A powder was produced. The results are shown in Tables 1 and 2. In addition, comparative example No. shown in Table 1 is shown. 12 is a commercially available alumina powder, Comparative Example No. No. 13 was produced by a casting pulverization method.

なお、表1に示す面積率、機械特性評価として、Fe2 B系鉄基硼化物および鉄基固溶体の面積率は、この粉末を−125〜+44μmに分級し、樹脂埋めした試料の反射電子像を画像解析した。また、硬度については、前記の樹脂埋め試料を用い、ミクロビッカース硬度計により測定した。測定荷重は300gでn=10の平均を算出した。さらに、耐クラック性については、前記の樹脂埋め試料を用い、ミクロビッカース硬度計にて200〜1000gの荷重で圧痕を打ち、クラックが発生した荷重で評価した。
表2に示す耐食性評価は、ガラスペレットに両面テープで粉末を敷詰め、70℃−95%−96時間の条件で、湿潤試験を実施した。発銹したものを×、発銹のなかったものを○とした。
In addition, as the area ratio and mechanical property evaluation shown in Table 1, the area ratio of Fe 2 B-based iron-based boride and iron-based solid solution is a reflected electron image of a sample in which this powder is classified into −125 to +44 μm and embedded in resin. The image was analyzed. The hardness was measured with a micro Vickers hardness meter using the resin-embedded sample. The measurement load was 300 g, and the average of n = 10 was calculated. Further, the crack resistance was evaluated by using the resin-embedded sample described above, making an indentation with a load of 200 to 1000 g with a micro Vickers hardness tester, and a load at which a crack occurred.
In the corrosion resistance evaluation shown in Table 2, powder was spread on a glass pellet with a double-sided tape, and a wet test was performed under conditions of 70 ° C.-95% -96 hours. Those that were found were marked with ×, and those that were not found were marked with ○.

Figure 0004397872
Figure 0004397872

表1に示すように、No.1〜8は本発明例であり、No.9〜13は比較例である。比較例No.9は、B含有量が低く、かつ鉄基固溶体の面積率が大きく、Fe2 B系鉄基硼化物の面積率が小さいために、硬度が低い。比較例No.10は、B含有量が多く、かつ鉄基固溶体の面積率が小さく、Fe2 B系鉄基硼化物の面積率が大きいために、硬度は高いが、しかし、クラック発生荷重が低く、500gでクラックの発生が見られた。比較例No.11は、Crが30%と高いためにアトマイズ法ではノズル閉塞が起こり製造不可能となった。 As shown in Table 1, no. 1-8 are examples of the present invention. 9 to 13 are comparative examples. Comparative Example No. No. 9 has a low B content, a large area ratio of the iron-based solid solution, and a small area ratio of the Fe 2 B-based iron-based boride, so that the hardness is low. Comparative Example No. No. 10 has a high B content, a small area ratio of the iron-based solid solution, and a large area ratio of the Fe 2 B-based iron-based boride, so that the hardness is high, but the crack generation load is low, 500 g Generation of cracks was observed. Comparative Example No. In No. 11, since Cr was as high as 30%, the nozzle was clogged by the atomizing method, making it impossible to manufacture.

比較例No.12は、市販の白色アルミナビーズを用いた場合であり、硬度は高いが、しかし、クラック発生荷重が極めて低く、200gでクラックの発生が見られた。比較例No.13は、アトマイズ法や急冷リボン粉砕法によるものでなく、鋳造粉砕によるもので、本発明と比べてミクロ組織が大きく、圧痕を打つ部位により硬さのバラツキが見られ、かつクラック発生荷重が極めて低く、200gでクラックの発生が見られた。これに対し、本発明例であるNo.1〜8は粉末の構成相はX線回折の結果、いずれもFe2 B系鉄基硼化物とbccおよび/またはfccの鉄基固溶体であり、目的の硬度およびクラック発生荷重1000g超で、1000gの荷重でもクラックの発生はなかった。 Comparative Example No. No. 12 is a case where commercially available white alumina beads are used, and the hardness is high, but the crack generation load is extremely low, and generation of cracks was observed at 200 g. Comparative Example No. No. 13 is not based on the atomization method or the quenching ribbon pulverization method, but is based on casting pulverization. The microstructure is larger than that of the present invention, hardness variation is observed depending on the indented portion, and the crack generation load is extremely high. The occurrence of cracks was observed at 200 g. In contrast to this, No. As a result of X-ray diffraction, the constituent phases of the powders 1 to 8 are all Fe 2 B iron-based boride and bcc and / or fcc iron-based solid solution, with the target hardness and crack generation load exceeding 1000 g, 1000 g Cracks did not occur even when the load was.

Figure 0004397872
Figure 0004397872

表2はB成分に、さらにCr,Niを加えた場合の耐食性を調べたもので、特に発銹が問題となる場合に、No.14に比較して、No.15〜17に示すCr,Niを添加すると耐食性が向上し、発銹の発生が見られないことが分かる。
以上述べたように、Feを主成分とし、Bを5〜8%添加することで鉄基固溶体相とFe2 B相の過共晶組織とし、かつアトマイズ法もしくは急冷リボン粉砕法により急冷凝固により、高硬度なFe2 Bを高靱性な鉄基固溶体もしくは鉄基固溶体とFe2 Bの共晶物が取り囲んだミクロ組織を有することにより、高硬度と高靱性を図ることができる。また、Bに加えて、Cr,Niを添加することで耐食性を向上させることができ、さらには、Ti,Moを添加することでより硬度を向上させることができた。
Table 2 shows the corrosion resistance when Cr and Ni are further added to the B component. 14 compared with No. 14. It can be seen that when Cr and Ni shown in 15 to 17 are added, the corrosion resistance is improved and the occurrence of wrinkles is not observed.
As described above, Fe is the main component, and 5 to 8% of B is added to form a hypereutectic structure of the iron-based solid solution phase and the Fe 2 B phase, and by rapid solidification by the atomization method or the rapid ribbon pulverization method. by having a eutectic material is encircled microstructure of high hardness Fe 2 B of high toughness iron-based solid solution or iron solid solution and Fe 2 B, it is possible to achieve high hardness and high toughness. Further, in addition to B, the corrosion resistance could be improved by adding Cr and Ni, and further, the hardness could be further improved by adding Ti and Mo.

Fe2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を示す光学顕微鏡写真である。Fe is an optical microscope photograph showing a 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc.

符号の説明Explanation of symbols

1 Fe2 B系鉄基硼化物
2 鉄基固溶体とFe2 B系鉄基硼化物の共晶物


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊


1 Fe 2 B iron-based boride 2 Eutectic of iron-based solid solution and Fe 2 B iron-based boride


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina


Claims (4)

面積率で50〜90%のFe2 B系鉄基硼化物と10〜50%のbccおよび/またはfccの鉄基固溶体よりなFe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体が取り囲んだミクロ組織、またはFe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe 2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を有し、B:5〜8質量%、残部Feおよび不可避的不純物からなることを特徴とする鉄基高硬度ショット材。 Ri Na than 50-90% of the Fe 2 B-type iron-based boride and 10-50% of bcc and / or fcc iron solid solution in the area ratio, the Fe 2 B-type iron-based boride of bcc and / or fcc iron-based solid solution is encircled microstructure, or has a Fe 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc, B: An iron-based high-hardness shot material comprising 5 to 8% by mass, the balance Fe and inevitable impurities. 面積率で50〜90%のFe2 B系鉄基硼化物と10〜50%のbccおよび/またはfccの鉄基固溶体よりなり、Fe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体が取り囲んだミクロ組織、またはFe 2 B系鉄基硼化物をbccおよび/またはfccの鉄基固溶体とFe 2 B系鉄基硼化物の共晶物が取り囲んだミクロ組織を有し、B:5〜8質量%、Ti≦10%、Mo≦10%のいずれか1種または2種を含み、残部Feおよび不可避的不純物からなることを特徴とする鉄基高硬度ショット材。 An Fe 2 B iron-based boride having an area ratio of 50 to 90% and an iron-based solid solution of 10 to 50% bcc and / or fcc, and the Fe 2 B iron-based boride is made of bcc and / or fcc iron has a microstructure surrounds groups solid solution, or Fe 2 B-type iron-based boride the bcc and / or eutectic material is encircled microstructure of the iron-based solid solution and Fe 2 B-type iron-based boride of fcc, B : Iron-based high-hardness shot material characterized by comprising any one or two of 5 to 8% by mass, Ti ≦ 10%, and Mo ≦ 10%, and the balance being Fe and unavoidable impurities. Cr:25質量%以下、Ni:10質量%以下のいずれか1種または2種を含むことを特徴とする請求項1または2に記載の鉄基高硬度ショット材。 3. The iron-based high hardness shot material according to claim 1, comprising one or two of Cr: 25% by mass or less and Ni: 10% by mass or less. 請求項1〜のいずれか1項に記載の鉄基高硬度ショット材をアトマイズ法または急冷リボン粉砕法により製造したことを特徴とする鉄基高硬度ショット材の製造方法。 A method for producing an iron-based high-hardness shot material, wherein the iron-based high-hardness shot material according to any one of claims 1 to 3 is produced by an atomizing method or a quenching ribbon pulverization method.
JP2005272576A 2005-09-20 2005-09-20 Iron-based high hardness shot material and method for producing the same Active JP4397872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272576A JP4397872B2 (en) 2005-09-20 2005-09-20 Iron-based high hardness shot material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272576A JP4397872B2 (en) 2005-09-20 2005-09-20 Iron-based high hardness shot material and method for producing the same

Publications (3)

Publication Number Publication Date
JP2007084858A JP2007084858A (en) 2007-04-05
JP2007084858A5 JP2007084858A5 (en) 2007-05-24
JP4397872B2 true JP4397872B2 (en) 2010-01-13

Family

ID=37972142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272576A Active JP4397872B2 (en) 2005-09-20 2005-09-20 Iron-based high hardness shot material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4397872B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490373B2 (en) * 2008-04-30 2014-05-14 山陽特殊製鋼株式会社 High hardness shot material
JP5749026B2 (en) * 2010-04-09 2015-07-15 山陽特殊製鋼株式会社 High hardness projection material for shot peening
JP5485922B2 (en) * 2011-01-28 2014-05-07 日本精工株式会社 Rolling device
JP5766476B2 (en) * 2011-03-24 2015-08-19 山陽特殊製鋼株式会社 Powder for shot peening projection material and shot peening method thereof
AU2015218270B2 (en) * 2014-02-14 2019-02-14 The Nanosteel Company, Inc. Shot material and shot peening method
JP6151304B2 (en) 2015-05-26 2017-06-21 山陽特殊製鋼株式会社 Projection material for shot peening using hard powder with high productivity and corrosion resistance
JP7288294B2 (en) * 2018-09-25 2023-06-07 山陽特殊製鋼株式会社 Powder for magnetic parts

Also Published As

Publication number Publication date
JP2007084858A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4397872B2 (en) Iron-based high hardness shot material and method for producing the same
KR20180040513A (en) Ni-based superalloy powder for lamination molding
CN108349214A (en) The iron type materials of the separation of infiltration
JP6698280B2 (en) Alloy powder
Průša et al. Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion
Dias et al. Effect of high energy milling time of the aluminum bronze alloy obtained by powder metallurgy with niobium carbide addition
JP2024020264A (en) Cr-Ni alloy, method for producing Cr-Ni alloy, and rapidly solidified compact
JP5488941B2 (en) Austenitic cast iron, austenitic cast iron casting and method for producing the same
JP5490373B2 (en) High hardness shot material
Dám et al. Structural and mechanical characteristics of the Al–23Si–8Fe–5Mn alloy prepared by combination of centrifugal spraying and hot die forging
EP3247517A1 (en) Corrosion resistant article and methods of making
JP2020063495A (en) Co-BASED ALLOY AND POWDER THEREOF
KR20170030567A (en) Corrosion resistant article and methods of making
JP5749026B2 (en) High hardness projection material for shot peening
JP6671772B2 (en) High hardness and toughness powder
MX2014009958A (en) Copper-nickel-zinc alloy containing silicon.
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP7471078B2 (en) A multi-component alloy with excellent resistance to softening, balance of strength and elongation, and excellent wear resistance.
JP5523991B2 (en) High hardness projection material for shot peening
Chen et al. Role of Cu-Containing MEA Binder and Sintering Temperatures on Synthesis and Characteristics of Tungsten-Based Alloys
JP2019189885A (en) Co-based alloy and powder thereof
JP6217638B2 (en) Target material and manufacturing method thereof
KR102106486B1 (en) Thermal spraying powder, method of forming a thermal sprayed coating layer using the same and Grate bar with thermally sprayed coating layer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090309

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141030

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250