JP2020063495A - Co-BASED ALLOY AND POWDER THEREOF - Google Patents
Co-BASED ALLOY AND POWDER THEREOF Download PDFInfo
- Publication number
- JP2020063495A JP2020063495A JP2018197125A JP2018197125A JP2020063495A JP 2020063495 A JP2020063495 A JP 2020063495A JP 2018197125 A JP2018197125 A JP 2018197125A JP 2018197125 A JP2018197125 A JP 2018197125A JP 2020063495 A JP2020063495 A JP 2020063495A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- alloy
- phase
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、溶製法、粉末冶金法、粉体肉盛法、レーザー肉盛法、粉末押出法等に適したCo基合金に関する。 The present invention relates to a Co-based alloy suitable for a melting method, a powder metallurgy method, a powder overlay method, a laser overlay method, a powder extrusion method and the like.
CoCrWC系の合金は、耐食性、耐摩耗性及び耐熱性に優れている。この合金は、樹脂成型機の部品、エンジンバルブ、耐熱ロール等に好んで用いられている。この合金の特性の、さらなる向上についての検討が、なされている。 CoCrWC alloys are excellent in corrosion resistance, wear resistance and heat resistance. This alloy is preferably used for parts of resin molding machines, engine valves, heat-resistant rolls and the like. Studies are underway to further improve the properties of this alloy.
特開昭62−026739号公報には、Ni、Al及びTiが添加されたCo基合金が開示されている。これらの元素の添加は、合金の耐熱衝撃性、靱性及び耐酸化性を向上させる。 Japanese Unexamined Patent Publication No. 62-026739 discloses a Co-based alloy to which Ni, Al and Ti are added. Addition of these elements improves the thermal shock resistance, toughness and oxidation resistance of the alloy.
国際公開第2007−066555公報には、Fe、Ni及びMnが添加されたCo基合金が開示されている。これらの元素の添加は、合金の弾性変形能及び磁気特性を向上させる。 International Publication No. 2007-066555 discloses a Co-based alloy to which Fe, Ni and Mn are added. Addition of these elements improves the elastic deformability and magnetic properties of the alloy.
特開昭62−033090号公報には、窒素含有率が少ないCo基合金粉末が開示されている。この粉末は、造形性に優れる。 Japanese Unexamined Patent Publication (Kokai) No. 62-033090 discloses a Co-based alloy powder having a low nitrogen content. This powder has excellent moldability.
特開昭62−033090号公報に開示されたCo基合金では、加熱後の凝固において、金属間化合物であるNi3(Al,Ti)が生成しうる。この金属間化合物は、破壊の起点となり得る。このCo基合金から得られた成形品の耐衝撃性は、十分ではない。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。 In the Co-based alloy disclosed in Japanese Unexamined Patent Publication No. 62-033090, Ni 3 (Al, Ti), which is an intermetallic compound, can be generated during solidification after heating. This intermetallic compound can be the starting point of fracture. The impact resistance of the molded product obtained from this Co-based alloy is not sufficient. In particular, when this molded product is used in a severe corrosive environment, it has a short service life.
国際公開第2007−066555公報に開示されたCo基合金は、熱誘起または応力誘起されたε相を含んでいる。このε相は、h.c.p.構造を有している。このCo基合金では、γ相の含有率が低い。従って、このCo基合金の靱性は不十分である。このCo基合金から得られた成形品は、耐久性に劣る。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。 The Co-based alloy disclosed in International Publication No. 2007-066555 contains a thermally-induced or stress-induced ε phase. This ε-phase is h. c. p. It has a structure. This Co-based alloy has a low γ-phase content. Therefore, the toughness of this Co-based alloy is insufficient. Molded articles obtained from this Co-based alloy have poor durability. In particular, when this molded product is used in a severe corrosive environment, it has a short service life.
特開昭62−033090号公報に開示されたCo基合金粉末では、酸素含有率が高い。この粉末が加熱・溶融されるとき、溶け残りが発生しやすい。この粉末が加熱・溶融されるとき、粒子の表面に酸化物が生成しやすい。この酸化物は、粒子同士の結合力を低下させる。この粉末から得られた成形品は、耐久性に劣る。特に、この成形品が厳しい腐食環境下で使用されると、短期間で使用寿命に至る。 The Co-based alloy powder disclosed in Japanese Patent Laid-Open No. 62-033090 has a high oxygen content. When this powder is heated and melted, unmelted residue is likely to occur. When this powder is heated and melted, oxides are easily generated on the surface of the particles. This oxide reduces the binding force between particles. Molded articles obtained from this powder have poor durability. In particular, when this molded product is used in a severe corrosive environment, it has a short service life.
本発明の目的は、耐食性に優れた成形品が得られうるCo基合金の提供にある。 An object of the present invention is to provide a Co-based alloy capable of obtaining a molded product having excellent corrosion resistance.
本発明に係るCo基合金は、
C:1.10質量%以上2.50質量%未満、
Cr:28.0質量%以上34.0質量%以下、
W:3.0質量%以上11.0質量%未満、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含む。残部は、Co及び不可避的不純物である。
The Co-based alloy according to the present invention,
C: 1.10% by mass or more and less than 2.50% by mass,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 3.0% by mass or more and less than 11.0% by mass,
Si: 0.01 mass% or more and 2.00 mass% or less,
Mn: 0.01 mass% or more and 1.00 mass% or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: 0.5% by mass or more and 15.0% by mass or less are included. The balance is Co and inevitable impurities.
好ましくは、このCo基合金の金属組織の全体に対する、h.c.p.構造を有する相であるε相の体積率Pεは、50.0%未満である。 Preferably, the h. c. p. The volume ratio Pε of the ε phase, which is a phase having a structure, is less than 50.0%.
好ましくは、このCo基合金の金属組織は、M6C系及び/又はM7C3系の炭化物と、f.c.c.構造を有する相であるγ相及び/又はh.c.p.構造を有する相であるε相からなるマトリクスとを含む。この金属組織の全体に対する炭化物の体積率Pcは、12.0%以上35.0%以下である。 Preferably, the metal structure of the Co-based alloy is M6C-based and / or M7C3-based carbide, and f. c. c. A γ-phase having a structure and / or h. c. p. And a matrix composed of ε phase which is a phase having a structure. The volume ratio Pc of carbide to the entire metal structure is 12.0% or more and 35.0% or less.
他の観点によれば、本発明に係る粉末の材質は、Co基合金である。このCo基合金は、
C:1.10質量%以上2.50質量%未満、
Cr:28.0質量%以上34.0質量%以下、
W:3.0質量%以上11.0質量%未満、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含む。残部は、Co及び不可避的不純物である。
According to another aspect, the material of the powder according to the present invention is a Co-based alloy. This Co-based alloy is
C: 1.10% by mass or more and less than 2.50% by mass,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 3.0% by mass or more and less than 11.0% by mass,
Si: 0.01 mass% or more and 2.00 mass% or less,
Mn: 0.01 mass% or more and 1.00 mass% or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: 0.5% by mass or more and 15.0% by mass or less are included. The balance is Co and inevitable impurities.
本発明に係るCo基合金から得られた成形体は、耐食性に優れる。この成形体の寿命は、長い。 The molded body obtained from the Co-based alloy according to the present invention has excellent corrosion resistance. The molded product has a long life.
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。 Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the drawings as appropriate.
本発明に係る粉末は、多数の粒子の集合である。この粒子の材質は、Co基合金である。この合金は、C、Cr、W、Si、Mn、Fe及びNiを含む。残部は、Co及び不可避的不純物である。以下、この合金における各元素の役割が詳説される。 The powder according to the present invention is an aggregate of a large number of particles. The material of the particles is a Co-based alloy. This alloy contains C, Cr, W, Si, Mn, Fe and Ni. The balance is Co and inevitable impurities. The role of each element in this alloy will be described below in detail.
[炭素(C)]
Cは、Cr及びWと結合して炭化物を形成する。この炭化物は、合金の高硬度に寄与しうる。この観点から、Cの含有率は1.10質量%以上が好ましく、1.30質量%以上がより好ましく、1.55質量%以上が特に好ましい。Cの含有率が過剰であると、合金の靱性が低下する。優れた靱性の観点から、Cの含有率は2.50質量%未満が好ましく、1.90質量%以下がより好ましく、1.70質量%以下が特に好ましい。
[Carbon (C)]
C combines with Cr and W to form a carbide. This carbide can contribute to the high hardness of the alloy. From this viewpoint, the C content is preferably 1.10% by mass or more, more preferably 1.30% by mass or more, and particularly preferably 1.55% by mass or more. If the content of C is excessive, the toughness of the alloy decreases. From the viewpoint of excellent toughness, the C content is preferably less than 2.50 mass%, more preferably 1.90 mass% or less, and particularly preferably 1.70 mass% or less.
[クロム(Cr)]
Crは、Cと結合して炭化物を形成する。この炭化物は、合金の常温硬さ、高温硬さ、耐摩耗性及び耐食性に寄与しうる。これらの観点から、Crの含有率は28.0質量%以上が好ましく、29.0質量%以上がより好ましく、29.5質量%以上が特に好ましい。Crの含有率が過剰であると、合金の靱性が低下する。さらに、Crの含有率が過剰であると、後述されるε相が過剰に生成される。このε相は、成形品の靱性を損なう。靱性及び耐食性の観点から、Crの含有率は34.0質量%以下が好ましく、33.0質量%以下がより好ましく、32.5質量%以下が特に好ましい。
[Chromium (Cr)]
Cr combines with C to form a carbide. This carbide can contribute to the room temperature hardness, high temperature hardness, wear resistance and corrosion resistance of the alloy. From these viewpoints, the Cr content is preferably 28.0% by mass or more, more preferably 29.0% by mass or more, and particularly preferably 29.5% by mass or more. If the Cr content is excessive, the toughness of the alloy is reduced. Further, if the Cr content is excessive, the ε phase described below is excessively generated. This ε phase impairs the toughness of the molded product. From the viewpoint of toughness and corrosion resistance, the Cr content is preferably 34.0% by mass or less, more preferably 33.0% by mass or less, and particularly preferably 32.5% by mass or less.
[タングステン(W)]
Wは、Cと結合して炭化物を形成する。この炭化物は、高温硬さ及び耐摩耗性に寄与しうる。これらの観点から、Wの含有率は3.0質量%以上が好ましく、4.0質量%以上がより好ましく、7.5質量%以上が特に好ましい。Wの含有率が過剰であると、合金の靱性が低下する。靱性の観点から、Wの含有率は11.0質量%未満が好ましく、10.5質量%以下がより好ましく、9.0質量%以下が特に好ましい。
[Tungsten (W)]
W combines with C to form a carbide. This carbide can contribute to high temperature hardness and wear resistance. From these viewpoints, the W content is preferably 3.0% by mass or more, more preferably 4.0% by mass or more, and particularly preferably 7.5% by mass or more. If the W content is excessive, the toughness of the alloy decreases. From the viewpoint of toughness, the W content is preferably less than 11.0% by mass, more preferably 10.5% by mass or less, and particularly preferably 9.0% by mass or less.
[ケイ素(Si)]
Siは、合金の耐食性及び切削性に寄与しうる。この観点から、Siの含有率は0.01質量%以上が好ましく、0.20質量%以上がより好ましく、0.50質量%以上が特に好ましい。Siの含有率が過剰であると、合金の靱性が低下する。靱性の観点から、Siの含有率は2.00質量%以下が好ましく、1.90質量%以下がより好ましく、1.80質量%以下が特に好ましい。
[Silicone (Si)]
Si can contribute to the corrosion resistance and machinability of the alloy. From this viewpoint, the Si content is preferably 0.01% by mass or more, more preferably 0.20% by mass or more, and particularly preferably 0.50% by mass or more. If the content of Si is excessive, the toughness of the alloy is reduced. From the viewpoint of toughness, the Si content is preferably 2.00% by mass or less, more preferably 1.90% by mass or less, and particularly preferably 1.80% by mass or less.
[マンガン(Mn)]
Mnは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。この観点から、Mnの含有率は0.01質量%以上が好ましく、0.20質量%以上がより好ましく、0.30質量%以上が特に好ましい。Mnの含有率が過剰であると、合金の強度が低下する。強度の観点から、Mnの含有率は1.00質量%以下が好ましく、0.80質量%以下がより好ましく、0.70質量%以下が特に好ましい。
[Manganese (Mn)]
Mn produces the γ phase described later. This γ phase can contribute to the toughness of the alloy. From this viewpoint, the Mn content is preferably 0.01% by mass or more, more preferably 0.20% by mass or more, and particularly preferably 0.30% by mass or more. If the Mn content is excessive, the strength of the alloy decreases. From the viewpoint of strength, the Mn content is preferably 1.00% by mass or less, more preferably 0.80% by mass or less, and particularly preferably 0.70% by mass or less.
[鉄(Fe)]
Feは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。この観点から、Feの含有率は0.01質量%以上が好ましく、1.0質量%以上がより好ましく、2.0質量%以上が特に好ましい。Feの含有率が過剰であると、合金の耐食性が低下する。耐食性の観点から、Feの含有率は10.0質量%以下が好ましく、8.0質量%以下がより好ましく、7.0質量%以下が特に好ましい。
[Iron (Fe)]
Fe produces the γ phase described later. This γ phase can contribute to the toughness of the alloy. From this viewpoint, the Fe content is preferably 0.01% by mass or more, more preferably 1.0% by mass or more, and particularly preferably 2.0% by mass or more. If the content of Fe is excessive, the corrosion resistance of the alloy will decrease. From the viewpoint of corrosion resistance, the Fe content is preferably 10.0 mass% or less, more preferably 8.0 mass% or less, and particularly preferably 7.0 mass% or less.
[ニッケル(Ni)]
Niは、マトリクスに固溶し、合金の耐食性を高める。Niは、後述されるγ相を生成させる。このγ相は、合金の靱性に寄与しうる。これらの観点から、Niの含有率は0.5質量%以上が好ましく、0.8質量%以上がより好ましく、3.0質量%以上が特に好ましい。Niの含有率が過剰であると、合金の硬度が小さくなる。硬度の観点から、Niの含有率は15.0質量%以下が好ましく、9.0質量%以下がより好ましく、8.0質量%以下が特に好ましい。
[Nickel (Ni)]
Ni forms a solid solution in the matrix and enhances the corrosion resistance of the alloy. Ni produces a γ phase described later. This γ phase can contribute to the toughness of the alloy. From these viewpoints, the Ni content is preferably 0.5% by mass or more, more preferably 0.8% by mass or more, and particularly preferably 3.0% by mass or more. If the Ni content is excessive, the hardness of the alloy decreases. From the viewpoint of hardness, the Ni content is preferably 15.0% by mass or less, more preferably 9.0% by mass or less, and particularly preferably 8.0% by mass or less.
[コバルト(Co)]
Coは、合金におけるマトリクスの主成分である。常温での、Co単体の安定結晶構造は、六方最密充填構造(h.c.p.)である。690K以上の温度での、Co単体の安定結晶構造は、面心立方格子(f.c.c.)である。本発明に係る粉末では、マトリクス(常温)は、主としてγ相である。このマトリクスが、γ相と共に、ε相を有してもよい。γ相の結晶構造は、f.c.c.である。ε相の結晶構造は、h.c.p.である。
[Cobalt (Co)]
Co is the main component of the matrix in the alloy. The stable crystal structure of Co alone at room temperature is a hexagonal close-packed structure (hcp). The stable crystal structure of Co alone at a temperature of 690 K or higher is a face-centered cubic lattice (fcc). In the powder according to the present invention, the matrix (normal temperature) is mainly the γ phase. This matrix may have an ε phase as well as a γ phase. The crystal structure of the γ phase is f. c. c. Is. The crystal structure of the ε-phase is h. c. p. Is.
[酸素(O)]
本発明における合金において、Oは不可避的不純物である。合金の耐食性の観点から、Oの質量含有率は200ppm以下が好ましく、150ppm以下がより好ましく、100ppm以下が特に好ましい。
[Oxygen (O)]
In the alloy of the present invention, O is an unavoidable impurity. From the viewpoint of the corrosion resistance of the alloy, the mass content of O is preferably 200 ppm or less, more preferably 150 ppm or less, and particularly preferably 100 ppm or less.
[アルミニウム(Al)]
本発明における合金において、Alは不可避的不純物である。Alは、Ti又はNiと結合し、金属間化合物を形成しうる。この金属間化合物は、合金の靱性を損なう。靱性の観点から、Alの含有率は0.50質量%以下が好ましく、0.40質量%以下がより好ましく、0.35質量%以下が特に好ましい。
[Aluminum (Al)]
In the alloy of the present invention, Al is an unavoidable impurity. Al can combine with Ti or Ni to form an intermetallic compound. This intermetallic compound impairs the toughness of the alloy. From the viewpoint of toughness, the Al content is preferably 0.50% by mass or less, more preferably 0.40% by mass or less, and particularly preferably 0.35% by mass or less.
[チタン(Ti)]
本発明における合金において、Tiは不可避的不純物である。Tiは、Al又はNiと結合し、金属間化合物を形成しうる。この金属間化合物は、合金の靱性を損なう。靱性の観点から、Tiの含有率は0.50質量%以下が好ましく、0.40質量%以下がより好ましく、0.35質量%以下が特に好ましい。
[Titanium (Ti)]
In the alloy of the present invention, Ti is an unavoidable impurity. Ti can combine with Al or Ni to form an intermetallic compound. This intermetallic compound impairs the toughness of the alloy. From the viewpoint of toughness, the Ti content is preferably 0.50% by mass or less, more preferably 0.40% by mass or less, and particularly preferably 0.35% by mass or less.
[ε相]
前述の通り、マトリクスはε相を有しうる。ε相は、靱性に劣る。ε相の量が過大であると、成形品の耐久性及び切削性が阻害される。これらの観点から、ε相(h.c.p.構造)の体積率Pεは、金属組織全体の50.0%未満が好ましく、20.0%未満がより好ましく、10.0%未満が特に好ましい。理想的には、体積率Pεはゼロである。体積率Pε(%)は、下記の数式によって算出される。
Pε = Xε ・ 100
この数式において、Xεは、ε相の体積比である。体積比Xεは、下記数式によって算出される。
[Ε phase]
As mentioned above, the matrix can have an ε-phase. The ε phase is inferior in toughness. If the amount of the ε phase is too large, the durability and machinability of the molded product are impaired. From these viewpoints, the volume ratio Pε of the ε phase (hcp structure) is preferably less than 50.0% of the entire metallographic structure, more preferably less than 20.0%, and particularly less than 10.0%. preferable. Ideally, the volume ratio Pε is zero. The volume ratio Pε (%) is calculated by the following mathematical formula.
Pε = Xε · 100
In this formula, Xε is the volume ratio of the ε phase. The volume ratio Xε is calculated by the following mathematical formula.
この数式における炭化物の体積比Xcは、後述されるM6C系炭化物及びM7C3系炭化の合計の、金属組織全体に対する比である。
The volume ratio Xc of carbides in this mathematical formula is the ratio of the total of M6C-based carbides and M7C3-based carbides described later to the entire metallographic structure.
この合金の金属組織は、M6C系の炭化物を含みうる。M6Cの系炭化物として、Co3W3Cが挙げられる。この金属組織は、M7C3系の炭化物も含みうる。M7C3系の炭化物として、Cr7C3が挙げられる。金属組織が、M6C系炭化物とM7C3系炭化物との両方を含んでもよい。 The metallurgical structure of this alloy may include M6C-based carbides. Examples of the M6C-based carbide include Co3W3C. This metallographic structure may also include M7C3-based carbides. Cr7C3 is mentioned as an M7C3-based carbide. The metal structure may include both M6C-based carbide and M7C3-based carbide.
M6C系炭化物及びM7C3系炭化は、フッ酸に溶出しにくい。この炭化物を適量含有する合金は、耐食性に優れる。耐食性の観点から、金属組織全体に対する、M6C系炭化物及びM7C3系炭化物の合計の体積率Pcは、12.0%以上が好ましく、15.0%以上が特に好ましい。過剰な炭化物は、合金の靱性を損なう。靱性の観点から、体積率Pcは35.0%以下が好ましく、30.0%以下が特に好ましい。体積率Pc(%)は、下記の数式によって算出される。
Pc = Xc ・ 100
この数式において、Xcは、炭化物の体積比である。体積比Xcは、粉末から得られた成形体の断面組織を反射電子像で撮影することで算出される。この算出には、画像解析ソフトが用いられる。
M6C-based carbides and M7C3-based carbides are difficult to elute in hydrofluoric acid. An alloy containing an appropriate amount of this carbide has excellent corrosion resistance. From the viewpoint of corrosion resistance, the total volume fraction Pc of M6C-based carbides and M7C3-based carbides with respect to the entire metal structure is preferably 12.0% or more, and particularly preferably 15.0% or more. Excess carbide impairs the toughness of the alloy. From the viewpoint of toughness, the volume ratio Pc is preferably 35.0% or less, and particularly preferably 30.0% or less. The volume ratio Pc (%) is calculated by the following mathematical formula.
Pc = Xc.100
In this formula, Xc is the volume ratio of carbide. The volume ratio Xc is calculated by photographing the cross-sectional structure of the molded body obtained from the powder with a backscattered electron image. Image analysis software is used for this calculation.
本発明に係るCo基合金粉末は、アトマイズ法、粉砕法等によって製造されうる。アトマイズ法として、ガスアトマイズ法、水アトマイズ法及びディスクアトマイズ法が例示される。合金の酸素含有率が少ないとの観点から、好ましいアトマイズはガスアトマイズ法及びディスクアトマイズ法である。合金の酸素含有率が少ないとの観点から、不活性ガス雰囲気でのアトマイズが好ましい。量産性の観点から、ガスアトマイズが好ましい。 The Co-based alloy powder according to the present invention can be manufactured by an atomizing method, a pulverizing method, or the like. Examples of the atomizing method include a gas atomizing method, a water atomizing method, and a disk atomizing method. From the viewpoint that the oxygen content of the alloy is low, the preferred atomization is the gas atomization method or the disk atomization method. From the viewpoint that the oxygen content of the alloy is low, atomization in an inert gas atmosphere is preferable. Gas atomization is preferable from the viewpoint of mass productivity.
この粉末から、種々の成形体が成形されうる。好ましい成形方法は、等方圧力加熱(HIP)である。 Various molded bodies can be molded from this powder. The preferred molding method is isotropic pressure heating (HIP).
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples, but the present invention should not be limitedly interpreted based on the description of the examples.
[バルクの製作]
所定の成分の合金を溶解し、溶湯を得た。この溶湯を、不活性ガス雰囲気中でガスアトマイズに供し、粉末を得た。この粉末を分級に供し、粒子径を300μm以下に調整した。この粉末を、カプセルに充填し、このカプセルを密封した。この粉末を熱間静水圧プレス処理(HIP)に供し、バルクを得た。HIPの条件は、以下の通りである。
圧力:122MPa
温度:1000−1200℃
時間:7時間
[Bulk production]
An alloy having predetermined components was melted to obtain a molten metal. This molten metal was subjected to gas atomization in an inert gas atmosphere to obtain powder. This powder was subjected to classification to adjust the particle size to 300 μm or less. The powder was filled into capsules and the capsules were sealed. This powder was subjected to hot isostatic pressing (HIP) to obtain a bulk. The conditions of HIP are as follows.
Pressure: 122 MPa
Temperature: 1000-1200 ° C
Hours: 7 hours
[硬度]
バルクのロックウェル硬さ(HRC)を測定した。この結果が、下記の表1及び2に示されている。
[hardness]
Bulk Rockwell hardness (HRC) was measured. The results are shown in Tables 1 and 2 below.
[衝撃値]
バルクから、試験片(10R2mmCノッチ)を得た。この試験片をシャルピー衝撃試験に供し、衝撃値(CI)を測定した。この結果が、下記の表1及び2に示されている。
[Shock value]
A test piece (10R2mmC notch) was obtained from the bulk. This test piece was subjected to a Charpy impact test, and the impact value (CI) was measured. The results are shown in Tables 1 and 2 below.
[耐食性]
バルクから、試験片(10mm×10mm×14mm)を得た。この試験片を、耐食試験に供した。試験の条件は、以下の通りである。
溶液:10%フッ酸水溶液
温度:40℃
時間:10時間
腐食減量を試験前の試験片の表面積で除して、腐食度を算出した。この結果が、下記の表1及び2に示されている。
[Corrosion resistance]
A test piece (10 mm × 10 mm × 14 mm) was obtained from the bulk. This test piece was subjected to a corrosion resistance test. The test conditions are as follows.
Solution: 10% aqueous hydrofluoric acid Temperature: 40 ° C
Time: 10 hours The corrosion loss was calculated by dividing the corrosion weight loss by the surface area of the test piece before the test. The results are shown in Tables 1 and 2 below.
表1に示されたNo.1−22の粉末は本発明例であり、表2に示されたNo.23−33の粉末は比較例である。 No. shown in Table 1 The powder of No. 1-22 is an example of the present invention. The powder of 23-33 is a comparative example.
比較例No.23に係る粉末は、Cが過剰なので炭化物の体積率が大きく、従って十分な靱性が得られない。比較例No.24に係る粉末は、Cが過小なので炭化物の体積率が小さく、従って十分な硬度が得られない。比較例No.24に係る粉末はさらに、耐食性にも劣る。 Comparative Example No. In the powder of No. 23, since C is excessive, the volume ratio of carbide is large, and therefore sufficient toughness cannot be obtained. Comparative Example No. In the powder of No. 24, since C is too small, the volume ratio of carbide is small, and therefore sufficient hardness cannot be obtained. Comparative Example No. The powder of No. 24 also has poor corrosion resistance.
比較例No.25に係る粉末は、Crが過剰なのでε相の比率が大きく、従って十分な靱性が得られない。比較例No.26に係る粉末は、Crが過小なので、十分な耐食性が得られない。 Comparative Example No. In the powder of No. 25, since the Cr content is excessive, the ratio of the ε phase is large, so that sufficient toughness cannot be obtained. Comparative Example No. Since the powder of No. 26 has an excessively small amount of Cr, sufficient corrosion resistance cannot be obtained.
比較例No.27に係る粉末は、Wが過剰なので、十分な靱性が得られない。比較例No.28に係る粉末は、Wが過小なので、十分な硬さが得られない。 Comparative Example No. The powder according to No. 27 does not have sufficient toughness because W is excessive. Comparative Example No. In the powder of No. 28, since W is too small, sufficient hardness cannot be obtained.
比較例No.29に係る粉末は、Siが過剰なので、十分な靱性が得られない。比較例No.30に係る粉末は、Mnが過剰なので、十分な靱性が得られない。 Comparative Example No. The powder according to No. 29 does not have sufficient toughness because Si is excessive. Comparative Example No. The powder according to No. 30 does not have sufficient toughness because Mn is excessive.
比較例No.31に係る粉末は、Feが過剰なので、十分な硬度が得られず、さらに耐食性も低い。 Comparative Example No. Since the powder according to No. 31 has an excessive Fe content, sufficient hardness cannot be obtained, and the corrosion resistance is low.
比較例No.32に係る粉末は、Niが過小なのでε相の比率が大きく、従って十分な靱性が得られない。比較例No.32に係る粉末はさらに、耐食性にも劣る。比較例No.33に係る粉末は、Niが過剰なので、十分な硬度が得られない。 Comparative Example No. In the powder of No. 32, since the Ni content is too small, the ratio of the ε phase is large, so that sufficient toughness cannot be obtained. Comparative Example No. The powder according to No. 32 also has poor corrosion resistance. Comparative Example No. The powder of No. 33 does not have sufficient hardness because Ni is excessive.
表1に示された本発明例の粉末は、諸性能に優れている。この結果から、本発明の優位性は明らかである。 The powder of the example of the present invention shown in Table 1 is excellent in various performances. From this result, the superiority of the present invention is clear.
以上説明されたCo基合金は、耐食性が要求される種々の用途に適している。 The Co-based alloy described above is suitable for various applications requiring corrosion resistance.
Claims (4)
Cr:28.0質量%以上34.0質量%以下、
W:3.0質量%以上11.0質量%未満、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含み、かつ残部がCo及び不可避的不純物であるCo基合金。 C: 1.10% by mass or more and less than 2.50% by mass,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 3.0% by mass or more and less than 11.0% by mass,
Si: 0.01 mass% or more and 2.00 mass% or less,
Mn: 0.01 mass% or more and 1.00 mass% or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: a Co-based alloy containing 0.5% by mass or more and 15.0% by mass or less, and the balance being Co and unavoidable impurities.
上記金属組織の全体に対する上記炭化物の体積率Pcが、12.0%以上35.0%以下である請求項1又は2に記載のCo基合金。 The metallographic structure is M6C-based and / or M7C3-based carbide; f. c. c. A γ-phase having a structure and / or h. c. p. And a matrix composed of ε phase which is a phase having a structure,
The Co-based alloy according to claim 1 or 2, wherein the volume fraction Pc of the carbide with respect to the entire metal structure is 12.0% or more and 35.0% or less.
上記Co基合金が、
C:1.10質量%以上2.50質量%未満、
Cr:28.0質量%以上34.0質量%以下、
W:3.0質量%以上11.0質量%未満、
Si:0.01質量%以上2.00質量%以下、
Mn:0.01質量%以上1.00質量%以下、
Fe:0.01質量%以上10.0質量%以下、
及び
Ni:0.5質量%以上15.0質量%以下
を含み、かつ残部がCo及び不可避的不純物である粉末。 The material is a Co-based alloy,
The Co-based alloy is
C: 1.10% by mass or more and less than 2.50% by mass,
Cr: 28.0 mass% or more and 34.0 mass% or less,
W: 3.0% by mass or more and less than 11.0% by mass,
Si: 0.01 mass% or more and 2.00 mass% or less,
Mn: 0.01 mass% or more and 1.00 mass% or less,
Fe: 0.01% by mass or more and 10.0% by mass or less,
And Ni: a powder containing 0.5% by mass or more and 15.0% by mass or less, and the balance being Co and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018197125A JP7213057B2 (en) | 2018-10-19 | 2018-10-19 | Co-based alloy and its powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018197125A JP7213057B2 (en) | 2018-10-19 | 2018-10-19 | Co-based alloy and its powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020063495A true JP2020063495A (en) | 2020-04-23 |
JP7213057B2 JP7213057B2 (en) | 2023-01-26 |
Family
ID=70388154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018197125A Active JP7213057B2 (en) | 2018-10-19 | 2018-10-19 | Co-based alloy and its powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7213057B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111996416A (en) * | 2020-07-21 | 2020-11-27 | 安徽马钢表面技术股份有限公司 | Cobalt-based alloy powder for high-speed laser cladding and cladding method thereof |
JP2023035629A (en) * | 2021-09-01 | 2023-03-13 | 三菱重工業株式会社 | Co-BASED ALLOY MATERIAL, Co-BASED ALLOY PRODUCT, AND PRODUCTION METHOD OF THE PRODUCT |
JP7602338B2 (en) | 2020-09-11 | 2024-12-18 | 山陽特殊製鋼株式会社 | Co-based alloy and its powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233090A (en) * | 1985-08-02 | 1987-02-13 | Daido Steel Co Ltd | Alloy powder for building up of powder |
JPS6250432A (en) * | 1985-08-29 | 1987-03-05 | Kubota Ltd | Alloy for electrically conductive roll for electroplating |
-
2018
- 2018-10-19 JP JP2018197125A patent/JP7213057B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6233090A (en) * | 1985-08-02 | 1987-02-13 | Daido Steel Co Ltd | Alloy powder for building up of powder |
JPS6250432A (en) * | 1985-08-29 | 1987-03-05 | Kubota Ltd | Alloy for electrically conductive roll for electroplating |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111996416A (en) * | 2020-07-21 | 2020-11-27 | 安徽马钢表面技术股份有限公司 | Cobalt-based alloy powder for high-speed laser cladding and cladding method thereof |
CN111996416B (en) * | 2020-07-21 | 2021-10-19 | 安徽马钢表面技术股份有限公司 | Cobalt-based alloy powder for high-speed laser cladding and cladding method thereof |
JP7602338B2 (en) | 2020-09-11 | 2024-12-18 | 山陽特殊製鋼株式会社 | Co-based alloy and its powder |
JP2023035629A (en) * | 2021-09-01 | 2023-03-13 | 三菱重工業株式会社 | Co-BASED ALLOY MATERIAL, Co-BASED ALLOY PRODUCT, AND PRODUCTION METHOD OF THE PRODUCT |
JP7324254B2 (en) | 2021-09-01 | 2023-08-09 | 三菱重工業株式会社 | Co-Based Alloy Material, Co-Based Alloy Product, and Method for Making Same |
Also Published As
Publication number | Publication date |
---|---|
JP7213057B2 (en) | 2023-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015363754B2 (en) | A wear resistant alloy | |
US9340856B2 (en) | Ni—Fe—Cr alloy and engine valve welded with the same alloy | |
TW201809315A (en) | Steel suitable for plastic moulding tools | |
EP2479302A1 (en) | Ni-based heat resistant alloy, gas turbine component and gas turbine | |
WO2015137507A1 (en) | Precipitation-hardening stainless steel powder and sintered compact thereof | |
JP6698280B2 (en) | Alloy powder | |
EP3467128B1 (en) | Extrusion die made of hot working steel and production method thereof | |
JP2020063495A (en) | Co-BASED ALLOY AND POWDER THEREOF | |
JP7213022B2 (en) | Co-based alloy and its powder | |
WO2009133920A1 (en) | High‑hardness shot material | |
WO2020032235A1 (en) | NITRIDE-DISPERSED MOLDED BODY WHICH IS FORMED OF Ni-BASED ALLOY | |
JP4397872B2 (en) | Iron-based high hardness shot material and method for producing the same | |
JP6671772B2 (en) | High hardness and toughness powder | |
CN110284041A (en) | A kind of high temperature alloy, component and the method for preparing high temperature alloy | |
JPH073357A (en) | High hardness cemented carbide excellent in oxidation resistance | |
JP7602338B2 (en) | Co-based alloy and its powder | |
JP6698910B2 (en) | Alloy powder | |
JP2022180747A (en) | Powders and compacts made of multicomponent alloys | |
JP7406329B2 (en) | Ni-Cr-Mo precipitation hardening alloy | |
JP7471079B2 (en) | Magnetic Co-based alloy | |
JPH10501299A (en) | Iron-based powder containing Mo, P, C | |
JP6410488B2 (en) | High hardness and tough powder excellent in manufacturability by atomizing method and method for producing the same | |
JP2022003162A (en) | Co-BASED ALLOY AND POWDER THEREOF | |
KR20180125527A (en) | Steel alloys and tools | |
JP2008115444A (en) | HEAT RESISTANT Cr-BASED ALLOY HAVING HIGH HARDNESS FOR SURFACE HARDENING |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20181105 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220809 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7213057 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |