JP4392933B2 - シンクロトロン放射光計測装置および方法 - Google Patents

シンクロトロン放射光計測装置および方法 Download PDF

Info

Publication number
JP4392933B2
JP4392933B2 JP2000013199A JP2000013199A JP4392933B2 JP 4392933 B2 JP4392933 B2 JP 4392933B2 JP 2000013199 A JP2000013199 A JP 2000013199A JP 2000013199 A JP2000013199 A JP 2000013199A JP 4392933 B2 JP4392933 B2 JP 4392933B2
Authority
JP
Japan
Prior art keywords
intensity
synchrotron radiation
measuring
stage
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000013199A
Other languages
English (en)
Other versions
JP2001052898A (ja
JP2001052898A5 (ja
Inventor
明 三宅
豊 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000013199A priority Critical patent/JP4392933B2/ja
Publication of JP2001052898A publication Critical patent/JP2001052898A/ja
Publication of JP2001052898A5 publication Critical patent/JP2001052898A5/ja
Application granted granted Critical
Publication of JP4392933B2 publication Critical patent/JP4392933B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は荷電粒子蓄積リング制御系あるいはシンクロトロン放射光を利用した分光器、リソグラフィ装置、X線顕微鏡などの各種装置に用いられるシンクロトロン放射光計測装置および方法に関する。
【0002】
【従来技術】
高速に加速した荷電粒子を磁場で曲げた際に発生するシンクロトロン放射光は荷電粒子の軌道面に集中したシート状のビームとして得られる。このビームは、荷電粒子の軌道面に垂直な方向には、概ねガアウシアンに近い強度分布をもっている。このビームの発散すなわちシート状ビームの厚さは、荷電粒子の加速エネルギ、磁場強度、荷電粒子ビームのサイズ、荷電粒子ビームの発散角などに依存している。
【0003】
シンクロトロン放射光を利用して測定や加工などを行なう場合には、通常、ミラーを用いてビームを偏向または集光させて試料に照射する。試料の上に照射されるビームの集光位置や強度は、ミラーに入射するビームの位置やその広がりの大きさに依存している。試料に照射される光強度や位置を決定したり、最適値に調整したりするためには、ビームの位置やサイズを測定することが必要となる。また、ビームの位置やその広がりの大きさが所定の値に保たれるようにシンクロトロン光源を制御する際にも、ビームの位置やその広がりの大きさを測定する必要がある。
【0004】
従来、シンクロトロン放射光ビームの位置やサイズを測定する方法としては、図17および図18に示すような装置を用いる方法がある。この装置は、真空容器1、その中に配置され、ピンホール34が設けられたアパーチャ板35を前方に配置したフォトダイオード36によるX線検出器、このX線検出器をY方向に駆動するステージ機構37、大気中のステージ機構37と真空中のX線検出器を機械的に結合しかつ真空を保持するためのロッド10とベローズ機構11、X線検出器の出力とステージ37の駆動量を取り込んで記録する演算装置13などから構成される。ここで、SRビーム15の進行方向をZ、シート状のSRビーム15の面(電子ビーム軌道面と同一)内でZに垂直な方向をX、そしてSRビーム15の面に垂直でZに垂直な方向をYと定義している。
【0005】
この構成において、ピンホール34を伴なうフォトダイオード36によるX線検出器をYステージ37でスキャン移動させて、ビームプロファイルを求め、これを適当な関数、例えばガアウシアンでフィッティングして、ビームの広がり(大きさ)σおよびY方向位置を算出する。すなわち、図19のように、横軸にX線検出器の位置Yをとり、縦軸にX線検出器の出力S(光強度)をとって測定値をプロットする。そして、この実験値とよく一致するように、実線で示すようなガアウシアンでフィッティングして、ガアウシアンのσと中心値を求める。具体的には、例えば仮定したガアウシアンと測定値との差の二乗和が最小となるようにガアウシアンのσと中心値のパラメータを決定する。
【0006】
【発明が解決しようとする課題】
しかしながら、この従来例には以下のような問題がある。すなわち、この従来例によれば、高い精度でビームの位置やサイズを決定するためには、測定時に細かくX線検出器のY位置を設定して繰り返し測定を行ない、多くのデータを取得する必要がある。例えば0.1mmピッチでステージを駆動し、10mmの範囲において101点について計測を行なう。そしてその際、1回の測定毎にステージを微小量駆動してはX線検出器の出力を取り込むという動作を何度も繰り返し行なう必要があるため、計測に長い時間がかかる。例えば1点の測定に0.1秒要するとしても、測定には10秒以上の時間が必要である。シンクロトロン放射光ビームの位置やサイズは短い周期で変動する場合も有り得るが、そのような短い周期の変動は、このような従来の方法では検出することができない。
【0007】
また、ステージをスキャンしてビームプロファイルを計測する間にビームの位置やサイズが変動すると、正確にビームプロファイルを計測することができず、ビームの位置やサイズの計測値に誤差が発生する。
【0008】
また、計測のたびにステージを駆動する必要があるため、電力消費が大きく、維持費用が嵩むという問題もある。また、シンクロトロン放射光を利用する他の計測装置などに振動等の悪影響を及ぼしやすいという問題もある。
【0009】
また、ベローズやステージ機構には弾性変形や摩擦する部材があるため、長期間にわたって繰り返し駆動を行なうと、これらの部材が摩耗したり、破損したりする恐れがある。すなわち、これらの機械的な寿命によって計測システムの寿命が制限され、長期間使用することが難しいという問題点がある。
【0010】
本発明の目的は、このような従来技術の問題点に鑑み、シンクロトロン放射光計測装置および方法において、測定時間を短縮し、あるいはこれに加えて装置の電力消費を抑え、また、装置の寿命を延ばし、さらには他の計測装置などに振動等の悪影響を及ぼすのを防止することにある。
【0011】
【課題を解決するための手段】
本発明の一側面としてのシンクロトロン放射光計測装置は、シンクロトロン放射光源からのビームについてその厚さ方向の全範囲にわたって積分した全強度を計測する全強度計測手段と、前記ビームの強度をその厚さ方向の位置が異なる複数点で計測する複数点強度計測手段と、前記全強度計測手段および前記複数点強度計測手段の計測結果に基づいて前記ビームの強度プロファイルを特定するためのパラメータを演算する演算手段とを具備することを特徴とする
【0035】
【発明の実施の形態】
本発明の好ましい第1の実施形態においては、前記ビームの強度を測定する2点を前記ビームの厚さ方向に移動する手段または工程を有する。ただし、実際の測定時に移動することは不要である。ビームの全強度の計測は、ビームの厚さ方向の全範囲にわたって一度で受光できる受光面を有する放射光検出器により行なう。またはシンクロトロン蓄積電流値を検出することにより行なう。また、全強度の計測は前記2点で強度が計測されるビームが取り出されるビームラインとは別のビームラインから取り出されるビームについて行なうようにしてもよい。前記2点間の間隔は、ビームの厚さ方向の大きさ、例えば上述のσの1.5倍以下または2.5倍以上であるのが好ましい。
【0036】
予め、蓄積電流値が異なる複数の条件下において、前記全強度を計測し、また前記厚さ方向に移動させながら前記2点の強度についての計測を行なって、これらの計測結果に基づいて校正関数を求めておき、実際の計測にあたっては、この校正関数を用い、全強度および2点の強度の計測値に基づいてビームの厚さ方向の位置または大きさを演算することができる。
【0037】
さらに、本発明の好ましい第2の実施形態においては、前記ビームを測定する3点を前記ビームの厚さ方向に移動する手段または工程を有する。ただし、実際の測定時に移動することは不要である。蓄積電流値が異なる複数の条件下において、前記厚さ方向に移動させながら前記3点の強度についての計測を行なって、これらの計測結果に基づいて校正関数を求めておき、実際の計測にあたっては、この校正関数を用い、3点の強度の計測値に基づいてビームの厚さ方向の位置または大きさを演算する。
【0038】
さらに、前記ビームを測定する3点を前記ビームの厚さ方向に移動する手段または工程を用いることなく、前記校正関数なしに前記3点のビームの強度に基づいて前記ビームの厚さ方向の位置または大きさを演算することもできる。
【0039】
このようにしてビームの大きさや位置を求めることができるのは、次の原理による。ビームの強度分布がガアウシアンであると仮定すると、好ましい第1の形態の場合、ビームの中心位置Y0、ビームの広がりσ、およびビームの厚さ方向であるY方向に積分した全強度I0が決まれば、ビームの強度分布は一意に決まる。また、ビームのY方向に積分した全強度I0、およびビーム内の特定の2点位置での強度がわかれば、ビームの強度分布は一意に決まり、ビームの中心位置Y0と、ビームの広がりσも決まる。
【0040】
好ましい第2の実施形態の場合、ビーム内の位置が異なる3つの位置での強度がわかれば、ビームの強度分布は一意に決まり、ビームの中心位置Y0と、ビームの広がりσも決まる。従って、予め校正関数を決定するための計測を行わなくても、ビーム内の位置が異なる3つの位置での強度からシンクロトロン放射光ビームの位置とサイズを決定することもできる。
【0041】
この原理を図20、図21および図22を用いて説明する。図20は、全強度が一定でビームの位置(Y0)が変化したときのビームプロファイルと2個の検出器AおよびBの位置との関係を示す。同図に示すように、2個の検出器AおよびBが所定の間隔でビームに対して対称に位置YaおよびYbに設置されている場合において、ビームが検出器Aの側に移動したとすれば、検出器Aの出力が大きくなり、検出器Bの出力が小さくなる。逆に破線で示されるようにビームが検出器Bの側に移動したとすれば、検出器Aの出力が小さくなり、検出器Bの出力が大きくなる。この場合には、検出器Aおよび検出器Bそれぞれの出力の比R1がビームの位置を表わすパラメータとなる。
【0042】
【数1】
Figure 0004392933
また検出器AおよびB間の間隔が大きいほど、検出器AおよびBそれぞれの出力の比は、ビームの位置変化に対して急激に変化する。したがって、2個の検出器AおよびB間の間隔が大きい方がビーム位置検出の感度が高くなる。
【0043】
図21は、全強度が一定でビームの広がり(σ)が変化したときのビームプロファイルの変化を示す。同図に示すように、2個の検出器AおよびBがビームのσの2倍より大きい間隔でビームに対して対称に設置されている場合において、破線で示されるようにビームのσが大きくなったとすると、検出器AおよびBの出力が両方とも大きくなる。逆に、ビームのσが小さくなったとすると、検出器AおよびBの出力が両方とも小さくなる。一方、検出器A’およびB’がビームのσの2倍より小さい間隔でビームに対して対称に位置Ya’およびYb’に設置されている場合において、ビームのσが大きくなったとすると、検出器AおよびBの出力が両方とも小さくなる。逆にビームのσが小さくなったとすると、検出器A’およびB’の出力が両方とも大きくなる。このように、検出器AおよびBそれぞれの出力の和が、ビームの広がりを表わすパラメータとなる。
【0044】
ただし、ビームのσが一定で、ビーム全体の強度が変化した場合においても検出器AおよびBの出力の和が変化する。すなわち、検出器AおよびBの出力の和が変化しても、これがビーム全体の強度が変化したためか、またはビームのσが変化したためかは区別がつかない。そこで、別の手段によってビーム全体の強度を計測し、この値で検出器AおよびBの出力を規格化する。このように規格化した検出器AおよびBの出力の和により、ビームの広がりを知ることができる。ビーム全体の強度を計測する方法については、実施例において詳細に述べる。
【0045】
また、2個の検出器AおよびBがビームのσの2倍の間隔でビームに対して対称に設置されている場合、ビームのσが変化しても、検出器AおよびBの出力は変化しない。したがって、検出器AおよびB間の間隔がσの2倍ではビームのσを測定することができない。ビームのσを測定するためには、検出器の間隔はビームのσに近い値を避けることが必要であり、ビームのσを精度よく測定するためには、検出器の間隔はビームのσの1.5倍以下あるいは2.5倍以上が望ましい。
【0046】
一方、検出器AおよびB間の間隔が大きい方が、ビーム位置が変動したときの検出器の出力の変化が大きい。すなわち2個の検出器AおよびB間の間隔が大きい方がビーム位置検出の感度が高い。したがって、ビームのσと位置Yを同時に精度よく測定するためには、2個の検出器の間隔はσの2倍より大きいことが望ましく、より望ましくは、σの2.5倍以上が適当である。
【0047】
さらに、第3の検出器Cがビームの中心付近に設置されているとする。図22に全強度が一定でビームの広がり(σ)が変化したときのビームプロファイルの比較を示す。同図に示すように、ビームのσが大きくなったとすると、検出器Cの出力が小さくなる。逆に、ビームのσが小さくなったとすると、検出器Cの出力が大きくなる。同図では、ビームの積分速度が一定としているが、実際にはビームの積分強度は変動する。そこで、検出器Cの出力と、検出器A,Bの和との比R2をパラメータにとると、このパラメータはビームの広がりσを反映する。
【0048】
【数2】
Figure 0004392933
すなわち、ビームのσが大きくなった場合には、R2が小さくなり、逆にビームのσが小さくなったとすると、R2が大きくなる。本発明のシンクロトロン放射光ビームの位置とサイズを測定する装置は、シンクロトロン放射光ビームのYが異なる3点でビームの強度を計測する手段、3個の出力値からビームの位置とサイズを演算する手段から構成される。また、この装置を予め校正するためのY方向に移動可能なステージ機構を備えている。
【0049】
これらの原理に基づき、本発明の好ましい第1の実施形態では、ビームの大きさや位置を計測するための準備として、ビームの大きさが異なった条件(例えば蓄積電流値が異なった条件)でYスキャンさせながらビームの全強度と2点での強度を計測し、これらの計測値の比をYとσの関数として算出する。具体的な校正の手段については実施例の中で詳細に説明する。そして、校正を終えた後は、ビームが2つの計測点のほぼ中間に入射するように調整し、全強度I0と2点での強度IAおよびIBを計測し、これらの比の値を先の校正によって決定した校正関数に代入してビームの太さσおよび位置Yを算出する。
【0050】
また、本発明の好ましい第2の実施形態では、校正は、前記したビームの大きさが異なった条件で、ビームの厚さ方向に移動させながら3個の検出器の出力値を計測し、3個の検出器の出力の比をYとσの関数として算出する。具体的な校正の手順については実施例の中で詳細に説明する。そして、校正を終えた後は、ビームが3つの計測点のうち、中央の計測点に入射するようにY方向に移動可能なステージ機構を固定し、3個の検出器の出力を測定する。測定されたS1、S2、S3の値を先の校正によって決定した校正関数に代入し、ビームの太さσおよび位置Yを算出する。また、ビームの厚さ方向に移動させることなく、校正関数も使用せず、ビームのσとYを算出する方法については実施例の中で詳細に説明する。
【0051】
この上述した算出は、計測手段の出力をアナログ−デジタル変換器を用いて数値化し、コンピュータで処理することによって、きわめて短時間に行なうことができる。
【0052】
【実施例】
[実施例1]
図2は本発明の第1の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、図1はその要部を示す斜視図である。この装置は3個のフォトダイオードを用いてシンクロトロン放射光によるビームの位置やサイズを測定するものである。これらの図に示すように、この装置は、シンクロトロン放射光によるビーム15が導入される真空容器1、この中に配置され、2個のピンホール2と1個のY方向に長い縦スリット4が設けられたアパーチャ板5、この背後に配置され、3個のフォトダイオード7および8を有するX線検出器、このX線検出器をY方向に駆動するためのステージ/コントローラ9、大気中のステージ/コントローラ9と真空容器1による真空中のX線検出器を機械的に結合し、かつ真空を保持するためのロッド10とベローズ機構11、X線検出器の出力とステージ/コントローラ9のステージ駆動量を取り込んで記録するための検出器アンプ/アナログデジタル変換器12および演算装置13などで構成されている。
【0053】
X線検出器は金属製のシールドケース14に納められ、不要な可視光や光電子がフォトダイオード7や8に照射されるのを防止している。さらにシールドケース14は真空容器1に入れられ、真空容器1は排気ポンプ17によって超高真空に排気される。真空容器1はシンクロトロンリングとゲートバルブを介して接続される。アパーチャ板5はシールドケース14の最上流側に設けてある。また、アパーチャ板5は銅板製であり、シンクロトロン放射光の熱負荷による温度上昇を抑えるために水冷されている。アパーチャ板5に設けられたピンホール2の直径は0.5mm、2つのピンホール2間のY方向間隔は8mmである。縦スリット4は幅が1mm、Y方向の長さが20mmである。測定対象であるシンクロトロン放射光ビーム15の広がりσは2mm程度であり、縦スリット4の長さはビームの広がりσに対して充分な大きさをもっている。また、ピンホール2のY方向間隔はσの約4倍に設定されている。なお、ピンホール2の開口の形状は円形でなくても構わない。例えば長方形等でもよい。また、ピンホール2および縦スリット4の各開口は1枚の金属板に設けられている必要はなく、1個の開口があいたアパーチャ板を3枚組み合わせたものであってもよい。
【0054】
アパーチャ板5の下流側には放射線による損傷防止と、SR光15に含まれる可視光の遮蔽のために金属箔製のフィルタ16、例えば厚さ数百μmのアルミニウム箔を設けてある。2個のフォトダイオード7および1個のフォトダイオード8は、フィルタ16の下流において、アパーチャ板5の2個のピンホール2および1個の縦スリット4に対応する位置に設けてある。ピンホール2の下流に設けられたフォトダイオード7は直径5mmの円形受光面を有し、縦スリット4の下流に設けられたフォトダイオード8は幅5mm、長さ25mmの長方形の受光面をもっていて、ピンホール2および縦スリット4の各アパーチャを通過した光はそれぞれ全てフォトダイオード7および8の受光面に入射する。
【0055】
フォトダイオードは、シンクロトロン放射光から出射されたビームをフィルタを通して直接受光する。フォトダイオードに入射する光は、シンクロトロン放射光の中の短波長成分の割合が高まっている。シンクロトロン放射光から直接出射されたビームの強度プロファイルは観測する光の波長に応じて異なるが、プロファイルの変化には各波長で相関があるので、フィルタを通った光を観測しても、シンクロトロン放射光源から直接出射されたビームの強度プロファイルの変化を正確に知ることができる。
【0056】
なお、本明細書においてシンクロトロン放射光源からのビームを直接受光するとは、このように経由前後で強度プロファイルの変化に各波長で相関があるフィルタのような部材、経由前後で強度プロファイルが実質的な変化を起こさない部材、を通った後で受光する場合も含むものである。
【0057】
ステージ/コントローラ9は真空容器1の外に設けられたYステージを有し、このYステージは真空容器1中のシールドケース14とロッド10でつながれている。ベローズ11の一端はロッド10に、他端はチャンバ1に溶接され、これによりロッド10は真空を保持しながら、Y方向に駆動することができる。
【0058】
次に校正の手順について説明する。校正の際には、ビームサイズが異なった条件で、YステージによりYスキャンしながら3つの検出器7および8の出力値を計測することが必要である。予めビームサイズを知ることはできないが、ビームサイズに影響を及ぼす他のパラメータを変えて測定を行なえばよい。例えば、ビームサイズは蓄積電流値に依存して変化する。そこで、異なる電流値において、Yスキャンしながら3つの検出器の出力値を計測すればよい。
【0059】
ある電流値のとき、ピンホール2を伴なったフォトダイオード7の出力をそれぞれS1およびS2とし、縦スリット4を伴なった全強度を計測するためのフォトダイオード8の出力をS0とする。そして、Yスキャン時の素子出力比R1およびR2をYの関数として算出する。ここで、R1およびR2は次式で表される。
【0060】
【数3】
Figure 0004392933
次に2個の検出器の出力S1およびS2をYの関数としてガアウシアンでフィッティングし、ビームのY方向の太さσを求める。以上のデータ処理によって、σとYの関数としてR1およびR2を求める。
【0061】
電流値が異なる条件でYスキャンを繰り返し、σ、Y、R1、R2のテーブルを蓄積し、校正関数を決定する。例えば、蓄積ビーム電流値が100mAから100mA毎に1Aまでの10点でスキャンを行なう。本実施例ではσおよびYを、R1およびR2の多項式としてフィッティングする。例えば、次式のように置いて、実測されたσやYとの差の2乗和が最小になるように、各係数を求める。
【0062】
【数4】
Figure 0004392933
R1としては出力S1とS2との比を反映するパラメータであればよいので、例えばS1とS2との比の対数、R1=log(S1/S2)や、S1とS2の差とS0との比、R1=(SA−SB)/S0、等を用いて同様に校正を行なってもよい。
【0063】
2個の検出器の感度が異なる場合には、係数をかけてピーク出力が等しくなるように規格化する。すなわち、出力S1の最大値がS1max、出力S2の最大値がS2maxであった場合、S1/S1maxおよびS2/S2maxをそれぞれ規格化した検出器出力として、R1およびR2を求めて校正を行なえばよい。校正を終えた後は、ビームが2個のピンホール2のほぼ中間に入射するようにYステージを固定し、3個のフォトダイオード7および8の出力を測定する。測定されたSA、SBおよびS0の値から、次式によりR1およびR2を算出する。
【0064】
【数5】
Figure 0004392933
そして、これを先の校正によって決定した次の校正関数に代入して、ビームの太さσおよび位置Yを算出する。
【0065】
【数6】
Figure 0004392933
ただし、R1として、R1=log(S1/S2)やR1=(SA−SB)/S0等を用いて校正を行なった場合には、これらのパラメータを校正で得た関数に代入する。
【0066】
これらの計算は、フォトダイオード7および8の出力をアナログ−デジタル変換器12を用いて数値化し、コンピュータ13で処理することによって、きわめて短時間に行なうことができる。
【0067】
この計測方法によれば、計測中はステージ駆動が不要であり、ある時刻のフォトダイオードの出力を演算することにより、直ちにビームの位置と広がりを求めることができる。このため、短時間の変動も正確に測定することができる。また計測時にはYステージを移動する必要がないため、他の装置に振動等の悪影響を及ぼすことがない。また、電力の消費が少なく、装置の寿命も長い。
【0068】
[実施例2]
図3は本発明の第2の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、図4はその要部を示す斜視図である。この装置では、2本のワイヤおよび別のビームラインの全強度モニタを用いてシンクロトロン放射光によるビームの位置やサイズを測定する。これらの図において、18はシンクロトロン放射光15の検出器を構成する2本の金属ワイヤ、9は金属ワイヤ18をY方向に駆動するステージ/コントローラ、19は他のビームラインに設けた全強度検出器、13はX線検出器の出力とステージ駆動量を取り込んで記録する演算装置である。図3および図4において、図1および2と同一の要素には同一の符号を付した。
【0069】
ワイヤ18は真空容器1に入れられ、真空容器1は排気ポンプ17によって超高真空に排気される。真空容器1はまた、シンクロトロンリングとゲートバルブを介して接続される。2本のワイヤ18はセラミック等の絶縁物20によってビーム15面と平行に保持される。絶縁物20は真空容器1の外のステージ/コントローラ9のYステージと機械的に結合され、Y方向に駆動される。ワイヤ18としては、金がメッキされたタングステンワイヤ等が用いられる。太さは例えば0.1〜1mm程度である。ワイヤ18は真空容器1外のバイアス印加回路/電流電圧変換回路21のバイアス印加回路に導線で接続され、真空容器1に対して数Vから数百Vの電圧が印加される。このとき、ワイヤ18にシンクロトロン放射光15が照射されると、光電子が発生し、これが印加電圧による電場によって移動するので、ワイヤ18に電流が流れる。この電流を検出するため、ワイヤ18はバイアス印加回路/電流電圧変換回路21の電流−電圧変換回路にも接続されている。電流−電圧変換回路の出力は、検出器アンプ/アナログデジタル変換器12のアナログ−デジタル変換回路を経て演算装置13に取り込まれる。
【0070】
本実施例では、測定を行なうビームライン15には全強度検出器を設けず、代わりに、他のビームラインに設けた全強度検出器19の出力を用いるが、それ以外については、実施例1の場合と同様にしてビーム15の位置やサイズを測定することができる。
【0071】
一般に、シンクロトロン放射光光源では多数のビームラインが設置され、多数のビームラインでビーム位置やビームサイズの計測を行なうことがある。このような場合において本実施例の装置を用いる際には、各ビームラインに2個の検出器を設け、さらに1本のビームラインだけに全強度を測定する検出器を設ける。この方法によれば、検出器の個数を最小限に減らすことができ、その分だけ信号処理装置も減らすことができる。したがって、システム全体の費用を下げることができる。
【0072】
[実施例3]
図5は本発明の第3の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、図6はその要部を示す斜視図である。この装置では、シンクロトロン放射光ビームの位置やサイズを測定するために、イオンチャンバおよびシンクロトロン蓄積電流値を用いている。この装置は、2個のピンホールが設けられたアパーチャ板22、これに対応する位置に位置された2個のイオンチャンバ23、アパーチャ板22をY方向に駆動するステージ/コントローラ9、シンクロトロン放射光光源24の蓄積電流値を測定するための手段、イオンチャンバ23の出力、シンクロトロン放射光光源24の蓄積電流値28およびステージ/コントローラ9のステージ駆動量を取り込んで記録する演算装置13等で構成される。
【0073】
この計測装置は、大気中でシンクロトロン放射光の計測を行なう。ベリリウム窓26を通って大気中に導かれたシンクロトロン放射光15を2個のピンホールが設けられたアパーチャ板22で遮り、ピンホールを通過したX線を2個のイオンチャンバ23で測定する。アパーチャ板22はステージ/コントローラ9のYステージに固定されており、Y方向に駆動することができる。イオンチャンバ23はYステージではなく床面に対して固定されている。イオンチャンバ23の受光面は20mm程度の大きさがあり、アパーチャ板22がY方向に移動しても、ピンホールを通ったX線は常にイオンチャンバ23に入射する。
【0074】
シンクロトロン放射光の全強度は、加速エネルギや磁場強度が一定であれば、電子蓄積リングの蓄積電流値に比例する。本実施例では、全強度検出器による全強度の代わりに電子蓄積リングの蓄積電流値のデータ28を用いる。蓄積電流値は通常、電流トランス、DCCT等によって精度よく計測することができる。
一般に、シンクロトロン放射光光源では多数のビームラインが設置され、多数のビームラインでビーム位置やビームサイズの計測を行なうことがある。このような場合において本実施例の装置を用い、各ビームラインに2個の検出器を設け、電流トランスによって測定したビーム電流の情報を多数の計測装置で共通に用いることにより、検出器の個数を最小限に減らすことができ、その分だけ信号処理装置も減らすことができる。したがって、システム全体の費用を下げることができる。また、本実施例では計測装置は大気中にあり、真空容器や排気ポンプ等が不要なので、装置費用を低減することができる。さらに本実施例では、Yステージが駆動する部材はアパーチャ板22だけであり、軽量なので、小型のステージを用いることができるため、さらに装置費用を低減することができる。
【0075】
[実施例4]
図7は本発明の第4の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、図8はその要部を示す斜視図である。この装置では、シンクロトロン放射光ビームの位置やサイズを測定するために、4枚の金属板の光電効果を用いている。この装置は、長方形の穴があいたアパーチャ板30、この後方の対応する位置に配置され、アパーチャ板30を通過したシンクロトロン放射光15のX方向の範囲を規制する2枚の金属板31、同様にY方向の範囲を規制する2枚の金属板32、アパーチャ板30と金属板31および32をY方向に駆動するステージ/コントローラ9、金属板31および32の光電流値とステージ/コントローラ9のステージ駆動量を取り込んで記録する演算装置13などから構成される。
【0076】
本実施例では、シンクロトロン放射光15を複数の金属板31および32に照射し、そこからの光電子を計測する。計測装置全体は真空容器1に納められている。最上流にアパーチャ板30が設けてあり、これによりシンクロトロン放射光ビーム15のX方向の幅を規制する。アパーチャ板30のアパーチャ33のY方向の幅はビームの幅より充分大きく、シンクロトロン放射光ビーム15のY方向の幅は規制されない。アパーチャ33の後方にX方向を規制する2枚の金属板31、さらにその下流にY方向を規制する2枚の金属板32が設けられている。
金属板31にはビーム15のY方向全体が照射されるので、これらからの光電流はビーム15の全強度に比例する。したがって、金属板31は全強度検出器として用いることができる。金属板32にはビーム15のY方向の一部が照射される。したがって、金属板32からの光電流をYが異なる位置に設置された2つの検出器の出力として用いることができる。
【0077】
本実施例によれば、ビーム15の中心部分は検出器に遮られず、そのまま通過するので、他の測定や材料加工等に用いることができる。
【0078】
[実施例5]
図9は本発明の第5の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、図10はその要部を示す斜視図である。この装置は、3個のフォトダイオードを用いてシンクロトロン放射光によるビームの位置やサイズを測定するものである。これらの図において、この装置は、シンクロトロン放射光によるビーム15が導入される真空容器1、3個のピンホール39が設けられたアパーチャ板38、これに対応する位置に位置された3個のフォトダイオード40を有するX線検出器、このX線検出器をY方向に駆動するステージ/コントローラ9、大気中のステージ/コントローラ9と真空容器1による真空中のX線検出器を機械的に結合し、かつ真空を保持するためのロッド10とベローズ機構11、X線検出器の出力とステージ/コントローラ9のステージ駆動量を取り込んで記録するための検出器アンプ/アナログデジタル変換器12および演算装置13などで構成されている。
【0079】
本実施例では、X線検出器は金属製のシールドケース14に納められ、不要な可視光や光電子がフォトダイオード39に照射されることを防止している。さらにシールドケース14は真空容器1に入れられ、排気ポンプ17によって超高真空に排気される。真空容器1はシンクロトロンリングとゲートバルブを介して接続される。シールドケース14の最上流側にはアパーチャ板38が設けてあり、アパーチャ板38には図9の様に3個のピンホール39が等間隔にあけてある。アパ−チャ板38は銅板製であり、シンクロトロン放射光の熱負荷による温度上昇を抑えるために内部が水冷されている。ピンホール39の直径は0.5mm、Y方向の間隔は4mmである。本実施例のシンクロトロン放射光ビーム15の位置やサイズを測定する装置が測定しようとするビームの広がりσは2mm程度であり、ピンホール39の間隔はY方向にσの約2倍に設定されている。
【0080】
アパーチャ板38上のピンホール39の形状は、円形でなくても構わない。例えば、長方形等でもよい。また各開口は1枚の金属板に設けられている必要はなく、1個の開口があいた3枚のアパーチャ板38を組み合わせてもよい。
【0081】
アパーチャ板38の下流側には放射線による損傷防止と、SR光15に含まれる可視光遮蔽のために金属箔製のフィルタ16、例えば厚さ数百μmのアルミニウムを設けてある。均一な厚さのフィルタ16を用いた場合、3個あるフォトダイオード40のうち、中央のフォトダイオード40はビーム15の中心に近いので他の2個のフォトダイオード40に比較して強いX線が照射される。このため、放射線による損傷が起りやすい。そこで、中央のフォトダイオード40のみに更に1枚フィルタ16を付加し、3個のフォトダイオード40に入射するX線の強度がほぼ等しくなるようにしてある。こうすることで、センサの寿命を長くすることができる。本実施例では、1枚の均一な厚さのフィルタ16に加え、中央のフォトダイオードのみに更に1枚フィルタ16を付加してあるが、このほかに中央部分のみの厚さが厚くなった1枚のフィルタ16を用いても同様の効果が得られる。
【0082】
フィルタ16の下流にはアパーチャ板38の3つの開口に対応する位置に検出器を構成する3個のフォトダイオード40が設けてある。ピンホール39の下流に設けられたフォトダイオード40は直径5mmの円形受光面を持っていて、ピンホール39を通過した光は全てフォトダイオード40の受光面に入射する。
【0083】
真空容器1の外にはYステージが設けてあり、真空容器1中のシールドケース14とロッド10でつながれている。ベローズ11の一端にロッド10が、もう一方の端がチャンバ1に溶接され、真空を保持しながら、Y方向に駆動することができる。
【0084】
次に校正の手順について説明する。校正の際には、ビームサイズが異なった条件で、Yスキャンしながら3つのフォトダイオード40の出力値を計測することが必要である。予めビームサイズを知ることはできないが、ビームサイズに影響を及ぼす他のパラメータを変えて測定を行えばよい。例えば、ビームサイズは蓄積電流値に依存して変化する。そこで、電流値が異なる時に、Yスキャンしながら3つのフォトダイオード40の出力値を計測すればよい。
【0085】
ある電流値のとき、ピンホール39を伴ったフォトダイオード40のY方向に離れたそれぞれの出力を各々S1、S2、S3とする。そして、Yスキャン時の素子出力比R1、R2をYの関数として算出する。ここで、R1およびR2は次式で表される。
【0086】
【数7】
Figure 0004392933
次に3個のフォトダイオード40の出力S1、S2、S3をそれぞれYの関数としてガアウシアンでフィッティングし、ビームのΥ方向の太さ=σ1、σ2、 σ3を求め、これの平均値をビームの太さσとする。以上のデータ処理によって、σとYの関数としてR1、R2を求める。
【0087】
電流値が異なる条件でYスキャンを繰り返し、σ、Y、R1、 R2のテーブルを蓄積し、校正関数を決定する。例えば、蓄積ビーム電流値が100mAから100mA毎に1Aまでの10点でスキャンを行う。本実施例ではσ、 Yを、R1、R2の多項式としてフィッティングする。例えば、次式のように置いて、実測されたσやYとの差の2乗和が最小になるように、各係数を求める。
【0088】
【数8】
Figure 0004392933
R1としては、S1とS2との比を反映するパラメータならよいので、例えば、次式のように、S1とS2との比の対数等を用いて同様に校正を行ってもよい。
【0089】
【数9】
Figure 0004392933
3個のフォトダイオード40の感度が異なる場合には、係数をかけてピーク出力が等しくなるように規格化する。すなわち、S1の出力の最大値がS1max、S2の出力の最大値がS2max、S3の出力の最大値がS3max、であった場合、S1/S1max、S2/S2max、S3/S3max、をそれぞれ規格化した検出器出力として、R1、 R2、R3を求めて校正を行えばよい。校正を終えた後は、ビーム15の中心が3個のピンホール39のうち、中央のピンホールに入射するようにYステージを固定し、3個のフォトダイオード40の出力を測定する。測定されたS1、S2、S3の値から数5によるR1、R2を算出し、これを先の校正によって決定した次の校正関数に代入し、ビームの太さσ、位置Yを算出する。
【0090】
【数10】
Figure 0004392933
ただし、R1として、R1=log(S1/S2)等を用いて校正を行った場合には、これらのパラメータを校正で得た関数に代入する。
【0091】
これらの計算は、フォトダイオード40の出力を検出器アンプ/アナログデジタル変換器12のアナログ−デジタル変換器を用いて数値化し、コンピュータ13で処理することによって、きわめて短時間に行うことができる。
【0092】
本実施例によれば、計測中はステージ駆動が不要で、ある時刻のフォトダイオード40の出力を演算することで、直ちにビーム15の位置と広がりを求めることができる。このため、短時間の変動も正確に測定することができる。また、計測時はYステージを移動する必要がないので、他の装置に振動等の悪影響を及ぼすことがない。電力の消費が少なく、また装置の寿命が長い。
【0093】
[実施例6]
図11は本発明の第6の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、 図12はその要部を示す斜視図である。この装置では、3本の金属ワイヤを検出器としてシンクロトロン放射光の位置やサイズを測定する。これらの図において、この装置は、シンクロトロン放射光によるビーム15が導入される真空容器1、シンクロトロン放射光15の検出器を構成する3本の金属ワイヤ41、金属ワイヤ41をY方向に駆動するステージコントローラ9、X線検出器の出力とステージ駆動量を取り込んで記録する演算装置13などから構成される。図11および図12において、図3および図4と同一の要素には同一の符号を付した。
【0094】
本実施例では、シンクロトロン放射光15の検出器として3本の金属ワイヤ41を用いる。ワイヤ41は真空容器1に入れられ、排気ポンプ17によって超高真空に排気される。真空容器1はシンクロトロンリングとゲートバルブを介して接続される。3本のワイヤ41はセラミック等の絶縁物でビーム15面と平行に保持される。絶縁物は真空容器1の外のYステージと機械的に結合され、Y方向に駆動される。第1と第2のワイヤ41の間隔はビーム15のY方向のサイズの約2倍で、ビーム計測時はビーム15に対しほぼ対称な位置にある。第3のワイヤ41は、第1と第2のワイヤの中間位置からビームのY方向のサイズの約1.5倍に等しい距離だけY方向に離れている。
【0095】
ワイヤ41としては金がメッキされたタングステンワイヤ等が用いられる。太さは例えば0.01〜0.5mm程度である。ワイヤ41は真空容器1外のバイアス電圧印加回路/電流電圧変換回路42のバイアス印加回路に導線で接続され、真空容器1に対して数Vから数百Vの電圧が印加される。このワイヤ41にシンクロトロン放射光15が照射されると、光電子が発生し、印加電圧による電場によって移動するので、ワイヤ41に電流が流れる。この電流を検出するため、ワイヤ41はバイアス電圧印加回路/電流電圧変換回路42の電流−電圧変換回路にも接続されている。電流−電圧変換回路の出力は検出器アンプ/アナログデジタル変換回路12のアナログ−デジタル変換回路を経て演算装置13に取り込まれる。
【0096】
予め、第5の実施例と同様な手順で校正関数の算出を行い、その後は、この校正関数に測定値を代入してビーム15の位置やサイズを算出する。
【0097】
[実施例7]
図13は本発明の第7の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、 図14はその要部を示す斜視図である。この装置では、3本の金属ワイヤを検出器としてシンクロトロン放射光の位置やサイズを測定する。これらの図において、この装置は、シンクロトロン放射光によるビーム15が導入される真空容器1、シンクロトロン放射光15の検出器を構成する3本の金属ワイヤ41、X線検出器の出力とステージ駆動量を取り込んで記録する演算装置13などから構成される。図13および図14において、図11および図12と同一の要素には同一の符号を付した。
【0098】
本実施例では、シンクロトロン放射光の検出器として3本の金属ワイヤ41を用いる。ワイヤ41は真空容器1に入れられ、排気ポンプ17によって超高真空に排気される。真空容器1はシンクロトロンリングとゲートバルブを介して接続される。3本のワイヤ41はセラミック等の絶縁物でビーム15面と平行に保持される。ワイヤ41としては金がメッキされたタングステンワイヤ等が用いられる。太さは例えば0.01〜0.5mm程度である。ワイヤ41は真空容器1外のバイアス電圧印加回路/電流電圧変換回路42のバイアス電圧印加回路に導線で接続され、真空容器1に対して数Vから数百Vの電圧が印加される。このワイヤ41にシンクロトロン放射光15が照射されると、光電子が発生し、印加電圧による電場によって移動するので、ワイヤ41に電流が流れる。この電流を検出するため、ワイヤ41はバイアス電圧印加回路/電流電圧変換回路42の電流−電圧変換回路にも接続されている。電流−電圧変換回路の出力は検出器アンプ/アナログデジタル変換器12のアナログ−デジタル変換回路を経て演算装置13に取り込まれる。
【0099】
本実施例では、校正関数を用いず、測定値よりガウス関数を直接算出する。強度分布関数はガウス分布関数で近似出来る。すなわち、次式のように表現できる。
【0100】
【数11】
Figure 0004392933
ここでI0はビームの全強度、Y0はビームの中心位置、σはビームの広がりである。
【0101】
本実施例のビーム計測装置では、3つの異なるYに対し、ビーム強度観測値が3点ある。すなわちYとIのデータが3組得られる。I0とY0とσを3つの未知数に対して連立方程式を解いてI0とY0とσを算出する。この方法では予め校正関数を求める必要がなく、真空中の検出器を移動するための駆動機構やベローズ機構などが不要で、装置構成が単純なため、価格が低くなり、信頼性も向上する。
【0102】
[実施例8]
図15は本発明の第8の実施例に係るシンクロトロン放射光計測装置の構成を示すブロック図であり、 図16はその要部を示す斜視図である。この装置では、シンクロトロン放射光の位置やサイズを測定するために、2枚の金属(電極)板と1本の金属ワイヤの光電効果を用いている。これらの図において、この装置は、シンクロトロン放射光によるビーム15が導入される真空容器1、長方形の穴(矩形開口47)があいたアパーチャ板46、この後方の対応する位置に配置され、アパーチャ板46を通過したシンクロトロン放射光15のY方向の範囲を規制する2枚の電極板44、1本の金属ワイヤ43、アパーチャ板46と電極板44および金属ワイヤ43をY方向に駆動するステージ/コントローラ9、電極板44とワイヤ43の光電流値とステージ/コントローラ9のステージ駆動量を取り込んで記録する演算装置13などから構成される。図15および図16において、図9および図10と同一の要素には同一の符号を付した。
【0103】
本実施例ではシンクロトロン放射光を2枚の電極板44と1本のワイヤ43に照射し、それからの光電子を計測する。計測装置全体は真空容器1に納められている。最上流に長方形の穴(矩形開口47)があいたアパーチャ板46が設けてあり、矩形開口47によりシンクロトロン放射光ビーム15のX方向の幅を規制する。アパーチャ板46に設けられた矩形開口47のY方向の幅はビーム15の幅より充分大きく、シンクロトロン放射光ビーム15のY方向の幅は規制されない。アパーチャ板46の後方にY方向を規制する2枚の電極板44のC,Dが設けられている。
【0104】
電極板44C,D、および金属ワイヤ43にはビーム15のY方向の一部が照射されるので、これからの光電流をYが異なる位置に設置された3個の検出器の出力として用いることができる。
【0105】
【発明の効果】
以上説明したように本発明によれば、シンクロトロン放射光源からのビームを複数の受光手段で直接受光して得た複数のビーム強度の情報に基づいてビームの強度プロファイルを特定するためのパラメータを演算する、あるいはシンクロトロン放射光源からのビームの複数のビーム強度の計測情報に基づいてシンクロトロン照射光源から直接出射されたビームの強度プロファイルを特定するためのパラメータを演算する、ようにしたことで、きわめて短時間にプロファイル特定のためのパラメータ、例えばビームの太さσ、位置Yを計測することができる。このため、従来の技術では知りえなかった短時間の変動を正確に計測することが可能となる。また本発明によれば、校正の時を除いて、計測中はステージを駆動することが必須でない。このため、電力消費が小さく、維持費用が低く抑えられる。また、シンクロトロン放射光を利用する他の計測装置などに振動等の悪影響を及ぼすことが少ない。また、ステージを駆動するのは校正の時等に限られるので、べローズやステージ機構等の装置の損耗が少なく、装置の寿命を非常に長く延ばすことができる。
【図面の簡単な説明】
【図1】 図2の装置の要部を示す斜視図である。
【図2】 本発明の第1の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図3】 本発明の第2の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図4】 図3の装置の要部を示す斜視図である。
【図5】 本発明の第3の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図6】 図5の装置の要部を示す斜視図である。
【図7】 本発明の第4の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図8】 図7の装置の要部を示す斜視図である。
【図9】 本発明の第5の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図10】 図9の装置の要部を示す斜視図である。
【図11】 本発明の第6の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図12】 図11の装置の要部を示す斜視図である。
【図13】 本発明の第7の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図14】 図13の装置の要部を示す斜視図である。
【図15】 本発明の第8の実施例に係るシンクロトロン放射光測定装置の構成を示すブロック図である。
【図16】 図15の装置の要部を示す斜視図である。
【図17】 従来のシンクロトロン放射光測定装置の構成を示すブロック図である。
【図18】 図9の装置の要部を示す斜視図である。
【図19】 従来例に係るビームの広がりσおよびY方向位置を算出する方法を示すグラフである。
【図20】 本発明のシンクロトロン放射光測定装置の測定原理を示すグラフである。
【図21】 本発明のシンクロトロン放射光測定装置の測定原理を示す他のグラフである。
【図22】 本発明のシンクロトロン放射光測定装置の測定原理を示す他のグラフである。
【符号の説明】
1:真空容器、2:ピンホール、4:縦スリット、5:アパーチャ板、7,8:フォトダイオード、9:ステージ/コントローラ、10:ロッド、11:ベローズ機構、12:検出器アンプ/アナログデジタル変換器、13:演算装置、14:シールドケース、15:ビーム、16:フィルタ、17:排気ポンプ、18:金属ワイヤ、19:全強度検出器、20:絶縁物、21:バイアス印加回路/電流電圧変換回路、22:アパーチャ板、23:イオンチャンバ、24:シンクロトロン放射光光源、26:ベリリウム窓、28:蓄積電流値、29,30:アパーチャ板、31,32:金属板、33:アパーチャ、34:ピンホール、35:アパーチャ板、36:フォトダイオード、37:ステージ機構、38:アパーチャ板、39:ピンホール、40:フォトダイオード、41:金属ワイヤ、42:バイアス電圧印加回路/電流電圧変換回路、43:金属ワイヤ、44C,44D:電極板、45,46:アパーチャ板、47:アパーチャ(矩形開口)。

Claims (3)

  1. シンクロトロン放射光源からのビームについてその厚さ方向の全範囲にわたって積分した全強度を計測する全強度計測手段と、前記ビームの強度をその厚さ方向の位置が異なる複数点で計測する複数点強度計測手段と、前記全強度計測手段および前記複数点強度計測手段の計測結果に基づいて前記ビームの強度プロファイルを特定するためのパラメータを演算する演算手段とを具備することを特徴とするシンクロトロン放射光計測装置。
  2. シンクロトロン放射光源からのビームの強度をその厚さ方向の位置が異なる3点で計測する3点強度計測手段と、前記3点強度計測手段の計測結果に基づいて前記ビームの強度プロファイルを特定するためのパラメータを演算する演算手段とを具備し、
    前記演算手段は、3点の強度に基づいて前記パラメータを演算するための校正関数を、前記厚さ方向に移動させながら行なう前記3点の強度についての計測の結果に基づいて求めるものであることを特徴とするシンクロトロン放射光計測装置
  3. シンクロトロン放射光源からのビームについてその厚さ方向の全範囲にわたって積分した全強度を計測し、前記ビームの強度をその厚さ方向の位置が異なる複数点で計測することにより、前記全強度および前記複数点強度に基づいて前記ビームの強度プロファイルを特定するためのパラメータを計測することを特徴とするシンクロトロン放射光計測方法。
JP2000013199A 1999-06-03 2000-01-21 シンクロトロン放射光計測装置および方法 Expired - Fee Related JP4392933B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000013199A JP4392933B2 (ja) 1999-06-03 2000-01-21 シンクロトロン放射光計測装置および方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-157038 1999-06-03
JP15703899 1999-06-03
JP2000013199A JP4392933B2 (ja) 1999-06-03 2000-01-21 シンクロトロン放射光計測装置および方法

Publications (3)

Publication Number Publication Date
JP2001052898A JP2001052898A (ja) 2001-02-23
JP2001052898A5 JP2001052898A5 (ja) 2007-03-22
JP4392933B2 true JP4392933B2 (ja) 2010-01-06

Family

ID=26484621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013199A Expired - Fee Related JP4392933B2 (ja) 1999-06-03 2000-01-21 シンクロトロン放射光計測装置および方法

Country Status (1)

Country Link
JP (1) JP4392933B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116482867B (zh) * 2023-06-25 2023-08-22 中国科学院上海高等研究院 一种光束线站的自动反馈调光系统及方法

Also Published As

Publication number Publication date
JP2001052898A (ja) 2001-02-23

Similar Documents

Publication Publication Date Title
TWI271770B (en) In situ ion beam incidence angle and beam divergence monitor
US11143600B2 (en) Defect inspection device
KR101696941B1 (ko) 리소그래피 시스템에서의 비임의 동시 측정
Oura et al. Development of a scanning soft X-ray spectromicroscope to investigate local electronic structures on surfaces and interfaces of advanced materials under conditions ranging from low vacuum to helium atmosphere
US4677296A (en) Apparatus and method for measuring lengths in a scanning particle microscope
US6960771B1 (en) Optical measurement apparatus and method for optical measurement
JP2754096B2 (ja) 電子線による試料表面の状態測定装置
US11467106B2 (en) X-ray analyzer
JP4392933B2 (ja) シンクロトロン放射光計測装置および方法
US10748741B2 (en) X-ray analyzer and method for correcting counting rate
US6847696B2 (en) Synchrotron radiation measurement apparatus, X-ray exposure apparatus, and device manufacturing method
JP2873839B2 (ja) 集束イオンビーム装置におけるアパーチャー検査方法
Saemann et al. Absolute calibration of a flat field spectrometer in the wavelength range 10–70 Å
TWI811902B (zh) 用於量測初級帶電粒子束的電流的電流量測模組、帶電粒子束裝置及方法
Holldack et al. Vertical photon beam position measurement at bending magnets using lateral diodes
JP4833217B2 (ja) 半導体分析装置
JP2674010B2 (ja) 電子線照射装置
Bloomer The use of single-crystal cvd diamond as a position sensitive x-ray detector
TWI827060B (zh) 全反射螢光x射線分析裝置
WO2023062871A1 (ja) 電子線監視装置及び電子線照射システム
CN115200724A (zh) 单光子探测器量子效率校准装置和方法
GB2575898A (en) Method and apparatus for controlling a focal spot position
Carman et al. Scanner for automated high precision measurements of wire positions in wire chambers
JPS6264038A (ja) 集束粒子ビ−ム装置
JPH06242032A (ja) 二次電子分析方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20010918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees