JP4382512B2 - 管体の形状測定方法および同装置 - Google Patents

管体の形状測定方法および同装置 Download PDF

Info

Publication number
JP4382512B2
JP4382512B2 JP2004031899A JP2004031899A JP4382512B2 JP 4382512 B2 JP4382512 B2 JP 4382512B2 JP 2004031899 A JP2004031899 A JP 2004031899A JP 2004031899 A JP2004031899 A JP 2004031899A JP 4382512 B2 JP4382512 B2 JP 4382512B2
Authority
JP
Japan
Prior art keywords
tubular body
tube
shape
peripheral surface
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004031899A
Other languages
English (en)
Other versions
JP2004258027A (ja
Inventor
巧 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2004031899A priority Critical patent/JP4382512B2/ja
Publication of JP2004258027A publication Critical patent/JP2004258027A/ja
Application granted granted Critical
Publication of JP4382512B2 publication Critical patent/JP4382512B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、たとえば複写機の感光ドラム用基体等の管体の形状測定方法および同装置等に関する。
各種機械装置において回転部品等として使用される管体には、その形状精度を測定することが求められる場合がある。たとえば、複写機等の電子写真システムに用いられる感光ドラム用の基体等では、高い形状精度を確保するため、製管工程後の管体に対して形状測定が行われている。
このような形状測定方法として、図26、図27に示す方法がある。この方法は、管体10の両端近傍の外周面12を回転ローラ91で支持し、管体90を回転させたときの変位測定器92…の検出値の変化量から、この回転に伴う管体90外周面の長手方向中央部の変位量を測定するというものである。
また、特開平11−271008号、特開昭63−131018号、特開2001−336920号、特開平8−141643号、特開平11−63955、特開平3−113114号、特開2000−292161号、特開平2−275305号等には、管体の形状を測定する種々の技術が開示されている。
特開平11−271008号公報 特開昭63−131018号公報 特開2001−336920号公報 特開平8−141643号公報 特開平11−63955号公報 特開平3−113114号公報 特開2000−292161号公報 特開平2−275305号公報
しかしながら、上述した図26,図27の管体の形状測定方法や種々の公開特許に開示された技術では、形状測定対象である管体をそのままの状態で形状測定しており、実際に使用される時の状態での形状測定が行われていない。このため、管体が実際に使用される時の形状とは異なる形状が計測されている場合がある。また、実際に使用される時に必要な形状精度を確保するべく、過剰品質を要求することになっている可能性がある。
たとえば、感光ドラム等では実際の使用時には回転軸となるフランジが圧入されることでその両側端部の断面形状が適正な真円形状に変形する場合がある。
本発明は上記課題に鑑みてなされたものであり、高い精度で管体の形状を測定できる管体の形状測定方法、同装置、またそのような管体の検査方法、同システム、さらにそのような管体の製造方法および同システムを提供することを目的とする。
本発明は、下記の手段を提供する。すなわち、
[1]管体の両側端部にそれぞれ複数の矯正ローラを接触させることにより前記管体の両側端部の断面形状を一時的に矯正し、
両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定方法。
[2]前記管体の両側端部にそれぞれ3つ以上の前記矯正ローラを接触させることを特徴とする前項1に記載の形状測定方法。
[3]前記矯正ローラには、前記管体の内周面に接触する内側矯正ローラと、前記管体の外周面に接触する外側矯正ローラとがそれぞれ1つ以上含まれることを特徴とする前項2に記載の管体の形状測定方法。
[4]前記管体を形状測定位置へ搬入および搬出するときには、前記内側矯正ローラは前記管体の軸方向にスライド動作して前記管体の両側端部から前記管体の外部に退避することを特徴とする前項3に記載の管体の形状測定方法。
[5]前記内側矯正ローラと前記外側矯正ローラとは、前記管体の形状測定時の前後には相対的に離間動作することを特徴とする前項3または4に記載の管体の形状測定方法。
[6]前記内側矯正ローラと前記外側矯正ローラとは、前記管体の周方向について異なる位置において前記管体の内周面および外周面にそれぞれ接触することを特徴とする前項3〜5のいずれかに記載の管体の形状測定方法。
[7]前記外側矯正ローラが前記管体の両側端部にそれぞれ2つ以上あることを特徴とする前項6に記載の管体の形状測定方法。→安定する。
[8]管体の両側端部それぞれの内周面に1つ以上の内側矯正ローラを接触させ、かつ前記管体の両側端部それぞれの外周面に2つ以上の外側矯正ローラを接触させることにより、前記管体の両側端部の断面形状を一時的に矯正し、
両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定方法。
[9]前記管体の両側端部においてそれぞれ2つ以上の前記外側矯正ローラが前記管体の下側に当接することを特徴とする前項7または8に記載の管体の形状測定方法。
[10]前記矯正ローラは、前記管体の両側端部の断面形状を一時的に矯正している状態において、それぞれ予め設定された位置に固定することを特徴とする前項1〜9のいずれかに記載の管体の形状測定方法。
[11]予め設定された位置に固定され、管体の内周面に接触する1以上の内側矯正ローラと、予め設定された位置に固定され、前記管体の外周面に接触する1以上の外側矯正ローラとを含む3つ以上の矯正ローラを前記管体の両側端部にそれぞれ配置して、前記管体の両側端部の断面形状を一時的に矯正し、
両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定方法。
[12]前記矯正ローラは、それぞれ前記管体の両側端部の断面形状が適正であった場合の前記管体の内周面または外周面にちょうど接する位置に固定されることを特徴とする前項10または11に記載の管体の形状測定方法。
[13]前記矯正ローラの少なくとも1つに対し、前記管体に対して押し付ける押圧力を付与することを特徴とする前項1〜9のいずれかに記載の管体の形状測定方法。
[14]前記矯正ローラに付与する押圧力を、前記管体の回転位相に応じて変動させることを特徴とする前項13に記載の管体の形状測定方法。
[15]両側端部の断面形状が一時的に矯正されている状態で回転する前記管体に対し、その両側端部の断面形状を検出し、
この両側端部の断面形状に応じて、前記矯正ローラに付与する押圧力を変動させることを特徴とする前項13または14に記載の管体の形状測定方法。
[16]前記矯正ローラの少なくとも1つは、前記管体の両側端部の断面形状を一時的に矯正している状態において、予め設定された位置に固定されることを特徴とする前項13〜15のいずれかに記載の管体の形状測定方法。
[17]前記管体の両側端部に対する一時的な矯正による変形は、前記管体の弾性変形領域内で行われることを特徴とする前項1〜16のいずれかに記載の管体の形状測定方法。
[18]前記管体の両側端部に対する一時的な矯正による変形は、塑性変形領域まで達することを特徴とする前項1〜16のいずれかに記載の管体の形状測定方法。
[19]前記矯正ローラのうち少なくとも1つが回転駆動されることを特徴とする前項1〜18のいずれかに記載の管体の形状測定方法。
[20]前記矯正ローラの回転駆動は、1つの回転駆動源によって行われることを特徴とする前項19に記載の管体の形状測定方法。
[21]前記変位量の検出位置には、前記管体の外側の複数の位置を含むことを特徴とする前項1〜20のいずれかに記載の管体の形状測定方法。
[22]前記変位量の検出位置には、前記管体の軸方向位置が異なる複数の位置を含むことを特徴とする前項21記載の管体の形状測定方法。
[23]前記変位量の検出位置には、前記管体の軸方向位置が一致し、周方向位置が異なる複数の位置を含むことを特徴とする前項21または22に記載の管体の形状測定方法。
[24]前記変位量の検出位置には、前記管体の軸方向位置が一致し、周方向位置が半周分異なる2つの位置を含むことを特徴とする前項21〜23のいずれかに記載の管体の形状測定方法。
[25]前記管体の回転は、1回転以上とすることを特徴とする前項1〜24のいずれかに記載の管体の形状測定方法。
[26]前記変位量の検出は、前記管体を回転させる全期間または一部期間において連続的に行うことを特徴とする前項1〜25のいずれかに記載の管体の形状測定方法。
[27]前記変位量の検出は、前記管体を回転させる間に断続的に行うことを特徴とする前項1〜25のいずれかに記載の管体の形状測定方法。
[28]前記管体の回転は断続的に停止させ、前記変位量の検出は、前記管体の回転が停止しているときに行うことを特徴とする前項1〜25のいずれかに記載の管体の形状測定方法。
[29]前記変位量の検出は、前記管体の外周面に接触する検出器を用いて行うことを特徴とする前項1〜28のいずれかに記載の管体の形状測定方法。
[30]前記変位量の検出は、前記管体の外周面と接触しない検出器を用いて行うことを特徴とする前項1〜28のいずれかに記載の管体の形状測定方法。
[31]前記変位量の検出は、前記管体に対してその外側から光を照射し、前記管体によって遮られず透過した光を検出することによって行うことを特徴とする前項30記載の管体の形状測定方法。
[32]前記管体は感光ドラム用の基体であることを特徴とする前項1〜31のいずれかに記載の管体の形状測定方法。
[33]前項1〜32のいずれかに記載の管体の形状測定方法により管体の形状を測定し、この測定結果に基づいて、前記管体の形状が予め設定された所定の許容範囲内にあるか否かを検査することを特徴とする管体の検査方法。
[34]管体を製管し、前項33に記載の管体の検査方法により前記管体の形状を検査し、この検査結果において前記管体の形状が前記所定の許容範囲内にある場合には、その管体を完成品と判定することを特徴とする管体の製造方法。
[35]前記検査結果を前記管体の製管における製管条件の設定にフィードバックすることを特徴とする前項34に記載の管体の製造方法。
[36]前項34または35に記載の管体の製造方法によって製造されたことを特徴とする管体。
[37]前項34または35に記載の管体の製造方法によって製造されたことを特徴とする感光ドラム用基体。
[38]前項34または35に記載の管体の製造方法によって製造され、前記回転に伴う前記管体の外周面の半径方向の変位量が20μm以下であることを特徴とする管体。
[39]前項34または35に記載の管体の製造方法によって製造され、前記回転に伴う前記管体の外周面の半径方向の変位量が20μm以下であることを特徴とする管体の集合。
[40]管体の両側端部に接触して前記管体の両側端部の断面形状を一時的に矯正する複数の矯正ローラと、
前記管体が両側端部の断面形状が一時的に矯正されている状態で回転したとき、この回転に伴う前記管体の外周面の半径方向の変位量を検出する少なくとも1の変位検出器と、
を備えたことを特徴とする管体の形状測定装置。
[41]前項40記載の管体の形状測定装置と、前記変位検出器によって検出された前記変位量に基づいて、前記管体の形状が予め設定された所定の許容範囲内にあるか否かを検査する比較手段とを備えたことを特徴とする管体の検査装置。
[42]管体を製管する製管装置と、
前項41記載の管体の検査装置と、
前記検査装置による検査結果において前記管体の形状が前記所定の許容範囲内にある場合には、その管体を完成品と判定する合否判定手段と、
を備えたことを特徴とする管体の製造システム。
[43]前記検査装置による検査結果を前記製管装置にフィードバックするフィードバック手段を備えたことを特徴とする前項42に記載の管体の製造システム。
上記発明[1]によると、管体はそのままの状態ではなく、両側端部が矯正ローラによって一時的に矯正された状態で外周面の半径方向の変位量が検出されるため、両側端部の断面形状が適正な形状に変形した状態で使用される管体の実際の使用時に近似した条件のもとで管体の形状を測定することができる。したがって、実際に使用されるときに発揮される管体の形状を高い精度で得ることができ、実際に使用されるときに必要な形状精度を確保するべく過剰品質を要求するような事態を未然に防止することができる。
上記発明[2]によると、管体が安定するように保持しながら管体の端部形状を矯正することができる。
上記発明[3]によると、管体を内外から挟み込むことで管体を安定して保持することができるとともに、各矯正ローラを互いに近くに配置することができる。これにより、複数の矯正ローラを強固に位置決めして、管体の両側端部に対して正確な矯正を行うことができる。また、管体の周方向について局所的な形状矯正を行うことも可能となる。
上記発明[4]によると、管体をセットするときに、内側矯正ローラを軸方向外側に退避させ、管体を軸方向に移動動作させることなく、形状測定位置にセットすることができる。
上記発明[5]によると、管体をセットするときに、管体が内側矯正ローラと外側矯正ローラとによって挟まれないため、管体を容易に形状測定位置にセットすることができる。
上記発明[6]によると、管体の周方向位置が内側矯正ローラと外側矯正ローラとに挟まれる部分に対して効率的に矯正力を加えることができる。
上記発明[7]によると、2つ以上の外側矯正ローラで管体を保持することができるため、管体の姿勢を安定させることができる。
上記発明[8]によると、両側端部が矯正ローラによって一時的に矯正された状態で外周面の半径方向の変位量が検出されるため、両側端部の断面形状が適正な形状に変形した状態で使用される管体の実際の使用時に近似した条件のもとで管体の形状を測定することができる。したがって、実際に使用されるときに発揮される管体の形状を高い精度で得ることができ、実際に使用されるときに必要な形状精度を確保するべく過剰品質を要求するような事態を未然に防止することができる。また、管体を安定的に保持しながら、管体を内外から挟み込むことで管体の周方向について局所的な形状矯正を行うことも可能となる。
上記発明[9]によると、管体下側の外側矯正ローラを、管体を形状測定位置へセットする前後に管体を一時的に支持させるための仮置き台として利用することができる。
上記発明[10]によると、複雑な制御等を行うことなく、容易に管体の両側端部を適正な形状に矯正することができる。
上記発明[11]によると、両側端部が矯正ローラによって一時的に矯正された状態で外周面の半径方向の変位量が検出されるため、両側端部の断面形状が適正な形状に変形した状態で使用される管体の実際の使用時に近似した条件のもとで管体の形状を測定することができる。したがって、実際に使用されるときに発揮される管体の形状を高い精度で得ることができ、実際に使用されるときに必要な形状精度を確保するべく過剰品質を要求するような事態を未然に防止することができる。また、複雑な制御等を行うことなく、容易に管体の両側端部を適正な形状に矯正することができる。
上記発明[12]によると、複雑な制御等を行うことなく、容易かつ確実に管体の両側端部を適正な形状に矯正することができる。とくに、矯正ローラが接触する部分の近傍についてはより正確に管体を適正な形状に矯正することができる。
上記発明[13]によると、矯正の自由度が得られる。このため、たとえば管体ごとの具体的な形状に応じて適切な矯正を行うことも可能となる。
上記発明[14]によると、管体の周方向位置ごとの形状に応じた矯正力を付与することができるため、より適切な矯正を行うことができる。
上記発明[15]によると、管体の両側端部の断面形状を検出するため、この検出結果に応じて確実に管体の形状に応じた矯正力を付与して適切な矯正を行うことができる。
上記発明[16]によると、予め設定された位置に固定されている矯正ローラを管体の形状測定の基準として用いることができるため、正確な形状測定に寄与することができる。
上記発明[17]によると、形状測定時の管体の変形は形状測定後に戻るため、形状測定によって管体に与える影響を確実に小さく押さえることができる。
上記発明[18]によると、管体の両側端部の変形が塑性変形領域に達するか否かにとらわれることなく、確実に管体の両側端部の断面形状を適正な形状に矯正することができるため、さらに正確な形状測定を行うことができる。
上記発明[19]によると、矯正ローラが管体を回転させる機能を果たすため、管体に接触する部材を少なく抑えることができる。これにより誤差要因を排除して正確な形状測定に寄与することができ、形状測定について高い信頼性を得ることができるとともに、管体が損傷する可能性を低減することができる。
上記発明[20]によると、複数の回転駆動源を用いた場合に生じやすい回転ムラを抑制することができるとともに、回転の制御を簡素化することができるため、形状測定について高い信頼性を得ることができる。
上記発明[21]によると、管体の外側の複数の位置における外周面のフレを測定することができ、これらを組み合わせることで管体の形状をより具体的に把握することができる。
上記発明[22]によると、管体の軸方向位置が異なる複数の位置において外周面のフレを測定することができ、これらを組み合わせることで管体の軸方向についての形状の変化を把握することができる。
上記発明[23]によると、これら複数の位置で検出される変位量を組み合わせることにより、この軸方向位置における管体の断面形状をより具体的に把握することができる。
上記発明[24]によると、これら2つの位置において検出される変位量を組み合わせることにより、これら2つの位置を通る管体の直径を求めることができ、これにより、より具体的に管体の形状を把握することができる。
上記発明[25]によると、管体の周方向について全周の形状を検出することができる。
上記発明[26]によると、管体の周方向について局部的な形状変化も検出することができる。
上記発明[27]によると、管体の外周面の変位量を簡易に検出することができる。
上記発明[28]によると、管体の外周面の変位量について安定した検出ができる。
上記発明[29]によると、管体の外周面の変位量について確実な検出ができる。
上記発明[30]によると、管体の外周面を傷めるおそれなく、管体の外周面の変位量を検出することができる。
上記発明[31]によると、管体の外周面の変位量を容易かつ正確に検出することができる。
上記発明[32]によると、感光ドラム用の基体として好適に適用できる形状精度を有しているか否かを測定することができる。
上記発明[33]によると、管体の形状が許容範囲内にあるか否かを判別することができる。
上記発明[34]によると、過剰品質に陥ることなく、必要十分な形状精度を持った管体を提供することができる。
上記発明[35]によると、より確実に必要十分な形状精度を持った管体を提供することができる。
上記発明[36]によると、上記管体の製造方法によって製造されるため、その形状が許容範囲内に収まり、各種用途に好適に使用することができる。
上記発明[37]によると、上記管体の製造方法によって製造されるため、その形状が許容範囲内に収まり、電子写真システムにおける優れた画像形成に貢献することができる。
上記発明[38]によると、感光ドラム用の基体等の用途に好適に使用することができる。
上記発明[39]によると、感光ドラム用の基体等の用途に好適に使用することができる。
上記発明[40]によると、管体はそのままの状態ではなく、両側端部が矯正ローラによって一時的に矯正された状態で外周面の半径方向の変位量が検出されるため、両側端部の断面形状が適正な形状に変形した状態で使用される管体の実際の使用時に近似した条件のもとで管体の形状を測定することができる。したがって、実際に使用されるときに発揮される管体の形状を高い精度で得ることができ、実際に使用されるときに必要な形状精度を確保するべく過剰品質を要求するような事態を未然に防止することができる。
上記発明[41]によると、管体の形状が許容範囲内にあるか否かを判別することができる。
上記発明[42]によると、過剰品質に陥ることなく、必要十分な形状精度を持った管体を提供することができる。
上記発明[43]によると、より確実に必要十分な形状精度を持った管体を提供することができる。
以下、本発明にかかる管体の形状測定方法および装置について、まず、測定原理の概略を説明する。
図1は本発明にかかる管体の形状測定方法を説明するための概念図である。図2は同じく側面図である。図3は、形状測定対象となる管体の一例を示す斜視図である。
図1および図2に示すように、本発明にかかる管体の形状測定方法は、管体(ワーク)10の両側端部13,13を内側矯正ローラ20,20と外側矯正ローラ40…とで矯正し、こうして矯正された状態で回転する管体10の外周面12の半径方向の変位量を変位検出器30…によって検出するものである。
<管体>
本発明における形状測定対象としての管体(ワーク)10は、その内周面11および外周面12とも各断面が円形の円筒形状を想定している。
また、この実施形態において例示する管体(ワーク)10は、図3に示すように、その両端の内側にフランジ80,80が挿入され、適宜回転させて使用されるものを想定している。
このフランジ80,80は、予めその断面形状が十分に正確な円形に作り込まれている。管体10の両端部分13,13は、このようなフランジ80,80が圧入されるため、実際の使用時にはその断面形状が矯正されることになる。
このフランジ80,80が管体10に接触する位置は、たとえば管体10の両端から幅dだけ内側に至る領域S(図3中にハッチングを施した領域)となっている。
このような管体(ワーク)10の素材は、たとえばアルミニウム合金等を挙げることができる。ただし、これに限定されるものではなく、各種金属や合成樹脂等であってもよい。
また、その製造方法としては、後述するように、押出成形および引き抜き成形の組み合わせを挙げることができる。ただし、これに限定されるものではなく、押出成形、引き抜き成形、鋳造、鍛造、射出成形、切削加工またはこれらの組み合わせなど、管体を製管できる方法であればよい。
このような管体10としては、具体的には、電子写真システムを採用した複写機やプリンタ等における感光ドラム用の基体や素管を挙げることができる。なお、感光ドラム用の基体とは、切削加工や引抜き加工等が行われた後の管体であって、感光層の形成前の管体をいう。また、感光ドラム用基体に感光層を形成した後の管体も、本発明の形状測定等を行う対象たる管体とできる。
<矯正ローラ>
内側矯正ローラ20,20および外側矯正ローラ40…は、形状測定時にはそれぞれ管体10の両側端部13,13の内周面11および外周面12に接触して、管体10の両側端部13,13の断面形状を一時的に矯正するものである。
内側矯正ローラ20,20は、管体10の両側にそれぞれ1個ずつ、合計2個が配置され、外側矯正ローラ40…は、管体10の両側にそれぞれ2個ずつ、合計4個が配置されている。
管体10の両側に外側矯正ローラ40…がそれぞれ2個ずつあることで、管体10の軸の位置および管体10の姿勢を安定させ、高い精度で管体10の両側端部13,13の断面形状を矯正することができる。また、管体10を安定して支持することができる。
また、管体10の内外にそれぞれ内側矯正ローラ20,20、外側矯正ローラ40…が位置し、管体10が内外から挟み込まれるため、管体10をより安定して保持することができる。
また、管体10の内外にそれぞれ内側矯正ローラ20,20、外側矯正ローラ40…を配しているため、これらを互いに近くに配置しながら管体10に矯正力を与えることができる。ここでは、内側矯正ローラ20,20、外側矯正ローラ40…はいずれも管体10の下半分側であって、管体10の中心から見て90度以下程度の範囲内の狭い領域の管体10の内周面および外周面に当接し得る位置に配置されている。このため、内側矯正ローラ20,20、外側矯正ローラ40…を互いに強固に位置決めして、管体10の両側端部13,13に対して正確な矯正を行うことができる。
また、内側矯正ローラ20,20と外側矯正ローラ40…とは、管体10の周方向位置が異なる位置において管体10の内周面11及び外周面12に接触している。具体的には、内側矯正ローラ20,20は、外側矯正ローラ40,40の間に位置している。このように、管体10の周方向について狭い範囲において異なる周方向位置に内側矯正ローラ20,20と外側矯正ローラ40…とが位置することによって、管体10に対して効率的に矯正力を付与し、正確な形状矯正を行うことができる。
また内側矯正ローラ20,20および外側矯正ローラ40…が管体10と接触する部位は、管体10が実際に使用される時にはフランジ80,80によって支持される部位(図3でハッチングを施した領域S)に対応する内周面11および外周面12となっている。これにより内側矯正ローラ20,20および外側矯正ローラ40…は、管体10が実際に使用されるときにフランジ80,80によって矯正されることが予想される部位の形状を矯正することができるようになっている。
また、内側矯正ローラ20,20および外側矯正ローラ40…は、その外周に形成された円筒面で管体10の内周面11および外周面12に線接触する。これにより内側矯正ローラ20,20および外側矯正ローラ40…は、接触圧を分散させて管体10の局所的な変形を防止できるようになっている。
<変位検出器>
変位検出器30…は、内側矯正ローラ20,20と外側矯正ローラ40…とによって両側端部13,13の断面形状が矯正された状態の管体10が回転したときの、管体10の外周面12の半径方向の変位量を検出するものである。ここでは、管体10の外周面12に接触する接触子31の動作によって変位量を検出する接触型の変位検出器30を想定している。こうして管体10の外周面12に接触する変位検出器30を用いることで、確実な検出を行うことができる。
変位検出器30…は、ここでは管体10の軸方向位置が異なる複数位置(この例では3箇所)を検出位置とするように配置されている。このように軸方向位置が異なる複数箇所での変位量を得ることにより、各位置の変位量を組み合わせることで、管体10の軸方向の形状の変化を把握することができるようになっている。
(形状測定の例)
次に、具体的な管体形状の例を挙げ、このような管体の形状測定方法を行った場合について説明する。
<両端扁平管>
まず第1の例の管体101は、図4に示すように、その中央部141は適正な真円形状をなしているが両側端部131,131が扁平な断面形状となっている場合である。
このような形状は、上述したように押出加工等によって成形された長尺の管体素材を所定寸法に切断することにより、たとえば感光ドラム用の基体等を製造する場合に、管体101の両側端部131,131が切断によって扁平に変形することで発生しやすいものである。
このように両側端部131,131が扁平に変形した形状では、たとえば図26および図27等に示した従来の形状測定を行うと、支持される両側端部131,131が管体101の回転によって上下動してしまい、これに伴って管体101の長手方向中央部分の外周面下側も上下動するため、大きなフレが検出され、完全な円筒管形状からかけ離れた形状として判定されてしまう。所定の合格基準のある形状検査では不良品と判定されてしまう可能性も高い。
しかしながら、このような管体101は、実際の使用時には図3に示したように、その両端にフランジ80,80等が圧入されることで、両側端部131,131が真円形状に矯正されてその形状不良は解消され、実際の使用時の形態は完全な円筒形となり、全く使用するのに問題がない場合もある。一方、実際の使用時にフランジ等を圧入しても完全な円筒形とはならない本当の不良管もあるが、従来の形状測定方法では、これらを判別しようがなく、本来は良品と判定しうるものを不良と判定してしまう可能性があった。
これに対し、本発明にかかる形状測定方法によれば、管体101の両側端部131,131を一時的に矯正して実際の使用時に近似した管体両端の形状を再現しながら、管体101の形状測定を行うため、図4のように両端近傍に実際の使用時には解消される擬似的な不良が存在する管体101に対しても、実際の使用時に残る不良であるのか否かが含まれる形状測定結果が得られる。
このため、従来は、不良と判別せざるを得なかった管体についても正確に形状測定を行い、真の形状測定結果を提供することができる。
<全長扁平管>
第2の例の管体102は、図5(a)に示すように、その全長にわたって断面形状は一定であるが、その断面形状が真円ではないものである。ここでは、上下あるいは左右から挟み付けて押しつぶしたような楕円状の断面形状を想定している。
このような形状は、管体102を押出成形や引抜き成形等により長尺管を製造する場合に発生しやすい。
このように管体102の全長が扁平に変形した形状では、図26および図27等に示した従来の形状測定では、正常な円筒管形状として判定されやすい。すなわち、その両側端部132,132で支持されて回転する管体102は、回転位相によって上下動するが、その長手方向中央部分の外周面下側はほとんど高さ位置が変化しないため、フレが検出されにくいためでる。所定の合格基準のある形状検査では良品と判定されてしまう可能性も高い。
一方、このような管体102は、実際の使用時にその両側端部132,132にフランジ80,80等が圧入されて両側端部132,132が真円形状に矯正されても、図5(b)に示すように、管体103の中央部分は扁平な断面形状のままである。このため、このような管体102は、実際の使用時には大きなフレを生じる不良管である場合がある。
これに対し、本発明にかかる形状測定方法によれば、管体102の両側端部132,132を一時的に矯正して実際の使用時に近似した管体両端の形状を再現しながら、管体102の形状測定を行うため、図5のように検出されにくい形状不良が存在する管体102に対しても、実際の使用時に残る不良であるのか否かが含まれる形状測定結果が得られる。
このため、従来は、良品と判別せざるを得なかった管体についても正確に形状測定を行い、真の形状測定結果を提供することができる。
(具体例)
次に、この管体の形状測定を行う管体の形状測定装置について具体的な例を挙げて説明する。この装置は、管体(ワーク)10を形状測定装置の駆動力により自動的に回転させて形状測定を行うことのできる自動型の形状測定装置である。
図6は、この自動型の形状測定装置の全体斜視概念図である。図7は、同装置における管体の支持構造の拡大斜視図である。図8は、同装置の要部の正面断面説明図である。図9は、同装置の要部の側面断面図である。
この形状測定装置5は、管体10の外周面12に接触して管体10の両側端部13,13を一時的に矯正する外側矯正ローラ54…と、管体10の内周面11に接触して管体10の両側端部13,13を一時的に矯正する内側矯正ローラ52,52と、管体10の軸方向に直交する方向から管体10を挟み込むように配置された光透過型の変位検出器53…と、これら各部品が取り付けられる本体ベース50と、を備えている。
<外側矯正ローラ>
外側矯正ローラ54…は、管体10の外周面に接触してその両側端部13,13を一時的に矯正するものである。
また、この外側矯正ローラ54…は、管体10を回転駆動する機能、管体10の軸方向位置を位置決めする機能、管体10を上下に移動動作させる機能、管体10を下側から支持し、その高さ位置を安定させる機能、矯正および形状測定前に、管体10を一時的に支持する仮置き台としての機能をも同時に実現するようになっている。
この外側矯正ローラ54…は、管体10の両端部それぞれに2つずつ同一高さで配置されており、管体10の両端側を合わせて4つの外側矯正ローラ54…が設けられている。管体10の一方の端部に配置された2つの外側矯正ローラ54,54は、図9等に示すように、回転軸方向が平行な一対のローラ対として構成されている。
各外側矯正ローラ54は、管体10の外周面12と接触して管体10を下側から支持する小径部541と、その外側に設けられた同心の大径部542とからなる。
外側矯正ローラ54…の小径部541…は、図8等に示すように、管体10の端部13のごく近傍でのみ管体10と接触するようになっている。これにより、外側矯正ローラ54…は、管体10の外周面12の両端近傍を除いてほとんど接触することなく、管体10の外周面12が損傷することを防止できるようになっている。また、この小径部541…は、管体10の両端13のごく近傍で接触することで、管体10が実際の使用時にフランジ80,80等で矯正される部位の断面形状を矯正できるようになっている。
各外側矯正ローラ54…の大径部542…は、管体10の両端部13の端面に当接して、この装置5にセットされる管体10の軸方向の位置決めが行われるようになっている。このため、管体10の軸方向両側の各外側矯正ローラ54…は、その間隔が管体10の長さサイズに適応するように設定されている。このように、管体10を支持する外側矯正ローラ54…によって管体10の軸方向の位置決めを行うことで、管体10に接触する部材を少なく抑られている。これにより誤差要因ができるだけ排除されている。また、形状測定に高い信頼性が得られる。また、管体10が損傷を受ける可能性も低減されている。
この外側矯正ローラ54…は、それぞれ上述した機器ボックス511,511に対して上下方向についてのみスライド動作可能に取り付けられた外側矯正ローラ支持体543,543に、回転自在に取り付けられている。
この外側矯正ローラ54…の下側には、この外側矯正ローラ54…の大径部542…の外周面に当接する連動ローラ544,544が、前記外側矯正ローラ支持体543,543に対して回転可能に取り付けられている。このように、管体10の両側それぞれで2つの外側矯正ローラ54…が連動ローラ544,544によって連動することにより、2つの外側矯正ローラ54…の回転を等速化することできる。これにより、管体10の回転を安定させ、形状測定について高い信頼性を得ることができる。
また、この連動ローラ544,544の一方は、機器ボックス511内に収容された駆動モータ545の駆動力によって、所定方向に回転駆動され、当接する2つの外側矯正ローラ54,54に等速の回転を伝達し、ひいては管体10を回転駆動するようになっている。このように、管体10を支持する外側矯正ローラ54…によって管体10に回転駆動力を伝達するため、管体10に接触する部材を少なく抑え、これにより誤差要因を排除して正確な形状測定に寄与することができる。また、管体10の回転を1つの回転駆動源によって行うため、複数の回転駆動源を用いた場合のような回転ムラの発生を抑制することができる。また、回転の制御を簡素化することができる。
外側矯正ローラ54…および連動ローラ544,544が取り付けられた外側矯正ローラ支持体543,543は、機器ボックス511,511に設けられた上下駆動シリンダ546,546によって上下方向にスライド動作できるようになっている。
また、この外側矯正ローラ支持体543,543は、上下駆動シリンダ546,546によるスライド動作の上限側で、機器ボックス511,511に取り付けられたストッパー547,547と当接するようになっている。このストッパー547,547は、外側矯正ローラ支持体543,543と当接するときに、外側矯正ローラ54…および内側矯正ローラ52,52の相対的な位置関係が、管体10の端部13,13の断面形状を矯正するための矯正位置に位置するように位置設定されている。
上下駆動シリンダ546,546は、外側矯正ローラ支持体543,543および外側矯正ローラ54…ごと管体10を上方に持ち上げ、外側矯正ローラ支持体543,543をストッパー547,547に十分に大きい押圧力で押し付けることで、外側矯正ローラ54…の位置を前記矯正位置に固定できるようになっている。このように、外側矯正ローラ54…の位置を矯正位置に固定するため、管体10の両側端部13,13の形状矯正を行うにあたって複雑な制御を要しないで済むものとなっている。
外側矯正ローラ54…および内側矯正ローラ52,52の矯正位置は、この実施形態では、管体10の両側端部13,13の断面形状が適正であった場合に、外側矯正ローラ54…および内側矯正ローラ52,52がそれぞれ管体10の両側端部13,13の外周面12および内周面11にちょうど接する位置である。すなわち、管体10の両側端部13,13の断面形状が不適正であった場合には、外側矯正ローラ54…および内側矯正ローラ52,52によって管体10に矯正力が加わるようになっている。
<内側矯正ローラ>
内側矯正ローラ52,52は、管体10の内周面に接触してその両側端部13,13を一時的に矯正するものである。
この内側矯正ローラ52,52は、管体10の内周面11をなめらかに当接しながらその接触位置をずらしていくことができるように、図示しないベアリング等が組み込まれた回転自在な円柱体として構成されている。このように内側矯正ローラ52,52は円柱体として構成されることで管体10の内周面11と線接触し、これにより圧力を分散して管体10の内周面11が損傷することを防止することができるようになっている。
この内側矯正ローラ52,52は、押圧支持軸521,521によって支持され、この押圧支持軸521,521は、本体ベース50上に管体10を軸方向から挟むように立設された機器ボックス511,511を貫通して取り付けられている。これにより、管体10の両側端部13,13に矯正力が加わったときにもその反力によって位置(矯正位置)がずれることなく、また円滑な回転動作が妨げられないだけの十分に高い剛性を有するようになっている。
また、この押圧支持軸521,521は、機器ボックス511,511内に設けられた出没駆動部522,522によって、管体10の軸方向について出没駆動動作可能となっている。これにより、管体10をセットするときに一対の内側矯正ローラ52,52を軸方向外側に退避させ、管体10を軸方向に移動動作させることなく、この形状測定装置にセットできるようになっている。
<変位検出器>
変位検出器53…は、管体10の外周面12の半径方向の変位量を検出するものであり、ここでは、管体10の軸方向位置の異なる5箇所にそれぞれ非接触型のものが設けられている。これら5つの変位検出器53…のうち両側の2つはそれぞれ内側矯正ローラ52,52および外側矯正ローラ54…によってその断面形状が矯正される管体10の両側端部13,13に相当する断面の変位量を検出するようになっている。
各変位検出器53…は、管体10の軸方向に直交する方向から管体10を挟み込むように配置された光透過型の変位検出器である。このため、管体10を挟み込むように配置された光照射部と受光部とが一組となってそれぞれの変位検出器53をなしており、光照射部から照射された光(たとえばレーザ光)のうち管体によって遮られず透過した光を受光部によって検出し、これによって管体10の外周面12の表面位置を検出するようになっている。
各変位検出器53…の検出域531…,532…は、図8等に示すように、管体10の直径を超える高さ方向の幅を有しており、各変位検出器53…は、管体10の外周面の一箇所の変位量だけではなく、それに対向する位置(管体10の周方向について半周分異なる位置、180度回転した位置、あるいは逆位相位置)の変位量も同時に検出できるようになっている。これにより、互いに対向する位置において検出される変位量を組み合わせることにより、これら2つの位置を通る管体10の直径を求めることができ、より具体的に管体10の形状を把握することができる。
以上のような形状測定装置5では、一対の内側矯正ローラ52,52を出没動作させる出没駆動部522,522、外側矯正ローラ54…を回転駆動する駆動モータ545,545、外側矯正ローラ54…を上下動作させる上下駆動シリンダ546,546、および管体10の形状測定を行う変位検出器53…等の各動作部の動作を制御する図示しないコントローラを備えており、形状測定手順の各タイミングにおいて、各動作部の動作を制御するようになっている。このコントローラ(制御手段)は、形状測定装置5の各部の動作を統括的に制御するものであり、たとえばCPUやメモリ等を備えたコンピュータからなるシーケンサ等で構成されている。
<形状測定手順>
形状測定手順は、具体的には、以下の例を挙げることができる。
この形状測定装置5による形状測定作業は、内側矯正ローラ52,52を出没駆動部522,522の出没動作によって両外側に退避させた状態で、管体10を任意の搬送装置または測定作業者が手動で搬送して外側矯正ローラ54…の小径部541…上に載せる。
そして、出没駆動部522,522の出没動作によって内側矯正ローラ52,52を管体10の内側に挿入する。この状態で上下駆動シリンダ546,546によって外側矯正ローラ54…とともに、その上に載せられた管体10を持ち上げる。
外側矯正ローラ54…は、内側矯正ローラ52,52との相対的な位置関係が管体10の端部13,13の断面形状を矯正するための矯正位置に達すると、外側矯正ローラ支持体543,543がストッパー547,547に当接することで固定される。なお、内側矯正ローラ52,52はもともとその高さ位置は固定されている。
このとき、管体10の両側端部13,13は、ともに矯正位置に固定された外側矯正ローラ54…と内側矯正ローラ52,52との接触により、その断面形状が一時的に適正に矯正されている。なお、この一時的に矯正による管体10の両側端部13,13の変形には弾性変形分が含まれ(弾性変形のみでもよい)、内側矯正ローラ52,52および外側矯正ローラ54…との接触状態が解かれればその一部はもとに戻る。
こうして管体10の両側端部13,13の断面形状が一時的に矯正された状態で、駆動モータ545,545により連動ローラ544および外側矯正ローラ54…を回転させ、管体10を回転させる。なお、管体10は少なくともその自重によって外側矯正ローラ54…とは接触した状態を保つ。
このとき、各変位検出器53…により、管体10の各軸方向断面における外周面12の半径方向の変位量が検出される。
管体10を一回転以上させて、周方向について全周の変位量を検出すれば、上記と逆の手順で、管体10の回転を止め、外側矯正ローラ54…を下降させることで管体10と内側矯正ローラ52,52とが当接しうる状態を解除し、内側矯正ローラ52,52を再び両外側に退避させて、形状測定の終了した管体10が取り出される。
<作用効果>
このように構成された形状測定装置5では、管体10の両側端部13,13の断面形状が、実際の使用時と同様に適正な形状に一時的に矯正された状態で、その外周面の変位量が測定されるため、実際に使用されるときに発揮される管体の形状を高い精度で得ることができる。
また、管体10を外側矯正ローラ54…上に載せられれば、自動的にその形状測定を行うことができるため、自動化ラインに容易に組み込むことができる。
また、管体10を矯正する外側矯正ローラ54…は、管体10への回転駆動力の伝達、管体10の軸方向の位置決め、管体10の上下移動動作、管体10の下側からの支持という各機能を同時に果たすため、管体10の形状測定位置へのセッティングや形状測定のための動作部を集約して動作部の数が少ない構造を実現している。また、多数の部品が測定対象である管体10に接触する部品の数も少ない。これにより、誤差要因を排除して正確な形状測定に寄与することができ、また、形状測定について高い信頼性を得ることができる。
また、非接触型の変位検出器53…が用いられているため、管体10の外表面に損傷を与えることがない。
また、外側矯正ローラ54…は、管体の両側の外周端部に当接するため、管体の外周面には、この両端部を除き、周方向に延びる接触の痕跡すら残らず、優れた表面状態を備えた管体を得ることができる。
また、この非接触型の変位検出器53…は、光透過型の変位検出器であるため、光を遮る管体10の外周面12近傍では光が回折して受光部に到達し、必要以上に微細な外周面12の形状凹凸を捨象した検出結果が得られる。このため、必要以上に微細な表面欠陥による外周面12の変位量を除いた適切な検出結果を容易に得ることできる。
また、変位検出器53…は、管体の周方向の各位置のうちで、矯正ローラ52,54によって挟まれ、最も確実に矯正されている部分を変位量の検出対象位置としているため、より確実に使用時に近似した条件のもとでの形状を測定することができる。
また、外側矯正ローラ54…を管体10の両側の端部に当接させながら、この管体10を内側矯正ローラ52,52に押し付けるため、管体10の端面に所定長さに切断する際にできたバリ等が残っている場合であってもこれを脱落させることができる。このため、管体10が外側矯正ローラ54…に接触した状態を確実に保つことができ、これにより形状測定の高い精度を確保することができる。また、この形状測定装置5をバリ取り加工装置として機能させることができる。
具体的に、この形状測定装置5において、種々の変位量を有する複数の管体に対してそれぞれ10回の形状測定を行ったところ、図10に示すように、各回の測定結果のバラツキ(測定誤差)は、最大で3μmであり、高い信頼性を備えていることが確認できる。この測定誤差は、量産に対応できる管体の形状測定装置としては極めて優れた値であり、測定誤差を吸収する余裕を小さくして、良品が不良品と誤判定されてしまう事態を減らすことができる。
なお、ここで検出される外周面の変位量は、内側矯正ローラ52,52によって高さ位置が固定されている管体の内周面を基準とした外周面のフレ量となっているため、管体の曲がりの影響だけでなく、管体の偏肉の影響も加味したフレ量を得ることができる。
この管体の内周面を基準とした外周面のフレ量の許容範囲が、たとえば管体10の不良要因である曲がりや偏肉のそれぞれの加工限界精度レベルの合計である20μm以下であった場合には、測定誤差の最大値3μmを考慮して、フレ量の測定結果が17μm以下であるものを良品として管体を選別する検査を行えばよい。このようにすると、不良品と誤判定される数を抑えながら、検査で良品とされた全数が確実に許容範囲である20μm以下に収まっている管体の集合を得ることができる。
さらに、計測誤差を考慮してしきい値を設定し、管体を選別することにより、フレ量が15μm以下に収まっている好適な管体の集合を得ることができる。また、従来の管体の製法では極めて加工が困難なレベルであるフレ量が10μm以下に収まっている特に好適な管体の集合や、さらにフレ量が5μm以下に収まっている極めて好適な管体の集合を得ることができる。究極には、フレ量が測定誤差の最大値である3μm以下に収まっている管体の集合も得ることができる。
また、この管体の形状測定装置5では、順次、管体10を自動的に搬入し、セットし、形状測定し、搬出する一連の工程を、管体1本につき、60秒以下程度で行うことができる。さらに、高速運転すれば、管体1本につき30秒以下、10秒以下、5秒以下で一連の工程を行うことも可能である。
このように、この形状測定装置5は、高速で各管体の形状測定を行うことができるため、製造されるすべての管体の形状測定および合否判定を容易に行うことができ、ひいては、公知の加工精度の限界レベルにおいて出荷する管体の全数についてフレ量等が所定範囲にあることを保証できる。
たとえば、感光ドラム用基体は、一般に複数本を一単位として、ケース等に収容されて搬送され、取引され、通常は、一単位は10本以上であり、たとえば、80本や140本である。この形状測定装置5によれば、この全数についてフレ量がたとえば20μm以下であることを保証できる。
(検査装置)
次に、本発明にかかる管体の検査装置について説明する。
図11は、この検査装置6の構成を示す機能ブロック図である。
この検査装置6は、上述した自動型の形状測定装置5と、形状測定装置5によって検出された管体10の外周面12の変位量データから外周面12のフレ量を算出するフレ量算出部61と、管体10の外周面12のフレ量の許容範囲が設定され、記憶される許容範囲記憶部62と、フレ量算出部61において算出された管体10のフレ量が許容範囲内にあるか否かを検査する比較部63と、この検査結果を出力する出力部64とを備えている。
フレ量算出部61、許容範囲記憶部62、比較部63、および出力部64は、具体的には、コンピュータ上でそれぞれの機能を果たすソフトウェアおよびハードウェアから構成される。
これらフレ量算出部61、許容範囲記憶部62および比較部63において取り扱われるフレ量は、は、たとえば形状測定装置5により管体10の軸方向について5箇所(5断面)における外周面12の変位量を検出する場合であれば、5箇所すべてのフレ量としても、あるいは、そのうちの一部としてもよい。
また、複数箇所(例えば5箇所)のフレ量を用いる場合であっても、最終検査結果で合格とする条件としては、全てのフレ量がそれぞれが所定の許容範囲内にあることとしても、複数箇所のフレ量を組み合わせた結果が所定の許容範囲内にあることとしてもよい。フレ量の組み合わせとは、たとえば、複数箇所のフレ量のいずれもが所定の範囲内にあり、かつこれらフレ量の合計が所定の範囲内にあること等を挙げることができる。
なお、ここでは、形状測定装置5で検出された管体10の外周面の変位量の生データを加工して、外周面のフレ量等の管体10の形状を表現する指標値等を算出する算出手段を、形状測定装置5の外側に表現したが、形状測定装置5自身がこのような算出手段を有していてもよいことはいうまでもない。また、その算出結果を出力する出力手段を有していてもよい。
このような検査装置6によれば、所定の形状精度を有する管体、および管体の集合を容易、かつ確実に選別することができる。
(製造システム)
次に、本発明にかかる管体の製造システムについて説明する。
図12は、この製造システム7の構成を示す機能ブロック図である。
この製造システム7は、管体10を製管する製管装置71と、上述した検査装置6と、検査装置6の検査結果に基づいて管体10を完成品とするか否かを判定する合否判定部72と、検査装置6の検査結果を製管装置71にフィードバックするフィードバック部73とを備えている。
製管装置71は、たとえば、アルミニウム合金の引抜き加工によって感光ドラム基体を製管する場合であれば、原料を溶解させて押出加工材料を製造する工程、押出工程、引抜工程、曲がり矯正工程、所定長さへの切断工程、粗洗浄工程、仕上げ洗浄工程等を実行する各機械装置の集合として構成されている。
押出工程は、たとえばアルミニウム製のビレットを押出してアルミニウム押出素管を得る工程である。
図13は、この押出工程を行う押出機の概略平面図である。押出機本体73から押し出されたアルミニウム押出素管74は、複数対配置された支持ローラ75…によって押出方向前方に搬送され、切断機76により所定長さRに切断される。
図14は、押出機本体が備える押出ダイスの一例における断面図である。この押出ダイス77は、ポートホールダイスであり、771はダイス雌型、772はダイス雄型である。ダイス雌型771には中央部に貫通上の押出孔773が形成されるとともに、押出孔773の入口側の周面が円形のベアリング部774となされている。なお、775はレリーフ部である。一方、ダイス雄型772は、その中央部に断面円形の成型凸部776を有するとともに、成形凸部776の先端周面に円形のベアリング部777が形成されている。なお778は、アルミニウムビレットを通過させる通過孔である。そして、前記ダイス雌型771と前記ダイス雄型772とが組み合わされ、雄型772の成形凸部776先端が雌型771の押出孔773に望んで雌雄両型ののベアリング部774,777が感情の成形間隙779を介して対向状の配置されている。
なお、押出方式は特に限定されることはなく、ポートホールダイスを用いたものでもマンドレル押出でもよい。
引抜き工程は、押出加工によって得られた所定長さのアルミニウム押出素管を引抜き加工してアルミニウム引抜管を得る工程である。
図15は、この引抜き工程を行う引抜き機の一例を示す断面である。この引抜き機78は、たとえば、アルミニウム押出素管781を引抜きダイス782と引抜きプラグ783との間に通し、押出素管781先端に形成された口付け部784をキャリッジ部のチャック部785で掴んで該キャリッジ部を前方に移動させることにより、アルミニウム引抜き管786を得るようになっている。引抜きプラグ783は、ロッド787によって支持されている。このロッド787には1個または複数個の中子788がその略全長に亘って装着されており、この中子788は、押出素管781の内周面に当接して自重により押出素管781がたわむことを防止して、引抜きの初めから終わりまで押出素管781の軸線をダイス782の軸線に一致した状態に保持できるようになっている。また、引抜き加工中には、引抜きダイス782と押出素管781との間に潤滑油が供給されるようになっている。
なお、この引抜き工程は、プラグを固定しない浮きプラグ引き方式によって引抜きを行うようにしてもよい。また、引抜きは、1回だけ行ってアルミニウム引抜き管を得るようにしてもよいが、引抜きを複数回繰り返し行って順次的に縮径し、もってアルミニウム引抜き管を得るようにするのが好ましい。とくに、引抜きを2回行ってアルミニウム引抜き管を得るのが好ましい。
曲がり矯正工程は、引抜き加工によって得られたアルミニウム引抜き管の曲がりを矯正する工程である。具体的には、引抜き加工によって得られたアルミニウム引抜き管は、まず、その口付け部がプレス切断法により除去され、その後、ロール矯正機に投入され、内部の矯正ロールの作用で真っ直ぐに矯正される。
図16は、口付け部切除工程を行う切断機の一例を示す断面図である。この切断機79は、アルミニウム引抜き管791の口付け部792側の端部を金型793,793の内方に挿入し、切断刃794を下降させることにより、該口付け部792を切断除去する。この切断は突切り刃によって行われるから切粉の発生はなく、切粉等がロール矯正機内に持ち込まれ、アルミニウム引抜き管791にキズがつくことがないようになっている。
図17は、曲がり矯正工程を行うロール矯正機の一例を示す概念図である。このロール矯正機81は、その内部の矯正ローラ812の作用によって、口付け部が切除されたアルミニウム引抜き管811を真っ直ぐに矯正するようになっている。
粗洗浄工程は、上記引抜き工程等においてアルミニウム引抜き管に付着した潤滑油等を除去する工程である。この粗洗浄工程は、たとえば脱脂力を有する溶剤を用いて行われる。具体的手法としては、特に限定されないが、たとえば浸漬法、シャワー法等が挙げられる。
仕上げ洗浄工程は、好適には、たとえば超音波洗浄によって行われる。
図18は、超音波洗浄機の一例を示す概念図である。この超音波洗浄機83は、洗浄増831に貯められた洗浄液832に被洗浄物である複数個のアルミニウム引抜き管833を浸漬しておき、振動子834によって洗浄液832中に超音波を送ることにより、被洗浄物であるアルミニウム引抜き管833を洗浄するものである。
超音波の照射方式は特に限定されることはなく、図18に示す投げ込み型のほか、接着型、振動伝達子型その他各種の洗浄機を用いることができる。また、洗浄液としては、一般には白灯油、軽油、アルカリ、界面活性剤あるいはトリクロロエチレンなどが用いられるが、これらに限定されることはなく、水系、炭化水素系、塩素系有機溶媒などを適宜用いればよい。
上記のような押出工程、切断工程、引抜き工程、曲がり矯正工程、洗浄工程、仕上げ洗浄工程を経て得られた管体(アルミニウム引抜き管)10は、表面品質に優れ、複写機、プリンタ、ファクシミリ等の電子写真装置の感光ドラム用基体として好適である。
こうして製管された管体(アルミニウム引抜き管)10は、上述した検査装置6において形状が所定の許容範囲内にあるか否かが検査され、合否判定部72は、この検査結果に基づいて所定の許容範囲内にあるのであれば、その管体10を完成品と判定する。
また、検査装置6が備える管体の形状測定装置5において、管体10に発生している不良の種類や特徴等が判別された場合には、この検査結果をフィードバック部(フィードバック手段)73が製管装置71にフィードバックし、これにより不良管の発生を未然に防止するようになっている。
こうして検査結果がフィードバックされた製管装置71においては、検査結果の内容に応じて、製管条件の設定に供される。具体的には、押出ダイスの取付状態や押出速度等の押出条件の設定、素管の選別、引抜きダイスの取付状態の確認や引抜き速度等の引抜き条件の設定、ロール矯正機におけるロール高さ調整や搬送速度等のロール矯正機条件が制御される。これにより、より確実に必要十分な形状精度を持った管体を得ることができるとともに、仮に不良管が発生した場合でも、速やかにこれに対応し、不良管の発生数を抑えることができる。
この製造システム7においては、製管装置71から検査装置6の形状測定装置5に管体10を自動搬送する自動搬送装置を備えていることが望ましい。とくに、合否判定部72において合格とされた完成品と、不合格と判定された不良被疑品とを異なる場所に選別して搬送する搬送装置を備えることが望ましい。
このような製造システム7によれば、所定の形状精度を有する管体、および管体の集合を確実に得ることができる。
(その他の実施形態)
以上、本発明を実施形態に基づいて説明したが、本発明は上記に限定されず、以下のように構成してもよい。
(1)上記実施形態では、管体10を矯正しながら形状測定する時には、矯正ローラを矯正位置に固定したが、1つまたは複数の矯正ローラの位置を固定せず、管体10に押し付けるようにしてもよい。この矯正ローラを管体10に押し付ける手段としては、たとえば空気圧シリンダやサーボモータ等を挙げることができる。
また、矯正ローラを管体10に押し付ける場合であっても、少なくとも1の矯正ローラの位置は固定することが望ましい。固定された矯正ローラの位置を形状測定の基準にすることができるからである。
矯正ローラを管体10に押し付ける場合、管体10の回転位相に応じて、矯正ローラの管体10への押圧力を変動させることが望ましい。具体的には、たとえば、管体10の両側端部13,13の各周方向位置のうち、断面形状が適正な真円形状から大きく逸脱している部分に対しては大きな押圧力(矯正力)を作用させる一方、真円形状に近い部分には押圧力を小さく、あるいは0にすることを挙げることができる。
また、管体10の両側端部13,13の断面形状を実際に検出し、検出された具体的な断面形状に応じて管体10に付与する押圧力(矯正力)を変動させるようにしてもよい。このようにすれば、確実にその管体10の両側端部13,13に適した矯正を行うことができる。
この管体10の両側端部13,13の断面形状の検出は、矯正に先だって行っても、矯正しながら行ってもよい。管体10の両側端部13,13を矯正しながらその断面形状を検出するようにすれば、付与している押圧力(矯正力)が断面形状の矯正に適正な大きさであるかどうかを確実に得ることができる。
管体10の両側端部13,13の断面形状を検出する手段としては、管体10の外周面の半径方向の変位量を検出する変位検出器を兼用することができる。
この場合、図19に示すように、外周面551の幅方向中央に隙間553を形成する小径部552を形成した外側矯正ローラ55を用い、この外側矯正ローラ55の隙間553に変位検出器53のレーザ光を通すようにすれば、内側矯正ローラ52と外側矯正ローラと55とによって矯正されている断面の断面形状を検出することができ、好ましい。
(2)上記実施形態では、管体10の両側それぞれに、内側矯正ローラを1つと外側矯正ローラを2つとを配置したが、矯正ローラの配置はこれに限定されるものではなく、以下に例示するように、種々の配置を採用することができる。
(2−1)図20に示すように、上記実施形態と同様の1つの内側矯正ローラ911と、管体10の下側に位置する2つの外側矯正ローラ912,913に加えて、管体10の上側に位置する外側矯正ローラ914を配置してもよい。このようにすると、管体10は外側矯正ローラ912,913,914によって直径方向に挟み込まれる形態となるため、楕円形に膨らんだ断面形状等を効果的に矯正することができる。
(2−2)図21に示すように、矯正ローラをすべて内側矯正ローラ920…としてもよい。また、図22に示すように、矯正ローラをすべて外側矯正ローラ930…としてもよい。
(2−3)図23に示すように、内側矯正ローラ941と外側矯正ローラ942とを管体10の周方向について同位置に配置して、管体10を内外から挟み込んで拘束しておき、これと周方向位置が異なる矯正ローラ943によって矯正を行うようにしてもよい。
(2−4)図24に示すように、管体10の周方向位置が同じ内側矯正ローラ951と外側矯正ローラ952の組を複数組(図17では2組)配置して、管体10の複数の周方向位置を内外から挟み込んで拘束するようにしてもよい。このようにすると、管体の形状が適正な曲率よりも大きい部分も小さい部分も矯正することができる。
(2−5)図25に示すように、多数の矯正ローラ96…(図25では8つ)を管体10の外周面または内周面に接触させて矯正するようにしてもよい。矯正ローラを管体10の外側または内側で4つ以上配置すると、3方向に突出するいわゆるおむすび型の断面に対しても適切に矯正を行うことができる。
(3)管体10の両側端部13,13を矯正することによって生じる変形の大きさが、弾性変形の範囲に留まるようにしてもよい。このようにすると、形状測定によって管体の形状が変化しないことによる信頼性を得られる。
(4)上記実施形態では、矯正ローラを管体の使用時における支持予定位置に接触させたが、矯正ローラの位置は支持予定位置に近い管体の両側端部であればよい。
(5)上記実施形態においては、管体10の軸方向を略水平方向にして形状測定を行ったが、管体10の軸方向を略水平方向に立てて形状測定を行うようにしてもよい。このようにすると、管体10が自重でたわむことが軽減することができる。
(6)上記実施形態においては、変位量の検出位置を複数設けたが、少なくとも1つあればよい。
(7)上記実施形態においては、形状測定対象である管体10として感光ドラム用の基体を挙げたが、これに限らず、複写機等に用いられる搬送ローラ、現像ローラ、転写ローラでも好適に適用できる。その他、管体であれば本発明の測定対象となりうる。
(8)上記実施形態においては、変位検出器として、管体10の外周面に接触しない光透過型の検出器(透過式の光学式センサ)を例示したが、管体10の外周面12の半径方向の変位量が得られればこれらに限定するものではない。変位検出器としては、たとえば、管体10の外周面に接触する接触型検出器、非接触で検出できる反射型の光学式センサ、非接触で検出でき、材料を選ばず汎用的な画像処理用のCCDカメラやラインカメラ、非接触で検出でき、高精度、高速、環境に強く、かつ安価なうず電流式の変位センサ、非接触で検出でき、高精度な静電容量式の変位センサ、非接触で検出できるエアー(差圧)式の変位センサ、あるいは、非接触で検出でき、長距離計測が可能な超音波式変位センサ等、種々の測定原理に基づく検出器を採用することができる。
(9)上記実施形態では、外側矯正ローラ54…を回転駆動することにより、管体10を回転させたが、測定作業者が手で管体10をつかんで回転させても、図示しない駆動ローラ等を管体10に直接接触させて回転させても、あるいは他の任意の方法で回転させてもよい。
(10)上記実施形態では、管体10を回転させながら連続的にその外周面の変位を検出するようにしたが、断続的に管体10の回転を停止し、停止状態の管体10の外周面の変位を検出するようにしてもよい。
(11)上記実施形態では、内側矯正ローラ52,52の高さ位置を固定して、外側矯正ローラ54…を昇降させたが、内側矯正ローラ52,52側を下降させてもよい。
本発明の一実施形態にかかる管体の形状測定方法を説明するための概念図である。 同側面断面図である。 形状測定対象となる管体の一例を示す斜視図である。 両端部が扁平に潰れるように変形した管体の説明図である。 (a)は、全長にわたって断面が扁平な扁平管の説明図である。(b)は、同扁平管の使用時の状態を示す説明図である。 本発明の一実施形態にかかる管体の形状測定装置の一例を示す全体斜視概念図である。 同装置における管体の支持構造の拡大斜視図である。 同装置の要部の正面断面説明図である。 同装置の要部の側面断面図である。 種々の変位量を有する複数の管体に対してそれぞれ10回の形状測定を行った場合の各回の測定結果のバラツキ(測定誤差)を示すグラフである。 本発明の一実施形態にかかる検査装置の構成を示す機能ブロック図である。 本発明の一実施形態にかかる管体の製造システムの構成を示す機能ブロック図である。 押出工程を行う押出機の概略平面図である。 押出機本体が備える押出ダイスの一例における断面図である。 は、この引抜き工程を行う引抜き機の一例を示す断面である。 口付け部切除工程を行う切断機の一例を示す断面図である。 曲がり矯正工程を行うロール矯正機の一例を示す概念図である。 超音波洗浄機の一例を示す概念図である。 凹みを有する外側矯正ローラを適用した場合の説明図である。 矯正ローラの配置の異なる第1の変形例である。 矯正ローラの配置の異なる第2の変形例である。 矯正ローラの配置の異なる第3の変形例である。 矯正ローラの配置の異なる第4の変形例である。 矯正ローラの配置の異なる第5の変形例である。 矯正ローラの配置の異なる第6の変形例である。 従来の管体の形状測定方法の原理を示す説明図である。 従来の管体の形状測定方法の原理を示す説明図である。
符号の説明
10 管体(ワーク)
11 内周面
12 外周面
13 端面
20,52 内側矯正ローラ
30,53 変位検出器
40,54 外側矯正ローラ
5 管体の形状測定装置
6 検査装置
7 製造システム

Claims (40)

  1. 管体の両側端部にそれぞれ複数の矯正ローラを接触させることにより前記管体の両側端部の断面形状を一時的に矯正し、
    両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
    この回転に伴う前記管体の外周面の半径方向の変位量を検出し、この変位量から管体の外周面のフレ量を算出することを特徴とする管体の形状測定方法。
  2. 前記管体の両側端部にそれぞれ3つ以上の前記矯正ローラを接触させることを特徴とする請求項1に記載の形状測定方法。
  3. 前記矯正ローラには、前記管体の内周面に接触する内側矯正ローラと、前記管体の外周面に接触する外側矯正ローラとがそれぞれ1つ以上含まれることを特徴とする請求項2に記載の管体の形状測定方法。
  4. 前記管体を形状測定位置へ搬入および搬出するときには、前記内側矯正ローラは前記管体の軸方向にスライド動作して前記管体の両側端部から前記管体の外部に退避することを特徴とする請求項3に記載の管体の形状測定方法。
  5. 前記内側矯正ローラと前記外側矯正ローラとは、前記管体の形状測定時の前後には相対的に離間動作することを特徴とする請求項3または4に記載の管体の形状測定方法。
  6. 前記内側矯正ローラと前記外側矯正ローラとは、前記管体の周方向について異なる位置において前記管体の内周面および外周面にそれぞれ接触することを特徴とする請求項3〜5のいずれかに記載の管体の形状測定方法。
  7. 前記外側矯正ローラが前記管体の両側端部にそれぞれ2つ以上あることを特徴とする請求項6に記載の管体の形状測定方法。
  8. 管体の両側端部それぞれの内周面に1つ以上の内側矯正ローラを接触させ、かつ前記管体の両側端部それぞれの外周面に2つ以上の外側矯正ローラを接触させることにより、前記管体の両側端部の断面形状を一時的に矯正し、
    両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
    この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定方法。
  9. 前記管体の両側端部においてそれぞれ2つ以上の前記外側矯正ローラが前記管体の下側に当接することを特徴とする請求項7または8に記載の管体の形状測定方法。
  10. 前記矯正ローラは、前記管体の両側端部の断面形状を一時的に矯正している状態において、それぞれ予め設定された位置に固定することを特徴とする請求項1〜9のいずれかに記載の管体の形状測定方法。
  11. 予め設定された位置に固定され、管体の内周面に接触する1以上の内側矯正ローラと、予め設定された位置に固定され、前記管体の外周面に接触する以上の外側矯正ローラとを含む3つ以上の矯正ローラを前記管体の両側端部にそれぞれ配置して、前記管体の両側端部の断面形状を一時的に矯正し、
    両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、
    この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定方法。
  12. 前記矯正ローラは、それぞれ前記管体の両側端部の断面形状が適正であった場合の前記管体の内周面または外周面にちょうど接する位置に固定されることを特徴とする請求項10または11に記載の管体の形状測定方法。
  13. 前記矯正ローラの少なくとも1つに対し、前記管体に対して押し付ける押圧力を付与することを特徴とする請求項1〜9のいずれかに記載の管体の形状測定方法。
  14. 前記矯正ローラに付与する押圧力を、前記管体の回転位相に応じて変動させることを特徴とする請求項13に記載の管体の形状測定方法。
  15. 両側端部の断面形状が一時的に矯正されている状態で回転する前記管体に対し、その両側端部の断面形状を検出し、
    この両側端部の断面形状に応じて、前記矯正ローラに付与する押圧力を変動させることを特徴とする請求項13または14に記載の管体の形状測定方法。
  16. 前記矯正ローラの少なくとも1つは、前記管体の両側端部の断面形状を一時的に矯正している状態において、予め設定された位置に固定されることを特徴とする請求項13〜15のいずれかに記載の管体の形状測定方法。
  17. 前記管体の両側端部に対する一時的な矯正による変形は、前記管体の弾性変形領域内で行われることを特徴とする請求項1〜16のいずれかに記載の管体の形状測定方法。
  18. 前記管体の両側端部に対する一時的な矯正による変形は、塑性変形領域まで達することを特徴とする請求項1〜16のいずれかに記載の管体の形状測定方法。
  19. 前記矯正ローラのうち少なくとも1つが回転駆動されることを特徴とする請求項1〜18のいずれかに記載の管体の形状測定方法。
  20. 前記矯正ローラの回転駆動は、1つの回転駆動源によって行われることを特徴とする請求項19に記載の管体の形状測定方法。
  21. 前記変位量の検出位置には、前記管体の外側の複数の位置を含むことを特徴とする請求項1〜20のいずれかに記載の管体の形状測定方法。
  22. 前記変位量の検出位置には、前記管体の軸方向位置が異なる複数の位置を含むことを特徴とする請求項21記載の管体の形状測定方法。
  23. 前記変位量の検出位置には、前記管体の軸方向位置が一致し、周方向位置が半周分異なる2つの位置を含むことを特徴とする請求項21または22に記載の管体の形状測定方法。
  24. 前記管体の回転は、1回転以上とすることを特徴とする請求項1〜23のいずれかに記載の管体の形状測定方法。
  25. 前記管体の回転は断続的に停止させ、前記変位量の検出は、前記管体の回転が停止しているときに行うことを特徴とする請求項1〜24のいずれかに記載の管体の形状測定方法。
  26. 前記変位量の検出は、前記管体の外周面に接触する検出器を用いて行うことを特徴とする請求項1〜25のいずれかに記載の管体の形状測定方法。
  27. 前記変位量の検出は、前記管体の外周面と接触しない検出器を用いて行うことを特徴とする請求項1〜25のいずれかに記載の管体の形状測定方法。
  28. 前記変位量の検出は、前記管体に対してその外側から光を照射し、前記管体によって遮られず透過した光を検出することによって行うことを特徴とする請求項27記載の管体の形状測定方法。
  29. 前記管体は感光ドラム用の基体であることを特徴とする請求項1〜28のいずれかに記載の管体の形状測定方法。
  30. 請求項1〜29のいずれかに記載の管体の形状測定方法により管体の形状を測定し、この測定結果に基づいて、前記管体の形状が予め設定された所定の許容範囲内にあるか否かを検査することを特徴とする管体の検査方法。
  31. 管体を製管し、請求項30に記載の管体の検査方法により前記管体の形状を検査し、この検査結果において前記管体の形状が前記所定の許容範囲内にある場合には、その管体を完成品と判定することを特徴とする管体の製造方法。
  32. 前記検査結果を前記管体の製管における製管条件の設定にフィードバックすることを特徴とする請求項31に記載の管体の製造方法。
  33. 請求項31または32に記載の管体の製造方法によって製造されたことを特徴とする管体。
  34. 請求項31または32に記載の管体の製造方法によって製造されたことを特徴とする感光ドラム用基体。
  35. 請求項31または32に記載の管体の製造方法によって製造され、
    前記回転に伴う前記管体の外周面の半径方向の変位量が20μm以下であることを特徴とする管体。
  36. 請求項31または32に記載の管体の製造方法によって製造され、前記回転に伴う前記管体の外周面の半径方向の変位量が20μm以下であることを特徴とする管体の集合。
  37. 管体の両側端部に接触して前記管体の両側端部の断面形状を一時的に矯正する複数の矯正ローラと、
    前記管体の外周面の表面位置を検出する少なくとも1の変位検出器と、を備え、
    前記矯正ローラによって前記管体が両側端部の断面形状が一時的に矯正されている状態で前記管体が回転したとき、前記変位検出器は、この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とする管体の形状測定装置。
  38. 請求項37記載の管体の形状測定装置と、を備えるとともに、
    この形状測定装置によって検出された管体の外周面の変位量データから外周面のフレ量を算出するフレ量算出部と、
    管体の外周面のフレ量の許容範囲が設定され、記憶される許容範囲記憶部と、
    フレ量算出部において算出された管体のフレ量が許容範囲内にあるか否かを検査する比較部と、
    この検査結果を出力する出力部と
    を備えたことを特徴とする管体の検査装置。
  39. 管体を製管する製管装置と、
    前記製管装置によって製造された管体を検査する請求項38記載の管体の検査装置と、
    前記検査装置による検査結果において前記管体の形状が前記所定の許容範囲内にある場合には、その管体を完成品と判定する合否判定手段と、
    を備えたことを特徴とする管体の製造システム。
  40. 前記検査装置による検査結果を前記製管装置にフィードバックするフィードバック手段を備えたことを特徴とする請求項39に記載の管体の製造システム。
JP2004031899A 2003-02-07 2004-02-09 管体の形状測定方法および同装置 Expired - Fee Related JP4382512B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031899A JP4382512B2 (ja) 2003-02-07 2004-02-09 管体の形状測定方法および同装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003031281 2003-02-07
JP2004031899A JP4382512B2 (ja) 2003-02-07 2004-02-09 管体の形状測定方法および同装置

Publications (2)

Publication Number Publication Date
JP2004258027A JP2004258027A (ja) 2004-09-16
JP4382512B2 true JP4382512B2 (ja) 2009-12-16

Family

ID=33133780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031899A Expired - Fee Related JP4382512B2 (ja) 2003-02-07 2004-02-09 管体の形状測定方法および同装置

Country Status (1)

Country Link
JP (1) JP4382512B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943704B2 (ja) * 2004-12-28 2012-05-30 昭和電工株式会社 円筒体検査装置および同方法
JP5927008B2 (ja) * 2011-04-08 2016-05-25 新日鉄住金エンジニアリング株式会社 管材矯正装置および管材矯正方法
JP6322510B2 (ja) * 2014-07-23 2018-05-09 新日鉄住金エンジニアリング株式会社 管材矯正方法
KR101829324B1 (ko) * 2017-01-17 2018-02-19 주식회사 현대철강 코일형 철근 가공장치 및 그 작동방법
CN117324434A (zh) * 2023-12-01 2024-01-02 常州市一马机械有限公司 一种自动化钢管内外圆度检测装置及检测方法

Also Published As

Publication number Publication date
JP2004258027A (ja) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4363830B2 (ja) 管体の形状測定方法、同装置、管体の検査方法、同装置、管体の製造方法および同システム
US6954991B2 (en) Method and apparatus for measuring shape of tubular body
JP4077109B2 (ja) ローラの組立装置
US20070100554A1 (en) Measuring method of cylindrical body
EP3339801A1 (en) Self-monitoring manufacturing system
JP2774844B2 (ja) パイプのセンタリング装置
JP4382512B2 (ja) 管体の形状測定方法および同装置
JP4847717B2 (ja) 円筒体の表面検査方法および同装置
JP5738393B2 (ja) 円筒研削盤へのワーク供給方法
EP0081376A2 (en) Crankshaft centring
JP4431422B2 (ja) 管体の形状測定方法および同装置
JP2010071778A (ja) 大径管の外径測定装置
CN111968085A (zh) 一种长管型件的激光视觉综合检测设备及其检测方法
JP4452476B2 (ja) 管体の形状測定方法および同装置
JP4879584B2 (ja) 円筒体の形状測定方法
JP4490749B2 (ja) 管体の形状測定装置および同方法
JP2007010336A (ja) 外観検査方法及びその装置
JP2006266910A (ja) 円筒形状の測定方法及び測定装置
JP4118148B2 (ja) 管体の形状測定方法、管体の検査方法
JP2004325433A (ja) 管体の形状測定装置および同方法
JP4464736B2 (ja) 管体の引抜き加工方法および同システム
JP4933096B2 (ja) 円筒体の形状測定方法
JP2008175828A (ja) 管体の形状測定方法、同装置、管体の検査方法、同装置、管体の製造方法および同システム
JP4391444B2 (ja) 成形システム
CN113739702A (zh) Oa轴芯尺寸量测装置及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151002

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees