JP2024020264A - Cr-Ni BASED ALLOY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND RAPIDLY SOLIDIFIED MOLDED BODY - Google Patents

Cr-Ni BASED ALLOY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND RAPIDLY SOLIDIFIED MOLDED BODY Download PDF

Info

Publication number
JP2024020264A
JP2024020264A JP2023187223A JP2023187223A JP2024020264A JP 2024020264 A JP2024020264 A JP 2024020264A JP 2023187223 A JP2023187223 A JP 2023187223A JP 2023187223 A JP2023187223 A JP 2023187223A JP 2024020264 A JP2024020264 A JP 2024020264A
Authority
JP
Japan
Prior art keywords
alloy
less
molded body
powder
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023187223A
Other languages
Japanese (ja)
Inventor
満 長谷川
Mitsuru Hasegawa
純一 西田
Junichi Nishida
雅史 能島
Masafumi Nojima
利弘 上原
Toshihiro Uehara
友則 木村
Tomonori Kimura
泰久 青野
Yasuhisa Aono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Proterial Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Proterial Ltd filed Critical Proterial Ltd
Publication of JP2024020264A publication Critical patent/JP2024020264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cr-Ni based alloy which is a metal material suitable for use in harsh environments such as oil wells, has both high erosion resistance and wear resistance that are equal to or more excellent than a conventional one and is low in cost, and to provide a rapidly solidified molded body made of the Cr-Ni based alloy, an alloy powder, a powder metallurgy molded body, a cast molded body, a production method for the Cr-Ni based alloy, and a mechanical facility and piping members using the Cr-Ni based alloy.
SOLUTION: A Cr-Ni based alloy according to the present invention comprises, by mass%: more than 40.0% and 65.0% or less of Cr; 0% or more and 35.0% or less of Fe; 0% or more and less than 2.0% of Mn; and any of (1) to (3) described below, with the remainder being Ni and unavoidable impurities, where the Ni is 15% or more. (1) more than 1.1% and 4.0% or less of C, (2) 0.7% or more and 3.0% or less of B, and (3) 0.5% or more and 2.5% or less of C and more than 0% and 20% or less of Nb.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本開示は、高耐食性で高強度の合金の技術に関し、特にCr-Ni系合金、Cr-Ni系合金でなる急冷凝固成形体、合金粉末、粉末冶金成形体、鋳造成形体、Cr-Ni系合金の製造方法およびCr-Ni系合金を用いた機械設備、配管部材に関する。 The present disclosure relates to technology for highly corrosion-resistant and high-strength alloys, particularly Cr-Ni alloys, rapidly solidified compacts made of Cr-Ni alloys, alloy powders, powder metallurgy compacts, cast compacts, and Cr-Ni alloys. This invention relates to a method for producing an alloy, and mechanical equipment and piping members using a Cr--Ni alloy.

原油・天然ガス等の採掘や流体輸送に用いる機器においては、他材料との接触、摺動を伴う部材の表面に耐食性や耐摩耗性等に優れた材料を肉盛溶接することで表面改質層を設け、機器部材の損耗を抑えるという手段がとられることがある。このような表面改質用材料として、例えばステライト(STELLITEは登録商標)やトリバロイ(TRIBALOYは登録商標)などのコバルト(Co)基合金や、コルモノイ(COLMONOYは登録商標)などのニッケル(Ni)基合金が市販されており、幅広く利用されている。ただ、これらの主原料であるCoやNiは高価であり、材料コストが上昇するという問題があった。 In equipment used for mining crude oil, natural gas, etc. and transporting fluids, we improve the surface of parts that come into contact with other materials or that slide by overlaying and welding materials with excellent corrosion resistance and wear resistance. Measures may be taken to provide layers to reduce wear and tear on equipment components. Examples of such surface modification materials include cobalt (Co)-based alloys such as STELLITE (STELLITE is a registered trademark) and TRIBALOY (TRIBALOY is a registered trademark), and nickel (Ni)-based alloys such as COLMONOY (COLMONOY is a registered trademark). Alloys are commercially available and widely used. However, Co and Ni, which are the main raw materials for these, are expensive and there is a problem in that the material cost increases.

これに対しては、比較的安価なクロム(Cr)を主成分とするCr基合金が種々、提案されており、例えば特開平10-110206号公報ではCr:82~90質量%,C:2~6質量%,残部が7.9質量%以上のNiと副成分を含む化学組成を有するCr-Ni系合金の製造方法が開示されており、耐食性、耐摩耗性を有するコーティングの形成に使用できるとされている。また、特開平11-285890号公報では高濃度のCr、Cを含有する合金粉末がCr-Ni含有合金からなるシース材で被包された溶接棒が開示されており、所望の組成を有する溶接棒を効率よく製造できるとされている。更に、特開平11-293377号公報ではCr:50~80質量%,Ti、Mn、Mo、Zrの少なくとも1種:2~10質量%,残部がNiと副成分を含む加熱炉の炉床部材用Cr基合金が開示されており、耐クリープ性や耐酸化性に優れた合金を生産性良く提供できるとされている。 To deal with this, various Cr-based alloys containing relatively inexpensive chromium (Cr) as a main component have been proposed. Discloses a method for producing a Cr-Ni alloy having a chemical composition of ~6% by mass and the balance being 7.9% by mass or more and subcomponents, and is used to form a coating with corrosion resistance and wear resistance. It is said that it is possible. Furthermore, Japanese Patent Application Laid-open No. 11-285890 discloses a welding rod in which alloy powder containing high concentrations of Cr and C is encapsulated with a sheath material made of a Cr-Ni containing alloy. It is said that rods can be manufactured efficiently. Further, JP-A-11-293377 discloses a heating furnace hearth member containing Cr: 50 to 80% by mass, at least one of Ti, Mn, Mo, and Zr: 2 to 10% by mass, and the balance Ni and subcomponents. Cr-based alloys have been disclosed, and it is said that alloys with excellent creep resistance and oxidation resistance can be provided with good productivity.

特開平10-110206号公報Japanese Patent Application Publication No. 10-110206 特開平11-285890号公報Japanese Patent Application Publication No. 11-285890 特開平11-293377号公報Japanese Patent Application Publication No. 11-293377 国際公開2017/037851号パンフレットInternational publication 2017/037851 pamphlet 国際公開2009/064415号パンフレットInternational publication 2009/064415 pamphlet 特開2005-314721号公報Japanese Patent Application Publication No. 2005-314721

特開平10-110206号公報に記載の方法で製造される合金はCrの含有率が極めて高く、合金の融点は1500℃を超える高温になると考えられる。このことは合金の製造に要するエネルギーの増大に繋がり、高い製造コストを要することになる。また、特開平11-285890号公報に記載の溶接棒は合金粉末をシース材に内包させる必要があり、合金自体を単独で線材化、もしくは粉末化する場合と比べて高い製造コストを要することになる。また、特開平11-293377号公報に記載のCr基合金では、圧縮強度や耐クリープ性を向上させるためにTiやMnなどを2質量%以上添加することが望ましい旨が述べられている。しかし、発明者らが検討した国際公開2017/037851号パンフレットに記載のCr基合金においては、例えばMnについては2質量%超になると硫化物(例えばMnS)の粗大粒子を形成して、耐食性や機械的特性の劣化要因になると考えられる。
また、例えば、油井掘削の分野においては近年、高深度化に伴って機器が曝される環境も過酷になってきており、高い耐食性や機械的特性を有し、かつ低コストの金属材料が強く求められている。
The alloy produced by the method described in JP-A-10-110206 has an extremely high Cr content, and the melting point of the alloy is thought to be a high temperature exceeding 1500°C. This leads to an increase in the energy required to manufacture the alloy, resulting in high manufacturing costs. In addition, the welding rod described in JP-A-11-285890 requires alloy powder to be encapsulated in a sheath material, which requires higher manufacturing costs than when the alloy itself is made into a wire rod or powder. Become. Further, in the Cr-based alloy described in JP-A-11-293377, it is stated that it is desirable to add Ti, Mn, etc. in an amount of 2% by mass or more in order to improve compressive strength and creep resistance. However, in the Cr-based alloy described in the International Publication No. 2017/037851 pamphlet studied by the inventors, for example, when Mn exceeds 2% by mass, coarse particles of sulfide (e.g. MnS) are formed, resulting in poor corrosion resistance. This is thought to be a factor in the deterioration of mechanical properties.
For example, in the field of oil well drilling, the environment to which equipment is exposed has become increasingly harsh in recent years due to deeper drilling, and metal materials with high corrosion resistance, mechanical properties, and low cost are becoming more powerful. It has been demanded.

本開示の一態様は、油井のような過酷環境下においても好適に利用できるような金属材料であって、従来と同等以上の高い耐食性と耐摩耗性を兼ね備え、かつ低コストのCr-Ni系合金を提供することを課題とする。
本開示の他の態様は、そのCr-Ni系合金でなる急冷凝固成形体、合金粉末、粉末冶金成形体、鋳造成形体、Cr-Ni系合金の製造方法およびCr-Ni系合金を用いた機械設備、配管部材を提供することを課題とする。
One aspect of the present disclosure is a low-cost Cr-Ni metal material that can be suitably used even in harsh environments such as oil wells, has high corrosion resistance and wear resistance that are equal to or higher than conventional ones, and is low-cost. The objective is to provide alloys.
Other aspects of the present disclosure provide a rapidly solidified compact, an alloy powder, a powder metallurgy compact, a cast compact, a method for producing a Cr-Ni alloy, and a method using the Cr-Ni alloy. Our goal is to provide mechanical equipment and piping components.

上記課題を解決するための具体的手段には、以下の態様が含まれる。
<1> 質量%で、
40.0%超65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
次の(1)~(3)の何れかと、を含み、
(1)1.1%超4.0%以下のC
(2)0.7%以上3.0%以下のB
(3)0.5%以上2.5%以下のCと、0%超20%以下のNb
残部がNiおよび不可避的不純物からなり、前記Niは15%以上であるCr-Ni系合金。
Specific means for solving the above problems include the following aspects.
<1> In mass%,
Cr of more than 40.0% and 65.0% or less,
Fe of 0% or more and 35.0% or less,
Mn of 0% or more and less than 2.0%,
Including any of the following (1) to (3),
(1) More than 1.1% and less than 4.0% C
(2) B of 0.7% or more and 3.0% or less
(3) C from 0.5% to 2.5% and Nb from more than 0% to 20%
A Cr--Ni alloy in which the balance is Ni and unavoidable impurities, and the Ni is 15% or more.

<2> 質量%で、
46.0%超65.0%以下のCrと、
0.1%以上30.0%以下のFeと、
0%超2.0%未満のMnと、
1.1%超4.0%以下のCと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載のCr-Ni系合金。
<3> 質量%で、
45.0%以上65.0%以下のCrと、
0.1%以上35.0%以下のFeと、
0%超2.0%未満のMnと、
0.7%以上3.0%以下のBと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載のCr-Ni系合金。
<4> 40.0%超65.0%以下のCrと、
0%以上30.0%以下のFeと、
0.5%以上2.5%以下のCと
0%超20%以下のNbと、を含み、
残部がNiおよび不可避的不純物からなる、<1>に記載のCr-Ni系合金。
<5> 質量%で、
0.1%以上1.0%以下のSi、
0.005%以上0.05%以下のAl、
0.02%以上0.3%以下のSn、
0.1%以上5.0%以下のCu、
の少なくとも一種類以上を含む<1>乃至<4>の何れかに記載のCr-Ni系合金。
<6> 前記Cr-Ni系合金は、フェライト相および/またはオーステナイト相が形成されていることを特徴とする<1>乃至<5>の何れかに記載のCr-Ni系合金。
<2> In mass%,
Cr of more than 46.0% and 65.0% or less,
Fe of 0.1% or more and 30.0% or less,
More than 0% and less than 2.0% Mn;
Containing more than 1.1% and less than 4.0% C,
The Cr--Ni alloy according to <1>, wherein the remainder consists of Ni and inevitable impurities.
<3> In mass%,
Cr of 45.0% or more and 65.0% or less,
Fe of 0.1% or more and 35.0% or less,
More than 0% and less than 2.0% Mn;
0.7% or more and 3.0% or less of B,
The Cr--Ni alloy according to <1>, wherein the remainder consists of Ni and inevitable impurities.
<4> Cr of more than 40.0% and 65.0% or less,
Fe of 0% or more and 30.0% or less,
Contains 0.5% or more and 2.5% or less C and more than 0% and 20% or less Nb,
The Cr--Ni alloy according to <1>, wherein the remainder consists of Ni and inevitable impurities.
<5> In mass%,
Si of 0.1% or more and 1.0% or less,
Al of 0.005% or more and 0.05% or less,
Sn of 0.02% or more and 0.3% or less,
Cu of 0.1% or more and 5.0% or less,
The Cr--Ni alloy according to any one of <1> to <4>, containing at least one or more of the following.
<6> The Cr-Ni alloy according to any one of <1> to <5>, wherein the Cr-Ni alloy has a ferrite phase and/or an austenite phase formed therein.

<7> <1>乃至<6>の何れかに記載のCr-Ni系合金からなる急冷凝固成形体。
<8> <1>乃至<6>の何れかに記載のCr-Ni系合金からなる合金粉末。
<9> <1>乃至<6>の何れかに記載のCr-Ni系合金からなる粉末冶金成形体。
<10> <1>乃至<6>の何れかに記載のCr-Ni系合金からなる鋳造成形体。
<7> A rapidly solidified molded body made of the Cr-Ni alloy according to any one of <1> to <6>.
<8> An alloy powder made of the Cr-Ni alloy according to any one of <1> to <6>.
<9> A powder metallurgy compact made of the Cr-Ni alloy according to any one of <1> to <6>.
<10> A cast molded body made of the Cr-Ni alloy according to any one of <1> to <6>.

<11> <1>乃至<6>の何れかに記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金の原料を溶解して溶湯を形成する溶解工程と、
前記溶湯から合金粉末を製造するアトマイズ工程と、を有するCr-Ni系合金の製造方法。
<12> <1>乃至<6>の何れかに記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金の原料を溶解して溶湯を形成する溶解工程と、
前記溶湯を鋳造して鋳造成形体を形成する鋳造工程と、
前記鋳造成形体を機械的に粉砕して合金粉末を製造する粉末化工程と、を有するCr-Ni系合金の製造方法。
<11> A method for producing a Cr-Ni alloy according to any one of <1> to <6>,
a melting step of melting the raw material of the Cr-Ni alloy to form a molten metal;
A method for producing a Cr--Ni alloy, comprising: an atomizing step of producing an alloy powder from the molten metal.
<12> A method for producing a Cr-Ni alloy according to any one of <1> to <6>,
a melting step of melting the raw material of the Cr-Ni alloy to form a molten metal;
a casting step of casting the molten metal to form a cast molded body;
A method for producing a Cr--Ni alloy, comprising the step of mechanically pulverizing the cast compact to produce an alloy powder.

<13> <1>乃至<6>の何れかに記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金を原料とした粉末を用いてプレス成形または射出成形を行って粉末成形体を形成する粉末成形工程と、前記粉末成形体に前記合金の固相線温度未満の温度で焼結熱処理を施して粉末冶金成形体を形成する焼結工程と、を有するCr-Ni系合金の製造方法。
<14> <1>乃至<6>の何れかに記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金の原料を溶解して溶湯を形成する溶解工程と、
前記溶湯を鋳造して鋳造成形体を形成する鋳造工程と、を有するCr-Ni系合金の製造方法。
<13> A method for producing a Cr-Ni alloy according to any one of <1> to <6>, comprising:
A powder compacting step of forming a powder compact by press molding or injection molding using powder made from the Cr-Ni alloy as a raw material, and sintering the powder compact at a temperature below the solidus temperature of the alloy. A method for producing a Cr--Ni alloy, comprising: a sintering step of performing heat treatment to form a powder metallurgy compact.
<14> A method for producing a Cr-Ni alloy according to any one of <1> to <6>,
a melting step of melting the raw material of the Cr-Ni alloy to form a molten metal;
A method for producing a Cr--Ni alloy, comprising a casting step of casting the molten metal to form a cast molded body.

<15> 固形物および/または腐食成分を含む被搬送物を搬送または加工する機械設備であって、前記機械設備を構成して前記被搬送物が接触する部材自体または前記部材の前記被搬送物と接触する表面の少なくとも一部が、<1>乃至<6>の何れかに記載のCr-Ni系合金からなる機械設備。
<16> 固形物および/または腐食成分を含む被搬送物の搬送経路に用いる配管部材であって、前記配管部材自体または前記配管部材の前記被搬送物と接触する表面の少なくとも一部が、<1>乃至<6>の何れかに記載のCr-Ni系合金からなる配管部材。
<15> Mechanical equipment for transporting or processing objects containing solids and/or corrosive components, the member itself constituting the mechanical equipment and with which the object comes into contact, or the object of the member to be transported. Mechanical equipment, at least a part of which is in contact with the Cr--Ni alloy according to any one of <1> to <6>.
<16> A piping member used for a conveyance route of an object to be transported containing solid matter and/or a corrosive component, wherein the piping member itself or at least a part of the surface of the piping member that comes into contact with the object to be transported is < A piping member made of a Cr-Ni alloy according to any one of items 1> to <6>.

本開示の一態様によれば、例えば様々な品質の燃料や劣化した潤滑油と直接接触するような厳しい腐食環境に耐えられる耐食性および耐摩耗性を兼ね備えた金属材料であり、かつNi基合金やCo基合金よりも低コスト化が可能な材料として、Cr-Ni系合金が提供される。
本開示の他の態様によれば、本開示の一態様のCr-Ni系合金でなる急冷凝固成形体、合金粉末、粉末冶金成形体、鋳造成形体や、そのCr-Ni系合金を用いた機械設備、配管部材は、従来材と同等以上の高い耐食性と耐摩耗性を兼備することができる。
According to one aspect of the present disclosure, the metal material is a metal material that has both corrosion resistance and wear resistance that can withstand severe corrosive environments such as direct contact with fuels of various qualities and deteriorated lubricating oil, and is made of a Ni-based alloy. A Cr--Ni alloy is provided as a material that can be manufactured at a lower cost than a Co-based alloy.
According to another aspect of the present disclosure, a rapidly solidified compact, an alloy powder, a powder metallurgy compact, a cast compact made of the Cr-Ni alloy according to one embodiment of the present disclosure, and a Cr-Ni alloy using the Cr-Ni alloy. Mechanical equipment and piping members can have high corrosion resistance and wear resistance equivalent to or higher than conventional materials.

本開示に係るCr-Ni系合金の製造方法の一例であり、合金粉末と急冷凝固成形体の製造方法を示す工程図である。1 is an example of a method for manufacturing a Cr—Ni alloy according to the present disclosure, and is a process diagram showing a method for manufacturing an alloy powder and a rapidly solidified compact. 本開示に係るCr-Ni系合金の製造方法の他の一例であり、粉末冶金成形体の製造方法を示す工程図である。FIG. 7 is another example of the method for manufacturing a Cr—Ni-based alloy according to the present disclosure, and is a process diagram showing a method for manufacturing a powder metallurgy compact. 本開示に係るCr-Ni系合金製造物の製造方法の他の一例であり、鋳造成形体の製造方法を示す工程図である。FIG. 7 is another example of a method for manufacturing a Cr—Ni alloy product according to the present disclosure, and is a process diagram showing a method for manufacturing a cast molded body. 本開示に係るCr-Ni系合金の適用事例であるスクリューポンプ、射出成形金型および破砕機の断面模式図を示す図である。FIG. 2 is a diagram showing a schematic cross-sectional view of a screw pump, an injection mold, and a crusher, which are application examples of the Cr—Ni alloy according to the present disclosure. 実施例1に係るCr-Ni系合金における、沸騰硫酸試験により得られた腐食速度と、土砂摩耗試験により得られた摩耗体積との関係を示す図である。FIG. 3 is a diagram showing the relationship between the corrosion rate obtained by a boiling sulfuric acid test and the wear volume obtained by a soil abrasion test in the Cr—Ni alloy according to Example 1. 実施例1の比較例(No.1、2)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 2 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr—Ni-based alloy of Comparative Examples (Nos. 1 and 2) of Example 1. 実施例1の比較例(No.3、4)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr—Ni-based alloy of Comparative Examples (Nos. 3 and 4) of Example 1. 実施例1の本発明例(No.5,6)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 5 and 6) of Example 1. 実施例1の本発明例(No.7,8)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 2 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 7 and 8) of Example 1. 実施例1の本発明例(No.9,10,11)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 2 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 9, 10, 11) of Example 1. 実施例1の本発明例(No.12,13,14)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 2 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 12, 13, and 14) of Example 1. 実施例2に係るCr-Ni系合金における、沸騰硫酸試験により得られた腐食速度と、土砂摩耗試験により得られた摩耗体積との関係を示す図である。FIG. 3 is a diagram showing the relationship between the corrosion rate obtained by a boiling sulfuric acid test and the wear volume obtained by a soil abrasion test in a Cr—Ni alloy according to Example 2. 実施例2の本発明例(No.21,22)のCr-Ni-Fe系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 2 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni--Fe based alloy according to the present invention examples (Nos. 21 and 22) of Example 2. 実施例2の本発明例(No.23,24)のCr-Ni-Fe系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni--Fe based alloy according to the present invention examples (Nos. 23 and 24) of Example 2. 実施例2の本発明例(No.25,26)のCr-Ni-Fe系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni--Fe based alloy according to the present invention examples (Nos. 25 and 26) of Example 2. 実施例2の比較例(No.27)のCr-Ni-Fe系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni--Fe based alloy of a comparative example (No. 27) of Example 2. 実施例2の本発明例(No.28)のCr-Ni-Fe系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an electron microscope observation image of a cross-sectional polished surface of a cast molded body of a Cr--Ni--Fe based alloy according to the present invention example (No. 28) of Example 2. 実施例3に係るCr-Ni系合金における、沸騰硫酸試験により得られた腐食速度と、土砂摩耗試験により得られた摩耗体積との関係を示す図である。FIG. 3 is a diagram showing the relationship between the corrosion rate obtained by a boiling sulfuric acid test and the wear volume obtained by a soil abrasion test in a Cr—Ni alloy according to Example 3. 実施例3の本発明例(No.31,32,33)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 31, 32, and 33) of Example 3. 実施例3の本発明例(No.34,35)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 34 and 35) of Example 3. 実施例3の本発明例(No.36,37)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 36 and 37) of Example 3. 実施例3の本発明例(No.38,39)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention examples (Nos. 38 and 39) of Example 3. 実施例3の本発明例(No.40,41)のCr-Ni系合金における鋳造成形体の断面研磨面の、電子顕微鏡による観察像を示す図である。FIG. 3 is a diagram showing an image observed by an electron microscope of a cross-sectional polished surface of a cast molded body of a Cr--Ni alloy according to the present invention (Nos. 40 and 41) of Example 3. 本開示に係るCr-Ni-Fe系合金との比較対象である肉盛材料における、沸騰硫酸試験により得られた腐食速度と、土砂摩耗試験により得られた摩耗体積との関係を示す図である。FIG. 2 is a diagram showing the relationship between the corrosion rate obtained by a boiling sulfuric acid test and the wear volume obtained by a soil abrasion test in a build-up material that is a comparison target with a Cr-Ni-Fe-based alloy according to the present disclosure. .

本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits. In the numerical ranges described stepwise in the present disclosure, the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Furthermore, in the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples.
In this specification, the term "process" is used not only to refer to an independent process but also to include any process that achieves its intended purpose even if it cannot be clearly distinguished from other processes. .

本発明者等は、Cr-Ni系合金において、化学組成、金属組織形態、耐食性、および耐土砂摩耗性の関係について調査検討し、本発明を完成させた。
以下、本発明の実施形態について図面を参照しながら具体的に説明する。ただし、同義の状態・工程については、同じ符号を付して重複する説明を省略する。また、本発明は、ここで取り挙げた実施形態に限定されるものではなく、その発明の技術的思想を逸脱しない範囲で公知技術と適宜組み合わせたり公知技術に基づいて改良したりすることが可能である。
The present inventors investigated and studied the relationship among chemical composition, metallographic morphology, corrosion resistance, and earth and sand abrasion resistance in Cr--Ni alloys, and completed the present invention.
Embodiments of the present invention will be specifically described below with reference to the drawings. However, states and processes having the same meaning will be given the same reference numerals and redundant explanations will be omitted. Furthermore, the present invention is not limited to the embodiments mentioned here, and can be appropriately combined with known techniques or improved based on known techniques without departing from the technical idea of the invention. It is.

〔化学組成〕
本開示のCr-Ni系合金は、質量%で、
40.0%超65.0%以下のCrと、
0%以上35.0%以下のFeと、
0%以上2.0%未満のMnと、
次の(1)~(3)の何れかと、を含み、
(1)1.1%超4.0%以下のC
(2)0.7%以上3.0%以下のB
(3)0.5%以上2.5%以下のCと、0%超20%以下のNb
残部がNiおよび不可避的不純物からなり、前記Niは15%以上であるCr-Ni系合金である。
本開示のCr-Ni系合金は、Cr量を抑えるとともに、母相中にCr系炭化物、Cr系硼化物、Nb系炭化物の少なくとも一種の化合物を形成することにより、油井のような過酷環境下においても好適に利用できる高い耐食性と耐摩耗性とを兼ね備え、かつ低コストのCr-Ni系合金である。
[Chemical composition]
The Cr-Ni alloy of the present disclosure has a mass percentage of
Cr of more than 40.0% and 65.0% or less,
Fe of 0% or more and 35.0% or less,
Mn of 0% or more and less than 2.0%,
Including any of the following (1) to (3),
(1) More than 1.1% and less than 4.0% C
(2) B of 0.7% or more and 3.0% or less
(3) C from 0.5% to 2.5% and Nb from more than 0% to 20%
The balance is a Cr--Ni alloy consisting of Ni and unavoidable impurities, and the Ni is 15% or more.
The Cr-Ni alloy of the present disclosure suppresses the amount of Cr and forms at least one type of compound of Cr-based carbide, Cr-based boride, and Nb-based carbide in the matrix, so that it can be used in harsh environments such as oil wells. It is a low-cost Cr--Ni alloy that has both high corrosion resistance and wear resistance and can be suitably used in the industry.

以下、本開示に係るCr-Ni系合金の組成(各成分)について説明する。それぞれの元素の含有量は特に規定する以外は質量%である。なお、本開示に係るCr-Ni系合金は、開示した成分の合計含有量が99質量%超であることが好ましく、例えば、合金の製造工程において混入する不純物など、開示した成分以外の成分の含有量は合計で1質量%未満が好ましい。 The composition (each component) of the Cr--Ni alloy according to the present disclosure will be explained below. The content of each element is expressed in mass % unless otherwise specified. The Cr-Ni alloy according to the present disclosure preferably has a total content of the disclosed components of more than 99% by mass, and is free from components other than the disclosed components, such as impurities mixed in during the manufacturing process of the alloy. The total content is preferably less than 1% by mass.

Cr:40.0%超65.0%以下
Crは、本開示のCr-Ni系合金の主要成分の1つであり、良好な耐食性を得るために重要な成分である。Crの含有率が40.0%超であり、耐食性と材料コストとの観点から、Cr成分が最大含有率であることが好ましい。これは、本開示の合金がNiよりも安価なCrを最大成分とすることで、例えば高価なNiを最大成分とするNi基合金よりも材料コストを低減できる利点がある。また、Crを最大成分とすることで、酸化被膜ができやすく不働態を形成するため耐食性が向上する。Cr含有率が40.0%以下になると、合金組織中への炭化物の出現量が減少し、耐摩耗性が不十分になる場合がある。あるいは合金組織中のCrが少なくなって耐食性が悪化する場合がある 。一方、Cr含有率が65.0%超になると合金の融点が高くなり、溶解によるインゴット製造やアトマイズによる粉体化に要するエネルギーが増加して製造性が悪化し、製造コストが増大するため、Cr含有量は65.0%以下とする。
Cr: More than 40.0% and 65.0% or less Cr is one of the main components of the Cr--Ni alloy of the present disclosure, and is an important component for obtaining good corrosion resistance. It is preferable that the Cr content is more than 40.0%, and the Cr component has the maximum content from the viewpoint of corrosion resistance and material cost. This is because the alloy of the present disclosure has Cr, which is cheaper than Ni, as the largest component, and has the advantage that the material cost can be lower than, for example, a Ni-based alloy that has expensive Ni as the largest component. Moreover, by making Cr the largest component, an oxide film is easily formed and a passive state is formed, so that corrosion resistance is improved. When the Cr content is 40.0% or less, the amount of carbides appearing in the alloy structure decreases, and wear resistance may become insufficient. Alternatively, the corrosion resistance may deteriorate due to a decrease in Cr in the alloy structure. On the other hand, if the Cr content exceeds 65.0%, the melting point of the alloy will increase, and the energy required for producing ingots by melting and powdering by atomization will increase, resulting in poor manufacturability and increased manufacturing costs. The Cr content shall be 65.0% or less.

また、Crは、後述するCと共に、耐摩耗性の向上に関わる炭化物の形成にも寄与する成分となる。つまり、上記した「(1)1.1%超4.0%以下のC」を含む場合、CrはCと共にCr系炭化物を構成する。この形態において、Crの作用効果をより確実に発揮させるには、Crの含有率は46.0%超であることが好ましく、50.0%以上が更に好ましく、55.0%以上とすることがより好ましい。 Further, Cr, together with C, which will be described later, is a component that also contributes to the formation of carbides that are involved in improving wear resistance. That is, when the above-mentioned "(1) more than 1.1% and 4.0% of C" is included, Cr constitutes a Cr-based carbide together with C. In this form, in order to more reliably exhibit the effects of Cr, the content of Cr is preferably more than 46.0%, more preferably 50.0% or more, and more preferably 55.0% or more. is more preferable.

また、Crは、後述するBと共に、耐摩耗性の向上に関わる硼化物の形成にも寄与する成分となる。つまり、上記した「(2)0.7%以上3.0%以下のB」を含む場合、CrはBと共にCr硼化物を構成する。この形態において、Crの作用効果をより確実に発揮させるには、Crを45.0%以上、より好ましくは50.0%以上、さらに好ましくは55.0%以上とすることが好ましい。 Further, Cr, together with B, which will be described later, is a component that also contributes to the formation of borides, which are involved in improving wear resistance. That is, when the above-mentioned "(2) B of 0.7% or more and 3.0% or less" is included, Cr and B constitute Cr boride. In this form, in order to more reliably exhibit the effects of Cr, it is preferable that Cr be at least 45.0%, more preferably at least 50.0%, even more preferably at least 55.0%.

また、Crは、Cと共に、耐摩耗性の向上に関わる炭化物の形成にも寄与する成分となるが、上記した「(3)0.5%以上2.5%以下のCと、0%超20%以下のNb」を含む場合、CrはCと共にCr系炭化物を構成する。Crの作用効果をより確実に発揮させるには、Crの含有率は40.0%超であり、更に43.0%以上とすることが好ましい。更に好ましくは50.0%以上、より好ましくは55.0%以上とすることが好ましい。 In addition, Cr, along with C, is a component that also contributes to the formation of carbides related to improvement of wear resistance, but as mentioned above, "(3) 0.5% to 2.5% C and more than 0% C" When containing 20% or less of Nb, Cr constitutes a Cr-based carbide together with C. In order to more reliably exhibit the effects of Cr, the content of Cr is more than 40.0%, preferably 43.0% or more. More preferably, it is 50.0% or more, more preferably 55.0% or more.

Fe:0%以上35.0%以下
Feは、Crなどと共に炭化物の形成に寄与する。炭化物の中にFeが固溶することで炭化物中のCr固溶量が減少し、炭化物周囲の母相中のCr濃度の低下が抑えられる。また、母相中のCr濃度低下は耐食性の低下を招くため、Fe添加することで耐食性が改善される。一方、Feが多過ぎると初晶でフェライトが晶出し、母相中における腐食電位差が大きくなることで局部腐食が発生し易くなる。よって本開示の合金に含まれるFeの含有量は35.0%以下とする。
Fe: 0% or more and 35.0% or less Fe contributes to the formation of carbides together with Cr and the like. By dissolving Fe in the carbide, the amount of Cr in the carbide is reduced, and a decrease in the Cr concentration in the parent phase around the carbide is suppressed. Further, since a decrease in the Cr concentration in the matrix leads to a decrease in corrosion resistance, the corrosion resistance is improved by adding Fe. On the other hand, if there is too much Fe, ferrite will crystallize as a primary crystal, and the corrosion potential difference in the matrix will increase, making local corrosion more likely to occur. Therefore, the content of Fe contained in the alloy of the present disclosure is set to 35.0% or less.

また、Feは、上記した「(1)1.1%超4.0%以下のC」を含む場合、0.1%以上30.0%以下であることが好ましい。ここで、Feは上記したとおり、Crなどと共に炭化物の形成に寄与する。炭化物の中にFeが固溶することで炭化物中のCr固溶量が減少し、炭化物周囲の母相中のCr濃度の低下が抑えられる。また、母相中のCr濃度低下は耐食性の低下を招くため、Fe添加することで耐食性が改善される。一方、Feが多過ぎると初晶でフェライトが晶出し、母相中における腐食電位差が大きくなることで局部腐食が発生し易くなる。よって上記した形態の場合、Feの含有量は30.0%以下とすることが好ましい。材料の性能を損なわない限り0.1%以上の範囲で含有量を低く抑えることがさらに好ましい。耐摩耗性を考慮すると、Feの含有率の上限は15%以下、より好ましくは8%以下とすることが好ましい。 Moreover, when Fe includes the above-mentioned "(1) C of more than 1.1% and 4.0% or less", it is preferable that Fe is 0.1% or more and 30.0% or less. Here, as described above, Fe contributes to the formation of carbides together with Cr and the like. By dissolving Fe in the carbide, the amount of Cr in the carbide is reduced, and a decrease in the Cr concentration in the parent phase around the carbide is suppressed. Further, since a decrease in the Cr concentration in the matrix leads to a decrease in corrosion resistance, the corrosion resistance is improved by adding Fe. On the other hand, if there is too much Fe, ferrite will crystallize as a primary crystal, and the corrosion potential difference in the matrix will increase, making local corrosion more likely to occur. Therefore, in the case of the above-mentioned form, the content of Fe is preferably 30.0% or less. It is more preferable to keep the content as low as 0.1% or more as long as it does not impair the performance of the material. Considering wear resistance, the upper limit of the Fe content is preferably 15% or less, more preferably 8% or less.

また、Feは、上記した「(2)0.7%以上3.0%以下のB」を含む場合、良好な機械的特性を確保するために必須の成分となり、0.1%以上35.0%以下であることが好ましい。Fe含有率が過剰になると、800℃近傍の温度域で脆性の金属間化合物のσ相が生成し易くなり、Cr-Ni系合金の延性・靱性が著しく低下する(いわゆるσ相脆化)。よってFeの含有量は35.0%以下とし、材料の性能を損なわない限り0.1%以上の範囲で含有量を低く抑えることがさらに好ましい。耐食性を考慮すると、Feの含有率は20%以下、より好ましくは15%以下とすることが好ましい。 Further, when Fe contains the above-mentioned "(2) B of 0.7% or more and 3.0% or less", it becomes an essential component to ensure good mechanical properties, and 0.1% or more of 35. It is preferably 0% or less. When the Fe content is excessive, a brittle intermetallic compound σ phase tends to form in the temperature range of around 800° C., and the ductility and toughness of the Cr—Ni alloy decrease significantly (so-called σ phase embrittlement). Therefore, the content of Fe should be 35.0% or less, and it is more preferable to keep the content low within the range of 0.1% or more as long as the performance of the material is not impaired. Considering corrosion resistance, the content of Fe is preferably 20% or less, more preferably 15% or less.

また、Feは、上記した「(3)0.5%以上2.5%以下のCと、0%超20%以下のNb」を含む場合、Feは耐食性を改善する元素であり、Fe添加によりフェライト相が晶出し、オーステナイト相との二相を形成し、硬く靭性のある高強度な母相を形成することができる。一方、Feの添加量を増やすと脆化相であるシグマ相が生成し、機械的特性を損なうことがある。よって本形態の場合、Feの含有量は30.0%以下とすることが好ましい。また、Feを多く添加することで高強度化の傾向にはあるが、一方、Cr量が減り、耐食性または耐摩耗性を悪化させる要因となる。耐摩耗性および耐食性が一定の特性を得るためには、20%以下の範囲であることが好ましい。より好ましくは16%以下である。また、本合金を安価な鉄鋼材の肉盛り肉盛材として使用する場合、基材となる鉄鋼材からのFeの混入があるため、Feは0%であってもかまわない。 In addition, when Fe contains the above-mentioned "(3) 0.5% to 2.5% C and 0% to 20% Nb", Fe is an element that improves corrosion resistance, and Fe addition As a result, the ferrite phase crystallizes and forms two phases with the austenite phase, forming a hard, tough, and high-strength parent phase. On the other hand, when the amount of Fe added is increased, a sigma phase, which is a brittle phase, is generated, which may impair mechanical properties. Therefore, in the case of this embodiment, the Fe content is preferably 30.0% or less. Further, although adding a large amount of Fe tends to increase strength, on the other hand, the amount of Cr decreases, which becomes a factor that deteriorates corrosion resistance or wear resistance. In order to obtain a certain level of wear resistance and corrosion resistance, the range is preferably 20% or less. More preferably it is 16% or less. Furthermore, when this alloy is used as a build-up material for inexpensive steel materials, Fe may be contained in an amount of 0% since Fe may be mixed in from the base steel material.

Mn:0%以上2.0%未満
Mnは、特に原料を混合、溶解する工程における脱硫・脱酸素の役割を担って機械的特性の向上および耐炭酸ガス腐食性の向上に寄与する成分である。ただし、Mnに代わる脱酸元素を添加する場合は、Mnは無添加(0%)で良い。Mnを含有する場合、Mnの含有率は、2.0%未満とする。Mn含有率が2.0%以上になると、硫化物(例えばMnS)の粗大粒子を形成して耐食性や機械的特性の低下要因になる。Mnの作用効果をより確実に発揮させるには、Mnの下限を0.05%とすることが好ましい。
また、Mnは、上記した「(1)1.1%超4.0%以下のC」を含む形態、および「(2)0.7%以上3.0%以下のB」を含む形態の場合、0%超であることが好ましい。
Mn: 0% or more and less than 2.0% Mn is a component that plays the role of desulfurization and deoxidation, especially in the process of mixing and dissolving raw materials, and contributes to improving mechanical properties and carbon dioxide corrosion resistance. . However, when adding a deoxidizing element in place of Mn, Mn may be left unadded (0%). When containing Mn, the Mn content is less than 2.0%. When the Mn content exceeds 2.0%, coarse particles of sulfide (for example, MnS) are formed, which causes a decrease in corrosion resistance and mechanical properties. In order to more reliably exhibit the effects of Mn, it is preferable to set the lower limit of Mn to 0.05%.
In addition, Mn is in the above-mentioned form containing "(1) more than 1.1% and less than 4.0% C" and "(2) more than 0.7% and not more than 3.0% B". In this case, it is preferably more than 0%.

上記した「(1)1.1%超4.0%以下のC」を含む形態において、Cは、1.1%超4.0%以下である。
Cは、炭化物として晶出または析出したり炭化物以外の母相中に固溶したりすることによって合金を硬化させる作用効果がある。この形態の場合、耐摩耗性の改善効果を得るにはCの含有率が1.1%超として、母相中にCrを主成分とする塊状Cr系炭化物を形成することが好ましい。C含有率が大きくなると硬質な炭化物粒子も増加して耐摩耗性が向上する傾向にはあるが、母相中のCrが消費されて耐食性を悪化させる要因となる。耐摩耗性と耐食性とのバランスを考慮してCは4.0%以下とする。前述のCの作用効果をより確実に発揮させるには、Cの下限を1.5%、上限を3.5%とすることが好ましい。なお、塊状Cr系炭化物とは、例えば、図8で見られるような炭化物のうち、その炭化物中に5μm以上の円が描けるような大きさを持つものを言う。図8において、暗灰色もしくは黒色で表示された部分が炭化物である。なお、炭化物の組成は、例えば、エネルギー分散型エックス線分析装置で定量分析することにより確認できる。Cr系炭化物とは、前記定量分析結果においてCrが最も多く含まれたものを言う。
In the form containing "(1) more than 1.1% and 4.0% or less of C" described above, C is more than 1.1% and 4.0% or less.
C has the effect of hardening the alloy by crystallizing or precipitating as a carbide or solidly dissolving in a matrix other than carbides. In the case of this form, in order to obtain the effect of improving wear resistance, it is preferable that the C content exceeds 1.1% to form massive Cr-based carbide containing Cr as a main component in the matrix. As the C content increases, the number of hard carbide particles increases, which tends to improve wear resistance, but Cr in the matrix is consumed, which becomes a factor that deteriorates corrosion resistance. Considering the balance between wear resistance and corrosion resistance, the C content is set to 4.0% or less. In order to more reliably exhibit the effects of C mentioned above, it is preferable to set the lower limit of C to 1.5% and the upper limit to 3.5%. Incidentally, the term "massive Cr-based carbide" refers to, for example, among the carbides shown in FIG. 8, those having a size such that a circle of 5 μm or more can be drawn in the carbide. In FIG. 8, the portions displayed in dark gray or black are carbides. Note that the composition of the carbide can be confirmed, for example, by quantitative analysis using an energy dispersive X-ray analyzer. The Cr-based carbide refers to the carbide that contains the most Cr in the quantitative analysis results.

上記した「(2)0.7%以上3.0%以下のB」を含む形態において、Bは、0.7%以上3.0%以下である。
B(硼素)は、耐摩耗性に有効な硬質の硼化物を母相中に晶出または析出させる作用効果がある。耐摩耗性の改善効果を得るにはBの含有率が0.7%以上として、母相中にCrを主成分とする塊状のCr系硼化物を形成することが好ましい。B含有率が大きくなるとともに硬質な硼化物が組織中に占める割合が増加して耐摩耗性が向上する傾向にあり、Bの作用効果をより確実に発揮させるにはBを1.0%以上、より好ましくは1.5%以上とすることが好ましい。一方、B含有率が過剰に大きくなると硼化物の生成に伴い母相中のCrが消費されて耐食性を悪化させる要因となる。また、粗大な硼化物が晶出することで肉盛り施工時における割れ発生起点となる。さらに、硼化物に起因した腐食が発生するため耐食性も低下する。よって、耐摩耗性と耐食性とのバランスを考慮してBは3.0%以下、より好ましくは2.5%以下、さらに好ましくは2.0%以下とすることが好ましい。なお、塊状Cr系硼化物とは、例えば、図13で見られる黒色で細長い形状を有しており、幅方向に3μm以上、長手方向に30μm以上の細長い断面形状を有するものを言う。なお、硼化物の組成は、例えば、エネルギー分散型エックス線分析装置(EDX)で定量分析することにより確認できる。Cr系硼化物とは、前記EDXによる定量分析結果においてBが検出され且つ、Bを除いた金属元素の中でCrが最も多く含まれたものを言う。
In the above-mentioned form containing "(2) B of 0.7% or more and 3.0% or less", B is 0.7% or more and 3.0% or less.
B (boron) has the effect of crystallizing or precipitating hard boride, which is effective for wear resistance, in the matrix. In order to obtain the effect of improving wear resistance, it is preferable that the content of B is 0.7% or more to form a lumpy Cr-based boride containing Cr as a main component in the matrix. As the B content increases, the proportion of hard borides in the structure increases, and wear resistance tends to improve.To ensure the effects of B, B should be 1.0% or more. , more preferably 1.5% or more. On the other hand, when the B content becomes excessively large, Cr in the matrix is consumed as borides are produced, which causes deterioration of corrosion resistance. In addition, coarse borides crystallize and become a starting point for cracking during overlay construction. Furthermore, corrosion resistance also decreases due to the occurrence of corrosion caused by borides. Therefore, in consideration of the balance between wear resistance and corrosion resistance, it is preferable that B be at most 3.0%, more preferably at most 2.5%, even more preferably at most 2.0%. Note that the lumpy Cr-based boride is, for example, black and has an elongated shape as shown in FIG. 13, and has an elongated cross-sectional shape of 3 μm or more in the width direction and 30 μm or more in the longitudinal direction. Note that the composition of the boride can be confirmed, for example, by quantitative analysis using an energy dispersive X-ray analyzer (EDX). The Cr-based boride refers to a boride in which B was detected in the quantitative analysis results by EDX, and which contained the largest amount of Cr among the metal elements other than B.

上記した「(3)0.5%以上2.5%以下のCと、0%超20%以下のNb」を含む形態において、Cは、0.5%以上2.5%以下、Nbは、0%超20%以下である。
ここで、Cは、本開示のCr-Ni系合金において、炭化物として晶出または析出したり、炭化物以外の母相中に固溶したりすることによって、合金を硬化させる作用効果がある。耐摩耗性の改善効果を得るにはCの含有率を0.5%以上として、Nbを主成分とする塊状Nb系炭化物を形成することが好ましい。また、C含有率が大きくなると硬質なNb系炭化物粒子が増加して耐摩耗性が向上する傾向にはあるが、前述の比率以上にC量が増えると母相(基地)中のCrが消費されて硬さは増加するが、耐食性を悪化させる要因となる。耐摩耗性と耐食性とのバランスを考慮してCは2.5%以下とした。前述のCの作用効果をより確実に発揮させるには、Cの下限を0.8%とすることが好ましく、上限を1.5%とすることが好ましい。
また、Nbは、本開示のCr-Ni系合金において、Nb系炭化物として晶出または析出したり、炭化物以外の母相中に固溶したりすることによって、オーステナイト相を生成する作用効果がある。耐摩耗性の改善効果を得るにはNbの含有率を0%超として、Nbを主成分とする塊状Nb系炭化物を形成することが好ましい。また、Nb含有率が大きくなると硬質なNb系炭化物粒子が増加して耐摩耗性が向上する傾向にはあるが、Nb量が増えるとオーステナイト相を形成するNiと結合し、靭性を向上させるが、NbはNiに比べて高価であり、コストパフォーマンスを悪化させることがある。また、Nbを増加させることで、母相を形成するCrやNiおよびFeを減少させるため、硬さや耐摩耗性は増加するが、機械的特性や耐食性を悪化させる要因となる。耐摩耗性と耐食性、機械的特性とのバランスを考慮してNbは20%以下としたが、好ましいNbの上限は16%である。また、耐摩耗特性を発揮するには下限を4%とすることが好ましい。また、前述のNb系炭化物の作用効果をより確実に発揮させるには、Nbの下限を6.4%を下限とすることがさらに好ましく、上限を12%とすることが好ましい。また、NbとCの比率は質量%でNb:Cが概ね8:1となるように添加することが望ましい。なお、Nb系炭化物とは、例えば、図19および20で見られるような多角形の塊状炭化物および不定形で羽毛状、樹枝状、線状に見えるようなものを言う。なお、炭化物の組成は、例えば、エネルギー分散型エックス線分析装置で定量分析することにより確認できる。Nb系炭化物とは、前記定量分析結果においてCが検出され且つ、Cを除いた金属元素の中でNbが最も多く含まれたものを言う。
In the above-mentioned form containing "(3) 0.5% or more and 2.5% or less C and 0% or more and 20% or less Nb", C is 0.5% or more and 2.5% or less, and Nb is , more than 0% and less than 20%.
Here, in the Cr—Ni-based alloy of the present disclosure, C has the effect of hardening the alloy by crystallizing or precipitating as a carbide or solidly dissolving in a matrix other than carbides. In order to obtain the effect of improving wear resistance, it is preferable to set the C content to 0.5% or more to form a massive Nb-based carbide containing Nb as a main component. Furthermore, as the C content increases, the number of hard Nb-based carbide particles increases, which tends to improve wear resistance, but if the C content increases beyond the above ratio, Cr in the matrix (base) is consumed. Although this increases hardness, it becomes a factor that deteriorates corrosion resistance. Considering the balance between wear resistance and corrosion resistance, the C content was set to 2.5% or less. In order to more reliably exhibit the effects of C mentioned above, the lower limit of C is preferably 0.8%, and the upper limit is preferably 1.5%.
Further, in the Cr-Ni alloy of the present disclosure, Nb has the effect of generating an austenite phase by crystallizing or precipitating as a Nb-based carbide, or by solid solution in a matrix other than carbides. . In order to obtain the effect of improving wear resistance, it is preferable to set the Nb content to more than 0% to form a massive Nb-based carbide containing Nb as a main component. In addition, as the Nb content increases, hard Nb-based carbide particles increase and wear resistance tends to improve; however, as the Nb content increases, it combines with Ni forming an austenite phase, improving toughness. , Nb is more expensive than Ni and may deteriorate cost performance. Furthermore, by increasing Nb, Cr, Ni, and Fe that form the matrix are decreased, which increases hardness and wear resistance, but becomes a factor that deteriorates mechanical properties and corrosion resistance. Considering the balance between wear resistance, corrosion resistance, and mechanical properties, the Nb content is set to 20% or less, but the preferable upper limit of Nb is 16%. Further, in order to exhibit wear resistance properties, it is preferable that the lower limit is 4%. Further, in order to more reliably exhibit the effects of the above-mentioned Nb-based carbide, the lower limit of Nb is more preferably set to 6.4%, and the upper limit is preferably set to 12%. Further, it is desirable that the ratio of Nb and C is approximately 8:1 (Nb:C in mass %). Note that the Nb-based carbide refers to, for example, polygonal massive carbide as seen in FIGS. 19 and 20, and an amorphous carbide that appears feather-like, dendritic, or linear. Note that the composition of the carbide can be confirmed, for example, by quantitative analysis using an energy dispersive X-ray analyzer. The Nb-based carbide refers to a carbide in which C was detected in the quantitative analysis results and Nb was contained in the largest amount among the metal elements other than C.

残部はNi及び不可避的不純物:
以上、説明した元素以外はNiと不可避的不純物である。このうち、Niは被覆層の主要元素の1つであり、その多くは炭化物以外の母相中に固溶し、炭化物にはほとんど固溶しない。母相中にNiが固溶することで、母相を構成するオーステナイト相を安定化するとともに、初晶でのフェライト生成を抑制し、耐食性を向上させる効果がある。この作用効果を十分に発揮させるには、Niの含有率が前述のFeの含有率を超える範囲が好ましい。また、Niの含有率は15%以上が好ましく、25%以上がより好ましく、更に好ましくは30%以上である。一方、過度にNiが多くなると前述のCrの作用効果が損なわれるおそれがあることから、Niの含有率の上限はCrの含有率未満とすることが好ましい。
なお、残部には前述のNiの他、製造上不可避的に含有される不純物も含まれる。これらの不純物のうち、特に制限すべき不純物は以下の通りである。
不純物であるP、Sは粒界に偏析しやすく、耐食性を招くことから、Pは0.02%以下、Sは0.005%未満に限定する。Sについては、0.003%以下が好ましく、0.002%以下がさらに好ましい。これ以外にも、O、Nなども、Crと結合して酸化物系、窒化物系の介在物を形成して清浄度を低下させ、耐食性や疲労強度を劣化させることから、できるだけ低く抑えることが好ましい。このため、好ましいOは0.002%以下、Nは0.04%以下がよい。また、Nbに少量のTaが不純物として混入する場合があるが、Taは0.2%以下の範囲であれば影響は少なく、特別に低く制限する必要はなく、混入しても差し支えない。
The remainder is Ni and unavoidable impurities:
Elements other than those described above are Ni and inevitable impurities. Among these, Ni is one of the main elements of the coating layer, and most of it is dissolved in solid solution in the matrix other than carbide, and hardly dissolved in carbide. The solid solution of Ni in the matrix has the effect of stabilizing the austenite phase constituting the matrix, suppressing the formation of ferrite in the primary crystal, and improving corrosion resistance. In order to fully exhibit this effect, it is preferable that the Ni content exceeds the above-mentioned Fe content. Further, the Ni content is preferably 15% or more, more preferably 25% or more, and still more preferably 30% or more. On the other hand, if the Ni content increases excessively, the above-mentioned effects of Cr may be impaired, so the upper limit of the Ni content is preferably less than the Cr content.
In addition to the above-mentioned Ni, the remainder also includes impurities that are unavoidable during manufacturing. Among these impurities, the following impurities should be particularly restricted.
Impurities such as P and S tend to segregate at grain boundaries and cause corrosion resistance, so P is limited to 0.02% or less and S to less than 0.005%. Regarding S, it is preferably 0.003% or less, more preferably 0.002% or less. In addition, O, N, etc. combine with Cr to form oxide-based and nitride-based inclusions, reducing cleanliness and deteriorating corrosion resistance and fatigue strength, so they should be kept as low as possible. is preferred. Therefore, O is preferably 0.002% or less, and N is preferably 0.04% or less. Further, although a small amount of Ta may be mixed into Nb as an impurity, Ta has little effect as long as it is within the range of 0.2%, and there is no need to limit it to a particularly low level, and it may be mixed.

Si:0.1%以上1.0%以下
Siは、本開示のCr-Ni系合金の随意成分の1つであり、脱酸素の役割を担って機械的特性の向上に寄与する成分である。Siを含有する場合には、Siの含有率は、0.1%以上1.0%以下が好ましい。Si含有率が0.1%未満であると、Siに基づく作用効果が不十分になりやすい。また、Siが1%超になると、酸化物(例えばSiO2)の粗大粒子を形成して機械的特性の低下要因になる。
Al:0.005%以上0.05%以下
Alも、本開示のCr-Ni系合金の随意成分の1つであり、MnおよびSiと組み合わせることで脱酸素作用の向上に寄与する成分である。Alを含有する場合には、Alの含有率は、0.005%以上0.05%以下が好ましい。Al含有率が0.005%未満になると、Alによる作用効果が十分に得られない場合がある。また、Al含有率が0.05%超になると、酸化物や窒化物(例えば、Al2O3やAlN)の粗大粒子を形成して機械的特性の低下要因になる。
Si: 0.1% or more and 1.0% or less Si is one of the optional components of the Cr-Ni alloy of the present disclosure, and is a component that plays the role of deoxidizing and contributes to improving mechanical properties. . When containing Si, the Si content is preferably 0.1% or more and 1.0% or less. If the Si content is less than 0.1%, the effects based on Si tend to be insufficient. Moreover, if Si exceeds 1%, coarse particles of oxide (for example, SiO2) are formed, which becomes a factor in deteriorating mechanical properties.
Al: 0.005% or more and 0.05% or less Al is also one of the optional components of the Cr-Ni alloy of the present disclosure, and is a component that contributes to improving the deoxidizing effect when combined with Mn and Si. . When containing Al, the content of Al is preferably 0.005% or more and 0.05% or less. When the Al content is less than 0.005%, the effects of Al may not be sufficiently obtained. Furthermore, when the Al content exceeds 0.05%, coarse particles of oxides and nitrides (eg, Al2O3 and AlN) are formed, which becomes a factor in deteriorating mechanical properties.

Sn:0.02%以上0.3%以下
Snは、本開示のCr-Ni系合金において不動態皮膜強化の役割を担い、耐食性・耐摩耗性の向上に寄与する随意成分である。具体的には、塩化物イオンや酸性の腐食環境に対する耐性の向上が期待できる。Snを含有する場合には、Snの含有率は、0.02%以上0.3%以下が好ましい。Sn含有率が0.02%未満になると、Snに基づく作用効果が十分に得られない。また、Sn含有率が0.3%超になると、Sn成分の粒界偏析を生じさせて合金の延性・靱性の低下要因になる。
Cu:0.1%以上5.0%以下
Cuは、本開示のCr-Ni系合金において耐食性の向上に寄与する随意成分である。Cuを含有する場合、その含有率は、0.1%以上5.0%以下が好ましい。Cu含有率が0.1%未満になると、Cuに基づく作用効果が十分に得られない。また、Cu含有率が5.0%超になると、Cu析出物を生成し易くなり、合金の延性・靭性の低下要因になる。
Sn: 0.02% or more and 0.3% or less Sn is an optional component that plays a role in strengthening the passive film in the Cr--Ni alloy of the present disclosure and contributes to improving corrosion resistance and wear resistance. Specifically, improved resistance to chloride ions and acidic corrosive environments can be expected. When containing Sn, the Sn content is preferably 0.02% or more and 0.3% or less. When the Sn content is less than 0.02%, the effects based on Sn cannot be sufficiently obtained. Furthermore, if the Sn content exceeds 0.3%, grain boundary segregation of the Sn component will occur, causing a decrease in the ductility and toughness of the alloy.
Cu: 0.1% or more and 5.0% or less Cu is an optional component that contributes to improving corrosion resistance in the Cr—Ni alloy of the present disclosure. When containing Cu, the content is preferably 0.1% or more and 5.0% or less. When the Cu content is less than 0.1%, the effects based on Cu cannot be sufficiently obtained. Moreover, when the Cu content exceeds 5.0%, Cu precipitates are likely to be formed, which becomes a factor in reducing the ductility and toughness of the alloy.

以上、説明する本開示の合金は合金粉末に成形し、肉盛溶接による表面改質層の形成に利用するのが好適である。溶融した本開示の合金を不活性ガスの高速気流中に導入して粉砕するガスアトマイズによって粉体化し、PTA(Plasma transfer arc)肉盛溶接装置により施工してもよい。PTA肉盛溶接装置では通常、溶接トーチ先端の施工部までの管路を流動させて粉末を搬送するため、粉末がスムーズに移動する必要がある。これに対して、ガスアトマイズで得られる粉末は球状であり、流動性が良好となるので好ましい。また、粉体化した本開示の合金を粉末冶金法によって棒状の粉末冶金成形体に焼結したものを溶接棒として使用することもできる。 As described above, the alloy of the present disclosure described above is preferably formed into an alloy powder and used for forming a surface-modified layer by overlay welding. The molten alloy of the present disclosure may be introduced into a high-velocity stream of inert gas and pulverized by gas atomization, and the process may be performed using a PTA (Plasma transfer arc) overlay welding device. In a PTA overlay welding device, the powder is normally transported by flowing the pipe from the tip of the welding torch to the construction area, so the powder needs to move smoothly. On the other hand, powder obtained by gas atomization is preferable because it is spherical and has good fluidity. Further, a powdered alloy of the present disclosure can be sintered into a rod-shaped powder metallurgy molded body by a powder metallurgy method and used as a welding rod.

<Cr-Ni系合金の製造方法>
次に、本開示のCr-Ni系合金の製造方法について説明する。
図1は、本開示に係るCr-Ni系合金製造物の製造方法の一例であり、急冷凝固鋳造成形体でなる合金粉末(ここでは、粉体および肉盛溶接材)の製造方法を示す工程図である。図1に示したように、まず、所望の組成となるようにCr-Ni系合金の原料を溶解して溶湯10を形成する溶解工程(ステップ1:S1)を行う。原料の溶解方法に特段の限定はなく、高耐食性・高強度合金の製造における従前の方法を利用できる。溶湯10を所定の方法で精錬して不純物成分の含有率を軽減した高清浄化溶湯12を形成してもよい(図3)。
<Method for manufacturing Cr-Ni alloy>
Next, a method for manufacturing a Cr--Ni alloy according to the present disclosure will be described.
FIG. 1 is an example of a method for manufacturing a Cr-Ni alloy product according to the present disclosure, and shows steps for manufacturing an alloy powder (herein, powder and overlay welding material) made of a rapidly solidified cast compact. It is a diagram. As shown in FIG. 1, first, a melting step (step 1: S1) is performed to form a molten metal 10 by melting raw materials of a Cr--Ni alloy to a desired composition. There are no particular limitations on the method of melting the raw materials, and conventional methods for producing highly corrosion-resistant and high-strength alloys can be used. The molten metal 10 may be refined by a predetermined method to form a highly clean molten metal 12 with a reduced content of impurity components (FIG. 3).

次に、溶湯10もしくは清浄化溶湯12を出発原料としたアトマイズ工程(ステップ2:S2)を行うことにより、Cr-Ni系合金の合金粉末20を得ることができる。アトマイズ方法の種類として例えば、溶湯金属の流れに対して高圧の媒体を吹き付けることで溶湯金属を粉砕して粉末を得る方法があり、使用する媒体の種類によりガスアトマイズや水アトマイズに分類される。本開示でアトマイズ方法に特段の限定はないが、肉盛用粉末用途では、より高清浄で均質組成・球形状粒子が得られるガスアトマイズ法を用いることが好ましい。得られた合金粉末20は、例えば、溶接材料、粉末冶金用材料、積層造形用材料として好適に用いることができる。また、目標組成は、炭化物を含み、母相がフェライト相とオーステナイト相からなる二相合金またはオーステナイト相の単相合金である合金とすることが好ましい。二相合金の場合、好ましくはオーステナイト相が20%以上の体積率を示すことが望ましい。
次に、アトマイズ工程S2を行うことで得られた合金粉末20に対して、所望の粒径に揃えるための分級工程(ステップ3:S3)を実施してもよい。分級工程S3は必須の工程ではないが、合金粉末20を肉盛用材料として用いる場合には、溶接装置への安定的な粉末供給や、肉盛施工プロセスの安定化などの観点から分級を実施することが好ましい。なお、分級する粒径に特段の限定はないが、例えばPTA肉盛溶接向けとして例えば、63μm以上250μm以下の粒径範囲を抽出して用いることがある。また、後述する粉末冶金成形体向けに用いる場合には、成形体の寸法精度や空隙残留防止などの観点から例えば1μmから50μmの粒径範囲で分級、選別して用いることがある。
Next, by performing an atomization step (step 2: S2) using the molten metal 10 or the cleaned molten metal 12 as a starting material, an alloy powder 20 of a Cr--Ni alloy can be obtained. An example of the atomization method is a method in which a high-pressure medium is sprayed against the flow of molten metal to crush the molten metal to obtain a powder, which is classified into gas atomization and water atomization depending on the type of medium used. Although there is no particular limitation on the atomization method in the present disclosure, for powder applications for overlay, it is preferable to use a gas atomization method that provides higher purity, homogeneous composition, and spherical particles. The obtained alloy powder 20 can be suitably used as, for example, a welding material, a powder metallurgy material, or an additive manufacturing material. Further, the target composition is preferably an alloy that contains carbides and whose parent phase is a two-phase alloy consisting of a ferrite phase and an austenite phase or a single-phase alloy of an austenite phase. In the case of a two-phase alloy, it is preferable that the austenite phase exhibits a volume fraction of 20% or more.
Next, the alloy powder 20 obtained by performing the atomization step S2 may be subjected to a classification step (step 3: S3) for adjusting the particle size to a desired size. Although the classification step S3 is not an essential step, when using the alloy powder 20 as a material for overlay, classification is carried out from the viewpoint of stable powder supply to the welding equipment and stabilization of the overlay construction process. It is preferable to do so. Although there is no particular limitation on the particle size to be classified, for example, a particle size range of 63 μm or more and 250 μm or less may be extracted and used for PTA overlay welding. In addition, when used for powder metallurgy molded bodies, which will be described later, from the viewpoint of dimensional accuracy of the molded body and prevention of remaining voids, the particles may be classified and sorted, for example, in the particle size range of 1 μm to 50 μm.

次に、合金粉末20を用いて所望の基材41上に肉盛溶接工程(ステップ4:S4)を行うと、溶融した合金粉末20が基材41や外気との温度差によって急速に冷却されて凝固した、急冷凝固組織を呈する急冷凝固成形体である合金被覆層42が形成された肉盛溶接材40を得ることができる。本開示の「(2)0.7%以上3.0%以下のB」を含む形態の場合、急冷凝固組織は、その内側に直径が3μm以上の円を描くことができる大きさの塊状Cr硼化物を有する金属組織とすることが好ましい。
なお、本開示においては、肉盛溶接工程S4は、金属粉末を用いた溶射を含むものとする。
得られた肉盛溶接材40はそのまま各種機器を構成する部材として利用してよいが、他の部材への接続など考慮して肉盛溶接材40の寸法、形状を整形する整形工程(ステップ5:S5)をさらに実施してもよい。整形する手段としては例えばフライス盤などによる切削加工や砥石による研磨などがある。
Next, when an overlay welding process (step 4: S4) is performed on the desired base material 41 using the alloy powder 20, the molten alloy powder 20 is rapidly cooled due to the temperature difference between the base material 41 and the outside air. It is possible to obtain an overlay welding material 40 in which an alloy coating layer 42 is formed, which is a rapidly solidified compact exhibiting a rapidly solidified structure. In the case of the form containing "(2) B of 0.7% or more and 3.0% or less" of the present disclosure, the rapidly solidified structure has a block of Cr that is large enough to draw a circle with a diameter of 3 μm or more inside the structure. A metal structure containing boride is preferable.
Note that in the present disclosure, the overlay welding step S4 includes thermal spraying using metal powder.
The obtained build-up weld material 40 may be used as it is as a member constituting various devices, but there is a shaping process (step 5) in which the dimensions and shape of the build-up weld material 40 are shaped in consideration of connection to other components, etc. :S5) may be further implemented. Examples of shaping methods include cutting with a milling machine and polishing with a grindstone.

なお、急冷凝固組織を有する急冷凝固成形体として、他に例えば、溶融状態のCr-Ni系合金を高速回転するロールに噴射することにより、急速冷却して薄帯状の鋳造成形体としても良いし、或いは、前記の合金粉末を溶射しつつ積層していき、急冷凝固組織を有する積層造形体(急冷凝固成形体)としても良い。
また、前述とは別な合金粉末を得る方法としては、前記鋳造工程により得られた鋳造成形体を機械的に粉砕して合金粉末とする粉末化工程を適用して、合金粉末を製造しても良い。この場合、前記の粉末化工程としては、例えば、ボールミルなどを適用することが可能である。
In addition, as a rapidly solidified molded product having a rapidly solidified structure, for example, a molten Cr-Ni alloy may be injected onto a roll rotating at high speed to rapidly cool it and be formed into a thin strip-shaped cast molded product. Alternatively, the alloy powder may be thermally sprayed and laminated to form a layered body (rapidly solidified body) having a rapidly solidified structure.
In addition, as a method for obtaining alloy powder different from the above-mentioned method, alloy powder is manufactured by applying a powdering process in which the cast compact obtained in the casting process is mechanically crushed to produce alloy powder. Also good. In this case, for example, a ball mill or the like can be used for the powdering step.

図2は、本開示に係るCr-Ni系合金の製造方法の一例であり、粉末冶金成形体の製造方法を示す工程図である。図2に示したように、粉末冶金成形体の製造工程は、アトマイズ工程S2または分級工程S3までを図1の急冷凝固成形体の製造方法と同じとし、肉盛溶接工程S4の代わりに粉末成形工程(ステップ6:S6)および焼結工程(ステップ7:S7)を行う点が異なる。そこで粉末成形工程S6および焼結工程S7について説明する。
アトマイズ工程S2を行うことで得られた、あるいは更に分級工程S3を経て得られた合金粉末20を用いて、粉末成形工程S6を行うことで所望の粉末成形体60を得ることができる。粉末成形方法に特段の限定は無いが、例えば金属粉末射出成型法であれば、合金粉末20にバインダーとしてプラスチックやワックスを混錬して流動性、成形性を与えたものを射出成型機で型に充填して成形する粉末成形素工程(ステップ6a:S6a)と、得られた粉末成形体60中に残存するバインダーを除去する脱脂素工程(ステップ6b:S6b)を行うことができる。脱脂素工程は例えば粉末成形体を溶媒に浸漬したり、所定の雰囲気で加熱したりすることが行われる。
FIG. 2 is an example of a method for manufacturing a Cr—Ni alloy according to the present disclosure, and is a process diagram showing a method for manufacturing a powder metallurgy compact. As shown in FIG. 2, the manufacturing process of the powder metallurgy compact is the same as the manufacturing method of the rapidly solidified compact shown in FIG. The difference is that a process (step 6: S6) and a sintering process (step 7: S7) are performed. Therefore, the powder molding step S6 and the sintering step S7 will be explained.
A desired powder compact 60 can be obtained by performing a powder compacting step S6 using the alloy powder 20 obtained by performing the atomizing step S2 or further obtained through the classification step S3. There are no particular limitations on the powder molding method, but for example, in the case of metal powder injection molding, alloy powder 20 is kneaded with plastic or wax as a binder to give fluidity and moldability, and then molded with an injection molding machine. A powder molding step (step 6a: S6a) of filling and molding the powder compact and a degreasing step (step 6b: S6b) of removing the binder remaining in the obtained powder compact 60 can be performed. The degreasing process is performed, for example, by immersing the powder compact in a solvent or heating it in a predetermined atmosphere.

次に、粉末成形体60に対して合金の固相線温度未満の焼結熱処理を施して粉末冶金成形体70を形成する焼結工程S7を行う。焼結熱処理方法に特段の限定はなく、従前の方法を利用できる。なお、前述の脱脂素工程S6bを加熱によって行う場合、この焼結工程S7において焼結温度に到達するよりも前の時点での温度や雰囲気を調整することによって、脱脂素工程と焼結工程を一括して行うこともできる。粉末冶金成形体70の緻密化の観点から、合金の固相線温度未満かつ500気圧以上3000気圧以下の熱間等方圧加圧(HIP)処理を含むことがより好ましい。
得られた粉末冶金成形体70は焼結組織を有しており、そのまま各種機器を構成する部材として利用してよい。粉末冶金成形体70が棒状であれば、これを例えばアーク溶接機の電極棒として適用し、所望の基材上への肉盛溶接に利用することができる。
また、前述の肉盛溶接材の場合と同様に、他の部材への接続など考慮して粉末冶金成形体70の寸法、形状を整形する整形工程S5をさらに実施して整形体50としてもよい。整形する手段としては、例えばフライス盤などによる切削加工や砥石による研磨などがある。
Next, a sintering step S7 is performed in which the powder compact 60 is subjected to sintering heat treatment at a temperature lower than the solidus temperature of the alloy to form a powder metallurgy compact 70. There are no particular limitations on the sintering heat treatment method, and conventional methods can be used. In addition, when the above-mentioned degreasing step S6b is performed by heating, the degreasing step and the sintering step can be performed by adjusting the temperature and atmosphere before reaching the sintering temperature in this sintering step S7. It can also be done all at once. From the viewpoint of densification of the powder metallurgy compact 70, it is more preferable to include a hot isostatic pressing (HIP) treatment at a temperature lower than the solidus temperature of the alloy and at a pressure of 500 atm or more and 3000 atm or less.
The obtained powder metallurgy compact 70 has a sintered structure and may be used as it is as a member constituting various devices. If the powder metallurgy compact 70 is rod-shaped, it can be applied, for example, as an electrode rod of an arc welding machine and used for overlay welding onto a desired base material.
Further, as in the case of the overlay welded material described above, the shaped body 50 may be obtained by further performing a shaping step S5 of shaping the dimensions and shape of the powder metallurgy compact 70 in consideration of connection to other members, etc. . Examples of shaping methods include cutting using a milling machine and polishing using a grindstone.

図3は、本開示に係るCr-Ni系合金の製造方法の一例であり、鋳造成形体の製造方法を示す工程図である。図3に示したように、鋳造成形体の製造工程は溶解工程S1が図1の急冷凝固成形体の製造方法と同じで、その後に鋳造工程(ステップ8:S8)を行う点が異なる。溶解工程S1を行うことで得られた溶湯10、あるいは更に電極製造工程S1aと再溶解工程S1bを経て得られた清浄化溶湯12は、鋳造工程S8において所望の鋳造型に充填し、その後冷却、硬化することで鋳造成形体80を得ることができる。なお、鋳造方法に特段の限定は無い。
なお、合金中の不純物成分(O、PおよびS)の含有率をより低減する(合金の清浄度を高める)ため、溶解工程S1が、Cr-Ni系合金の原料を混合・溶解して溶湯10を形成した後に鋳造により一旦凝固させて消耗電極11を製造する電極製造工程(ステップ1a:S1a)と、消耗電極を再溶解して清浄化溶湯12を用意する再溶解工程(ステップ1b:S1b)を適用しても良い。合金の清浄度を高められる限り再溶解方法に特段の限定はないが、例えば、真空アーク再溶解(VAR)やエレクトロスラグ再溶解(ESR)を好ましく利用できる。再溶解工程を適用した場合、再溶解で得られたインゴットが鋳造成形体となる。
得られた鋳造成形体80は鋳造組織を有するが、例えば壁面内部に水冷却管などの冷却機構を有する鋳型を用いることで、鋳込んだ溶湯が急速に冷却されて凝固した急冷凝固組織を呈する急冷凝固成形体とすることができる。鋳造成形体80はそのまま各種機器を構成する部材として利用してよいが、他の部材への接続など考慮して鋳造成形体80の寸法、形状を整形する整形工程S5をさらに実施して整形体50としてもよい。整形する手段としては例えばフライス盤などによる切削加工や砥石による研削、研磨などがある。
FIG. 3 is an example of a method for manufacturing a Cr—Ni alloy according to the present disclosure, and is a process chart showing a method for manufacturing a cast molded body. As shown in FIG. 3, the manufacturing process of the cast molded body is the same as the manufacturing method of the rapidly solidified molded body in FIG. 1 in which the melting step S1 is performed, except that the casting process (step 8: S8) is performed thereafter. The molten metal 10 obtained by performing the melting process S1, or the cleaned molten metal 12 obtained by further performing the electrode manufacturing process S1a and the remelting process S1b, is filled into a desired casting mold in the casting process S8, and then cooled and A cast molded body 80 can be obtained by curing. Note that there are no particular limitations on the casting method.
In addition, in order to further reduce the content of impurity components (O, P, and S) in the alloy (increase the cleanliness of the alloy), the melting step S1 mixes and melts the raw materials of the Cr-Ni alloy to form a molten metal. an electrode manufacturing process (step 1a: S1a) in which the consumable electrode 10 is once solidified by casting to manufacture the consumable electrode 11; and a remelting process (step 1b: S1b) in which the consumable electrode is remelted to prepare the cleaned molten metal 12. ) may be applied. There is no particular limitation on the remelting method as long as the cleanliness of the alloy can be improved, but for example, vacuum arc remelting (VAR) or electroslag remelting (ESR) can be preferably used. When the remelting process is applied, the ingot obtained by the remelting becomes a cast molded body.
The obtained cast molded body 80 has a cast structure, but by using a mold having a cooling mechanism such as a water cooling pipe inside the wall surface, for example, it exhibits a rapidly solidified structure in which the cast molten metal is rapidly cooled and solidified. It can be made into a rapidly solidified molded body. Although the cast molded body 80 may be used as it is as a member constituting various devices, a shaping step S5 is further performed to shape the dimensions and shape of the cast molded body 80 in consideration of connection to other components, etc. It may be set to 50. Examples of shaping methods include cutting using a milling machine, grinding using a whetstone, and polishing.

<合金製造物>
上記のようにして製造したCr-Ni系合金は、耐食性と耐摩耗性(耐土砂摩耗性)を両立することができる。
その結果、本開示のCr-Ni系合金製造物は、厳しい腐食環境および摩耗環境下において用いられる種々の部材として好適に利用できる。当該適用部材としては、自動車用部材(例えば、燃料噴射装置部材、ローラーチェーン部材、ターボチャージャー部材、エンジン排気系統部材、ベアリング部材)や、鉄道関連部材(例えば、ベアリング部材、パンタグラフ部材)や、転がり軸受およびすべり軸受部材(例えばリニア軸受部材、風車軸受部材、水車軸受部材、換気扇軸受部材、ミキシング・ドラム軸受部材、コンプレッサー軸受部材、エレベータ軸受部材、エスカレータ軸受部材、惑星探査機軸受部材)や、建設機器部材(例えば、無限軌道部材、ミキシング・ドラム部材)や、船舶および潜水艦用部材(例えば、スクリュー部材)や、環境機器部材(例えば、ゴミ焼却炉部材、破砕機械)や、自転車、二輪自動車および水上バイク用部材(例えば、ローラーチェーン部材、スプロケット部材)や、機械加工装置部材(例えば、金型、圧延ロール、切削工具部材)や、油井用機器部材(例えば、回転機械(圧縮機、ポンプ)の部材(軸、軸受))や、海水環境機器部材(例えば、海水淡水化プラント機器部材、アンビリカルケーブル)や、化学プラント機器部材(例えば、液化天然ガス気化装置部材)や、発電機器関連部材(例えば、石炭ガス化装置部材、耐熱配管部材、燃料電池用セパレータ部材、燃料改質機器部材)などが挙げられる。前述の部材のうち、特に油井用機器部材や機械加工装置、環境機器部材への適用が好ましい。
<Alloy products>
The Cr--Ni alloy produced as described above can have both corrosion resistance and wear resistance (earth and sand wear resistance).
As a result, the Cr--Ni alloy product of the present disclosure can be suitably used as various members used in severe corrosive and abrasive environments. The applicable parts include automobile parts (for example, fuel injection system parts, roller chain parts, turbocharger parts, engine exhaust system parts, bearing parts), railway-related parts (for example, bearing parts, pantograph parts), and rolling parts. Bearings and plain bearings (e.g. linear bearings, windmill bearings, water turbine bearings, ventilation fan bearings, mixing drum bearings, compressor bearings, elevator bearings, escalator bearings, planetary probe bearings), construction Equipment parts (e.g. track parts, mixing drum parts), ship and submarine parts (e.g. screw parts), environmental equipment parts (e.g. garbage incinerator parts, crushing machines), bicycles, two-wheeled vehicles and Watercraft parts (e.g. roller chain parts, sprocket parts), machining equipment parts (e.g. molds, rolling rolls, cutting tool parts), oil well equipment parts (e.g. rotating machines (compressors, pumps)) (shafts, bearings)), seawater environment equipment parts (e.g. seawater desalination plant equipment parts, umbilical cables), chemical plant equipment parts (e.g. liquefied natural gas vaporization equipment parts), power generation equipment related parts ( Examples include coal gasifier members, heat-resistant piping members, fuel cell separator members, fuel reformer members), and the like. Among the above-mentioned members, application to oil well equipment members, machining equipment, and environmental equipment members is particularly preferable.

図4(a)は、本開示に係るCr-Ni系合金製造物およびそれを利用した工業製品の一例であり、土砂(固形物)など含む有機酸などの腐食成分を含む原油のような流体の搬送で用いられるスクリューポンプの断面模式図である。スクリューポンプにおいては、例えば搬送される被搬送物と接触するスクリュー表面やケーシング表面のほか、図示しないが吸入口や吐出口に接続された配管部材の内側表面などの合金被覆層として本開示のCr-Ni系合金製造物を好適に利用できる。該合金被覆層は、肉盛溶接材の形態で製造することができる。
図4(b)は、本開示のCr-Ni系合金製造物およびそれを利用した工業製品の他の一例であり、射出成形金型の断面模式図である。射出成形金型においては、例えば、上型と下型との間に設けた空間に充填される、溶融したプラスチックや、金属粉末とバインダーの混合物などと接触する金型基材表面の合金被覆層として本開示のCr-Ni系合金製造物を好適に利用できる。該合金被覆層は、肉盛溶接材の形態で製造することができる。
図4(c)は、本開示のCr-Ni系合金製造物およびそれを利用した工業製品の他の一例であり、岩石やコンクリート廃材などの被搬送物を揺動する歯板間で圧砕加工する、ジョークラッシャーと呼ばれる破砕機械の断面模式図である。破砕機械においては、例えば岩石などの被破砕物に接する固定歯板、可動歯板表面の合金被覆層として本開示のCr-Ni系合金製造物を好適に利用できる。該合金被覆層は、肉盛溶接材の形態で製造することができる。
なお、上記の工業製品への適用例では対象部材の表面に合金被覆層を設ける例を述べたが、対象部材全体を本開示のCr-Ni系合金製造物で構成してもよい。
FIG. 4(a) is an example of a Cr-Ni alloy product according to the present disclosure and an industrial product using the same. FIG. 2 is a schematic cross-sectional view of a screw pump used for transporting In a screw pump, the Cr of the present disclosure is used as an alloy coating layer, for example, on the screw surface and casing surface that come into contact with the transported object, as well as on the inner surface of piping members connected to the suction port and the discharge port (not shown). - Ni-based alloy products can be suitably used. The alloy coating layer can be produced in the form of a build-up weld material.
FIG. 4(b) is another example of the Cr—Ni alloy product of the present disclosure and an industrial product using the same, and is a schematic cross-sectional view of an injection mold. In an injection mold, for example, an alloy coating layer on the surface of the mold base material that comes into contact with molten plastic or a mixture of metal powder and binder, which fills the space between the upper mold and the lower mold. The Cr--Ni based alloy product of the present disclosure can be suitably used as a material. The alloy coating layer can be produced in the form of a build-up weld material.
FIG. 4(c) shows another example of the Cr-Ni alloy product of the present disclosure and an industrial product using the same, in which objects to be conveyed, such as rocks and concrete waste, are crushed between swinging tooth plates. It is a cross-sectional schematic diagram of a crushing machine called a jaw crusher. In a crushing machine, the Cr--Ni alloy product of the present disclosure can be suitably used as an alloy coating layer on the surfaces of a fixed tooth plate and a movable tooth plate that are in contact with objects to be crushed, such as rocks. The alloy coating layer can be produced in the form of a build-up weld material.
In addition, in the application example to the above-mentioned industrial product, an example was described in which an alloy coating layer is provided on the surface of the target member, but the entire target member may be composed of the Cr--Ni based alloy product of the present disclosure.

以下、実施例および比較例により本開示をさらに具体的に説明する。なお、本開示はこれらの実施例に限定されるものではない。
(試験片の特性評価方法)
(1)耐摩耗性(耐土砂摩耗性)評価
原油採掘向けの機器は、これと接触する原油中の砂礫などによる摩耗を受ける。そこで、耐摩耗性評価として土砂摩耗試験を実施した。試験方法はASTM規格G65に準拠した。各組成の成形体を切断・研磨した試験片は試験前重量を測定した後、回転するゴムディスクを試験片に所定の荷重で押し当てた状態で、両者の接触面間に試験用の珪砂を10分間連続供給した。その後、試験片重量を測定して試験前後の質量変化を求め、試験に伴うゴムディスクの損耗による直径の変化を加味した摩耗体積AVL(単位:mm)を算出した。
摩耗体積の測定結果は「AVL<180」をAグレード、「180≦AVL<360」をBグレード、「360≦AVL」をCグレードとそれぞれ評価した。耐土砂摩耗性評価の結果は表1~4に併記した。
Hereinafter, the present disclosure will be explained in more detail using Examples and Comparative Examples. Note that the present disclosure is not limited to these examples.
(Method for evaluating characteristics of test piece)
(1) Evaluation of abrasion resistance (earth and sand abrasion resistance) Equipment for crude oil extraction is subject to wear due to sand and gravel in the crude oil that it comes into contact with. Therefore, a soil abrasion test was conducted to evaluate the wear resistance. The test method was based on ASTM standard G65. After measuring the pre-test weight of the test pieces obtained by cutting and polishing the molded bodies of each composition, a rotating rubber disk was pressed against the test piece with a predetermined load, and silica sand for testing was placed between the contact surfaces of the two. It was continuously fed for 10 minutes. Thereafter, the weight of the test piece was measured to determine the change in mass before and after the test, and the abrasion volume AVL (unit: mm 3 ) was calculated, taking into account the change in diameter due to the wear and tear of the rubber disk accompanying the test.
As for the wear volume measurement results, "AVL<180" was evaluated as A grade, "180≦AVL<360" was evaluated as B grade, and "360≦AVL" was evaluated as C grade. The results of the earth and sand abrasion resistance evaluation are also listed in Tables 1 to 4.

(2)耐食性評価
本開示の適用分野として想定している原油採掘向けの機器は、原油中に含まれる硫化水素や、無機塩化物が分解して発生した塩酸などの影響によって強い酸腐食環境に曝される。そこで、耐食性評価として沸騰硫酸浸漬試験を実施した。試験方法はJIS規格G0591:ステンレス鋼の硫酸腐食試験方法に準拠し、試験溶液にはpH1の硫酸を濃度5質量%になるよう純水で希釈したものを用いた。各組成の成形体を切断・研磨した試験片は試験前重量を測定した後、沸騰状態の試験溶液中に6時間浸漬した。その後、試験片質量を測定して試験前後の質量変化を求め、これを試験前の試験片表面積および試験時間で除した値を腐食速度m(単位:g/(m・h))として算出した。
腐食速度の測定結果は「m<3×10」をAグレード、「3×10≦m<10」をBグレード、「10≦m」をCグレードとそれぞれ評価した。耐食性評価の結果は表1~4に併記した。
(3)組織観察
耐食性および耐土砂摩耗性との関係を調べるため、一部の試験片の切断面を鏡面研磨して、走査型電子顕微鏡(SEM)による観察を実施した。
(2) Corrosion resistance evaluation Equipment for crude oil extraction, which is envisioned as the applicable field of this disclosure, is exposed to strong acid corrosion environments due to the effects of hydrogen sulfide contained in crude oil and hydrochloric acid generated by decomposition of inorganic chlorides. be exposed. Therefore, a boiling sulfuric acid immersion test was conducted to evaluate corrosion resistance. The test method was based on JIS standard G0591: Sulfuric acid corrosion test method for stainless steel, and the test solution used was sulfuric acid at pH 1 diluted with pure water to a concentration of 5% by mass. Test pieces obtained by cutting and polishing molded bodies of each composition were weighed before testing, and then immersed in a boiling test solution for 6 hours. Then, measure the mass of the test piece to find the change in mass before and after the test, and divide this by the surface area of the test piece before the test and the test time to calculate the corrosion rate m (unit: g/(m 2 h)). did.
Regarding the measurement results of corrosion rate, "m<3×10 0 " was evaluated as A grade, "3×10 0 ≦m<10 2 " as B grade, and "10 2 ≦m" as C grade. The results of the corrosion resistance evaluation are also listed in Tables 1 to 4.
(3) Microstructure Observation In order to investigate the relationship between corrosion resistance and earth and sand abrasion resistance, the cut surfaces of some of the test pieces were mirror polished and observed using a scanning electron microscope (SEM).

〔実施例1〕
表1に示す組成となるよう原料を混合し、高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解して溶湯を形成した後、溶湯を鋳造して鋳造成形体を作製した。本開示の合金の適用先となる肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。各鋳造成形体は前述の各試験方法に合わせて、所定の試験片形状に切断・研磨した。表1で示すNo.1~4はCを1.0%に固定した比較例であり、No.5~8はCを2.0~2.9%に増やした本発明例の組成とした。No.9~14はCrが約55%または約60%でC以外の組成を概ね固定し、Cを1.5~2.5%に変えた本発明例の組成とした。また、No.15はCを4.5%に増やした比較例であり、No.16はCrを45.0%に減らした本発明例の組成である。なお、「<0.1%」として示すものは0.1%未満のごく微量含まれていたものである。
[Example 1]
Raw materials were mixed to have the composition shown in Table 1, melted by high frequency melting method (melting temperature 1500° C. or higher, in a reduced pressure Ar atmosphere) to form a molten metal, and then the molten metal was cast to produce a cast molded body. Since the overlay material to which the alloy of the present disclosure is applied has a fast cooling rate during overlay construction, the mold used has an elongated shape with a diameter of about 20 mm, and the structure of the cast molded body is adjusted to the overlay weld bead. This resulted in a similar quenched structure. Each cast molded body was cut and polished into a predetermined test piece shape according to each of the above-mentioned test methods. No. shown in Table 1. Nos. 1 to 4 are comparative examples in which C was fixed at 1.0%; Samples 5 to 8 had compositions of examples of the present invention in which C was increased to 2.0 to 2.9%. No. Samples Nos. 9 to 14 had compositions of examples of the present invention in which Cr was about 55% or about 60%, the composition other than C was generally fixed, and C was changed to 1.5 to 2.5%. Also, No. No. 15 is a comparative example in which C was increased to 4.5%. No. 16 is the composition of the present invention example in which Cr was reduced to 45.0%. In addition, what is shown as "<0.1%" is contained in a very small amount of less than 0.1%.

Figure 2024020264000002
Figure 2024020264000002

図5は各試験片における腐食速度mおよび摩耗体積AVLの試験結果を示す。各プロットの横に記した丸付き数字は、表1で示した各組成のNo.に対応している。
耐土砂摩耗性については、Cが1.0質量%の比較例No.1~4合金はいずれもCグレードと判定され、耐土砂摩耗性は悪い。図6および図7に比較例No.1~4合金の走査型電子顕微鏡(SEM)観察像を示すが、No.1合金は微細な共晶組織を有する相中に、島状の相が存在する二相組織であった。また、No.2~4合金はいずれも炭化物と見られる、微細な晶出物もしくは析出物が全体に分散した組織であった。ここでNo.2合金とNo.4合金とを比較すると、No.2合金は白色に見えるマトリックス中に直線的に伸びる灰色の部分が見られるが、その長さは数μmと短い。一方、No.4合金の組織はNo.2合金に似ているが、直線的に伸びる灰色の部分は数十μmと長くなっており、No.2合金と比べて炭化物が成長したものと考えられる。このような組織の違いが現れた理由はNiとFeのバランスによるが、いずれの組成でも炭化物の幅が1μm以下と薄く、耐土砂摩耗性の向上には寄与しなかったものと考えられる。
FIG. 5 shows the test results of corrosion rate m and wear volume AVL for each test piece. The circled numbers written next to each plot indicate the No. of each composition shown in Table 1. It corresponds to
Regarding earth and sand abrasion resistance, Comparative Example No. 1 containing 1.0% by mass of C. Alloys 1 to 4 were judged to be grade C, and had poor earth and sand abrasion resistance. Comparative example No. 6 and FIG. Scanning electron microscopy (SEM) images of alloys No. 1 to 4 are shown below. Alloy No. 1 had a two-phase structure in which island-like phases were present in a phase having a fine eutectic structure. Also, No. All alloys 2 to 4 had a structure in which fine crystallized substances or precipitates, which appeared to be carbides, were dispersed throughout. Here No. 2 alloy and No. Comparing with 4 alloys, No. In Alloy No. 2, gray portions extending linearly are seen in the white matrix, but the length is short, a few μm. On the other hand, No. The structure of the 4 alloy is No. Although it is similar to Alloy No. 2, the gray part that extends linearly is several tens of μm long. This is thought to be due to the growth of carbides compared to alloy No. 2. The reason why such a difference in structure appeared is due to the balance between Ni and Fe, but it is thought that the width of the carbide was thin at 1 μm or less in any composition, and did not contribute to improving the earth and sand abrasion resistance.

一方、本発明例のCを1.1質量%超含むNo.5~16合金の場合、全ての合金で耐土砂摩耗性がAグレード;AVL<180を達成した。ここで図8にはNo.5およびNo.6合金、図9にはNo.7およびNo.8合金のSEM観察像を示す。いずれの画像でも、先に図6、図7で示したCを1.0質量%含む場合とは異なり、概ね20μmを超える大きさの、暗灰色もしくは黒色で表示された塊状の炭化物が分散していることが分かる。この塊状の炭化物をエックス線分析装置で分析した結果、Crを主成分とするCr系炭化物であった。この塊状のCr炭化物は、肉盛施工時に溶融した合金の液相中で晶出、成長し、それが急速に冷却されて凝固する際に組織中に分散した状態のまま残留したものと考えられる。
ここで観察領域に占める塊状の炭化物の量と耐土砂摩耗性との関係を見ると、塊状の炭化物が現れていないNo.1~4合金はAVL>400であるのに対し、炭化物が多いNo.5~8合金はAVL<180の範囲であり、組織中に塊状の炭化物が増加することで耐土砂摩耗性を向上させたと考えられる。
なお、炭化物の色調の違いは、両者の炭化物形態が異なっていることを示しており、黒色に見える領域がM型のCr炭化物、暗灰色に見える領域はM23型のCr炭化物であると考えている。各形態のCr炭化物のビッカース硬さは1000を上回ると考えられ、どちらも耐土砂摩耗性の向上に寄与するものである。
一方、本発明例のNo.16はCrの含有量が他の本発明例よりも低く、Bブレード評価となったが、No.1~4や下記で説明する比較例のNo.51~56に比較すれば、同等以上のものである。なお、Cを1.1質量%超含む場合、Crは46.0%超であることが好ましい。
On the other hand, No. 1 containing more than 1.1% by mass of C of the present invention example. In the case of alloys 5 to 16, all alloys achieved earth and sand wear resistance of grade A; AVL<180. Here, in FIG. 5 and no. 6 alloy, No. 6 alloy in Figure 9. 7 and no. SEM observation images of No. 8 alloy are shown. In both images, unlike the case of containing 1.0% by mass of C shown in FIGS. 6 and 7, lumpy carbides approximately larger than 20 μm and displayed in dark gray or black are dispersed. I can see that As a result of analyzing this lumpy carbide using an X-ray analyzer, it was found to be a Cr-based carbide containing Cr as a main component. It is thought that these lumpy Cr carbides crystallized and grew in the liquid phase of the molten alloy during overlay construction, and remained dispersed in the structure when it was rapidly cooled and solidified. .
Looking at the relationship between the amount of lumpy carbide occupying the observation area and the earth and sand wear resistance, No. 3 has no lumpy carbide. Alloys No. 1 to 4 have AVL>400, whereas No. 4 has a large amount of carbides. Alloys 5 to 8 have an AVL<180, and it is thought that the increase in blocky carbides in the structure improves the earth and sand wear resistance.
The difference in the color tone of the carbide indicates that the two carbide forms are different; the black region is M 7 C 3 type Cr carbide, and the dark gray region is M 23 C 6 type Cr. I think it's carbide. The Vickers hardness of each form of Cr carbide is thought to exceed 1000, and both contribute to improving earth and sand abrasion resistance.
On the other hand, the present invention example No. No. 16 had a lower Cr content than the other invention examples and was rated as a B blade. 1 to 4 and the comparative example No. 1 to 4 described below. Compared to 51 to 56, they are equivalent or better. In addition, when C is contained in excess of 1.1% by mass, it is preferable that Cr is in excess of 46.0%.

次に、図10にはNo.9~11合金のSEM観察像を示す。画像の色調から、いずれもM型の炭化物と考えられるが、Cを1.5質量%含むNo.9合金の炭化物の大きさが概ね15μm前後であるのに対して、Cを2.0質量%含むNo.10合金の炭化物の大きさは概ね20μm前後、Cを2.5質量%含むNo.11合金の炭化物の大きさは概ね30μm前後であり、観察領域に占める炭化物の割合が増加している。ここで図5を見るとNo.9、No.10、No.11合金の順に摩耗体積AVLが減少しており、組織中の炭化物が増加することで耐土砂摩耗性が向上したと考えられる。
次に、図11にはNo.12~14合金のSEM観察像を示すが、画像の色調からNo.12およびNo.13合金の炭化物はM23型、No.14合金が主にM型と考えられる。両者は炭化物形態や個々の大きさに違いがあるが、Cが多いほうが組織中に占める炭化物の割合が大きくなり、これが耐土砂摩耗性の違いとなったと考えられる。
なお、発明者らによる平衡状態図計算など用いた検討によれば、本開示の合金でCが比較的少ない場合の炭化物はM23型で、Cが多くなるとM型が現れるようになり、かつ、Crが多いほどMが現れるのにより多くのCを必要とする傾向にある。図10および図11を比較すると、Crが55質量%の図10における炭化物がM型であるのに対し、Crが60質量%の図11における炭化物はM23型が多くの部分を占めており、前記の傾向によく合致している。
Next, in FIG. SEM observation images of alloys 9 to 11 are shown. Judging from the color tone of the images, all of them are considered to be M 7 C 3 type carbides, but No. 1 containing 1.5% by mass of C. While the size of the carbide in Alloy No. 9 is approximately 15 μm, the size of carbides in Alloy No. 9 containing 2.0% by mass of C is approximately 15 μm. The size of carbides in Alloy No. 10 is approximately 20 μm, and alloy No. 10 contains 2.5% by mass of C. The size of carbides in Alloy No. 11 is approximately 30 μm, and the proportion of carbides in the observation area is increasing. Looking at FIG. 5 here, No. 9, No. 10, No. The wear volume AVL decreased in the order of No. 11 alloys, and it is thought that the earth and sand wear resistance improved due to the increase in carbides in the structure.
Next, in FIG. The SEM observation images of alloys 12 to 14 are shown, and based on the color tone of the images, No. 12 and no. 13 alloy carbide is M 23 C 6 type, No. 14 alloy is considered to be mainly M 7 C 3 type. Although there are differences in carbide form and individual size between the two, the higher the carbon content, the greater the proportion of carbides in the structure, which is thought to be the reason for the difference in soil and sand abrasion resistance.
Furthermore, according to studies conducted by the inventors using equilibrium phase diagram calculations, etc., when the alloy of the present disclosure has a relatively small amount of C, the carbides are of the M 23 C 6 type, and when the amount of C increases, the M 7 C 3 type appears. The more Cr there is, the more C tends to be required for M 7 C 3 to appear. Comparing FIGS. 10 and 11, the carbide in FIG. 10 with 55% by mass of Cr is of the M 7 C 3 type, whereas the carbide in FIG. 11 with 60% by mass of Cr is mostly of the M 23 C 6 type. This is in good agreement with the above-mentioned trend.

〔実施例2〕
表2に示す組成となるよう原料を混合し、高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解して溶湯を形成した後、溶湯を鋳造して鋳造成形体を作製した。本開示の合金の適用先となる肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。各鋳造成形体は前述の各試験方法に合わせて、所定の試験片形状に切断・研磨した。表2で示すNo.21~26、28は本発明例の組成であり、No.27はBが上限を外れた比較例である。これらの耐摩耗性(耐土砂摩耗性)評価、耐食性評価、組織観察を上記の実施例1と同様に行った。なお、「<0.1%」として示すものは0.1%未満のごく微量含まれていたものである。
[Example 2]
Raw materials were mixed to have the composition shown in Table 2, and melted by high frequency melting method (melting temperature 1500° C. or higher, in a reduced pressure Ar atmosphere) to form a molten metal, and then the molten metal was cast to produce a cast molded body. Since the overlay material to which the alloy of the present disclosure is applied has a fast cooling rate during overlay construction, the mold used has an elongated shape with a diameter of about 20 mm, and the structure of the cast molded body is adjusted to the overlay weld bead. This resulted in a similar quenched structure. Each cast molded body was cut and polished into a predetermined test piece shape according to each of the above-mentioned test methods. No. shown in Table 2. Nos. 21 to 26 and 28 are compositions of examples of the present invention; No. 27 is a comparative example in which B is outside the upper limit. These abrasion resistance (earth and sand abrasion resistance) evaluations, corrosion resistance evaluations, and microstructural observations were performed in the same manner as in Example 1 above. In addition, what is shown as "<0.1%" is contained in a very small amount of less than 0.1%.

Figure 2024020264000003
Figure 2024020264000003

図12は各試験片における腐食速度mおよび摩耗体積AVLの試験結果を示す。各プロットの横に記した括弧付き数字は、表2で示した各組成のNo.に対応している。
耐土砂摩耗性については、本発明例のNo.21~26の合金で耐土砂摩耗性がAグレード;AVL<180を達成した。ここで図13~15には本発明例のNo.21~26の各合金のSEM観察像を示す。いずれの画像でも、黒色で概ね幅方向に3μm、長手方向に30μmを超える大きさの細長い断面形状を有する塊状の硼化物が分散している。この塊状の硼化物をエックス線分析装置で分析した結果、Crを主成分とするCr系硼化物であった。この塊状のCr硼化物は、肉盛施工時に溶融した合金の液相中で晶出、成長し、それが急速に冷却されて凝固する際に組織中に分散した状態のまま残留したものと考えられる。
この塊状のCr硼化物はビッカース硬さが1000を上回ると考えられる硬質なものであり、この硬質なCr硼化物の増加が耐土砂摩耗性の向上に寄与したと考えられる。
次にBが4.0質量%の比較例No.27合金は、耐土砂摩耗性がAグレードを達成したが、耐食性はCグレードと非常に悪い結果であった。SEM観察像を図16に示すが、No.21~26と比べてNo.27は最も多くのCr硼化物が分散している。このことから、No.27ではCr硼化物の晶出時により多くのCrが消費されてしまい、他の母相中のCrが減少して耐食性が悪化したと考えられる。
次にCrが42.0%の本発明例No.28合金は、耐食性と耐摩耗性がいずれもBグレードであった。SEM観察像を図17に示すが、No.21~26と比べて個々のCr硼化物は細く短いものであった。このことは、Crが少ないことでCr硼化物の晶出量が減ったことと、もともと母相に含まれるCrが少ないためと考えられる。このNo.28は、他の本発明例には劣るものの、下記で説明する比較例のNo.51~56に比較すれば、同等以上のものである。なお、Cr硼化物を構成する場合、Cr量が45%以上であることが好ましい。
FIG. 12 shows the test results of corrosion rate m and wear volume AVL for each test piece. The numbers in parentheses written next to each plot indicate the No. of each composition shown in Table 2. It corresponds to
Regarding earth and sand abrasion resistance, No. Alloys No. 21 to 26 achieved earth and sand abrasion resistance of grade A; AVL<180. Here, FIGS. 13 to 15 show No. 1 of the present invention example. SEM observation images of each alloy No. 21 to No. 26 are shown. In both images, lump-like borides are dispersed in black color and have an elongated cross-sectional shape of approximately 3 μm in the width direction and more than 30 μm in the longitudinal direction. As a result of analyzing this lumpy boride using an X-ray analyzer, it was found to be a Cr-based boride containing Cr as a main component. It is thought that this lumpy Cr boride crystallizes and grows in the liquid phase of the molten alloy during overlay construction, and remains dispersed in the structure when it is rapidly cooled and solidified. It will be done.
This lumpy Cr boride is considered to be hard with a Vickers hardness exceeding 1000, and it is believed that the increase in this hard Cr boride contributed to the improvement in the earth and sand abrasion resistance.
Next, Comparative Example No. 4.0% by mass of B. Alloy No. 27 achieved A grade in earth and sand abrasion resistance, but had a very poor corrosion resistance of C grade. The SEM observation image is shown in FIG. No. 21-26. No. 27 has the largest amount of Cr boride dispersed. From this, No. It is thought that in No. 27, more Cr was consumed during crystallization of Cr boride, and Cr in other parent phases decreased, resulting in deterioration of corrosion resistance.
Next, the present invention example No. with 42.0% Cr. Alloy No. 28 was grade B in both corrosion resistance and wear resistance. The SEM observation image is shown in FIG. 17. Compared to Nos. 21 to 26, the individual Cr borides were thin and short. This is considered to be because the amount of Cr boride crystallized was reduced due to the small amount of Cr, and also because the amount of Cr originally contained in the matrix was small. This No. Although No. 28 is inferior to other examples of the present invention, No. 28 is a comparative example described below. Compared to 51 to 56, they are equivalent or better. In addition, when constituting Cr boride, it is preferable that the amount of Cr is 45% or more.

〔実施例3〕
表3に示す組成となるよう原料を混合し、高周波溶解法(溶解温度1500℃以上、減圧Ar雰囲気中)により溶解して溶湯を形成した後、溶湯を鋳造して鋳造成形体を作製した。本開示の合金の適用先となる肉盛材料では肉盛施工時の冷却速度が速いことから、使用する鋳型は直径約20mmの細長い形状を選択し、鋳造成形体の組織が肉盛溶接ビードに近い急冷組織となるようにした。各鋳造成形体は前述の各試験方法に合わせて、所定の試験片形状に切断・研磨した。表3で示すNo.31~35はCを1.0%に固定した本発明例であり、No.36、37はCを1.0%超に、No.38、39はCを1.0%未満とした本発明例である。No.40はNbに対するCの比率を増やすようにCを2.2%加えた本発明例である。No.41はNo.34と類似の組成で、NbとCの比率を8:1のまま両者を増やした本発明例である。これらの耐摩耗性(耐土砂摩耗性)評価、耐食性評価、組織観察を上記の実施例1と同様に行った。
[Example 3]
Raw materials were mixed to have the composition shown in Table 3, melted by high frequency melting method (melting temperature 1500° C. or higher, in a reduced pressure Ar atmosphere) to form a molten metal, and then the molten metal was cast to produce a cast molded body. Since the overlay material to which the alloy of the present disclosure is applied has a fast cooling rate during overlay construction, the mold used has an elongated shape with a diameter of about 20 mm, and the structure of the cast molded body is adjusted to the overlay weld bead. This resulted in a similar quenched structure. Each cast molded body was cut and polished into a predetermined test piece shape according to each of the above-mentioned test methods. No. shown in Table 3. Nos. 31 to 35 are examples of the present invention in which C was fixed at 1.0%; No. 36 and 37 contain more than 1.0% C. Nos. 38 and 39 are examples of the present invention in which C was less than 1.0%. No. No. 40 is an example of the present invention in which 2.2% of C was added to increase the ratio of C to Nb. No. 41 is No. This is an example of the present invention having a composition similar to No. 34, but with the ratio of Nb and C kept at 8:1 and both increased. These abrasion resistance (earth and sand abrasion resistance) evaluations, corrosion resistance evaluations, and microstructural observations were performed in the same manner as in Example 1 above.

Figure 2024020264000004
Figure 2024020264000004

図18は各試験片における腐食速度mおよび摩耗体積AVLの試験結果を示す。各プロットの横に記した括弧付き数字は、表3で示した各組成のNo.に対応している。
いずれの合金も耐土砂摩耗性、耐食性ともにAグレードと判定され、良好な特性が得られた。図19~23は本発明例の各合金における走査型電子顕微鏡(SEM)観察像を示すが、例えば図19のNo.31合金は、白色コントラストで見える20μm以下の塊状、棒状および点状の晶出もしくは析出物を有し、母相は暗灰色コントラストで見えるフェライト相と明灰色コントラストで見える島状のオーステナイト相が存在する二相組織であった。
No.32合金も同様に、いずれも白色コントラストで見える20μm以下の塊状、棒状、点状、羽毛状および樹枝状に広がった晶出もしくは析出物が全体に分散した組織であった。これらの白色コントラストで見える部分をEDXやX線による分析の結果、Nbを主成分とするNb系炭化物であった。また、二相組織のうち、島状のオーステナイト相の一部には黒色コントラストで見える共晶状の組織が存在し、EDXやX線による分析の結果、Crを主成分とするCr系炭化物であった。
一方、No.33合金も白色コントラストで見えるNb系炭化物を有するが、No.1、2合金のような10μm程度の塊状のNb系炭化物は見られず、20μm以下の棒状、点状、羽毛状および樹枝状に広がった晶出物もしくは析出物が分散した組織であった。
FIG. 18 shows the test results of corrosion rate m and wear volume AVL for each test piece. The numbers in parentheses written next to each plot indicate the No. of each composition shown in Table 3. It corresponds to
All alloys were judged to be grade A in both earth and sand abrasion resistance and corrosion resistance, and had good properties. 19 to 23 show scanning electron microscopy (SEM) images of each alloy of the invention examples. For example, No. 1 in FIG. Alloy 31 has lump-like, rod-like, and dot-like crystallization or precipitates that are visible in white contrast, and the parent phase includes a ferrite phase that is visible in dark gray contrast, and an island-like austenite phase that is visible in light gray contrast. It was a two-phase structure.
No. Similarly, Alloy No. 32 had a structure in which crystals or precipitates of 20 μm or less in size, visible in white contrast, spread out in the form of lumps, rods, dots, feathers, and branches, dispersed throughout. EDX and X-ray analyzes of these white contrast areas revealed that they were Nb-based carbides containing Nb as a main component. In addition, among the two-phase structures, there is a eutectic structure visible in black contrast in a part of the island-like austenite phase, and as a result of EDX and X-ray analysis, it was found that it is a Cr-based carbide with Cr as the main component. there were.
On the other hand, No. Alloy No. 33 also has Nb-based carbides that are visible in white contrast, but No. No lumpy Nb-based carbides of about 10 μm as seen in Alloys 1 and 2 were observed, and the structure was a dispersion of crystallized or precipitated substances of 20 μm or less that spread out in rod-like, dot-like, feather-like, and dendritic shapes.

同様に図20~23は本発明例のNo.34~41合金組織のSEM観察像を示すが、いずれの合金も前述のNo.31~33と同様に塊状、棒状、点状、羽毛状および樹枝状に広がった晶出もしくは析出物が全体に分散した組織であった。これらの合金も全て耐土砂摩耗性、耐食性ともにAグレードと判定され、良好な特性が得られた。
ところで、組織中に硬質粒子(Nb系炭化物)を分散させることで摩耗を抑止させる場合、硬質粒子自体の強度が低ければ効果は小さくなるため、硬質粒子はある程度大きなサイズの塊状であることが望ましいと思われる。しかし、例えば本発明例の合金No.33では共晶状のNb系炭化物が大部分であって塊状のNb系炭化物が見られないものの、耐土砂摩耗性は他の本開示の合金と比べても良好な特性が得られている。これは、本開示の合金では母相を構成する二相組織のうち硬質なフェライト相中にNb系炭化物が存在するため、フェライト相がNb系炭化物の強度を補うこととなり、この共晶状の領域が仮想的な硬質粒子として作用しているものと考えられる。
よって、本開示の合金の耐摩耗性は、塊状のNb系炭化物の数や大きさだけでなく、Nb系炭化物相の総面積、分布状態および形状などの影響を受けていると考えられる。図19~23のSEM写真を含む複数の視野で撮影した各合金のSEM写真に対して、白色コントラストで見えるNb系炭化物の部分とそれ以外の部分を画像解析ソフトにより二値化し、Nb系炭化物が視野全体に占める面積率を算出したところ、概ね6~20%の範囲であった。
Similarly, FIGS. 20 to 23 show No. 2 of the invention example. SEM observation images of the structures of alloys 34 to 41 are shown, and all alloys are similar to the aforementioned No. Similar to Nos. 31 to 33, the structure had crystallized or precipitated substances dispersed throughout in the form of lumps, rods, dots, feathers, and dendritic shapes. All of these alloys were judged to be grade A in both earth and sand abrasion resistance and corrosion resistance, and had good properties.
By the way, when suppressing wear by dispersing hard particles (Nb-based carbide) in the structure, the effect will be smaller if the strength of the hard particles themselves is low, so it is desirable that the hard particles be in the form of a block of a certain size. I think that the. However, for example, alloy No. of the present invention example. In No. 33, most of the eutectic Nb-based carbides are present, and no lumpy Nb-based carbides are observed, but good earth and sand abrasion resistance is obtained compared to other alloys of the present disclosure. This is because in the alloy of the present disclosure, Nb-based carbide exists in the hard ferrite phase of the two-phase structure that constitutes the matrix, so the ferrite phase supplements the strength of the Nb-based carbide, and this eutectic It is thought that the region acts as a virtual hard particle.
Therefore, it is considered that the wear resistance of the alloy of the present disclosure is influenced not only by the number and size of lumpy Nb-based carbides, but also by the total area, distribution state, shape, etc. of the Nb-based carbide phase. For the SEM photographs of each alloy taken in multiple fields of view, including the SEM photographs in Figures 19 to 23, the Nb-based carbide part visible in white contrast and the other parts were binarized using image analysis software. When the area ratio occupied by the whole visual field was calculated, it was approximately in the range of 6 to 20%.

なお、発明者らによる平衡状態図計算など用いた検討によれば、本開示の合金でCr系炭化物が現れるのはCrが多い場合のほか、CがNbに対して過剰に添加された場合であり、このときのCr系炭化物は主にM23型である。No.32、33、36合金ではオーステナイト相の内部に共晶状のCr系炭化物が現れているほか、Nbに対するCの比率を大きくしたNo.40では細長い塊状のCr系炭化物が現れている。これらのCr系炭化物は硬質で、Nb系炭化物と同様に耐摩耗性に寄与するものであるが、一方でCr系炭化物の生成には母相中のCrが消費されるため耐食性を悪化させる懸念がある。よって、Cの添加量は過度に多くならないように留意する必要がある。 According to studies conducted by the inventors using equilibrium phase diagram calculations, Cr-based carbides appear in the alloy of the present disclosure not only when there is a large amount of Cr, but also when C is added in excess of Nb. The Cr-based carbide at this time is mainly of the M 23 C 6 type. No. In No. 32, No. 33, and No. 36 alloys, eutectic Cr-based carbides appear inside the austenite phase, and No. 32, No. 33, and No. 36 alloys have eutectic Cr-based carbides inside the austenite phase. At No. 40, elongated lumpy Cr-based carbides appear. These Cr-based carbides are hard and contribute to wear resistance like Nb-based carbides, but on the other hand, there is a concern that Cr in the matrix is consumed in the production of Cr-based carbides, which may deteriorate corrosion resistance. There is. Therefore, care must be taken not to increase the amount of C added excessively.

〔比較例〕
本開示のCr-Ni系合金における耐食性および耐摩耗性(耐土砂摩耗性)の水準比較のため、表4に示した市販の表面改質用肉盛材に相当する組成の粉末4種類と、C、B、Nbを添加しないCr基合金2種類(50Cr、63Cr)の粉末を使い、SUS304母材にPTA肉盛溶接装置で施工、形成した溶接ビードを切断、研磨して試験片を作製し、沸騰硫酸浸漬試験および土砂摩耗試験を実施した。それぞれの試験条件は前述の試験片の特性評価方法で示したものと同じとした。表4に市販の肉盛材及び比較例Cr基合金の組成、耐食性及び耐土砂磨耗性の結果を示し、図24には各肉盛材料の腐食速度および土砂摩耗体積の試験結果を示す。
今回比較した肉盛材料では、耐食性と耐土砂摩耗性の両方でAグレードを達成した材料は無かった。市販のNo.51~54と同等以上に本開示の合金が耐食性と耐土砂摩耗性の両立を実現していることがわかる。
[Comparative example]
In order to compare the levels of corrosion resistance and abrasion resistance (earth and sand abrasion resistance) in the Cr-Ni alloy of the present disclosure, four types of powders with compositions corresponding to commercially available overlay materials for surface modification shown in Table 4, Powders of two types of Cr-based alloys (50Cr and 63Cr) without the addition of C, B, or Nb were applied to the SUS304 base metal using a PTA overlay welding device, and the weld beads formed were cut and polished to prepare test pieces. , boiling sulfuric acid immersion test and earth and sand abrasion test were conducted. The test conditions for each test were the same as those shown in the method for evaluating the characteristics of the test piece described above. Table 4 shows the composition, corrosion resistance, and earth and sand abrasion resistance of commercially available overlay materials and comparative Cr-based alloys, and FIG. 24 shows the test results of the corrosion rate and earth and sand abrasion volume of each overlay material.
Among the overlay materials compared this time, none achieved A grade in both corrosion resistance and earth and sand abrasion resistance. Commercially available No. It can be seen that the alloy of the present disclosure achieves both corrosion resistance and earth and sand abrasion resistance as well as or better than those of Nos. 51 to 54.

Figure 2024020264000005
Figure 2024020264000005

上述した実施形態や実施例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実施例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and examples have been described to aid understanding of the present invention, and the present invention is not limited to the specific configurations described. For example, it is possible to replace a part of the configuration of the embodiment with a configuration that is common technical knowledge of a person skilled in the art, or it is also possible to add a configuration that is common technical knowledge of a person skilled in the art to the configuration of the embodiment. In other words, the present invention allows deletion, replacement with other configurations, and addition of other configurations to some of the configurations of the embodiments and examples of this specification without departing from the technical idea of the invention. It is possible.

10…溶湯
11…消耗電極
12…清浄化溶湯
20…合金粉末
40…肉盛溶接材
41…基材
42…合金被覆層
50…整形体
60…粉末成形体
70…粉末冶金成形体
80…鋳造成形体

10... Molten metal 11... Consumable electrode 12... Cleaned molten metal 20... Alloy powder 40... Overlay welding material 41... Base material 42... Alloy coating layer 50... Shaped body 60... Powder compact 70... Powder metallurgy compact 80... Casting molding body

Claims (5)

質量%で、
40.0%超65.0%以下のCrと、
4.0%以上30.0%以下のFeと、
0.5%以上2.5%以下のCと、
6.4%以上20%以下のNbと、を含み、
残部がNiおよび不可避的不純物からなり、
前記Niは15%以上であり、
晶出もしくは析出したNb系炭化物が分散した組織を有し、急冷凝固成形体を製造するために用いる、Cr-Ni系合金。
In mass%,
Cr of more than 40.0% and 65.0% or less,
Fe of 4.0% or more and 30.0% or less,
C of 0.5% or more and 2.5% or less,
Contains 6.4% or more and 20% or less Nb,
The remainder consists of Ni and unavoidable impurities,
The Ni is 15% or more,
A Cr--Ni alloy that has a structure in which crystallized or precipitated Nb-based carbides are dispersed and is used for producing rapidly solidified compacts.
前記Cr-Ni系合金は合金粉末である、請求項1に記載のCr-Ni系合金。 The Cr-Ni alloy according to claim 1, wherein the Cr-Ni alloy is an alloy powder. 請求項2に記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金の原料を溶解して溶湯を形成する溶解工程と、
前記溶湯から合金粉末を製造するアトマイズ工程と、を有するCr-Ni系合金の製造方法。
A method for producing a Cr-Ni alloy according to claim 2, comprising:
a melting step of melting the raw material of the Cr-Ni alloy to form a molten metal;
A method for producing a Cr--Ni alloy, comprising: an atomizing step of producing an alloy powder from the molten metal.
請求項2に記載のCr-Ni系合金の製造方法であって、
前記Cr-Ni系合金の原料を溶解して溶湯を形成する溶解工程と、
前記溶湯を鋳造して鋳造成形体を形成する鋳造工程と、
前記鋳造成形体を機械的に粉砕して合金粉末を製造する粉末化工程と、を有するCr-Ni系合金の製造方法。
A method for producing a Cr-Ni alloy according to claim 2, comprising:
a melting step of melting the raw material of the Cr-Ni alloy to form a molten metal;
a casting step of casting the molten metal to form a cast molded body;
A method for producing a Cr--Ni alloy, comprising the step of mechanically pulverizing the cast compact to produce an alloy powder.
請求項1または2に記載のCr-Ni系合金を用いて得られる、急冷凝固成形体。

A rapidly solidified molded body obtained using the Cr-Ni alloy according to claim 1 or 2.

JP2023187223A 2018-03-28 2023-10-31 Cr-Ni BASED ALLOY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND RAPIDLY SOLIDIFIED MOLDED BODY Pending JP2024020264A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018061097 2018-03-28
JP2018061097 2018-03-28
JP2018125305 2018-06-29
JP2018125305 2018-06-29
JP2018157412 2018-08-24
JP2018157412 2018-08-24
JP2020509295A JP7380547B2 (en) 2018-03-28 2019-03-28 Cr-Ni alloy, rapidly solidified compact made of Cr-Ni alloy, alloy powder, powder metallurgy compact, cast compact, method for producing Cr-Ni alloy, and mechanical equipment using Cr-Ni alloy, piping parts
PCT/JP2019/013491 WO2019189531A1 (en) 2018-03-28 2019-03-28 Cr-Ni BASED ALLOY, RAPIDLY SOLIDIFIED MOLDED BODY MADE OF Cr-Ni BASED ALLOY, ALLOY POWDER, POWDER METALLURGY MOLDED BODY, CAST MOLDED BODY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND MECHANICAL EQUIPMENT USING Cr-Ni BASED ALLOY, AND PIPING MEMBER

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020509295A Division JP7380547B2 (en) 2018-03-28 2019-03-28 Cr-Ni alloy, rapidly solidified compact made of Cr-Ni alloy, alloy powder, powder metallurgy compact, cast compact, method for producing Cr-Ni alloy, and mechanical equipment using Cr-Ni alloy, piping parts

Publications (1)

Publication Number Publication Date
JP2024020264A true JP2024020264A (en) 2024-02-14

Family

ID=68062190

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020509295A Active JP7380547B2 (en) 2018-03-28 2019-03-28 Cr-Ni alloy, rapidly solidified compact made of Cr-Ni alloy, alloy powder, powder metallurgy compact, cast compact, method for producing Cr-Ni alloy, and mechanical equipment using Cr-Ni alloy, piping parts
JP2023187223A Pending JP2024020264A (en) 2018-03-28 2023-10-31 Cr-Ni BASED ALLOY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND RAPIDLY SOLIDIFIED MOLDED BODY

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020509295A Active JP7380547B2 (en) 2018-03-28 2019-03-28 Cr-Ni alloy, rapidly solidified compact made of Cr-Ni alloy, alloy powder, powder metallurgy compact, cast compact, method for producing Cr-Ni alloy, and mechanical equipment using Cr-Ni alloy, piping parts

Country Status (2)

Country Link
JP (2) JP7380547B2 (en)
WO (1) WO2019189531A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251423A1 (en) * 2020-06-09 2021-12-16 株式会社日立製作所 Wear-resistant member and mechanical device using same
JP2022093076A (en) * 2020-12-11 2022-06-23 株式会社日立製作所 Abrasion resistance member and machine using the same
CN116275682B (en) * 2023-05-25 2023-09-08 西安热工研究院有限公司 In-situ carbide reinforced abrasion-resistant flux-cored wire and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230759A (en) * 1987-12-29 1989-09-14 Showa Denko Kk Composite powder for thermal spraying
JP2566615B2 (en) * 1988-05-24 1996-12-25 トーカロ株式会社 Weld overlay material with excellent corrosion resistance in chloride-containing environment
JPH0649573A (en) * 1990-12-28 1994-02-22 Daido Steel Co Ltd High hardness roll material
JPH04358054A (en) * 1991-06-03 1992-12-11 Kobe Steel Ltd Powdery material for thermal spraying and surface-coated parts having excellent erosion resistance
EP0751230B1 (en) * 1994-12-02 1999-05-06 Toyota Jidosha Kabushiki Kaisha High-chromium nickel alloy with excellent resistances to wear and lead corrosion and engine valve
US5863618A (en) * 1996-10-03 1999-01-26 Praxair St Technology, Inc. Method for producing a chromium carbide-nickel chromium atomized powder

Also Published As

Publication number Publication date
WO2019189531A1 (en) 2019-10-03
JPWO2019189531A1 (en) 2021-04-08
JP7380547B2 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
EP3414353B1 (en) Hypereutectic white iron alloys comprising chromium, boron and nitrogen and articles made therefrom
JP2024020264A (en) Cr-Ni BASED ALLOY, PRODUCTION METHOD FOR Cr-Ni BASED ALLOY AND RAPIDLY SOLIDIFIED MOLDED BODY
EP2639323B1 (en) Wear-resistant cobalt-based alloy and engine valve coated with same
KR101843070B1 (en) Engine valve coated with ni-fe-cr-based alloy
Zhang et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating
EP3143175A1 (en) Hypereutectic white iron alloys comprising chromium and nitrogen and articles made therefrom
EP2639324B1 (en) High-toughness cobalt-based alloy and engine valve coated with same
CN108884529B (en) Cr-based two-phase alloy and product thereof
JP6481802B1 (en) Cr-Fe-Ni alloy product and method for producing the same
RU2735179C2 (en) Corrosion-resistant article and method of its production
EP3814543B1 (en) Copper-based hardfacing alloy
JP7459787B2 (en) wear resistant parts
KR102429733B1 (en) Corrosion resistant article and methods of making
WO2022244701A1 (en) Ferrous alloy foil, manufacturing method therefor, and component using same
WO2018066303A1 (en) Cr-BASED TWO PHASE ALLOY PRODUCT AND PRODUCTION METHOD THEREFOR
WO2021201106A1 (en) Ni-cr-mo alloy member, ni-cr-mo alloy powder, and composite member
JP7302152B2 (en) Cr--Fe--Ni-based alloy product and its manufacturing method
WO2019163217A1 (en) Cr-fe-ni type alloy product
WO2022124217A1 (en) Abrasion-resistant member and mechanical device using same
JP2021195568A (en) Abrasion resistant member and mechanical device using the same
Nguyen Mechanisms of high temperature tribology and oxidation behaviour of cost-effective high-entropy alloys
WO2024070784A1 (en) Stainless steel powder, stainless steel member, and stainless steel member manufacturing method
JP2021195567A (en) Abrasion resistant member and mechanical device using the same
Kumi A study of WC-X systems for potential binders for WC
JP2019178359A (en) Cr-Fe-Ni-BASED ALLOY MANUFACTURED ARTICLE, AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231114