JP4386003B2 - ハイブリッド車両のバッテリ保護制御装置 - Google Patents

ハイブリッド車両のバッテリ保護制御装置 Download PDF

Info

Publication number
JP4386003B2
JP4386003B2 JP2005172979A JP2005172979A JP4386003B2 JP 4386003 B2 JP4386003 B2 JP 4386003B2 JP 2005172979 A JP2005172979 A JP 2005172979A JP 2005172979 A JP2005172979 A JP 2005172979A JP 4386003 B2 JP4386003 B2 JP 4386003B2
Authority
JP
Japan
Prior art keywords
protection control
generator
battery
engine
battery protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005172979A
Other languages
English (en)
Other versions
JP2006347239A (ja
Inventor
弘明 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005172979A priority Critical patent/JP4386003B2/ja
Publication of JP2006347239A publication Critical patent/JP2006347239A/ja
Application granted granted Critical
Publication of JP4386003B2 publication Critical patent/JP4386003B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、エンジンと発電機と強電バッテリを有し、低温及び高温条件にて強電バッテリへの入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両のバッテリ保護制御装置の技術分野に属する。
従来のハイブリッド車両における(駆動用)強電バッテリへの充電時には、無段変速機によりエンジン回転速度を燃費重視の第1エンジン運転ラインに沿って運転点を変化させてエンジン出力を増大させるとともに、変速時の変速速度を通常よりも遅くしたりすることで、モータジェネレータのエネルギー変換効率が所定値以上か否かを判断し、所定値以上の場合だけ充電を行うようにすることで燃費向上を図っていた(例えば、特許文献1参照)。
特開2001−112115号公報
しかしながら、従来のハイブリッド車両において、バッテリ保護を考慮し、強電バッテリの入力制限値が極端に低く設定されている強電バッテリの低温及び高温条件にて、モータジェネレータの発電量を制限したとしても、モータジェネレータを駆動させるエンジンの応答性が低く、入力制限値を超過しても発電を継続してしまうため、強電バッテリが充電過多となり、結果的に強電バッテリの寿命低下を招く(=劣化を促進)可能性がある、という問題があった。
本発明は、上記問題に着目してなされたもので、発電機の発電量が強電バッテリの入力制限値を超過することがなくなり、強電バッテリの劣化を抑制することができるハイブリッド車両のバッテリ保護制御装置を提供することを目的とする。
上記目的を達成するため、本発明では、
エンジンと発電機と強電バッテリを有し、低温及び高温条件にて前記強電バッテリへの入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両のバッテリ保護制御装置において、
前記バッテリ保護制御手段は、前記強電バッテリへの入力制限値が低いとき、エンジン回転数が低いほど、前記発電機による発電量を減じる制限量を増すことを特徴とする。

よって、本発明のハイブリッド車両のバッテリ保護制御装置にあっては、強電バッテリへの入力制限値が低いとき、バッテリ保護制御手段において、エンジンの応答遅れ分を考慮し、発電機による発電量が減じられる。すなわち、強電バッテリへの入力制限値が低いとき、発電機による発電量を減じることで、発電機を駆動させるエンジンの応答性が低いことを原因として発電を継続しても、強電バッテリが充電過多となることが抑えられる。この結果、発電機の発電量が強電バッテリの入力制限値を超過することがなくなり、強電バッテリの劣化を抑制することができる。
以下、本発明のハイブリッド車両のバッテリ保護制御装置を実施するための最良の形態を、図面に示す実施例1に基づいて説明する。
まず、構成を説明する。
図1は実施例1のバッテリ保護制御装置が適用されたハイブリッド車両を示す全体システム図である。
実施例1のハイブリッド車両は、図1に示すように、CPU101と、補助バッテリ102と、強電バッテリ301と、インバータ302と、モータ303と、発電機304と、エンジン305と、動力分割機構306と、デフ機構309と、アクセルセンサ401と、ブレーキセンサ402と、DC/DCコンバータ403と、を備えている。
前記CPU101は、強電バッテリ301をモニタし、SOCや温度や劣化状態に応じて入出力可能電力量を算出し、これを基にインバータ302を制御することにより、モータ303(フロント駆動用)と発電機304を動作させると共に、エンジン305を制御する。
前記補助バッテリ102は、CPU101の動作電源を提供する役目を有する。本システムでは、強電バッテリ301を電源としたDC/DCコンバータ403により電力を供給することとする。
前記強電バッテリ301は、モータ303に対し、インバータ302を経由して電力を供給することで車両走行をアシストすると共に、発電機304が発電した電力をインバータ307を経由して回収する役目を有する。
前記インバータ302は、CPU101により直接制御されている。エンジン305の発生トルク及び回転数に応じて強電バッテリ301の電気エネルギーをモータ303へ供給すること、及び発電機304を動作させて発生した電気エネルギーを強電バッテリ301へと戻す役目を有する。なお、モータ303と発電機304とエンジン305は、遊星歯車機構(動力分割機構306に内蔵)に直結しているため、トルク及び回転数のバランスを保つように制御しないと車両を正常に作動させることができない。
前記モータ303は、フロント駆動用で、車速が低い場合は単独で駆動トルクを発生させる。また、車速が高い場合は、エンジン305の駆動トルクをアシストしている。さらに、減速時は発電作用(回生作用)することにより電気エネルギーを発生させ、これをインバータ302を経由して強電バッテリ301へ戻す役目を有する。また、本モータ回転数=車速として制御適用している。
前記発電機304は、ハイブリッド電気自動車は基本的にスタータを持たない。本システムを適用した車両始動時は、強電バッテリ301から電力を供給し、モータとして動作することでエンジン305の始動をサポートする。通常走行時は、モータ303とエンジン305とをバランスさせることで電気エネルギーを発生(発電)し、これを強電バッテリ301へ戻す。時には直接、モータ303へ供給することにより、急激な加速に対応することも可能である。
前記エンジン305は、CPU101により直接制御されている。具体的には、車速が高い場合には車両駆動のためにトルクを発生させている。
前記動力分割機構306は、遊星歯車機構を有し、キャリアにはエンジン305、リングギヤにはモータ303、サンギヤには発電機304が直接接続している。従来システムのトランスミッション相当も内部に構成されている。
前記アクセルセンサ401は、ドライバーが加速時に踏み込んだアクセルペダルストローク量をCPU101へ送信する。
前記ブレーキセンサ402は、ドライバーが減速時時に踏み込んだブレーキペダルストローク量をCPU101へ送信する。
前記DC/DCコンバータ403は、強電バッテリ301からのエネルギーを12Vへと変換し、補助バッテリ102へと供給する。すなわち、従来のエンジン車両におけるオルタネータと同様の機能を有する。
次に、作用を説明する。
[バッテリ保護制御処理]
図2は実施例1のCPU101にて実行されるバッテリ保護制御処理の流れを示すフローチャートで、以下、各ステップについて説明する(バッテリ保護制御手段)。
ステップS1では、強電バッテリ301の温度を検出し、前記温度により設定されている強電バッテリ301への入力制限値を算出し、その値を判定処理に送り、ステップS2へ移行する。
ステップS2では、ステップS1での強電バッテリ入力制限確認に続き、強電バッテリ301の入力制限値が入力制限閾値を超えているか否かを判断し、Yesの場合はステップS1へ戻り、Noの場合はステップS3へ移行する。
具体的には、図6のハッチングに示す強電バッテリ301の入力制限値が入力制限閾値以下の領域に該当する場合は、制御適用範囲とし、ステップS3以下へ進む。すなわち、図6は、強電バッテリ301の性能劣化・出力特性を考慮し、常温範囲下限(ここでは、-10℃程度)から保証温度範囲下限(ここでは、-30℃程度)、及び保証温度範囲上限(ここでは、+60℃程度)付近で制限値を適用する、一般的な特性を示す。
ステップS3では、ステップS2での強電バッテリ301の入力制限値が入力制限閾値以下という判断に続き、エンジン305及び発電機304が正常に作動しているか否かを判断し、Yesの場合はステップS4へ移行し、Noの場合はステップS6へ移行する。
ここで、エンジン305及び発電機304が正常に作動しているか否かは、自己診断により異常なダイアグコードの検出の有無を確認することにより判断する。なお、「ダイアグコード」とは、「ダイアグノーシスコード」の略称であり、「故障コード」とも呼ばれる。
ステップS4では、ステップS3でのエンジン305及び発電機304が正常に作動しているとの判断に続き、エンジン回転数・水温により応答遅れ(発電機トルク指令時定数)を設定し、ステップS5へ移行する。
ここで、エンジン回転数による発電機トルク指令時定数τaの設定は、図3に示すように、エンジン回転数が低いほど、応答遅れに程度が大きくなることを考慮し、発電機トルク指令時定数τaをエンジン回転数が高くなるほど徐々に低下する特性により与える。
また、エンジン水温による発電機トルク指令時定数τbの設定は、図4に示すように、エンジン水温によりエンジン305のメカフリクションを推定し、発電機トルク指令時定数τbを、エンジン水温が設定温度Te1までは急な勾配により低下し、設定温度Te1より高い温度になるほど低い時定数レベル域で緩やかに低下する特性により与える。
ステップS5では、ステップS4でのエンジン回転数・水温による応答遅れの設定に続き、エンジン305の応答遅れ分を考慮し、発電機トルク指令上限値を設定し、リターンへ移行する。
ここで、発電機トルク指令上限値の設定は、まず、図3及び図4にて設定された発電機トルク指令時定数τa,τbに基づき、図5に示すマップを用いて制御へと適用する時定数τを設定し、この時定数τにより決めたゲインkと、図7に示すマップを用いて発電機トルク要求値に対する発電機トルク指令上限値を設定する。ここで、発電機トルク指令上限値の算出式は、
発電機トルク指令上限値=k×発電機トルク要求値
但し、0≦k<1
となり、ゲインkは、時定数τが大きいほど小さな値にて与える。
すなわち、発電機トルク指令上限値は、発電機トルク要求値に対して時定数τが大きいほど、つまり、エンジン応答遅れが大きいほど減じた値となる。
ステップS6では、ステップS5での発電機トルク指令上限値の算出に続き、時定数τと発電機トルク指令上限値により発電機304に対し、強電バッテリ301の発電量を決める発電機トルク指令を出力する。
ここで、図5に示す時定数τは、発電機トルクが発電機トルク指令上限値まで到達する応答時間を示し、時定数τが高いほど応答良く発電機トルク指令上限値に到達する変化勾配による指令が出力される。
ステップS7では、ステップS3でのエンジン305と発電機304のうち少なくとも一方が異常であるとの判断に続き、ステップS4及びステップS5による制御を禁止し、リターンへ戻る。
なお、この場合、特に規定しないが、エンジン305と発電機304のうち少なくとも一方が異常であるため、フェールセーフモードへと移行する。
[バッテリ保護制御動作]
強電バッテリ301の温度が低温もしくは高温であることにより、強電バッテリ301への入力に制限がかかった場合であって、発電機304及びエンジン305が正常に作動しているときには、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→ステップS5→ステップS6へと進む流れが繰り返される。そして、ステップS4において、エンジン回転数・水温によりエンジン305の応答遅れを示す発電機トルク指令時定数τa,τbが設定され、ステップS5において、発電機トルク指令時定数τa,τbに基づき制御へと適用する時定数τを設定し、この時定数τと発電機トルク要求値により発電機トルク指令上限値が設定され、ステップS6において、時定数τを応答速度とし、発電機トルク指令上限値を得る発電機トルク指令が出力される。
一方、強電バッテリ301の温度が低温もしくは高温であることにより、強電バッテリ301への入力に制限がかかった場合であっても、発電機304またはエンジン305のうち少なくとも一方に異常が発生しているときには、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS6へと進む流れとなり、ステップS6において、そして、直進走行中で、かつ、実バランス値がバランスしきい値L1以上になると、図2のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS6→ステップS7へと進む流れとなり、ステップS7において、ステップS4及びステップS5による制御を禁止する。
[バッテリ保護制御作用]
図8のタイムチャートは、エンジン水温が高い状態で、バッテリ温度の高まりにより、図6のA→Bへと進み、バッテリ入力制限が絞られた時のエンジントルク出力例を示す。
時刻t1にて強電バッテリ301の入力制限ポイントa(図6参照)に達すると、時刻t1以降は、入力制限設定マップでの入力制限特性に沿って徐々に強電バッテリ301の入力が制限され、発電機トルクも強電バッテリ301の入力制限に応じて緩やかに低下する特性を示す。この時刻t1以降において、エンジン水温が高くメカフリクションの小さいエンジントルクは、発電機トルクの低下により負荷が低くなることから、発電機トルクの低下特性に呼応して遅れなく応答良く立ち上がる。
そして、時刻t4において、本制御の適用ポイントbに達する前で、強電バッテリ301の温度上昇が収まると、強電バッテリ301の入力制限特性、エンジントルク特性、発電機トルク特性は、何れも温度上昇が収まった時点での値を維持する。
したがって、強電バッテリ301の温度上昇が保証温度範囲上限までの場合は、発電機304を駆動させるエンジン305の応答性が高く、発電機304の発電量が強電バッテリ301の入力制限値を超過することがない。
一方、図9のタイムチャートは、例えば、車庫内から極寒の外へ出ての走行時等であって、エンジン水温が低い状態で、バッテリ温度の低下により、図6のC→Dへと進み、バッテリ入力制限が絞られた時のエンジントルク出力例を示す。
時刻t1にて強電バッテリ301の入力制限ポイントc(図6参照)に達すると、時刻t1以降は、入力制限設定マップでの入力制限特性に沿って徐々に強電バッテリ301の入出力が制限され、発電機トルクも強電バッテリ301の入力制限に応じて緩やかに低下する特性を示す。この時刻t1以降において、エンジン水温が低くメカフリクションの大きいエンジントルクは、発電機トルクの低下により負荷が低くなっても、応答遅れにより、時刻t2まではトルクの上昇がみられず、時刻t2を経過後、発電機トルクの低下に応じて徐々に立ち上がる。
そして、時刻t3において、本制御の適用ポイントdに達すると、エンジン回転数とエンジン水温とに応じて時定数τが設定される。時定数τは、エンジン回転数が上昇している時刻t4までは徐々に低くなる値で与えられ、時刻t4以降はエンジン回転数及びエンジン水温が一定であることで、一定値により与えられる。そして、時刻t3以降においては、発電機トルクは、時定数τと発電機トルク要求値により決まる発電機トルク指令上限値に向かって、時定数τにより決まる応答速度により低下する特性を示す。これに伴い、エンジントルクは、応答遅れはあるものの、発電機トルクの低下に伴って時刻t3から少し遅れて目標値まで立ち上がる。
このように、強電バッテリ301の温度下降が保証温度範囲下限を超える場合であって、エンジン水温が低い場合は、発電機304を駆動させるエンジン305の応答性が低く、入力制限値を超過しても発電を継続してしまうため、強電バッテリ301が充電過多となる可能性がある。
これに対し、実施例1のように、強電バッテリ301の入力制限値が低い条件では、エンジン305の応答遅れ分を考慮して、発電機304への発電指令値(発電トルク)を減じるようにしたため、発電機304の発電量が強電バッテリ301の入力制限値を超過することがなくなり、強電バッテリ301の劣化を抑制することができる。
そして、エンジン回転数が低いほど、制限量(=トルク要求値から減じる量)を多めに設定するようにしているため、エンジン305のフリクションをも考慮することによって、エンジン305の応答性を正確に捉えることができ、確実に強電バッテリ301の劣化を抑制できる。
さらに、エンジン水温が低いほど、制限量を多めに設定するため、エンジン回転数の場合と同様に、エンジン305のフリクションを精度高く考慮することにより、確実に強電バッテリ301の劣化を抑制することができる。
加えて、発電機304への発電指令値の減じ方は、急峻ではなく、徐々に変化させるようにしているため、急峻に制限値を変化させると、エンジン305の出力トルクの立ち上がりにロスが生じ、結果、エンジン305への要求パワーを出力できなくなるが、これを発生させずに済む。
次に、効果を説明する。
実施例1のハイブリッド車両のバッテリ保護制御装置にあっては、下記に列挙する効果を得ることができる。
(1) エンジン305と発電機304と強電バッテリ301を有し、低温及び高温条件にて前記強電バッテリ301への入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両のバッテリ保護制御装置において、前記バッテリ保護制御手段は、前記強電バッテリ301への入力制限値が低いとき、前記エンジン305の応答遅れ分を考慮し、前記発電機304による発電量を減じるため、発電機304の発電量が強電バッテリ301の入力制限値を超過することがなくなり、強電バッテリ301の劣化を抑制することができる。
(2) 前記バッテリ保護制御手段は、エンジン回転数が低いほど、前記発電機304による発電量を減じる制限量を増すため、エンジン305の応答性を正確に捉えることで、確実に強電バッテリ301の劣化を抑制することができる。
(3) 前記バッテリ保護制御手段は、エンジン水温が低いほど、前記発電機304による発電量を減じる制限量を増すため、エンジン305のフリクションを精度高く考慮することにより、確実に強電バッテリ301の劣化を抑制することができる。
(4) 前記バッテリ保護制御手段は、前記発電機304による発電量を減じる場合、目標とする制限量となるまで指令値を徐々に変化させるため、エンジン305の出力トルクの立ち上がりロスを抑え、エンジン305への要求パワーを出力することができる。
(5) 前記バッテリ保護制御手段は、前記強電バッテリ301への入力制限値が低いという条件は成立するが、エンジン305または発電機304のうち少なくとも一方が異常であるとき、前記発電機304による発電量を減じる制御を禁止するため、エンジン305または発電機304のうち少なくとも一方が異常であるときには、発電量を減じる制御に優先し、早期にフェールセーフモード等へ移行することができる。
以上、本発明のハイブリッド車両のバッテリ保護制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
実施例1では、バッテリ保護制御手段として、エンジン回転数とエンジン水温によりエンジンの応答遅れを推定し、最適な制限値を求めて制御する例を示したが、エンジン回転数とエンジン水温以外のエンジンの応答遅れを推定できる検出情報を用いても良いし、さらには、強電バッテリへの入力制限値が低いという条件を満足したら、固定値による制限値だけ発電量を減じるような例としても良く、要するに、バッテリ保護制御手段は、強電バッテリへの入力制限値が低いとき、エンジンの応答遅れ分を考慮し、発電機による発電量を減じる手段であれば本発明に含まれる。
実施例1では、前輪駆動ベースハイブリッド車両のバッテリ保護制御装置を示したが、後輪駆動ベースの車両にも適用することができる。また、適用車両についても実施例1で示した以外のハイブリッド車両等にも適用できる。要するに、エンジンと発電機と強電バッテリを有し、低温及び高温条件にて強電バッテリへの入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両には適用できる。
実施例1のバッテリ保護制御装置が適用されたハイブリッド車両を示す全体システム図である。 実施例1のCPUにて実行されるバッテリ保護制御処理の流れを示すフローチャートである。 実施例1で用いられるエンジン回転数と発電機制限値との関係例を示す図である。 実施例1で用いられるエンジン水温と発電機制限値との関係例を示す図である。 実施例1の制御へと適用する時定数設定方法の一例を示す図である。 実施例1で用いられる電池温度(バッテリ温度)に対する入力制限設定マップ例を示す図である。 実施例1で用いられる発電機トルク指令上限値設定マップを示す図である。 バッテリ入力制限が絞られた時のエンジントルク出力例を示すタイムチャートである。 実施例1の制御が実行されるエンジン水温が低い時のトルク出力例を示すタイムチャートである。
符号の説明
101 CPU
102 補助バッテリ
301 強電バッテリ
302 インバータ
303 モータ
304 発電機
305 エンジン
306 動力分割機構
401 アクセルセンサ
402 ブレーキセンサ
403 DC/DCコンバータ

Claims (5)

  1. エンジンと発電機と強電バッテリを有し、低温及び高温条件にて前記強電バッテリへの入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両のバッテリ保護制御装置において、
    前記バッテリ保護制御手段は、前記強電バッテリへの入力制限値が低いとき、エンジン回転数が低いほど、前記発電機による発電量を減じる制限量を増すことを特徴とするハイブリッド車両のバッテリ保護制御装置。
  2. 請求項1に記載されたハイブリッド車両のバッテリ保護制御装置において、
    前記バッテリ保護制御手段は、エンジン水温が低いほど、前記発電機による発電量を減じる制限量を増すことを特徴とするハイブリッド車両のバッテリ保護制御装置。
  3. エンジンと発電機と強電バッテリを有し、低温及び高温条件にて前記強電バッテリへの入力制限値を低く設定するバッテリ保護制御手段を備えたハイブリッド車両のバッテリ保護制御装置において、
    前記バッテリ保護制御手段は、前記強電バッテリへの入力制限値が低いとき、エンジン水温が低いほど、前記発電機による発電量を減じる制限量を増すことを特徴とするハイブリッド車両のバッテリ保護制御装置。
  4. 請求項1乃至3の何れか1項に記載されたハイブリッド車両のバッテリ保護制御装置において、
    前記バッテリ保護制御手段は、前記発電機による発電量を減じる場合、目標とする制限量となるまで指令値を徐々に変化させることを特徴とするハイブリッド車両のバッテリ保護制御装置。
  5. 請求項1乃至4の何れか1項に記載されたハイブリッド車両のバッテリ保護制御装置において、
    前記バッテリ保護制御手段は、前記強電バッテリへの入力制限値が低いという条件は成立するが、エンジンまたは発電機のうち少なくとも一方が異常であるとき、前記発電機による発電量を減じる制御を禁止することを特徴とするハイブリッド車両のバッテリ保護制御装置。
JP2005172979A 2005-06-13 2005-06-13 ハイブリッド車両のバッテリ保護制御装置 Expired - Fee Related JP4386003B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005172979A JP4386003B2 (ja) 2005-06-13 2005-06-13 ハイブリッド車両のバッテリ保護制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005172979A JP4386003B2 (ja) 2005-06-13 2005-06-13 ハイブリッド車両のバッテリ保護制御装置

Publications (2)

Publication Number Publication Date
JP2006347239A JP2006347239A (ja) 2006-12-28
JP4386003B2 true JP4386003B2 (ja) 2009-12-16

Family

ID=37643545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005172979A Expired - Fee Related JP4386003B2 (ja) 2005-06-13 2005-06-13 ハイブリッド車両のバッテリ保護制御装置

Country Status (1)

Country Link
JP (1) JP4386003B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310058B2 (ja) * 2009-02-13 2013-10-09 トヨタ自動車株式会社 車両の制御装置
JP5407716B2 (ja) * 2009-09-30 2014-02-05 マツダ株式会社 ハイブリッド車両の駆動制御装置
JP5552970B2 (ja) * 2010-09-01 2014-07-16 日産自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JP2006347239A (ja) 2006-12-28

Similar Documents

Publication Publication Date Title
JP5074876B2 (ja) ハイブリッド車両のアイドルストップモード制御方法
JP4292131B2 (ja) ハイブリッド自動車のエンジン運転停止を要求する方法及びシステム
CA2935510C (en) Control apparatus for electrically driven vehicle
JP4595829B2 (ja) 二次電池の制御装置および制御方法
JP5125293B2 (ja) ハイブリッド車両の制御装置
JP6725880B2 (ja) ハイブリッド車両の制御装置
US11084484B2 (en) Hybrid vehicle control method and control device
US11142202B2 (en) Control system for hybrid vehicle
JP4225293B2 (ja) 車両走行用モータの制御装置
JP2006044638A (ja) ハイブリッド駆動装置の制御装置、ハイブリッド駆動装置を備える自動車およびハイブリッド駆動装置の制御方法
WO2013018221A1 (ja) 車両および車両の制御方法
JP2006275019A (ja) ハイブリッド車の制御装置
JP4438772B2 (ja) ハイブリッド車両の制御装置
US9663102B2 (en) Control apparatus for hybrid vehicle
JP4386003B2 (ja) ハイブリッド車両のバッテリ保護制御装置
US9643597B2 (en) Control apparatus for hybrid vehicle
JP2006144589A (ja) ハイブリッド車のエンジン制御装置
JP4449825B2 (ja) ハイブリッド車両の走行モード制御装置
JP2006341708A (ja) ハイブリッド車の制御装置
JP2006298283A (ja) 車両制御装置
JP4604687B2 (ja) 車両の制御装置
JP2010155513A (ja) ハイブリッド自動車
KR101013870B1 (ko) 클러치 슬립을 이용한 하이브리드 차량의 트랜스미션 역회전 방지 방법
JP5437093B2 (ja) 回生制動制御装置
JP4710489B2 (ja) 負荷駆動回路における異常監視装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090921

R150 Certificate of patent or registration of utility model

Ref document number: 4386003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees