JP2019189885A - Co-based alloy and powder thereof - Google Patents

Co-based alloy and powder thereof Download PDF

Info

Publication number
JP2019189885A
JP2019189885A JP2018079898A JP2018079898A JP2019189885A JP 2019189885 A JP2019189885 A JP 2019189885A JP 2018079898 A JP2018079898 A JP 2018079898A JP 2018079898 A JP2018079898 A JP 2018079898A JP 2019189885 A JP2019189885 A JP 2019189885A
Authority
JP
Japan
Prior art keywords
mass
less
alloy
phase
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018079898A
Other languages
Japanese (ja)
Other versions
JP7213022B2 (en
Inventor
亮介 越智
Ryosuke Ochi
亮介 越智
澤田 俊之
Toshiyuki Sawada
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2018079898A priority Critical patent/JP7213022B2/en
Publication of JP2019189885A publication Critical patent/JP2019189885A/en
Application granted granted Critical
Publication of JP7213022B2 publication Critical patent/JP7213022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

To provide a Co-based alloy capable of providing a molded article excellent in corrosion resistance.SOLUTION: A Co-based alloy contains C:2.50 mass% to 3.00 mass%, Cr:28.0 mass% to 34.0 mass%, W:11.0 mass% to 15.0 mass%, Si:0.01 mass% to 2.00 mass%. Mn:0.01 mass% to 1.00 mass%. Fe:0.01 mass% to 10.0 mass%. Ni:0.5 mass% to 15.0 mass% and the balance Co with inevitable impurities.SELECTED DRAWING: None

Description

本発明は、溶製法、粉末冶金法、粉体肉盛法、レーザー肉盛法、粉末押出法等に適したCo基合金に関する。   The present invention relates to a Co-based alloy suitable for melting, powder metallurgy, powder overlaying, laser cladding, powder extrusion, and the like.

CoCrWC系の合金は、耐食性、耐摩耗性及び耐熱性に優れている。この合金は、樹脂成型機の部品、エンジンバルブ、耐熱ロール等に好んで用いられている。この合金の特性の、さらなる向上についての検討が、なされている。   CoCrWC alloys are excellent in corrosion resistance, wear resistance, and heat resistance. This alloy is preferably used for resin molding machine parts, engine valves, heat-resistant rolls, and the like. Considerations have been made to further improve the properties of this alloy.

特開昭62−026739号公報には、Ni、Al及びTiが添加されたCo基合金が開示されている。これらの元素の添加は、合金の耐熱衝撃性、靱性及び耐酸化性を向上させる。   Japanese Laid-Open Patent Publication No. 62-026739 discloses a Co-based alloy to which Ni, Al and Ti are added. The addition of these elements improves the thermal shock resistance, toughness and oxidation resistance of the alloy.

国際公開第2007−066555公報には、Fe、Ni及びMnが添加されたCo基合金が開示されている。これらの元素の添加は、合金の弾性変形能及び磁気特性を向上させる。   International Publication No. 2007-066555 discloses a Co-based alloy to which Fe, Ni and Mn are added. Addition of these elements improves the elastic deformability and magnetic properties of the alloy.

特開昭62−033090号公報には、窒素含有率が少ないCo基合金粉末が開示されている。この粉末は、造形性に優れる。   Japanese Patent Application Laid-Open No. 62-033090 discloses a Co-based alloy powder having a low nitrogen content. This powder is excellent in formability.

特開昭62−026739号公報JP-A-62-026739 国際公開第2007−066555公報International Publication No. 2007-066555 特開昭62−033090号公報JP-A-62-033090

特開昭62−033090号公報に開示されたCo基合金では、加熱後の凝固において、金属間化合物であるNi3(Al,Ti)が生成しうる。この金属間化合物は、破壊の起点となり得る。このCo基合金から得られた成形品の耐衝撃性は、十分ではない。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。 In the Co-based alloy disclosed in Japanese Patent Application Laid-Open No. 62-033090, Ni 3 (Al, Ti), which is an intermetallic compound, can be generated during solidification after heating. This intermetallic compound can be a starting point of destruction. The impact resistance of molded products obtained from this Co-based alloy is not sufficient. In particular, when this molded product is used in a severe corrosive environment, the service life is reached in a short period of time.

国際公開第2007−066555公報に開示されたCo基合金は、熱誘起または応力誘起されたε相を含んでいる。このε相は、h.c.p.構造を有している。このCo基合金では、γ相の含有率が低い。従って、このCo基合金の靱性は不十分である。このCo基合金から得られた成形品は、耐久性に劣る。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。   The Co-based alloy disclosed in International Publication No. 2007-066555 includes a thermally induced or stress induced ε phase. This ε phase is h. c. p. It has a structure. This Co-based alloy has a low content of γ phase. Therefore, the toughness of this Co-based alloy is insufficient. Molded articles obtained from this Co-based alloy are inferior in durability. In particular, when this molded product is used in a severe corrosive environment, the service life is reached in a short period of time.

特開昭62−033090号公報に開示されたCo基合金粉末では、酸素含有率が高い。この粉末が加熱・溶融されるとき、溶け残りが発生しやすい。この粉末が加熱・溶融されるとき、粒子の表面に酸化物が生成しやすい。この酸化物は、粒子同士の結合力を低下させる。この粉末から得られた成形品は、耐久性に劣る。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。   The Co-based alloy powder disclosed in Japanese Patent Laid-Open No. 62-033090 has a high oxygen content. When this powder is heated and melted, unmelted residue is likely to occur. When this powder is heated and melted, an oxide is easily generated on the surface of the particles. This oxide reduces the bonding force between the particles. Molded articles obtained from this powder are inferior in durability. In particular, when this molded product is used in a severe corrosive environment, the service life is reached in a short period of time.

本発明の目的は、耐食性に優れた成形品が得られうるCo基合金の提供にある。   An object of the present invention is to provide a Co-based alloy from which a molded article having excellent corrosion resistance can be obtained.

本発明に係るCo基合金は、
C:2.50質量%以上3.00質量%以下、
Cr:28.0質量%以上34.0質量%以下、
W:11.0質量%以上15.0質量%以下、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含む。残部は、Co及び不可避的不純物である。
The Co-based alloy according to the present invention is
C: 2.50 mass% to 3.00 mass%,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 11.0 mass% or more and 15.0 mass% or less,
Si: 0.01% by mass or more and 2.00% by mass or less,
Mn: 0.01% by mass or more and 1.00% by mass or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: 0.5 mass% or more and 15.0 mass% or less are included. The balance is Co and inevitable impurities.

好ましくは、このCo基合金の金属組織の全体に対する、h.c.p.構造を有する相であるε相の体積率Pεは、10.0%未満である。   Preferably, for the entire metal structure of the Co-based alloy, h. c. p. The volume fraction Pε of the ε phase, which is a phase having a structure, is less than 10.0%.

好ましくは、このCo基合金の金属組織は、M6C系及び/又はM7C3系の炭化物と、f.c.c.構造を有する相であるγ相及び/又はh.c.p.構造を有する相であるε相からなるマトリクスとを含む。この金属組織の全体に対する炭化物の体積率Pcは、20.0%以上50.0%以下である。   Preferably, the metal structure of the Co-based alloy includes M6C-based and / or M7C3-based carbide, f. c. c. A γ phase which is a phase having a structure and / or h. c. p. And a matrix composed of an ε phase that is a phase having a structure. The volume fraction Pc of carbide with respect to the entire metal structure is 20.0% or more and 50.0% or less.

他の観点によれば、本発明に係る粉末の材質は、Co基合金である。このCo基合金は、
C:2.50質量%以上3.00質量%以下、
Cr:28.0質量%以上34.0質量%以下、
W:11.0質量%以上15.0質量%以下、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含む。残部は、Co及び不可避的不純物である。
According to another aspect, the material of the powder according to the present invention is a Co-based alloy. This Co-based alloy is
C: 2.50 mass% to 3.00 mass%,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 11.0 mass% or more and 15.0 mass% or less,
Si: 0.01% by mass or more and 2.00% by mass or less,
Mn: 0.01% by mass or more and 1.00% by mass or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: 0.5 mass% or more and 15.0 mass% or less are included. The balance is Co and inevitable impurities.

本発明に係るCo基合金から得られた成形体は、耐食性に優れる。この成形体の寿命は、長い。   The molded body obtained from the Co-based alloy according to the present invention is excellent in corrosion resistance. This molded body has a long life.

以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。   Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings.

本発明に係る粉末は、多数の粒子の集合である。この粒子の材質は、Co基合金である。この合金は、C、Cr、W、Si、Mn、Fe及びNiを含む。残部は、Co及び不可避的不純物である。以下、この合金における各元素の役割が詳説される。   The powder according to the present invention is an aggregate of a large number of particles. The material of the particles is a Co-based alloy. This alloy contains C, Cr, W, Si, Mn, Fe and Ni. The balance is Co and inevitable impurities. Hereinafter, the role of each element in this alloy will be described in detail.

[炭素(C)]
Cは、Cr及びWと結合して炭化物を形成する。この炭化物は、合金の高硬度に寄与しうる。この観点から、Cの含有率は2.50質量%以上が好ましく、2.55質量%以上がより好ましく、2.60質量%以上が特に好ましい。Cの含有率が過剰であると、合金の靱性が低下する。優れた靱性の観点から、Cの含有率は3.00質量%以下が好ましく、2.95質量%以下がより好ましく、2.90質量%以下が特に好ましい。
[Carbon (C)]
C combines with Cr and W to form a carbide. This carbide can contribute to the high hardness of the alloy. In this respect, the C content is preferably equal to or greater than 2.50 mass%, more preferably equal to or greater than 2.55 mass%, and particularly preferably equal to or greater than 2.60 mass%. When the content of C is excessive, the toughness of the alloy is lowered. From the viewpoint of excellent toughness, the C content is preferably 3.00% by mass or less, more preferably 2.95% by mass or less, and particularly preferably 2.90% by mass or less.

[クロム(Cr)]
Crは、Cと結合して炭化物を形成する。この炭化物は、合金の常温硬さ、高温硬さ、耐摩耗性及び耐食性に寄与しうる。これらの観点から、Crの含有率は28.0質量%以上が好ましく、29.0質量%以上がより好ましく、29.5質量%以上が特に好ましい。Crの含有率が過剰であると、合金の靱性が低下する。さらに、Crの含有率が過剰であると、後述されるε相が過剰に生成される。このε相は、成形品の耐食性を損なう。靱性及び耐食性の観点から、Crの含有率は34.0質量%以下が好ましく、33.0質量%以下がより好ましく、32.5質量%以下が特に好ましい。
[Chromium (Cr)]
Cr combines with C to form a carbide. This carbide can contribute to the normal temperature hardness, high temperature hardness, wear resistance and corrosion resistance of the alloy. From these viewpoints, the Cr content is preferably 28.0% by mass or more, more preferably 29.0% by mass or more, and particularly preferably 29.5% by mass or more. If the Cr content is excessive, the toughness of the alloy is reduced. Furthermore, when the Cr content is excessive, an ε phase described later is excessively generated. This ε phase impairs the corrosion resistance of the molded product. From the viewpoint of toughness and corrosion resistance, the Cr content is preferably 34.0% by mass or less, more preferably 33.0% by mass or less, and particularly preferably 32.5% by mass or less.

[タングステン(W)]
Wは、Cと結合して炭化物を形成する。この炭化物は、高温硬さ及び耐摩耗性に寄与しうる。これらの観点から、Wの含有率は11.0質量%以上が好ましく、12.0質量%以上がより好ましく、12.5質量%以上が特に好ましい。Wの含有率が過剰であると、合金の靱性が低下する。靱性の観点から、Wの含有率は15.0質量%以下が好ましく、14.5質量%以下がより好ましく、14.0質量%以下が特に好ましい。
[Tungsten (W)]
W combines with C to form a carbide. This carbide can contribute to high temperature hardness and wear resistance. From these viewpoints, the W content is preferably 11.0% by mass or more, more preferably 12.0% by mass or more, and particularly preferably 12.5% by mass or more. If the W content is excessive, the toughness of the alloy is lowered. From the viewpoint of toughness, the W content is preferably 15.0% by mass or less, more preferably 14.5% by mass or less, and particularly preferably 14.0% by mass or less.

[ケイ素(Si)]
Siは、合金の耐食性及び切削性に寄与しうる。この観点から、Siの含有率は0.01質量%以上が好ましく、0.20質量%以上がより好ましく、0.50質量%以上が特に好ましい。Siの含有率が過剰であると、合金の靱性が低下する。靱性の観点から、Siの含有率は2.00質量%以下が好ましく、1.90質量%以下がより好ましく、1.80質量%以下が特に好ましい。
[Silicon (Si)]
Si can contribute to the corrosion resistance and machinability of the alloy. In this respect, the Si content is preferably equal to or greater than 0.01% by mass, more preferably equal to or greater than 0.20% by mass, and particularly preferably equal to or greater than 0.50% by mass. If the Si content is excessive, the toughness of the alloy is reduced. From the viewpoint of toughness, the Si content is preferably 2.00% by mass or less, more preferably 1.90% by mass or less, and particularly preferably 1.80% by mass or less.

[マンガン(Mn)]
Mnは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。この観点から、Mnの含有率は0.01質量%以上が好ましく、0.20質量%以上がより好ましく、0.30質量%以上が特に好ましい。Mnの含有率が過剰であると、合金の強度が低下する。強度の観点から、Mnの含有率は1.00質量%以下が好ましく、0.80質量%以下がより好ましく、0.70質量%以下が特に好ましい。
[Manganese (Mn)]
Mn generates the γ phase described later. This γ phase can contribute to the toughness of the alloy. In this respect, the Mn content is preferably 0.01% by mass or more, more preferably 0.20% by mass or more, and particularly preferably 0.30% by mass or more. If the Mn content is excessive, the strength of the alloy is lowered. From the viewpoint of strength, the Mn content is preferably 1.00% by mass or less, more preferably 0.80% by mass or less, and particularly preferably 0.70% by mass or less.

[鉄(Fe)]
Feは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。この観点から、Feの含有率は0.01質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上が特に好ましい。Feの含有率が過剰であると、合金の耐食性が低下する。耐食性の観点から、Feの含有率は10.0質量%以下が好ましく、8.0質量%以下がより好ましく、7.0質量%以下が特に好ましい。
[Iron (Fe)]
Fe generates a γ phase, which will be described later. This γ phase can contribute to the toughness of the alloy. In this respect, the Fe content is preferably 0.01% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more. If the Fe content is excessive, the corrosion resistance of the alloy is lowered. From the viewpoint of corrosion resistance, the Fe content is preferably 10.0% by mass or less, more preferably 8.0% by mass or less, and particularly preferably 7.0% by mass or less.

[ニッケル(Ni)]
Niは、マトリクスに固溶し、合金の耐食性を高める。Niは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。これらの観点から、Niの含有率は0.5質量%以上が好ましく、0.8質量%以上がより好ましく、3.0質量%以上が特に好ましい。Niの含有率が過剰であると、合金の硬度が小さくなる。硬度の観点から、Niの含有率は15.0質量%以下が好ましく、9.0質量%以下がより好ましく、8.0質量%以下が特に好ましい。
[Nickel (Ni)]
Ni dissolves in the matrix and enhances the corrosion resistance of the alloy. Ni generates a γ phase described later. This γ phase can contribute to the toughness of the alloy. From these viewpoints, the Ni content is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, and particularly preferably 3.0% by mass or more. If the Ni content is excessive, the hardness of the alloy becomes small. From the viewpoint of hardness, the Ni content is preferably 15.0% by mass or less, more preferably 9.0% by mass or less, and particularly preferably 8.0% by mass or less.

[コバルト(Co)]
Coは、合金におけるマトリクスの主成分である。常温での、Co単体の安定結晶構造は、六方最密充填構造(h.c.p.)である。690K以上の温度での、Co単体の安定結晶構造は、面心立方格子(f.c.c.)である。本発明に係る粉末では、マトリクス(常温)は、主としてγ相である。このマトリクスが、γ相と共に、ε相を有してもよい。γ相の結晶構造は、f.c.c.である。ε相の結晶構造は、h.c.p.である。
[Cobalt (Co)]
Co is the main component of the matrix in the alloy. The stable crystal structure of simple Co at room temperature is a hexagonal close-packed structure (hcp). The stable crystal structure of simple Co at a temperature of 690 K or higher is a face-centered cubic lattice (fc). In the powder according to the present invention, the matrix (at room temperature) is mainly γ phase. This matrix may have an ε phase together with a γ phase. The crystal structure of the γ phase is f. c. c. It is. The crystal structure of the ε phase is h. c. p. It is.

[酸素(O)]
本発明における合金において、Oは不可避的不純物である。合金の耐食性の観点から、Oの質量含有率は200ppm以下が好ましく、150ppm以下がより好ましく、100ppm以下が特に好ましい。
[Oxygen (O)]
In the alloy of the present invention, O is an unavoidable impurity. In light of the corrosion resistance of the alloy, the mass content of O is preferably equal to or less than 200 ppm, more preferably equal to or less than 150 ppm, and particularly preferably equal to or less than 100 ppm.

[アルミニウム(Al)]
本発明における合金において、Alは不可避的不純物である。Alは、Ti又はNiと結合し、金属間化合物を形成しうる。この金属間化合物は、合金の靱性を損なう。靱性の観点から、Alの含有率は0.50質量%以下が好ましく、0.40質量%以下がより好ましく、0.35質量%以下が特に好ましい。
[Aluminum (Al)]
In the alloy of the present invention, Al is an unavoidable impurity. Al can combine with Ti or Ni to form an intermetallic compound. This intermetallic compound impairs the toughness of the alloy. From the viewpoint of toughness, the Al content is preferably 0.50% by mass or less, more preferably 0.40% by mass or less, and particularly preferably 0.35% by mass or less.

[チタン(Ti)]
本発明における合金において、Tiは不可避的不純物である。Tiは、Al又はNiと結合し、金属間化合物を形成しうる。この金属間化合物は、合金の靱性を損なう。靱性の観点から、Tiの含有率は0.50質量%以下が好ましく、0.40質量%以下がより好ましく、0.35質量%以下が特に好ましい。
[Titanium (Ti)]
In the alloy of the present invention, Ti is an inevitable impurity. Ti can combine with Al or Ni to form an intermetallic compound. This intermetallic compound impairs the toughness of the alloy. From the viewpoint of toughness, the Ti content is preferably 0.50 mass% or less, more preferably 0.40 mass% or less, and particularly preferably 0.35 mass% or less.

[ε相]
前述の通り、マトリクスはε相を有しうる。ε相は、靱性に劣る。ε相の量が過大であると、成形品の耐久性及び切削性が阻害される。これらの観点から、ε相(h.c.p.構造)の体積率Pεは、金属組織全体の10.0%未満が好ましく、5.0%未満がより好ましく、3.0%未満が特に好ましい。理想的には、体積率Pεはゼロである。体積率Pε(%)は、下記の数式によって算出される。
Pε = Xε ・ 100
この数式において、Xεは、ε相の体積比である。体積比Xεは、下記数式によって算出される。
[Ε phase]
As described above, the matrix can have an ε phase. The ε phase is inferior in toughness. If the amount of the ε phase is excessive, the durability and machinability of the molded product are hindered. From these viewpoints, the volume fraction Pε of the ε phase (hcp structure) is preferably less than 10.0% of the entire metal structure, more preferably less than 5.0%, and particularly preferably less than 3.0%. preferable. Ideally, the volume ratio Pε is zero. The volume ratio Pε (%) is calculated by the following mathematical formula.
Pε = Xε · 100
In this equation, Xε is the volume ratio of the ε phase. The volume ratio Xε is calculated by the following mathematical formula.

Figure 2019189885
この数式における炭化物の体積比Xcは、後述されるM6C系炭化物及びM7C3系炭化の合計の、金属組織全体に対する比である。
Figure 2019189885
The volume ratio Xc of carbide in this mathematical formula is the ratio of the total of M6C carbide and M7C3 carbonization described later to the entire metal structure.

この合金の金属組織は、M6C系の炭化物を含みうる。M6Cの系炭化物として、Co3W3Cが挙げられる。この金属組織は、M7C3系の炭化物も含みうる。M7C3系の炭化物として、Cr7C3が挙げられる。金属組織が、M6C系炭化物とM7C3系炭化物との両方を含んでもよい。   The metal structure of this alloy may include M6C carbide. An example of the M6C carbide is Co3W3C. This metal structure may also contain M7C3 carbide. Cr7C3 is mentioned as a carbide | carbonized_material of M7C3 type | system | group. The metal structure may include both M6C carbide and M7C3 carbide.

M6C系炭化物及びM7C3系炭化は、フッ酸に溶出しにくい。この炭化物を適量含有する合金は、耐食性に優れる。耐食性の観点から、金属組織全体に対する、M6C系炭化物及びM7C3系炭化物の合計の体積率Pcは、20.0%以上が好ましく、25%以上がより好ましく、30%以上が特に好ましい。過剰な炭化物は、合金の靱性を損なう。靱性の観点から、体積率Pcは50.0%以下が好ましく、45%以下がより好ましく、40%以下が特に好ましい。体積率Pc(%)は、下記の数式によって算出される。
Pc = Xc ・ 100
この数式において、Xcは、炭化物の体積比である。体積比Xcは、粉末から得られた成形体の断面組織を反射電子像で撮影することで算出される。この算出には、画像解析ソフトが用いられる。
M6C-based carbides and M7C3-based carbides are not easily eluted into hydrofluoric acid. An alloy containing an appropriate amount of this carbide is excellent in corrosion resistance. From the viewpoint of corrosion resistance, the total volume ratio Pc of the M6C carbide and M7C3 carbide relative to the entire metal structure is preferably 20.0% or more, more preferably 25% or more, and particularly preferably 30% or more. Excess carbide reduces the toughness of the alloy. From the viewpoint of toughness, the volume ratio Pc is preferably 50.0% or less, more preferably 45% or less, and particularly preferably 40% or less. The volume ratio Pc (%) is calculated by the following mathematical formula.
Pc = Xc.100
In this formula, Xc is the volume ratio of carbides. The volume ratio Xc is calculated by photographing a cross-sectional structure of a molded body obtained from powder with a reflected electron image. Image calculation software is used for this calculation.

本発明に係るCo基合金粉末は、アトマイズ法、粉砕法等によって製造されうる。アトマイズ法として、ガスアトマイズ法、水アトマイズ法及びディスクアトマイズ法が例示される。合金の酸素含有率が少ないとの観点から、好ましいアトマイズはガスアトマイズ法及びディスクアトマイズ法である。合金の酸素含有率が少ないとの観点から、不活性ガス雰囲気でのアトマイズが好ましい。量産性の観点から、ガスアトマイズが好ましい。   The Co-based alloy powder according to the present invention can be produced by an atomizing method, a pulverizing method, or the like. Examples of the atomizing method include a gas atomizing method, a water atomizing method, and a disk atomizing method. From the viewpoint that the oxygen content of the alloy is low, preferred atomization is the gas atomization method and the disk atomization method. Atomization in an inert gas atmosphere is preferred from the viewpoint that the oxygen content of the alloy is low. From the viewpoint of mass productivity, gas atomization is preferable.

この粉末から、種々の成形体が成形されうる。好ましい成形方法は、等方圧力加熱(HIP)である。   Various molded products can be formed from this powder. A preferred molding method is isotropic pressure heating (HIP).

以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。   Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be construed in a limited manner based on the description of the examples.

[バルクの製作]
所定の成分の合金を溶解し、溶湯を得た。この溶湯を、不活性ガス雰囲気中でガスアトマイズに供し、粉末を得た。この粉末を分級に供し、粒子径を300μm以下に調整した。この粉末を、カプセルに充填し、このカプセルを密封した。この粉末を熱間静水圧プレス処理(HIP)に供し、バルクを得た。HIPの条件は、以下の通りである。
圧力:122MPa
温度:1000−1200℃
時間:7時間
[Bulk production]
An alloy having a predetermined component was melted to obtain a molten metal. This molten metal was subjected to gas atomization in an inert gas atmosphere to obtain a powder. This powder was subjected to classification, and the particle size was adjusted to 300 μm or less. This powder was filled into capsules and the capsules were sealed. This powder was subjected to hot isostatic pressing (HIP) to obtain a bulk. The HIP conditions are as follows.
Pressure: 122 MPa
Temperature: 1000-1200 ° C
Time: 7 hours

[硬度]
バルクのロックウェル硬さ(HRC)を測定した。この結果が、下記の表1及び2に示されている。
[hardness]
Bulk Rockwell hardness (HRC) was measured. The results are shown in Tables 1 and 2 below.

[衝撃値]
バルクから、試験片(10R2mmCノッチ)を得た。この試験片をシャルピー衝撃試験に供し、衝撃値(CI)を測定した。この結果が、下記の表1及び2に示されている。
[Shock value]
A test piece (10R2 mmC notch) was obtained from the bulk. The test piece was subjected to a Charpy impact test, and the impact value (CI) was measured. The results are shown in Tables 1 and 2 below.

[耐食性]
バルクから、試験片(10mm×10mm×14mm)を得た。この試験片を、耐食試験に供した。試験の条件は、以下の通りである。
溶液:10%フッ酸水溶液
温度:40℃
時間:10時間
腐食減量を試験前の試験片の表面積で除して、腐食度を算出した。この結果が、下記の表1及び2に示されている。
[Corrosion resistance]
A test piece (10 mm × 10 mm × 14 mm) was obtained from the bulk. This test piece was subjected to a corrosion resistance test. The test conditions are as follows.
Solution: 10% hydrofluoric acid aqueous solution Temperature: 40 ° C
Time: Corrosion degree was calculated by dividing the corrosion weight loss for 10 hours by the surface area of the test piece before the test. The results are shown in Tables 1 and 2 below.

Figure 2019189885
Figure 2019189885

Figure 2019189885
Figure 2019189885

表1に示されたNo.1−25の粉末は本発明例であり、表2に示されたNo.26−38の粉末は比較例である。   No. shown in Table 1. The powder of 1-25 is an example of the present invention, and No. 1 shown in Table 2. The powder of 26-38 is a comparative example.

比較例No.26に係る粉末は、Cが過剰なので、十分な靱性が得られない。比較例No.27に係る粉末は、Cが過小なので硬さが低い。   Comparative Example No. In the powder according to No. 26, since C is excessive, sufficient toughness cannot be obtained. Comparative Example No. The powder according to No. 27 has low hardness because C is too small.

比較例No.28に係る粉末は、Crが過剰なので、ε相の比率が大きく、十分な靱性が得られない。比較例No.29に係る粉末は、Crが過小なので、十分な耐食性が得られない。   Comparative Example No. Since the powder according to No. 28 is excessive in Cr, the ratio of the ε phase is large and sufficient toughness cannot be obtained. Comparative Example No. Since the powder according to 29 is too small in Cr, sufficient corrosion resistance cannot be obtained.

比較例No.30に係る粉末は、Wが過剰なので、十分な靱性が得られない。比較例No.31に係る粉末は、Wが過小なので、十分な硬さが得られない。   Comparative Example No. Since the powder according to 30 is excessive in W, sufficient toughness cannot be obtained. Comparative Example No. Since the powder according to No. 31 is too small in W, sufficient hardness cannot be obtained.

比較例No.32に係る粉末は、Siが過剰なので、十分な靱性が得られない。比較例No.33に係る粉末は、Mnが過剰なので、十分な靱性が得られない。   Comparative Example No. Since the powder according to No. 32 is excessive in Si, sufficient toughness cannot be obtained. Comparative Example No. The powder according to No. 33 cannot obtain sufficient toughness because Mn is excessive.

比較例No.34に係る粉末は、Feが過剰なので、十分な硬度が得られず、さらに耐食性も低い。   Comparative Example No. In the powder according to No. 34, since Fe is excessive, sufficient hardness cannot be obtained and the corrosion resistance is also low.

比較例No.35に係る粉末は、Niが過小なので、十分な耐食性が得られない。比較例No.36に係る粉末は、Niが過剰なので、十分な硬度が得られない。   Comparative Example No. In the powder according to 35, since Ni is too small, sufficient corrosion resistance cannot be obtained. Comparative Example No. In the powder according to 36, since Ni is excessive, sufficient hardness cannot be obtained.

比較例No.37に係る粉末は、C、Cr及びWが過小なので、炭化物の体積率が小さくて十分な硬度が得られず、さらに耐食性も低い。比較例No.38に係る粉末はC及びCrが過剰なので、炭化物の体積率が大きく、靱性が低い。   Comparative Example No. In the powder according to 37, since C, Cr and W are too small, the volume fraction of carbide is small and sufficient hardness cannot be obtained, and the corrosion resistance is also low. Comparative Example No. Since the powder according to No. 38 is excessive in C and Cr, the volume fraction of carbide is large and the toughness is low.

表1に示された本発明例の粉末は、諸性能に優れている。この結果から、本発明の優位性は明かである。   The powders of the present invention examples shown in Table 1 are excellent in various performances. From this result, the superiority of the present invention is clear.

以上説明されたCo基合金は、耐食性が要求される種々の用途に適している。   The Co-based alloy described above is suitable for various applications that require corrosion resistance.

Claims (4)

C:2.50質量%以上3.00質量%以下、
Cr:28.0質量%以上34.0質量%以下、
W:11.0質量%以上15.0質量%以下、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含み、かつ残部がCo及び不可避的不純物であるCo基合金。
C: 2.50 mass% to 3.00 mass%,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 11.0 mass% or more and 15.0 mass% or less,
Si: 0.01% by mass or more and 2.00% by mass or less,
Mn: 0.01% by mass or more and 1.00% by mass or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: a Co-based alloy containing 0.5% by mass or more and 15.0% by mass or less, with the balance being Co and inevitable impurities.
その金属組織の全体に対する、h.c.p.構造を有する相であるε相の体積率Pεが、10.0%未満である請求項1に記載のCo基合金。   H. For the entire metal structure; c. p. The Co-based alloy according to claim 1, wherein the volume fraction Pε of the ε phase, which is a phase having a structure, is less than 10.0%. その金属組織が、M6C系及び/又はM7C3系の炭化物と、f.c.c.構造を有する相であるγ相及び/又はh.c.p.構造を有する相であるε相からなるマトリクスとを含んでおり、
上記金属組織の全体に対する上記炭化物の体積率Pcが、20.0%以上50.0%以下である請求項1又は2に記載のCo基合金。
The metallographic structure is M6C and / or M7C3 carbide; f. c. c. A γ phase which is a phase having a structure and / or h. c. p. And a matrix composed of an ε phase that is a phase having a structure,
The Co-based alloy according to claim 1 or 2, wherein a volume fraction Pc of the carbide with respect to the entire metal structure is 20.0% or more and 50.0% or less.
その材質がCo基合金であり、
上記Co基合金が、
C:2.50質量%以上3.00質量%以下、
Cr:28.0質量%以上34.0質量%以下、
W:11.0質量%以上15.0質量%以下、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含み、かつ残部がCo及び不可避的不純物である粉末。
The material is a Co-based alloy,
The Co-based alloy is
C: 2.50 mass% to 3.00 mass%,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 11.0 mass% or more and 15.0 mass% or less,
Si: 0.01% by mass or more and 2.00% by mass or less,
Mn: 0.01% by mass or more and 1.00% by mass or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: Powder containing 0.5% by mass or more and 15.0% by mass or less and the balance being Co and inevitable impurities.
JP2018079898A 2018-04-18 2018-04-18 Co-based alloy and its powder Active JP7213022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018079898A JP7213022B2 (en) 2018-04-18 2018-04-18 Co-based alloy and its powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018079898A JP7213022B2 (en) 2018-04-18 2018-04-18 Co-based alloy and its powder

Publications (2)

Publication Number Publication Date
JP2019189885A true JP2019189885A (en) 2019-10-31
JP7213022B2 JP7213022B2 (en) 2023-01-26

Family

ID=68387729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079898A Active JP7213022B2 (en) 2018-04-18 2018-04-18 Co-based alloy and its powder

Country Status (1)

Country Link
JP (1) JP7213022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983113A (en) * 2019-12-31 2020-04-10 江苏新华合金有限公司 Cobalt-based high-temperature alloy wire and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274508A (en) * 1975-12-18 1977-06-22 Mitsubishi Metal Corp Co-base sintered alloy
JPS56102542A (en) * 1980-01-22 1981-08-17 Kubota Ltd Cast cobalt alloy
JPS56102570A (en) * 1980-01-22 1981-08-17 Kubota Ltd Heat treatment of cast cobalt alloy
JPH0871785A (en) * 1994-09-02 1996-03-19 Kobe Steel Ltd Cobalt base alloy powder for powder plasma welding
JPH08267277A (en) * 1995-03-30 1996-10-15 Kobe Steel Ltd Alloy powder for powder plasma arc welding
JPH11138294A (en) * 1997-11-05 1999-05-25 Nippon Yakin Kogyo Co Ltd Cobalt base alloy welding rod and gas build-up welding method
WO2015045399A1 (en) * 2013-09-25 2015-04-02 島根県 Method for producing cobalt alloy material, cobalt alloy material and cutting member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5274508A (en) * 1975-12-18 1977-06-22 Mitsubishi Metal Corp Co-base sintered alloy
JPS56102542A (en) * 1980-01-22 1981-08-17 Kubota Ltd Cast cobalt alloy
JPS56102570A (en) * 1980-01-22 1981-08-17 Kubota Ltd Heat treatment of cast cobalt alloy
JPH0871785A (en) * 1994-09-02 1996-03-19 Kobe Steel Ltd Cobalt base alloy powder for powder plasma welding
JPH08267277A (en) * 1995-03-30 1996-10-15 Kobe Steel Ltd Alloy powder for powder plasma arc welding
JPH11138294A (en) * 1997-11-05 1999-05-25 Nippon Yakin Kogyo Co Ltd Cobalt base alloy welding rod and gas build-up welding method
WO2015045399A1 (en) * 2013-09-25 2015-04-02 島根県 Method for producing cobalt alloy material, cobalt alloy material and cutting member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983113A (en) * 2019-12-31 2020-04-10 江苏新华合金有限公司 Cobalt-based high-temperature alloy wire and preparation method thereof

Also Published As

Publication number Publication date
JP7213022B2 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
AU2015363754B2 (en) A wear resistant alloy
US9340856B2 (en) Ni—Fe—Cr alloy and engine valve welded with the same alloy
JP6698280B2 (en) Alloy powder
EP2479302A1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
EP3467128B9 (en) Extrusion die made of hot working steel and production method thereof
EP1382700B1 (en) Improved oxidation resistant molybdenum alloy
US20170260609A1 (en) Precipitate strengthened nanostructured ferritic alloy and method of forming
JP4397872B2 (en) Iron-based high hardness shot material and method for producing the same
JP7213057B2 (en) Co-based alloy and its powder
JP2019189885A (en) Co-based alloy and powder thereof
JP6671772B2 (en) High hardness and toughness powder
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JP6698910B2 (en) Alloy powder
JPH0266139A (en) High speed tool steel made of powder reduced in oxygen content
WO2020032235A1 (en) NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY
JP7406329B2 (en) Ni-Cr-Mo precipitation hardening alloy
JP2004269982A (en) High-strength low-alloyed titanium alloy and its production method
JP7471079B2 (en) Magnetic Co-based alloy
EP2796581B1 (en) Molybdenum Alloy Composition
JP7339412B2 (en) Ni-based alloy powder for additive manufacturing and additive manufacturing
JP2022003162A (en) Co-BASED ALLOY AND POWDER THEREOF
US5831187A (en) Advanced nickel base alloys for high strength, corrosion applications
JP2022047052A (en) Co-BASED ALLOY AND POWDER THEREOF
JP2022118514A (en) Ni-Cr-Mo TYPE PRECIPITATION HARDENED TYPE ALLOY
JP2021101036A (en) Co-BASED ALLOY HAVING MAGNETIC PROPERTIES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150