JP4393782B2 - 静電浮上型ジャイロ装置 - Google Patents

静電浮上型ジャイロ装置 Download PDF

Info

Publication number
JP4393782B2
JP4393782B2 JP2003099695A JP2003099695A JP4393782B2 JP 4393782 B2 JP4393782 B2 JP 4393782B2 JP 2003099695 A JP2003099695 A JP 2003099695A JP 2003099695 A JP2003099695 A JP 2003099695A JP 4393782 B2 JP4393782 B2 JP 4393782B2
Authority
JP
Japan
Prior art keywords
circuit
gyro
detection
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003099695A
Other languages
English (en)
Other versions
JP2004309187A (ja
Inventor
政勝 松本
恵輔 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Inc filed Critical Tokyo Keiki Inc
Priority to JP2003099695A priority Critical patent/JP4393782B2/ja
Publication of JP2004309187A publication Critical patent/JP2004309187A/ja
Application granted granted Critical
Publication of JP4393782B2 publication Critical patent/JP4393782B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ジャイロ機構部と電子回路とを備えた静電浮上型ジャイロ装置に関する。
ジャイロ機構部は、ジャイロロータとジャイロケースとを含み、ジャイロロータをジャイロケース内で静電支持力によって浮動的に支持する。ジャイロロータは、適正動作のため、真空中に置かれる。
電子回路部は、ジャイロ機構部に接続され、ジャイロロータとジャイロケースとの相対変位を検出して、ジャイロロータの姿勢制御を行う。
詳しくは、その変位検出を行う信号検出回路に関し、さらには、そのような回路とジャイロ機構部との実装にも関する。
【0002】
【前提の技術】
小形化に適した静電浮上型ジャイロは、船舶や航空機ばかりか自動車等の移動体にも使用されており、慣性空間に対する加速度等を検出するために、慣性を具有した機械部品からなるジャイロ機構部と、静電支持力の制御や相対変位の検出等を担う電子回路部とを備えている。
図12は、そのような静電浮上型ジャイロにおけるジャイロ機構部を2つ示している。同図(a)〜(c)は、円板形ロータ型の公知例であり(例えば特許文献1参照)、同図(d)及び(e)は、環状ロータ型の公知例である(例えば特許文献2参照)。なお、同図において、(a)及び(d)は縦断正面図であり、(b)と(c)と(e)は内蔵部品の展開斜視図である。
【0003】
本発明の実施や説明の前提となる部分について掻い摘んで再掲すると、何れのジャイロ機構部でも、ジャイロロータ10が静電浮上可能かつ回転可能な状態でジャイロケース20に内蔵されている。ジャイロケース20は、ガラス等の絶縁物からなる上側底部材21と下側底部材22とスペーサ23とを組み合わせて構成され、内部に円板状の又は環状の真空空間が形成されている。ジャイロロータ10は、シリコン等の導電体からなり、1本のスピン軸周りに安定して回転するよう、円板状に又は環状に形成されている。ジャイロケース20からジャイロロータ10に静電支持力や回転駆動力を作用させるために、両者の表面には、金属膜パターン等からなる多数の電極が形成されている。ジャイロロータ10の電極とジャイロケース20の電極は、それぞれの役割に応じて、対峙距離やピッチなど所定の対応関係を満たすよう配置されている。
【0004】
電子回路に接続されるジャイロケース20の電極(複数電極)について詳述すると、ジャイロロータ10を中間に挟んで対向配置された複数対に分けられる。特に静電支持用電極については、それぞれの対において更に隣接配置された群・対に分けられる。具体的には、隣接電極31a,31bと隣接電極41a,41bとが対向対をなし、隣接電極32a,32bと隣接電極42a,42bとが対向対をなし、隣接電極33a,33bと隣接電極43a,43bとが対向対をなし、隣接電極34a,34bと隣接電極44a,44bとが対向対をなしている。なお、環状ロータ型の場合は、静電支持用電極の対が多くて、隣接電極35a,35bと隣接電極45a,45bも対向対をなし、隣接電極36a,36bと隣接電極46a,46bも対向対をなしている。
【0005】
また、複数電極のうち回転駆動用電極については、上側底部材21の下面で円状に列ぶロータ駆動用電極37と、下側底部材22の上面で円状に列ぶロータ駆動用電極47とが対向対をなしている。
変位検出用電極も、変位検出用電極38と変位検出用電極48とが対向対をなしている。
なお、図示に際して、上側底部材21に設けられた電極には30番台の符号を付し、下側底部材22に設けられた電極には40番台の符号を付している。また、他の図示や説明に際して、隣接し合う電極31a,31bを区別しないで何れかを呼ぶとき又はそれらを纏めて呼ぶときには末尾のアルファベットを省いて電極31と言う。他の電極32等についても同様である。
【0006】
さらに、役割分担が比較的単純で明瞭な環状ロータ型のジャイロ機構部について(図12(d),(e)参照)、静電支持用電極31〜36,41〜46の具体的な役割を説明する。空間で直交する3軸をそれぞれX軸,Y軸,Z軸とし、図では、紙面の左右方向にX軸を置き、紙面の上下方向にY軸を置き、紙面を貫く向きにZ軸を置き、X軸周りの回転をφとし、Y軸周りの回転をθとする。そうすると、電極31は、制御電圧を印加されてそれに応じたX方向の静電支持力を出すとともに、ジャイロロータ10のX方向変位に応じてジャイロロータ10表面との静電容量を変えるものとなっている。対向対をなす電極41も、制御電圧を印加されてそれに応じたX方向の静電支持力を出すとともに、ジャイロロータ10のX方向変位に応じてジャイロロータ10表面との静電容量を変えるものであるが、電極31とは逆向きの特性を示すものとなっている。電極対32,42はY方向に関して同様の機能を発揮し、電極対33,43はZ+φ方向に関して同様の機能を発揮し、電極対34,44はZ+θ方向に関して同様の機能を発揮し、電極対35,45はZ−φ方向に関して同様機能を発揮し、電極対36,46はZ−θ方向に関して同様の機能を発揮するものとなっている。
【0007】
【従来の技術】
図13(a)は、このようなジャイロケース20の複数電極31〜48に接続されてジャイロ機構部と共に静電浮上型ジャイロを構成する電子回路を図示している。ここでも、明瞭化のため、環状ロータ型ジャイロの電子回路部を具体例に採って、本発明の実施形態との対比に役立つ部分を掻い摘んで再掲する。
この電子回路は、静電支持用電極31〜36,41〜46と共に拘束制御系を構成する制御演算回路53(制御回路)と、ロータ駆動用電極37,47と共にロータ駆動系を構成するロータ制御回路52(制御回路)と、変位検出用電極38,48と共に変位検出系を構成する信号検出回路とを具えている。なお、図示に際し、制御演算回路53については制御出力回路54を明記したが、ロータ制御回路52については省略している。
【0008】
制御演算回路53は、ジャイロロータ10とジャイロケース20とのZ軸周り以外の相対変位すなわちX方向変位ΔXとY方向変位ΔYとZ方向変位ΔZとφ方向変位Δφとθ方向変位Δθとから、公知の演算を行って、姿勢制御用の制御電圧V1,V12等を生成し、それぞれを複数の電極31〜48のうちの静電支持用電極31〜36,41〜46に印加する等のことで、それらの相対変位をゼロにする姿勢制御を行うものである。なお、これらの相対変位は、静電支持用電極31〜36,41〜46の容量変化から検出される。また、各制御電圧V1,V12等は、正電圧信号とそれを反転させた負電圧信号とを出力する制御出力回路54によって、印加前に、所要のレベルまで増幅されるようになっている。
【0009】
ロータ制御回路52は、ジャイロロータ10のZ軸周りの回転状態から、やはり公知の演算を行って、回転駆動用の制御電圧たとえば三相のパルス状信号を生成し、それらをロータ駆動用電極37,47へ循環的に印加する等のことで、ジャイロロータ10を一定速度で回転させる回転制御を行うようになっている。なお、ジャイロロータ10の回転状態は、ロータ駆動用電極37,47の容量変化から検出される。これらの制御電圧も、制御出力回路54又は同様の出力回路によって、印加前に、所要のレベルまで増幅されるようになっている。
このような制御電圧が直に印加される静電支持用電極31〜36,41〜46及びロータ駆動用電極37,47とは異なり、複数電極31〜48のうちの変位検出用電極38,48に対しては、ジャイロロータ10の運動に影響を及ぼすような制御電圧は印加されない。
【0010】
信号検出回路は、ジャイロロータ10とジャイロケース20との相対変位を検出するために、ジャイロロータ10の運動に影響しない程度に周波数の高い変位検出用印加信号f1〜f12を用いるものであり、変位検出用印加信号f1〜f12を複数電極31〜48のうちの一部に印加する印加信号供給回路と、変位検出用印加信号f1〜f12が変位検出用電極38,48を経由した後のところで変位検出用印加信号f1〜f12に係る信号成分を検出して変位検出用検出信号Vpを生成する電流検出回路51(検出信号生成回路)とを具えている。
【0011】
具体的には、印加信号供給回路は、弁別可能に周波数の異なる5つの正弦波信号w1〜w5を公知の関係式に基づいて組み合わせることで変位検出用印加信号f1〜f12を生成し、それらの変位検出用印加信号f1〜f12を変位検出用電極38,48でなく静電支持用電極31〜36,41〜46に印加するようになっている。しかも、その際、制御出力回路54の出力側で制御電圧V1,V12等に変位検出用印加信号f1〜f12を重畳させることで、印加を行うようにもなっている。
【0012】
環状ロータ型では静電支持用電極の対向対が6対あるが、そのうち電極対31,41について詳述すると(図13(b)参照)、制御電圧V1は正電圧+V1と負電圧−V1とが対で生成され、正電圧+V1は変位検出用印加信号f1の重畳後に静電支持用電極31bに印加され、負電圧−V1は同じ変位検出用印加信号f1の重畳後に隣接の静電支持用電極31aに印加される。また、制御電圧V12は正電圧+V12と負電圧−V12とが対で生成され、正電圧+V12は変位検出用印加信号f12の重畳後に静電支持用電極41bに印加され、負電圧−V12は同じ変位検出用印加信号f12の重畳後に隣接の静電支持用電極41aに印加されるようになっている。
【0013】
一方、電流検出回路51は(図13(a)参照)、制御出力回路54側に接続されるのでなく、複数電極31〜48のうちの変位検出用電極38,48に接続されている。電流検出回路51は、信号増幅用のアンプ等を具えているが、その入力ラインが変位検出用電極38,48の並列接続点に接続される。また、電流検出回路51から出力された変位検出用検出信号Vpがロータ制御回路52や制御演算回路53の入力回路へ送出されるようにもなっている。
【0014】
ここで、制御演算回路53における変位検出用検出信号Vpの入力回路に言及すると(図13(c)参照)、同期検波器とバンドパスフィルタとの従属接続回路に変位検出用検出信号Vpと正弦波信号w1とを入力して、変位検出用検出信号Vpから正弦波信号w1の成分を抽出する等のことで、例えばX方向変位ΔXを検知するようになっている。他の変位ΔY,ΔZ,Δφ,Δθについても同様である。
そして、このような信号検出回路によって、制御電極31〜37,41〜47の容量変化に基づいて相対変位ΔX,ΔY,ΔZ,Δφ,Δθや回転状態が検出される。また、それを入力した制御演算回路53及びロータ制御回路52の姿勢制御および回転駆動によって、ジャイロロータ10がジャイロケース20内の中立位置に浮上して回転し続ける。さらに、それらに基づいて、静電浮上型ジャイロに作用した加速度等が、演算され、検知されるのである。
【0015】
このような電子回路とジャイロ機構部とを備えた静電浮上型ジャイロ装置は、プリント基板等に実装して電気的接続が確立されるが、その場合、ジャイロケース20を実装したプリント基板に電子回路の一部も実装されていた。その際、制御出力回路54や電流検出回路51など、ジャイロケース20の各電極31〜48と直接的に接続される回路部分は、優先的に同一基板に実装される。また、電流検出回路51のうちプリアンプはジャイロケース20の上面等に実装されることもある。何れにしても、真空空間はジャイロケース20の中にとどまり、ジャイロ機構部も電子回路も大気下で実装される。
また、ジャイロケース20内のジャイロロータ10収納空間に真空状態を確保するには、真空雰囲気中で組み立てるか、組み立ててから真空引きしていた。そして、その真空状態を長期間に亘って維持するため、真空空間にゲッタ部材(真空維持部材)も収納していた。
【0016】
【特許文献1】
特許第3008074号公報 (図1、図2、図4、図8)
【特許文献2】
特開2001−235329号公報 (図1、図2、図3、図6)
【0017】
【未公開の先行技術】
[先行特許出願1] 特願2003−050223号
[先行特許出願2] 特願2002−362031号
ところで、静電浮上型ジャイロ装置の小形化が進むと、具体的にはジャイロロータ10の径が数mm程度やそれ以下に縮小されると、真空雰囲気中での組立であっても、組立後の真空引きであっても、作業が各段にし辛くなる。このため、真空状態の確保が困難になるうえ、工数の増加や歩留まりの低下等による不所望なコストアップまで招きかねない。また、小形化に伴う寸法効果によってゲッターの負担が増すため、真空状態の維持も難しくなる。しかも、ガラス製ジャイロケース20のスルーホールの気密にコストが嵩むため、コストアップまで招来してしまう。そこで、小形化の要請とコストダウンの要請とを両立させるべく、真空状態の確保と維持に関し、実装状況も考慮に入れて、適切な態様での具体化が同一出願人により創案されている。その要点は、真空パッケージを導入して真空空間をジャイロ機構部よりも広げ、その中に真空維持部材や電子回路まで取り込むことにより、真空維持等の困難性を増すことなく小形化を進めることが可能となって、小形の静電浮上型ジャイロ装置を安価に実現することができた、というものである(先行特許出願1参照)。
【0018】
また、ジャイロロータとジャイロケースとの相対変位を検出するための信号検出回路に関しても、やはり同一出願人により、改良案が創出されているので(先行特許出願2参照)、その要点を述べる。
上述した従来の信号検出回路では、変位検出用印加信号f1〜f12を制御電圧V1,V12等に重畳していることから、両者の電圧の和が制御出力回路54の電源電圧Vccを超えることは出来ないので、変位検出用印加信号f1の振幅電圧Vfと制御電圧V1の最大電圧とに電源電圧Vccを割り振っている(図13(d)参照)。ところが、静電浮上型ジャイロの機構部の小形化が進むと、具体的には例えば従来5mm程度であったジャイロロータ10の径が1mm程度まで縮小されると、複数電極31〜48の容量が小さくなる。特に電流検出回路51の検出対象である入力電流Ip、これは変位検出用検出信号Vpの元であるが、この検出電流Ipが激減する。このため、変位ΔX等を正確に求めるのに必要とされる適正レベルの変位検出用検出信号Vpを得るには、変位検出用印加信号f1の振幅電圧Vfを大きくする必要がある。
【0019】
しかしながら、所定の電源電圧Vccの下で振幅電圧Vfを増加させることは制御電圧V1の最大電圧の減少を伴うため、両者への割り振りのバランスが不所望に崩れてしまう(図13(e)参照)。他の変位検出用印加信号も同じである。そこで、同じ電源電圧の下で、制御電圧を犠牲にすることなく、変位検出用印加信号の振幅電圧を増やせるよう、信号検出回路を改良することが、重要である。そして、このような要請に応える改良案は、変位検出用信号の流れを従来と逆転させることにより、制御電圧と変位検出用信号との重畳が電圧有意の信号と電流有意の信号とによって遂行されるようになって、制御電圧を犠牲にすることなく変位検出用印加信号の振幅電圧を増やすことが可能となり、その結果、電極容量が減少しても容易に適正レベルの変位検出用検出信号が得られるので、小形化に適う静電浮上型ジャイロの信号検出回路を実現することができる、というものである。
【0020】
これら未公開の先行特許出願1,2に記載された技術事項は、多くの部分が本発明創案の前提となっているので、本発明の課題を提示するに先だって、ここに再掲する。先ず、図面を引用して静電浮上型ジャイロ装置の具体的な構成を説明する。図1は、装置パッケージングの構造を示し、(a)が装置の正面図、(b)が蓋を外したところの平面図、(c)が縦断面斜視図である。図2は、(a)が信号検出回路を含む全体回路図、(b)が変位検出用印加信号の発生回路、(c)が電流検出回路である。図3は、(a)が拘束制御系の信号入力回路、(b)がロータ駆動系の信号入力回路である。なお、それらの図示に際し、従来と同様の構成要素には同一の符号を付して示したので、また、前提の技術の欄で述べたジャイロ機構部は以下の先行技術例でもそのまま利用されるので、従来との相違点を中心に説明する。ここでも、明瞭な対比等のため、電子回路部は環状ロータ型ジャイロ対応のものを具体例とし、ジャイロ機構部を説明してから電子回路部を説明する。
【0021】
このジャイロ装置70は(図1参照)、キャップ71(蓋体)とボックス72(箱体、缶体)とからなる密閉可能な装置パッケージ(真空収容器)を具えたものであり、その中には、上述したジャイロロータ10及びジャイロケース20からなるジャイロ機構部と、ガラス等の絶縁性基板からなるベース73(搭載基板)と、ゲッター75(真空維持部材)と、IC77,78(集積回路)とが格納されている。
【0022】
キャップ71とボックス72は、気密性に優れ加工も容易な部材たとえば金属からなり、ボックス72にキャップ71を被せて、ボックス72の正面壁に貫通形成されている真空吸引口76から排気すると、内部空間が真空になり、さらに真空吸引口76に栓をすると、気密に封止されて、真空状態が確立されるようになっている。ボックス72の底面には、多数のピン74(外部接続端子)が植設されている。ピン74は、装置パッケージの内外で電気導通をとるとともに、プリント基板などへの実装時にパッケージを支持するためのものであり、例えば多ピンICのPGA(Pin Grid Array)パッケージのピンと同様の良導体からなり、この例では概ね四辺形状に列設されていて、何れもボックス72の底面を貫通している。ピン74の貫通穴には固定と気密と絶縁のため例えば溶融ガラス等が充填されている。
【0023】
ベース73は、ボックス72の内底より一回り小さい平板からなり、ボックス72内で多数のピン74によって支持されて、ボックス72底面から僅かに離れている。図示は割愛したがベース73の上面には配線パターンが形成されていて、そのうち適宜な配線が各ピン74に接続されている。この接続は金属等で剛になされていてピン74とベース73との連結を兼ねている。ベース73の上面には、ジャイロケース20とIC77,78が搭載されており、それらと配線パターンとの接続は、ワイヤボンディングでも可能であるが、この例では、IC77,78がベアチップのまま搭載されているので、金バンプや半田ボール等を介在させて一括接続するCOG(Chip On Glass)方式にてなされている。
【0024】
ジャイロ機構部は、ジャイロケース20のジャイロロータ10格納空間を上述の如く真空密封したものでも良いが、この場合は、ジャイロケース20が丸ごと真空の装置パッケージに納められるので、密封の必要が無く、ジャイロケース20内にゲッタ部材を内蔵する必要も無い。
ゲッター75は、装置パッケージ内の真空空間に残っていた又は入り込んできた酸素や窒素等の気体を吸着して真空状態を維持するものであり、ジャイロケース20に内蔵されていた従来のゲッタ部材と比べて、材質は同じであるが、サイズは可成り大きくなっている。ゲッター75は、ベース73に搭載しても良いが、この例では、非蒸発ゲッターと呼ばれ通電加熱にて活性化されるものが採用されているので、ワイヤを介して2本のピン74で支持されている。
【0025】
IC77,78は、電子回路が上述した図13(a)の構成であれば、制御出力回路54や,電流検出回路51,印加信号f1〜f12の供給回路などを集積したものである。もっとも、ここでは、電子回路が信号検出回路を中心に改良されているので、それに応じて、IC77,78への集積部分も一部異なっている。具体的な集積部分は、電子回路の相違点を詳述した後で述べるが、IC77,78は、ベアチップのままベース73に搭載される。チップ数は、図示のように2個でも良く、1個に纏めても良く、3個以上でも良い。
【0026】
次に電子回路部を説明する。この電子回路が上述した従来例のものと相違するのは(図2(a)参照)、電流検出回路51に代わって印加信号発生回路61(印加信号供給回路)が変位検出用電極38,48に接続されている点と、制御出力回路54の出力に対する変位検出用印加信号f1〜f12の重畳が無くなってその代わり制御出力回路54それぞれに電流検出回路64が付設された点と、制御回路52,53がデジタル化されてロータ制御回路62及び制御演算回路63になった点である。
【0027】
印加信号発生回路61は、周波数がジャイロロータ10の運動に影響しないほど高いという要件を満たせば変位検出用印加信号V0として正弦波の信号を発生するものでも良く、変位検出用印加信号V0の振幅は電源電圧の許す範囲で任意に設定して良いが、ここでは(図2(b)参照)、変位検出用印加信号V0として三角波の電圧信号を発生するために、一対の定電流回路を逆向きに設け、クロックCLKaで切り替わるスイッチ等にて、電流送出と電流吸入とを交互に繰り返すようになっている。
【0028】
このような定電流回路対とスイッチ回路とによって生成された変位検出用印加信号V0は、図示のように適宜なカップリングコンデンサ61aを介して又はそのようなものを介さず直に変位検出用電極38,48に印加される。そのように構成すると、印加信号発生回路61から変位検出用電極38,48の並列接続点に供給される変位検出用印加電流i0は、定電流の向きがクロックCLKaに同期して反転する矩形波状のものとなり、変位検出用印加信号V0は三角波の電圧信号となる。なお、クロックCLKaの周波数は例えば1MHz以上にされる。これは制御電圧の有効周波数とされる数十kHzより遙かに高く、上記要件が満たされる。
【0029】
電流検出回路64は(図2(a)参照)、制御演算回路63から静電支持用電極31〜36,41〜46へ姿勢制御用の制御電圧V1,V12等を送出する12個または12組の制御出力回路54それぞれに付設されるとともに、ロータ制御回路62からロータ駆動用電極37へ回転駆動用の制御電圧を送出する制御出力回路54それぞれにも付設される。それぞれの電流検出回路64は(図2(c)参照)、一対のカレントミラー64a,64bと、それらの出力ライン同士を接続させた差動出力ライン64cと、信号増幅や雑音除去等を行って変位検出用検出電流i1等を出力するアンプ等64dからなる。
【0030】
カレントミラー64aは、入力側が付設先の制御出力回路54(そのうち特に出力段回路)の給電線のうち高電位側のもの(+)に介挿接続され、カレントミラー64bは、入力側が付設先の制御出力回路54(そのうち特に出力段回路)の給電線のうち低電位側(−)のものに介挿接続され、両者の出力側は共に差動出力ライン64cに接続される。これにより、電流検出回路64は、何れも、該当する制御出力回路54の出力電流を検出してそれと同じか又は対応している変位検出用検出電流i1〜i12,r1〜r6を生成するものとなっている。
【0031】
制御演算回路63の演算内容は基本的に従来例と変わらないが、回路構成は(図3(a)参照)、DSP66(デジタルシグナルプロセッサ)の採用によってデジタル化されているため、前段に、A/D変換回路65が設けられている。A/D変換回路65は、この例では、6個が設けられ、何れも、クロックCLKbのタイミングでサンプリング・標本化して、例えば12ビットで量子化するようになっている。クロックCLKbは、上述したクロックCLKaの位相を例えば90゜ずらしたものであり、クロックCLKaに同期している。なお、スイッチング時の過渡状態を外せば、位相差は90゜以外でも良く、周波数は逓倍または逓減されていても良い。
【0032】
6個のA/D変換回路65は、静電支持用電極31への変位検出用検出電流i1と静電支持用電極41への変位検出用検出電流i12との差をとってX方向変位ΔXの成分を抽出した信号と、静電支持用電極32への変位検出用検出電流i2と静電支持用電極42への変位検出用検出電流i11との差をとってY方向変位ΔYの成分を抽出した信号と、静電支持用電極33への変位検出用検出電流i3と静電支持用電極43への変位検出用検出電流i10との差をとってZ+φ方向変位ΔZ+Δφの成分を抽出した信号と、静電支持用電極34への変位検出用検出電流i4と静電支持用電極44への変位検出用検出電流i9との差をとってZ+θ方向変位ΔZ+Δθの成分を抽出した信号と、静電支持用電極35への変位検出用検出電流i5と静電支持用電極45への変位検出用検出電流i8との差をとってZ−φ方向変位ΔZ−Δφの成分を抽出した信号と、静電支持用電極36への変位検出用検出電流i6と静電支持用電極46への変位検出用検出電流i6との差をとってZ−θ方向変位ΔZ−Δθの成分を抽出した信号とに割り振られる。
【0033】
ロータ制御回路62の演算内容も基本的に従来例と変わらないが、回路構成は(図3(b)参照)、やはり、DSP67の採用によってデジタル化されているため、前段に量子化手段が設けられている。量子化手段は、A/D変換回路65と同じでも良いが、ロータ回転制御の遂行には変位検出用検出電流r1〜r6のうち一つ以上の位相が把握できれば足りるので、この例では、A/D変換回路65より簡便なコンパレータCOMPが変位検出用検出電流r1〜r6それぞれに設けられている。二値化された各変位検出用信号は、DSP67のサンプリングプログラムの処理によってDSP67に随時入力されて標本化された後、ジャイロロータ10のZ軸周りの回転状態に基づいて三相パルス状信号などの回転駆動用制御電圧を生成する公知の演算に供されるようになっている。
【0034】
このような電子回路のうち、IC77,78に集積されるのは、制御出力回路54や,電流検出回路64,印加信号発生回路61などである。DSP66,67は、専用品を作っても良いが、汎用の市販品でも足りるので、そのようなDSP66,67はIC77,78に集積されない。
【0035】
このような構成の静電浮上型ジャイロ装置について、その使用態様及び動作を、図面を引用して説明する。図1(d)は、装置実装状況を示す斜視図である。また、図4は、(a)が制御電圧印加部分の詳細図であり、(b)〜(f)は何れも信号波形例である。ここでも、先ず機構部の実装態様を説明し、次に電子回路の動作を説明する。
【0036】
ジャイロ装置70をプリント基板80に実装するには(図1(d)参照)、それに先立って、プリント基板80に、ピン74対応のスルーホールと電気接続のための配線パターンを形成しておく。そのプリント基板80に、一般的なIC実装技術を用いて、DSP66,67といったICやその他の電子部品を実装する。電源回路を構成するレギュレータIC81や平滑コンデンサ82等も実装しておく。それから、プリント基板80のスルーホールにピン74を差し込んで、半田付け等にて接続する。
【0037】
そうすると、ジャイロ装置70がプリント基板80に固定され、ひいてはジャイロケース20がプリント基板80に対して固定されるとともに、ジャイロケース20の各電極31〜48と電子回路との電気的接続が確立される。具体的には、電子回路のうち内蔵部分であるIC77,78はジャイロ装置70組立完了時点でベース73の配線パターンによってジャイロケース20と接続されているので、それらと電子回路の残部たとえばDSP66,67とが、プリント基板80の配線パターンとピン74とを介して、接続される。こうして、静電浮上型ジャイロ装置がプリント基板80に搭載され、それが自動車等に組み込まれると、ジャイロ機構部および電子回路部が動作可能となる。
【0038】
以上の説明より明らかに、ジャイロ装置70は、扱い慣れたIC例えばPGAタイプICとほぼ同様にして簡単に実装することができる。さらに、ジャイロ装置70の真空引きに関しても、ジャイロケース20より大きくて丈夫なため扱い易い装置パッケージが対象なので、作業が楽になるうえ、既存の設備や治具を継続使用するのも容易となる。その真空状態の維持に関しては、ゲッター75を十分に大きくすることが可能であり、例えばジャイロケース20に納まらないほど大きくすることも可能なので、真空状態が長期間に亘って維持される。その真空空間を、従来は薄いガラス等で密封していたが、それより厚くても良く変形能にも富む金属等で出来たパッケージ71+72で密封しているので、気密性能が向上して、更に長期間に亘って真空状態が維持される。しかも、ジャイロ装置70には、ジャイロケース20が内蔵されているだけでなく、電子回路の一部であるIC77,78もベアチップの状態で内蔵されており、これによって、電子回路部のコンパクト実装が一段と進められている。なお、IC77,78は、ベアチップ搭載であるが、それを囲むジャイロ装置70の内部空間は真空状態になっているので、酸化等にて劣化することが無い。
【0039】
次に電子回路の動作説明に移るが(図4(a)参照)、従来例との対比明瞭化等のため、環状ロータ型の6対の静電支持用電極のうち電極対31,41について、制御電圧の印加状況を詳述する。制御電圧V1はやはり正電圧V1bと負電圧V1aとの対に分けられて、正電圧V1bは静電支持用電極31bに印加され、負電圧V1aは隣接の静電支持用電極31aに印加される。また、制御電圧V12も正電圧V12bと負電圧V12aとの対に分けられて、正電圧V12bは静電支持用電極41bに印加され、負電圧V12aは隣接の静電支持用電極41bに印加される。
【0040】
そして(図4(b)参照)、ジャイロロータ10がZ軸周りの回転は別として中立位置に静止しているとき静電支持用電極31,41に印加される一定のオフセット電圧をVofとし、姿勢制御のために算出され変化するX軸制御電圧成分をVxとすると、正電圧V1bのうち制御出力回路54の出力する主成分は+Vof+Vxにされ、負電圧V1aの主成分は−Vof−Vxにされ、正電圧V12bの主成分は+Vof−Vxにされ、負電圧V12aの主成分は−Vof+Vxにされる。ここまでは基本的に従来例と同様であるが、変位検出用信号の重畳については従来例と異なるため、これらの制御電圧V1,V12等へ直に変位検出用印加信号V0が重畳されるようなことはない。もっとも、変位検出用印加信号V0が伝達されて来たことの影響は受ける。
【0041】
すなわち(図4(c)参照)、印加信号発生回路61によって、電圧波形が三角波状に変化する変位検出用印加信号V0が発生され、これが変位検出用電極38,48とジャイロロータ10と静電支持用電極31,41を順に経て制御電圧V1,V12に重畳する。変位検出用印加電圧信号V0の振幅は、印加信号発生回路61に昇圧回路等を付設すれば、制御出力回路54の電源電圧Vccを超えることも可能であり、従来の変位検出用印加信号f1,f12に比べて可成り大きい。これに対し(図4(b)参照)、制御電圧V1,V12に重畳する電圧成分は極めて小さいので、正電圧V1bの波形は主成分+Vof+Vxの波形から大きく離れることなくそれに沿い、負電圧V1aは主成分−Vof−Vxに沿い、正電圧V12bは主成分+Vof−Vxに沿い、負電圧V12aは主成分−Vof+Vxに沿い、いずれも主成分とほぼ同様の波形を描く。
【0042】
一方、変位検出用印加電圧信号V0と共に変位検出用印加電流i0(図4(d)参照)も変位検出用電極38,48とジャイロロータ10と静電支持用電極31,41等を順に経て制御出力回路54の出力ラインに伝達されるが、その際に変位検出用印加電流i0は複数電極31〜48の容量に基づいて分割され、伝達先でそれぞれ該当個所の電流検出回路64によって変位検出用検出電流信号i1〜i12として検出される。これらの電流信号は(図4(e)の変位検出用検出電流i1を参照)、分割に応じた明確な電流値を示し、クロックCLKaに対応した周波数の矩形波となる。
【0043】
そして(図4(f)及び図3(a)参照)、クロックCLKaに同期しているが位相のずれているクロックCLKbのタイミングで、X方向変位ΔXを反映した電流信号(i1−i12)や同様の信号がA/D変換回路65によって量子化され、それらを取り込んだDSP66によって姿勢制御のための公知の演算が行われる。また、慣性空間に対する角速度や加速度なども算出される。こうして、この場合も、姿勢制御や加速度検出等が適切に遂行される。さらに、変位検出用検出電流r1〜r6が二値化されてDSP67に取り込まれ、それらを取り込んだD67SPによって回転駆動のための公知の演算が行われる。回転駆動用制御電圧の基本周波数は上限が数百Hz程度であるが、変位検出用検出電流r1〜r6の基本周波数は上述したように高いので、両者は容易かつ正確に弁別される。こうして、ロータ回転駆動も適切に遂行される。
【0044】
以上の説明より明らかに、この静電浮上型ジャイロの信号検出回路にあっては、変位検出用印加電圧信号V0を必要に応じて拡大することが可能かつ容易であり、しかも、制御電圧V1,V12等も制御出力回路54の電源電圧Vcc近くまで拡大できるので、例えジャイロ機構部の小形化に伴って複数電極31〜48の容量が小さくなったとしても、十分な信号レベルを確保することができて、変位の検出を適切に果たすことはもちろん、姿勢制御性能の向上にも貢献する。
【0045】
【発明が解決しようとする課題】
このように、実装状況も考慮して小形化すべく真空パッケージにジャイロ機構や電子回路を取り込んだり、ジャイロ機構部の小形化に伴って電極容量が減少しても適正レベルの変位検出用検出信号が得られるように変位検出用信号の流れを従来と逆転させたりして、静電浮上型ジャイロ装置の小形化が推し進められ、静電浮上型ジャイロ装置の応用範囲が広がっている。
もっとも、小形化が可能になったからといって、全部が小形のもので置き換えられる訳ではない。
【0046】
ジャイロロータを回転させてその慣性を利用する静電浮上型ジャイロ装置の場合、検出精度がジャイロロータの大きさに依存するのを避けられないため、種々のサイズのものが使い分けられている。そして、サイズに応じて電源電圧Vccや制御電圧V1等にも各種の電圧が採用されている。例えば、ロータ径が1〜2mmのときには3Vや5V程度の電圧で足りるが、ロータ径が5mmを超えると12Vや15Vといった電圧が用いられることが多い。
ただし、電子回路の電圧が高いと、使用できる電子部品が限られたり高価になったりする。特に、電流検出回路64のカレントミラーのように1MHz等の高速で動作するうえ広いダイナミックレンジも要求される半導体部品に、15V程度以上の高耐圧性能まで要求すると、適正価格で具体化するのが困難になる。
【0047】
その場合、制御電圧へ直に変位検出用印加信号を重畳させる従来技術が引き続き使われる。
しかしながら、変位検出用信号の流れを従来と逆転させて、制御電圧の出力段回路のところで、変位検出用印加信号に係る信号成分の検出を行う手法には、制御電圧をほとんど犠牲にしないで済むことや、変位検出用印加信号のレベル設定が制御電圧の制約を受けずにほぼ自由に行えることなど、従来技術に勝る利点が多い。
【0048】
そこで、変位検出用電極に変位検出用信号を印加して制御電極より制御回路寄りで検出を行う手法の採用を前提として、上述した何れとも異なる新たな構成の信号検出回路を案出することが技術的な課題となる。その際、電源電圧や制御電圧の影響が検出信号生成回路になるべく及ばないよう、更なる工夫を凝らすことも重要である。
この発明は、このような課題を解決するためになされたものであり、変位検出用信号の流れを従来と逆転させた静電浮上型ジャイロ装置であって新たなものを実現することを目的とする。
また、本発明は、変位検出用信号の流れを従来と逆転させて検出するに際して電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置を実現することも目的とする。
【0049】
【課題を解決するための手段】
このような課題を解決するために発明された第1乃至第6の解決手段について、その構成および作用効果を以下に説明する。
【0050】
[第1の解決手段]
第1の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項1に記載の如く、ジャイロロータを静電浮上可能かつ回転可能に内蔵するジャイロケースと、これに形成されている複数の電極のうち静電支持用電極および回転駆動用電極に前記ジャイロロータの姿勢制御用および回転駆動用の制御電圧をそれぞれ生成して印加する制御回路と、前記ジャイロロータと前記ジャイロケースとの相対変位を検出するための変位検出用印加信号を前記複数電極のうちの一部に印加する印加信号供給回路と、前記複数電極のうち前記制御電圧の印加されない変位検出用電極を経由したところで前記変位検出用印加信号に係る信号成分を検出して変位検出用検出信号を生成しこれを前記制御回路に送出する検出信号生成回路と、前記制御回路に複数設けられ前記制御電圧のうち少なくとも姿勢制御用のものに関しては互いに逆相の対となるものを生成して前記複数電極のうち隣り合うものに振り分けて印加する出力段回路とを備えた静電浮上型ジャイロ装置において、前記印加信号供給回路が、前記変位検出用印加信号を前記変位検出用電極に印加するものであり、前記検出信号生成回路が、前記出力段回路それぞれの出力側に付設された複数の同相検出回路を具有しており、前記同相検出回路は、それぞれ、付設先の出力段回路の出力であって逆相関係の対から同相成分を抽出することにより前記変位検出用印加信号に係る信号成分の検出を行うようになっている、というものである。
【0051】
このような第1の解決手段の静電浮上型ジャイロ装置にあっては、変位検出用信号が、変位検出用電極に印加され、それから、ジャイロロータを経て複数の制御電極に伝達され、それぞれ該当する出力段回路の出力側に到達する。そのときの伝達状態・伝達程度には各制御電極の容量変化が反映されているので、変位検出用印加信号に係る信号成分を検出すれば、その検出値に基づいてジャイロロータとジャイロケースとの相対変位を算出することが可能である。
【0052】
その検出は、隣り合う電極に対し変位検出用印加信号が同相で伝達されてくることに基づいて、同相成分の抽出にて行われる。また、そのような隣り合う制御電極に対して逆相の制御電圧が印加されていることから、同相成分の抽出は、受動素子のような耐電圧も応答性も高くて安い電子部品を用いて具体化しうる。例えば信号同士の加算や分圧といった手法で行うことが可能となる。そして、このような抽出によって、変位検出用検出信号は、制御電圧から分離されて、単独のものとなるので、その後続処理には、もはや制御回路の出力段回路のような高耐圧性能は要求されない。
【0053】
このように、変位検出用電極に変位検出用信号を印加して制御電極より制御回路寄りで検出を行うとともに、それに際して、隣り合う制御電極に対し逆相の制御電圧が印加されること及び同相の変位検出用印加信号が伝達されることに基づき、変位検出用印加信号に係る信号成分の検出を同相成分の抽出にて行うようにしたことにより、カレントミラー等を設けて電流検出を行う既述のものとは異なるものであっても、適切に所望の信号を検出することが、可能となる。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させた静電浮上型ジャイロ装置であって新たなものを実現することができる。
【0054】
[第2の解決手段]
第2の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項2に記載の如く、上記の第1解決手段の静電浮上型ジャイロ装置であって、前記同相検出回路の各々に、容量素子の直列回路からなり逆相出力(すなわち互いに逆相の出力対)の中点電圧(すなわち両信号の中間の電圧)を検出する中点電圧検出回路と、この中点電圧検出回路と付設先の出力段回路とに介挿して設けられ前記制御電圧の周波数成分の電流は通過させるが前記変位検出用印加信号の周波数成分の電流は通過させない電流制限回路とが、具わっている、というものである。
【0055】
このような第2の解決手段の静電浮上型ジャイロ装置にあっては、同相検出回路が、中点電圧検出回路と電流制限回路とで具体化され、中点電圧検出回路が、受動素子である容量素子の直列回路で具体化されている。電流制限回路も抵抗などの受動素子で具体化しやすいものであり、この電流制限回路の存在によって、変位検出用印加信号が出力段回路へ逃げることなく中点電圧検出回路に伝達される。
【0056】
このような同相検出回路は、受動素子で構成されて、耐電圧も応答性も高いうえ安価なものとなっている。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置を実現することができる。
【0057】
[第3の解決手段]
第3の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項3に記載の如く、上記の第2解決手段の静電浮上型ジャイロ装置であって、前記容量素子は直列接続されているもの総てが同一基板上に積層形成されている、というものである。
【0058】
このような第3の解決手段の静電浮上型ジャイロ装置にあっては、中点電圧検出回路において直列接続されている容量素子の容量比が正確になることから、中点電圧が正確に検出されるので、変位検出のための同相成分抽出が正確に行われる。これにより、変位検出用印加信号に係る信号成分が、微弱なものであっても、より正確に検出される。変位検出が正確に行えれば、ジャイロロータの姿勢制御も正確にでき、慣性空間に対する加速度等の検出も正確になる。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良いものを実現することができる。
【0059】
[第4の解決手段]
第4の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項4に記載の如く、上記の第3解決手段の静電浮上型ジャイロ装置であって、前記容量素子が前記ジャイロケースに形成されている、というものである。
【0060】
このような第4の解決手段の静電浮上型ジャイロ装置にあっては、ジャイロケースに配線等を積層形成するついでに容量素子を少なくとも部分的には形成することが可能となる。
これにより、静電浮上型ジャイロ装置の製造工程の一部が短縮されて製造コストが削減される。また、ジャイロ機構部と電子回路とがコンパクトに纏まる。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良い廉価なものを実現することができる。
【0061】
[第5の解決手段]
第5の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項5に記載の如く、上記の第3解決手段の静電浮上型ジャイロ装置であって、前記容量素子が前記ジャイロケースの搭載基板に形成されいる、というものである。
【0062】
このような第5の解決手段の静電浮上型ジャイロ装置にあっては、ジャイロケースの搭載基板に配線等を積層形成するついでに容量素子を少なくとも部分的には形成することが可能となる。
これにより、静電浮上型ジャイロ装置の製造工程の一部が短縮されて製造コストが削減される。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良い廉価なものを実現することができる。
【0063】
[第6の解決手段]
第6の解決手段の静電浮上型ジャイロ装置は、出願当初の請求項6に記載の如く、上記の第3解決手段の静電浮上型ジャイロ装置であって、真空維持部材が内蔵され複数の外部接続端子が貫通状態で植設された密閉可能なパッケージを具え、前記ジャイロケースを搭載した搭載基板と前記容量素子を含む電子回路とが前記パッケージに内蔵され、前記搭載基板が弾性支持されている、というものである。
【0064】
このような第6の解決手段の静電浮上型ジャイロ装置にあっては、ジャイロ機構部と共に電子回路部もパッケージに格納される。また、そのパッケージを密閉する等のことで真空状態が確立され、その真空状態が真空維持部材によって維持されるが、ジャイロ機構部より大きく材質制限も少ないパッケージは高気密にし易いうえ、真空維持部材もジャイロ機構部のサイズ制約を免れて所要の大きさにできるので、真空状態が長期間に亘って維持される。そして、そのパッケージを複数端子付き電子部品と同様にしてプリント基板等に実装すると、機構部が固定されるとともに、電気的接続も確立される。
【0065】
このように真空パッケージを導入して真空空間をジャイロ機構部よりも広くしたことにより、ジャイロ機構部を小さくしても真空維持等の困難性増加は回避される。しかも、真空パッケージは、無駄に大きい訳でなく、ジャイロ機構部の他に、重要な真空維持部材や、可能な範囲で電子回路も、内蔵している。そのため、装置全体ではコンパクトになる。実装も汎用技術が使えて容易になる。
【0066】
さらに、ジャイロ機構部の搭載基板が弾性支持されているので、パッケージが衝撃を受けたとしても、弾性部材での緩衝によって、その衝撃がジャイロ機構部に伝達されるまでに緩和されるので、搭載基板が壊れ難くなる。
したがって、この発明によれば、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって丈夫で精度の良いものを小形かつ安価に実現することができる。
【0067】
【発明の実施の形態】
このような解決手段で達成された本発明の静電浮上型ジャイロ装置について、これを実施するための具体的な形態を以下の第1〜第6実施例により説明する。図5,図6に示した第1実施例は、上述した第1,第2の解決手段を具現化したものであり、図7に示した第2実施例は、その変形例である。また、図8に示した第3実施例は、上述した第3の解決手段を具現化したものであり、図9に示した第4実施例は、上述した第4の解決手段を具現化したものであり、図10に示した第5実施例は、上述した第5の解決手段を具現化したものであり、図11に示した第6実施例は、上述した第6の解決手段を具現化したものである。
【0068】
なお、それらの図示に際し、前提の技術の欄や,従来の技術の欄,未公開の先行技術の欄において言及した構成要素と同様の構成要素には同一の符号を付して示したので、また、前提の技術の欄で述べたジャイロ機構部は以下の各実施例でもそのまま利用されるので、重複する再度の説明は割愛し、以下、公知の従来技術や未公開の先行技術との相違点を中心に説明する。
ここでも、明瞭な対比等のため、電子回路部は環状ロータ型ジャイロ対応のものを具体例とする。
【0069】
【第1実施例】
本発明の静電浮上型ジャイロ装置の第1実施例について、その具体的な構成を、図面を引用して説明する。図5は、(a)が、信号検出回路を含む全体回路図、(b)が変位検出用印加信号の発生回路、(c)が検出信号生成回路である。また、図6(a)が、制御電圧印加部分と検出信号生成回路の詳細図である。
【0070】
この静電浮上型ジャイロ装置(図5,図6参照)が既述の先行特許出願1,2記載例(図2,図4参照)と相違するのは、信号検出回路に関して(図5(a)参照)、矩形波電流発生用の印加信号発生回路61が矩形波電圧発生用の印加信号発生回路90になった点と、電流検出回路64に代わって同相検出回路91が検出信号生成回路の主要部になった点である。他は基本的に同じである。
【0071】
印加信号発生回路90は(図6(b)参照)、印加信号発生回路61と同様に周波数がジャイロロータ10の運動に影響しないほど高いという要件を満たせば変位検出用印加信号V0として正弦波の信号を発生するものでも良いが、ここでは、デジタル化に適した矩形波の信号を発生するために、クロックCLKaをアンプで増幅して変位検出用印加電圧信号V0を生成している。この場合も、変位検出用印加電圧信号V0が変位検出用電極38,48に印加されるので、変位検出用印加信号V0の振幅は電源電圧の許す範囲で任意に設定することが許される。
【0072】
同相検出回路91は、制御出力回路54毎に設けられ(図5(a)参照)、それぞれ(図5(c)参照)、一つの中点電圧検出回路92と二つの電流制限回路93とからなり、制御出力回路54の出力側に付設されている。
静電支持用電極31に制御電圧V1を印加する制御出力回路54を具体例にして説明すると(図5(c)参照)、既述したように、静電支持用電極31は隣り合う静電支持用電極31aと静電支持用電極31bとからなり、制御電圧V1は互いに逆相の関係にある負電圧V1aと正電圧V1bとの対に分けられて、正電圧V1bは静電支持用電極31bに印加され、負電圧V1aは隣接の静電支持用電極31aに印加されるようになっている。
【0073】
そして、このことを前提として、同相検出回路91は、付設先の制御出力回路54の逆相出力V1a,V1bから同相成分を抽出することにより変位検出用印加電圧信号V0に係る信号成分m1を検出し、これを変位検出用検出信号m1として変位検出用検出電流i1に代えて制御演算回路63に送出するようになっており、そのために、中点電圧検出回路92は、負電圧V1aのラインと正電圧V1bのラインとの双方に架橋の如く接続され、電流制限回路93は、中点電圧検出回路92と制御出力回路54との間で、一つが負電圧V1aのラインに介挿接続され、もう一つが正電圧V1bのラインに介挿接続されている。
【0074】
具体的な回路構成例を挙げると(図6(a)参照)、中点電圧検出回路92は、容量の等しい2個のコンデンサC(容量素子)を直列接続した回路からなり、その直列回路の一端が正電圧V1bのラインに接続され他端が負電圧V1aのラインに接続されコンデンサC同士の接続点から検出信号m1が取り出されてこの信号ラインが制御演算回路63まで延びている。また、電流制限回路93は何れも抵抗Rからなり、負電圧V1a及び正電圧V1bのラインそれぞれに対して制御出力回路54の出力端とコンデンサCの接続点との間で介挿接続されている。繰り返しとなる詳細な説明は割愛するが、静電支持用電極31と対向対をなす静電支持用電極41についても同様に中点電圧検出回路92と電流制限回路93とが付設されて変位検出用検出信号m12が生成されやはり制御演算回路63に送出されるようになっている。詳細図は割愛したが、他の制御電極32〜36,42〜46についても同様である。
【0075】
この第1実施例の静電浮上型ジャイロ装置について、その使用態様及び動作を、図面を引用して説明する。図6(b)〜(e)は何れも信号波形例である。
ここでも、環状ロータ型の6対の静電支持用電極のうち、電極31について詳述する。
【0076】
そうすると(図6(b)参照)、静電支持用電極31に印加されるオフセット電圧Vofや、姿勢制御のために算出され変化するX軸制御電圧成分Vxは既述の先行特許出願1,2記載例と同じなので、正電圧V1bのうち制御出力回路54の出力する主成分は+Vof+Vxにされ、負電圧V1aの主成分は−Vof−Vxにされる。、正電圧V12bの主成分は+Vof−Vxにされ、負電圧V12aの主成分は−Vof+Vxにされる。
この逆相の制御電圧V1すなわち負電圧V1a及び正電圧V1bは、やはり、制御出力回路54から静電支持用電極31に送出され、それへ直に変位検出用印加信号V0が重畳されることもなく、変位検出用印加信号V0は静電支持用電極31から制御出力回路54へ逆向きに伝達されて来る。
【0077】
すなわち(図6(c)参照)、印加信号発生回路90によって、電圧波形がデューテイ比50%の矩形波となる変位検出用印加信号V0が発生され、これが変位検出用電極38とジャイロロータ10と静電支持用電極31を順に経て制御電圧V1に重畳する。変位検出用印加電圧信号V0の振幅は、印加信号発生回路90に昇圧回路等を付設すれば、印加信号発生回路61のときと同様、制御出力回路54の電源電圧Vccを超えることも可能であり、従来の変位検出用印加信号f1等に比べて可成り大きい。これに対し(図6(b)参照)、制御電圧V1に重畳する電圧成分は極めて小さいので、正電圧V1bの波形は主成分+Vof+Vxの波形から大きく離れることなくそれに沿い、負電圧V1aは主成分−Vof−Vxに沿い、いずれも主成分とほぼ同様の波形を描く。
【0078】
この変位検出用印加電圧信号V0は、隣り合う静電支持用電極31a,3bに対して同相で伝達されて来るので、その静電支持用電極31を経て制御出力回路54の出力ラインに伝達される際にも、逆相の制御電圧V1a,V1bに同相で重畳する(図6(b)の実線グラフ参照)。この電圧成分をm1とすると、正電圧V1bは+Vof+Vx+m1となり、負電圧V1aは−Vof−Vx+m1となる。そして、中点電圧検出回路92によって、両者の丁度中間の電圧が検出される。この検出信号m1には(図6(d)参照)、制御電圧V1の逆相成分が相殺しあって残らないので、変位検出用印加電圧信号V0に係る同相成分だけが含まれている。その波形は、エッジ等での乱れを無視すれば、クロックCLKaに対応した周波数の矩形波となり、その振幅には、静電支持用電極31とジャイロロータ10との静電容量ひいては両者の相対変位ΔXが的確に反映されている。
【0079】
そして(図4(e),(a)参照)、クロックCLKaに同期しているが位相のずれているクロックCLKbのタイミングで、X方向変位ΔXを反映した検出信号m1や,静電支持用電極41側から同様にして得られる検出信号m12が適宜増幅等されてからA/D変換回路65によって量子化され、さらに他の静電支持用電極32〜36,静電支持用電極42〜46についても同様にして変位検出用検出信号が同相検出回路91によって得られA/D変換回路65によって量子化され、それらを取り込んだDSP66によって姿勢制御のための公知の演算が行われる。また、慣性空間に対する角速度や加速度なども算出される。こうして、この場合も、姿勢制御や加速度検出等が適切に遂行される。さらに、変位検出用検出信号r1〜r6についても、図示に際して符号は変えなかったが、やはり電流信号でなく電圧信号で得られ、それが二値化されてDSP67に取り込まれ、それらを取り込んだD67SPによって回転駆動のための公知の演算が行われる。
【0080】
なお、コンデンサCの容量や抵抗Rの抵抗値は、静電支持用電極31とジャイロロータ10との静電容量や、制御出力回路54の出力電圧などを考慮して、制御電圧V1の主成分Vof+Vxに含まれる周波数成分の電流は電流制限回路93を良く通過するが(すなわち長い周期で見れば抵抗を無視できるが)、変位検出用印加電圧信号V0の周波数成分の電流は電流制限回路93をほとんど通過しないように(すなわち短い周期で見れば抵抗を無視できないように)選定されている。一例を挙げると、制御電圧V1の逆相成分Vxの周波数がせいぜい数十kHzで、変位検出用印加電圧信号V0の周波数すなわち検出信号m1の基本周波数が1MHzで、静電支持用電極31の静電容量が0.1pF程度のとき、コンデンサCと抵抗Rはそれぞれ20pFと250kΩで良い。
【0081】
これにより、制御電圧V1は、同相検出回路91の有無に拘わらず、静電支持用電極31に対して適切に印加される。また、変位検出用印加電圧信号V0に係る信号成分は、一般に出力インピーダンスの小さい制御出力回路54に吸収されることなく、電流制限回路93によって中点電圧検出回路92へ集中的に伝送される。そのため、検出信号m1が小振幅ながらも確実に検出される。他の変位検出用検出信号についても同様である。
こうして、ロータ姿勢制御が適切に遂行される。同様にして、基本周波数がせいぜい数百Hz程度のロータ回転駆動も、適切に遂行される。
【0082】
以上の説明より明らかに、この実施例の静電浮上型ジャイロの信号検出回路にあっては、変位検出用印加電圧信号V0を必要に応じて拡大することが可能かつ容易であり、しかも、制御電圧V1,V12等も制御出力回路54の電源電圧Vcc近くまで拡大できるので、例えジャイロ機構部の小形化に伴って複数電極31〜48の容量が小さくなったとしても、十分な信号レベルを確保することができて、変位の検出を適切に果たすことはもちろん、姿勢制御性能の向上にも貢献する。さらに、上述したようなコンデンサCや抵抗Rは、数MHz以上の周波数に対応したものであっても、数十V以上の耐圧性能を兼備したものが、容易に入手できるので、この発明は、電源電圧Vccや制御電圧V1等が数V程度の小形ジャイロ装置はもちろん、それより大きくて電源電圧Vccや制御電圧V1等が十数Vを超えるような静電浮上型ジャイロ装置にも、適用することができる。
【0083】
【第2実施例】
図7に制御出力回路54(制御電圧印加部分)と同相検出回路91(検出信号生成回路)を示した本発明の静電浮上型ジャイロ装置が上述した第1実施例のものと相違するのは、制御出力回路54が逆相の電圧V1a,V1b対を出力するものから単一出力の反転アンプや正転アンプを組み合わせたものになっている点と、電流制限回路93の構成素子が抵抗RからインダクタンスLになった点と、中点電圧検出回路92のコンデンサCが単一のものから複数個を直列に接続したものになった点である。
【0084】
この場合も、インダクタンスL等の選定を上述したように適切に行えば、所望の動作結果が得られる。図示は割愛したが、並列接続や,直並列接続,その他の組み合わせも、使用可能である。
また、直列接続された多数のコンデンサは印加電圧を分割して分担するので、個々のコンデンサは耐圧が低くても良い。
【0085】
【第3実施例】
本発明の静電浮上型ジャイロ装置の第3実施例について、その具体的な構成を、図面を引用して説明する。図8は、同相検出回路91(検出信号生成回路)のうちの中点電圧検出回路92について、その容量素子と接続配線とボンディングパッドの形成工程を示し、(a)〜(f)が平面図、(g)と(h)が縦断正面図である。
この静電浮上型ジャイロ装置が上述した第1,2実施例のものと相違するのは、中点電圧検出回路92をなす一対のコンデンサCの直列回路が同一基板上に積層形成されるようになった点である。
【0086】
回路形成基板94にはガラス等の絶縁基板が採用され(図8(a)参照)、その上面にアルミニウム等のメタル層95がスパッタリング等の公知手法で被着形成され更にフォトエッチング等の公知手法で所望形状にパターン形成される(図8(b)参照)。その形状は、両コンデンサCの形成領域と検出信号m1引出用パッド領域をカバーしており、それらの包絡線の内面を埋め尽くしている。
それから、シリカガラス膜や窒化膜からなる絶縁層96が公知のCVD技術等で積層され(図8(c)参照)、検出信号引出用パッド領域たとえば検出信号m1引出用パッド領域には開口97が絶縁層エッチングにて形成されメタル層95の一部が露出する(図8(d)参照)。
【0087】
さらに(図8(e)参照)、メタル層98が積層され、そのうち、一方のコンデンサCの形成領域と正電圧V1bラインへの接続線引出用パッド領域とをカバーしてそれらの包絡線の内面を埋め尽すパターンが一つと、他方のコンデンサCの形成領域と負電圧V1aラインへの接続線引出用パッド領域とをカバーしてそれらの包絡線の内面を埋め尽すパターンがもう一つと、検出信号m1引出用パッド領域とが、残される。
こうして中点電圧検出回路92が回路形成基板94に積層形成され、出来上がった中点電圧検出回路92の各パッドは、ボンディングワイヤ99にて、正電圧V1bのラインと検出信号m1送出ラインと負電圧V1aのラインとに、それぞれ接続される(図8(f)〜(h)参照)。
【0088】
この場合、製造状況に起因してコンデンサCの容量にばらつきが生じたときでも、一の回路形成基板94上に同時に形成された一対のコンデンサCについては同様の変化が起きるので、両者の容量比はほとんど変動しない。温度特性や周波数特性も、両コンデンサで、良く揃う。
そして、そのようなコンデンサ対を使用して逆相信号を分圧することで検出される中点電圧は、部品製造上の変動要因や、動作環境上の変動要因に、左右されることがほとんど無く、安定したものとなる。
【0089】
【第4実施例】
本発明の静電浮上型ジャイロ装置の第4実施例について、その具体的な構成を、図面を引用して説明する。図9は、(a),(b)何れも、ジャイロ機構部10+20の縦断面図である。
この静電浮上型ジャイロ装置が上述した第3実施例のものと相違するのは、回路形成基板94に代えて、ジャイロケース20の上側底部材21(図9(a)参照)か、あるいは下側底部材22(図9(b)参照)に、中点電圧検出回路92が積層形成されていることである。
【0090】
この場合、スルーホールを介して静電支持用電極31〜36等に至るメタル配線等をジャイロケース20の上側底部材21にパターン形成するときや、静電支持用電極41〜46等と一緒にその引出用メタル配線等をジャイロケース20の下側底部材22にパターン形成するとき、一緒に、中点電圧検出回路92のメタル層95も形成され、続く工程で、絶縁層96や,上層のメタル層98が形成される。
こうして、上側底部材21や下側底部材22を作るついでに中点電圧検出回路92まで作り込むことができ、出来上がった静電浮上型ジャイロ装置は、ジャイロ機構部と電子回路とがコンパクトに纏まったものとなる。
【0091】
【第5実施例】
本発明の静電浮上型ジャイロ装置の第5実施例について、その具体的な構成を、図面を引用して説明する。図10は、ジャイロ機構部10+20と同相検出回路92とをベース73(搭載基板)に搭載したところを示し、(a)が正面図、(b)が斜視図である。
この静電浮上型ジャイロ装置が上述した第3,第4実施例のものと相違するのは、回路形成基板94に代えて、ジャイロケース20の搭載基板であるベース73に、中点電圧検出回路92が積層形成されていることである。
【0092】
この場合、ジャイロケース20に接続されるメタル配線等をベース73にパターン形成するとき、一緒に、中点電圧検出回路92のメタル層95も形成され、続く工程で、絶縁層96や,上層のメタル層98が形成される。
こうして、ベース73を作るついでに中点電圧検出回路92まで作り込むことができる。ジャイロケース20はベース73に搭載してからボンディングワイヤ99等で中点電圧検出回路92やその他の配線等と接続される。そして、出来上がった静電浮上型ジャイロ装置は、やはりジャイロ機構部と電子回路とがコンパクトに纏まったものとなる。
【0093】
【第6実施例】
本発明の静電浮上型ジャイロ装置の第6実施例について、その具体的な構成を、図面を引用して説明する。図11は、(a)が蓋を外したところの平面図、(b)が縦断正面図である。
この静電浮上型ジャイロ装置100は、既述した図1記載のものを更に改良したものであり、ガラス基板のベース73を割れ難くするために、ベース73が円板形になっている。これに伴って、ピン74も円形状に列設されている。なお、パッケージも、ボックス72にキャップ71を被せる構造のものから、円板状の底板72に丸帽状のキャップ71を被せる構造のものになっている。
【0094】
また、ピン74がベース73から外周側へ外れて、両者の接合が剛接合でなくなっている。両者の電気的接続はボンディングワイヤ99によって行われ、ベース73をパッケージ底板72から浮かせて支持するための機械的接続は、例えば板バネからなる弾性支持部材101によって行われる。このようにピン74とベース73とに弾性支持部材101を介在させて、ベース73が弾性支持部材のみによって弾性支持されるようにしたことにより、衝撃を吸収する機能が向上する。衝撃が加わったときの問題点としては、ベース73の損傷の他、ロータが電極またはストッパーに衝突してロータの回転が止まると浮上および回転のシーケンスをやり直す必要があるが、そのような問題も回避することができる。
【0095】
【その他】
なお、上記の各実施例では、板状のキャップ71と箱状のボックス72とからなる装置パッケージや、帽子状のキャップ71と円板状の底板72とからなる装置パッケージが用いられていたが、装置パッケージはこれに限られない。装置パッケージは、気密封止可能な容器であれば良い。真空吸引口76も正面に限らずパッケージの何処に有っても良い。真空雰囲気中で組み立てるときのように真空引きが要らないときは、真空吸引口76を形成する必要が無い。
【0096】
上記の第6実施例では、弾性支持部材101がベース73とピン74とに介在して設けられていたが、ベース73の弾性支持は、それに限られるものでなく、例えば弾性支持部材をベース73とパッケージ71,72とに介在させても良い。弾性支持部材も、板バネに限らず、コイルバネや、シリコンゴム等の弾性部材からなるものであっても、それらを組み合わせたものであっても良い。
【0097】
また、既述した信号検出回路に関しても種々の変形が可能である。例えば、A/D変換回路65の上流に逐次選択切換回路を設けて、A/D変換回路65の個数を減らすようにしても良い。なお、電流検出回路64とDSP66との間に存在するA/D変換回路65等は、既述したように制御演算回路63の一部であるとしても良いが、制御演算回路に属するのでなく信号検出回路の一部をなしているとしても、両者に属しているインターフェイス部としても、不都合は無い。また、制御演算回路63のDSP66とロータ制御回路62のDSP67は、既述したように別個に設けても良いが、両方のプログラムをインストールしたDSPに纏めても良い。
【0098】
【発明の効果】
以上の説明から明らかなように、本発明の第1の解決手段の静電浮上型ジャイロ装置にあっては、変位検出用電極に変位検出用信号を印加して制御電極より制御回路寄りで検出を行うに際して、隣り合う制御電極に対し逆相の制御電圧が印加されること及び同相の変位検出用印加信号が伝達されることに基づき、信号検出を同相成分の抽出にて行うようにしたことにより、変位検出用信号の流れを従来と逆転させた静電浮上型ジャイロ装置であって新たなものを実現することができたという有利な効果が有る。
【0099】
また、本発明の第2の解決手段の静電浮上型ジャイロ装置にあっては、同相検出回路が確実に受動素子で具体化しうるようにしたことにより、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置を実現することができたという有利な効果を奏する。
【0100】
さらに、本発明の第3の解決手段の静電浮上型ジャイロ装置にあっては、容量素子の作り込みに際して容量比が正確になるようにもしたことにより、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良いものを実現することができたという有利な効果が有る。
【0101】
また、本発明の第4の解決手段の静電浮上型ジャイロ装置にあっては、ジャイロケースに容量素子を形成するようにもしたことにより、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良い廉価なものを実現することができたという有利な効果を奏する。
【0102】
また、本発明の第5の解決手段の静電浮上型ジャイロ装置にあっては、ジャイロケースの搭載基板に容量素子を形成するようにもしたことにより、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって精度の良い廉価なものを実現することができたという有利な効果が有る。
【0103】
また、本発明の第6の解決手段の静電浮上型ジャイロ装置にあっては、真空パッケージを導入して真空空間をジャイロ機構部よりも広げ、その中に真空維持部材や容量素子まで取り込むとともに、パッケージを介する衝撃が緩和されるようにもしたことにより、変位検出用信号の流れを従来と逆転させて検出するに際して制御電圧等の電圧レベルによる制約の緩やかな静電浮上型ジャイロ装置であって丈夫で精度の良いものを小形かつ安価に実現することができたという有利な効果を奏する。
【図面の簡単な説明】
【図1】 未公開先行技術の静電浮上型ジャイロ装置について、(a)が装置の正面図、(b)が蓋を外したところの平面図、(c)が縦断面斜視図、(d)が装置実装状況を示す斜視図である。
【図2】 (a)が、信号検出回路を含む全体回路図、(b)が変位検出用印加信号の発生回路、(c)が電流検出回路である。
【図3】 (a)が拘束制御系の信号入力回路、(b)がロータ駆動系の信号入力回路である。
【図4】 (a)が制御電圧印加部分の詳細図、(b)〜(f)は何れも信号波形例である。
【図5】 本発明の静電浮上型ジャイロ装置の第1実施例について、(a)が、信号検出回路を含む全体回路図、(b)が変位検出用印加信号の発生回路、(c)が検出信号生成回路である。
【図6】 (a)が制御電圧印加部分と検出信号生成回路の詳細図、(b)〜(e)は何れも信号波形例である。
【図7】 本発明の静電浮上型ジャイロ装置の第2実施例について、制御電圧印加部分と検出信号生成回路の詳細図である。
【図8】 本発明の静電浮上型ジャイロ装置の第3実施例について、検出信号生成回路の中点電圧検出回路の容量素子の形成工程を示し、(a)〜(f)が平面図、(g)と(h)が縦断正面図である。
【図9】 本発明の静電浮上型ジャイロ装置の第4実施例について、(a),(b)何れも、ジャイロ機構部の縦断図である。
【図10】 本発明の静電浮上型ジャイロ装置の第5実施例について、ジャイロ機構部と検出信号生成回路の中点電圧検出回路とを搭載基板に搭載したところを示し、(a)が正面図、(b)が斜視図である。
【図11】 本発明の静電浮上型ジャイロ装置の第6実施例について、(a)が蓋を外したところの平面図、(b)が縦断正面図である。
【図12】 従来の静電浮上型ジャイロの機構部を示し、(a)〜(c)が円板形ロータの例、(d)及び(e)が環状ロータの例であり、(a)及び(d)が縦断正面図、(b)と(c)と(e)が内蔵部品の展開斜視図である。
【図13】 従来の信号検出回路について、(a)が、制御回路等に信号検出回路を加えた全体回路図、(b)が制御出力回路の詳細な接続図、(c)が一部の信号入力回路、(d)及び(e)が電圧分配例である。
【符号の説明】
10 ジャイロロータ(ジャイロ機構部)
20 ジャイロケース(ジャイロ機構部)
21 上側底部材(ジャイロケース、ジャイロ機構部)
22 下側底部材(ジャイロケース、ジャイロ機構部)
23 スペーサ(ジャイロケース、ジャイロ機構部)
31〜36 静電支持用電極(姿勢制御用電極、制御電極、拘束制御系)
37 ロータ駆動用電極(回転電極、ロータ駆動系)
38 変位検出用電極(検出電極、変位検出系)
41〜46 静電支持用電極(姿勢制御用電極、制御電極、拘束制御系)
47 ロータ駆動用電極(回転電極、ロータ駆動系)
48 変位検出用電極(検出電極、変位検出系)
51 電流検出回路(変位検出系)
52 ロータ制御回路(制御回路、ロータ駆動系)
53 制御演算回路(制御回路、拘束制御系)
54 制御出力回路(制御回路、拘束制御系)
55 A/D変換回路(制御演算回路、拘束制御系)
56 DSP(デジタルシグナルプロセッサ、制御演算回路、拘束制御系)
61 印加信号発生回路(印加信号供給回路、信号検出回路、変位検出系)
62 ロータ制御回路(制御回路、ロータ駆動系)
63 制御演算回路(制御回路、拘束制御系)
64 電流検出回路(検出信号生成回路、信号検出回路、変位検出系)
64a,64b カレントミラー(電流反転回路)
65 A/D変換回路(信号入力回路、信号検出回路+制御演算回路)
66 DSP(デジタルシグナルプロセッサ、制御演算回路、拘束制御系)
67 DSP(デジタルシグナルプロセッサ、制御演算回路、ロータ駆動系)
70 ジャイロ装置(静電浮上型ジャイロ装置)
71 キャップ(蓋体、真空収容器、気密封止パッケージ)
72 ボックス(箱体、缶体、真空収容器、気密封止パッケージ)
73 ベース(ガラス基板、絶縁性基板、機構部と回路部の搭載基板)
74 ピン(リード、外部接続端子)
75 ゲッター(真空維持部材)
76 真空吸引口(貫通穴+密栓)
77,78 IC(電流検出回路等、制御出力回路等)
80 プリント基板(回路印刷基板、ジャイロ装置の実装基板)
81 レギュレータIC(電源回路)
82 平滑コンデンサ(電源回路)
90 印加信号発生回路(印加信号供給回路、信号検出回路、変位検出系)
91 同相検出回路(検出信号生成回路、信号検出回路、変位検出系)
92 中点電圧検出回路(同相検出回路)
93 電流制限回路(低域濾波、同相検出回路)
94 回路形成基板(絶縁基板)
95 メタル層(第1導体層)
96 絶縁層(層間絶縁膜)
97 開口(絶縁除去部、導体層露出部)
98 メタル層(第2導体層)
99 ボンディングワイヤ
100 ジャイロ装置(静電浮上型ジャイロ装置)
101 弾性支持部材

Claims (5)

  1. ジャイロロータを静電浮上可能かつ回転可能に内蔵するジャイロケースと、これに形成されている複数の電極のうち静電支持用電極および回転駆動用電極に前記ジャイロロータの姿勢制御用および回転駆動用の制御電圧をそれぞれ生成して印加する制御回路と、前記ジャイロロータと前記ジャイロケースとの相対変位を検出するための変位検出用印加信号を前記複数電極のうちの一部に印加する印加信号供給回路と、前記複数電極のうち前記制御電圧の印加されない変位検出用電極を経由したところで前記変位検出用印加信号に係る信号成分を検出して変位検出用検出信号を生成しこれを前記制御回路に送出する検出信号生成回路と、前記制御回路に複数設けられ前記制御電圧のうち少なくとも姿勢制御用のものに関しては逆相のものを生成して前記複数電極のうち隣り合うものに印加する出力段回路とを備えた静電浮上型ジャイロ装置において、前記印加信号供給回路が、前記変位検出用印加信号を前記変位検出用電極に印加するものであり、前記検出信号生成回路が、前記出力段回路それぞれの出力側に付設された複数の同相検出回路を具有しており、前記同相検出回路は、それぞれ、付設先の出力段回路の逆相出力から同相成分を抽出することにより前記変位検出用印加信号に係る信号成分の検出を行うものであり、更に、前記同相検出回路は、それぞれが、容量素子の直列回路からなり逆相出力の中点電圧を検出する中点電圧検出回路と、この中点電圧検出回路と付設先の出力段回路とに介挿して設けられ前記制御電圧の周波数成分の電流は通過させるが前記変位検出用印加信号の周波数成分の電流は通過させない電流制限回路とを具えていることを特徴とする静電浮上型ジャイロ装置。
  2. 前記容量素子は直列接続されているもの総てが同一基板上に積層形成されていることを特徴とする請求項1記載の静電浮上型ジャイロ装置。
  3. 前記基板が前記ジャイロケースの一部であることを特徴とする請求項2記載の静電浮上型ジャイロ装置。
  4. 前記基板が前記ジャイロケースを搭載していることを特徴とする請求項2記載の静電浮上型ジャイロ装置。
  5. 真空維持部材が内蔵され複数の外部接続端子が貫通状態で植設された密閉可能なパッケージを具え、前記ジャイロケースを搭載した搭載基板と前記容量素子を含む電子回路とが前記パッケージに内蔵され、前記搭載基板が弾性支持されていることを特徴とする請求項2記載の静電浮上型ジャイロ装置。
JP2003099695A 2003-04-02 2003-04-02 静電浮上型ジャイロ装置 Expired - Fee Related JP4393782B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003099695A JP4393782B2 (ja) 2003-04-02 2003-04-02 静電浮上型ジャイロ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099695A JP4393782B2 (ja) 2003-04-02 2003-04-02 静電浮上型ジャイロ装置

Publications (2)

Publication Number Publication Date
JP2004309187A JP2004309187A (ja) 2004-11-04
JP4393782B2 true JP4393782B2 (ja) 2010-01-06

Family

ID=33464061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099695A Expired - Fee Related JP4393782B2 (ja) 2003-04-02 2003-04-02 静電浮上型ジャイロ装置

Country Status (1)

Country Link
JP (1) JP4393782B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5199720B2 (ja) * 2008-04-15 2013-05-15 東京計器株式会社 静電浮上型ジャイロ装置

Also Published As

Publication number Publication date
JP2004309187A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5117716B2 (ja) 力学量センサ
Xie et al. Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope
JP4874067B2 (ja) 角速度センサ
CN103221779B (zh) 微机械整体式六轴惯性传感器
KR100413789B1 (ko) 고진공 패키징 마이크로자이로스코프 및 그 제조방법
JP5527015B2 (ja) 素子構造体、慣性センサー、電子機器
US6536281B2 (en) Capacitive micro sensor, gyroscope, and input device
US6876093B2 (en) Capacitance type dynamic quantity sensor device
US8096180B2 (en) Inertial sensor
WO2012077494A1 (ja) 複合センサ
JP2010127763A (ja) 半導体力学量検出センサ及びそれを用いた制御装置
US9511993B2 (en) Semiconductor physical quantity detecting sensor
CN102331514A (zh) 元件结构体、惯性传感器以及电子设备
CN107110884A (zh) 复合传感器
JP4393782B2 (ja) 静電浮上型ジャイロ装置
JP3780673B2 (ja) 角速度センサ
JP2005283428A (ja) 力学量センサ装置
JP2006078249A (ja) 容量型半導体センサ
WO2013140488A1 (ja) 角速度センサ
JP2005227089A (ja) 力学量センサ装置
JP4393912B2 (ja) 静電浮上型ジャイロ装置
JP2005140708A (ja) 静電浮上型ジャイロ装置
JP4368236B2 (ja) 静電浮上型ジャイロ装置
JP4292746B2 (ja) 角速度センサ
JP4237474B2 (ja) 静電浮上型ジャイロの信号検出回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Ref document number: 4393782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees