JP4379195B2 - Method for producing compound semiconductor single crystal - Google Patents

Method for producing compound semiconductor single crystal Download PDF

Info

Publication number
JP4379195B2
JP4379195B2 JP2004140977A JP2004140977A JP4379195B2 JP 4379195 B2 JP4379195 B2 JP 4379195B2 JP 2004140977 A JP2004140977 A JP 2004140977A JP 2004140977 A JP2004140977 A JP 2004140977A JP 4379195 B2 JP4379195 B2 JP 4379195B2
Authority
JP
Japan
Prior art keywords
container
single crystal
crucible
compound semiconductor
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004140977A
Other languages
Japanese (ja)
Other versions
JP2005320213A (en
Inventor
秀一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004140977A priority Critical patent/JP4379195B2/en
Publication of JP2005320213A publication Critical patent/JP2005320213A/en
Application granted granted Critical
Publication of JP4379195B2 publication Critical patent/JP4379195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は化合物半導体単結晶の製造方法に関し、特にヒ化ガリウム(GaAs)単結晶の製造方法に関する。   The present invention relates to a method for producing a compound semiconductor single crystal, and more particularly to a method for producing a gallium arsenide (GaAs) single crystal.

化合物半導体単結晶の中でもGaAs単結晶は、表示用発光ダイオード(LED)やコンパクトディスクなどの光源用レーザダイオード(LD)などの光デバイスの基板として、また、衛星放送や移動電話に用いられる高周波デバイスなどの電子デバイスの基板として、広く実用化されている。   Among compound semiconductor single crystals, GaAs single crystals are high-frequency devices used as substrates for optical devices such as light-emitting diodes (LEDs) for display and laser diodes (LDs) for light sources such as compact disks, and for satellite broadcasting and mobile phones. Widely used as a substrate for electronic devices such as

このようなGaAs単結晶の従来の製造方法の一例を図面を参照して以下に説明する。なお、本願の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   An example of a conventional method for manufacturing such a GaAs single crystal will be described below with reference to the drawings. In the drawings of the present application, the same reference numerals denote the same or corresponding parts.

まず、図4(A)の模式的断面図に示す坩堝1を用意する。次に、図4(B)の模式的構成図に示すように、この坩堝1を石英アンプルなどの容器5内に設置する。ここで、容器5は真空ポンプなどの減圧装置6と連結されている。続いて、図4(C)の模式的構成図に示すように、坩堝1の下部に種結晶3を設置した後に、坩堝1内にGaAs多結晶からなる原料4を収容する。そして、容器5の上部にキャップ2を設置して容器5内を密閉した後に、減圧装置6を用いて容器5内の圧力を低減させる。   First, the crucible 1 shown in the schematic cross-sectional view of FIG. Next, as shown in the schematic configuration diagram of FIG. 4B, the crucible 1 is installed in a container 5 such as a quartz ampoule. Here, the container 5 is connected to a decompression device 6 such as a vacuum pump. Subsequently, as shown in the schematic configuration diagram of FIG. 4C, after the seed crystal 3 is installed in the lower part of the crucible 1, the raw material 4 made of GaAs polycrystal is accommodated in the crucible 1. And after installing the cap 2 in the upper part of the container 5 and sealing the inside of the container 5, the pressure in the container 5 is reduced using the decompression device 6.

次いで、容器5とキャップ2とを融着した後に、容器5を減圧装置6から切り離し、その切り離された容器5の部分を閉じることによって、図4(D)の模式的断面図に示すように、容器5内に原料4が収容された坩堝1を封入する。   Next, after fusing the container 5 and the cap 2, the container 5 is separated from the decompression device 6, and the portion of the separated container 5 is closed, as shown in the schematic cross-sectional view of FIG. The crucible 1 in which the raw material 4 is accommodated in the container 5 is sealed.

その後、図2の模式的断面図に示す結晶成長装置の下軸7の上方にある支持台8上に容器5を設置する。そして、容器5の外側に設置されているヒータ9によって容器5を加熱して原料4を溶融させる。ここで、この結晶成長装置においては、結晶成長装置の上方から下方にかけて温度が低下するように温度勾配が形成されているため、下軸7を下方に移動させると、溶融している原料4が種結晶3の表面から上方へ次第に固化していき、種結晶3の表面上にGaAs単結晶が成長する。   Then, the container 5 is installed on the support stand 8 above the lower shaft 7 of the crystal growth apparatus shown in the schematic cross-sectional view of FIG. And the container 5 is heated with the heater 9 installed in the outer side of the container 5, and the raw material 4 is fuse | melted. Here, in this crystal growth apparatus, since a temperature gradient is formed so that the temperature decreases from the upper side to the lower side of the crystal growth apparatus, when the lower shaft 7 is moved downward, the molten raw material 4 is The seed crystal 3 gradually solidifies upward from the surface of the seed crystal 3, and a GaAs single crystal grows on the surface of the seed crystal 3.

しかしながら、この従来のGaAs単結晶の製造方法においては、製造されるGaAs単結晶ごとに比抵抗がばらついてしまうという問題があった。これにより、GaAs単結晶を用いた光デバイスおよび電子デバイスの特性にもばらつきが生じてしまうという問題があった。
結晶工学ハンドブック編集委員会編,結晶工学ハンドブック,初版,共立出版,1990年9月25日,p.676−678
However, this conventional method for producing a GaAs single crystal has a problem that the specific resistance varies for each produced GaAs single crystal. As a result, there is a problem that the characteristics of optical devices and electronic devices using GaAs single crystals also vary.
Crystal Engineering Handbook Editorial Committee, Crystal Engineering Handbook, First Edition, Kyoritsu Shuppan, September 25, 1990, p. 676-678

本発明の目的は、化合物半導体単結晶の比抵抗のばらつきを低減させることができる化合物半導体単結晶の製造方法を提供することにある。   The objective of this invention is providing the manufacturing method of the compound semiconductor single crystal which can reduce the dispersion | variation in the specific resistance of a compound semiconductor single crystal.

本発明者らが鋭意検討した結果、坩堝が設置されている容器内の水分量を減少させることによって化合物半導体単結晶の比抵抗のばらつきを低減することができることを見い出し、本発明を完成させるに至った。   As a result of intensive studies by the present inventors, it has been found that variation in the specific resistance of the compound semiconductor single crystal can be reduced by reducing the amount of water in the container in which the crucible is installed, thereby completing the present invention. It came.

本発明は、原料を収容する坩堝が設置された容器内の水分量を容器内の圧力を低減させながら容器を100℃以上500℃以下に加熱することによって減少させる工程と、加熱を停止した後にさらに容器内の圧力を10 -4 Pa以下まで低減させて容器を閉じる工程と、坩堝に収容された原料を溶融した後に固化することによって化合物半導体単結晶を成長させる工程とを含む化合物半導体単結晶の製造方法である。 The present invention includes a step of reducing the amount of water in the container in which the crucible containing the raw material is installed by heating the container to 100 ° C. or more and 500 ° C. or less while reducing the pressure in the container, and after stopping the heating. Further , a compound semiconductor single crystal comprising: a step of reducing the pressure in the container to 10 −4 Pa or less and closing the container; and a step of growing the compound semiconductor single crystal by solidifying after melting the raw material stored in the crucible. It is a manufacturing method.

さらに、本発明の化合物半導体単結晶の製造方法においては、化合物半導体単結晶がヒ化ガリウム単結晶であることが好ましい。   Furthermore, in the method for producing a compound semiconductor single crystal of the present invention, the compound semiconductor single crystal is preferably a gallium arsenide single crystal.

本発明によれば、化合物半導体単結晶の比抵抗のばらつきを低減させることができる化合物半導体単結晶の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the compound semiconductor single crystal which can reduce the dispersion | variation in the specific resistance of a compound semiconductor single crystal can be provided.

以下、図面を参照して、本発明の化合物半導体単結晶の製造方法の好ましい一例を説明する。   Hereinafter, a preferred example of the method for producing a compound semiconductor single crystal of the present invention will be described with reference to the drawings.

(容器内の水分量を減少させる工程)
図1(A)に、本発明に用いられる坩堝の好ましい一例の模式的な断面図を示す。この坩堝1はpBN(パイロリティックBN)からなっており、下部が細くなっている形状を有している。ここで、坩堝1がpBNからなる場合には、坩堝1の耐熱性および化学的安定性が優れる傾向にある。また、坩堝1がpBNからなる場合には、坩堝1の内壁の表面上にB23層を形成することによってB23コーティングをすることもできる。
(Process to reduce the amount of water in the container)
FIG. 1A shows a schematic cross-sectional view of a preferred example of a crucible used in the present invention. The crucible 1 is made of pBN (pyrolytic BN) and has a shape in which the lower part is thin. Here, when the crucible 1 is made of pBN, the heat resistance and chemical stability of the crucible 1 tend to be excellent. In addition, when the crucible 1 is made of pBN, B 2 O 3 coating can be performed by forming a B 2 O 3 layer on the surface of the inner wall of the crucible 1.

次に、図1(B)の模式的構成図に示すように、石英アンプルなどの容器5内に坩堝1を設置する。ここで、容器5は、たとえば容器5内の気体を吸引する真空ポンプなどの減圧装置6と連結されており、容器5の外側には容器5を加熱するためのヒータ10が設置されている。   Next, as shown in the schematic configuration diagram of FIG. 1B, the crucible 1 is installed in a container 5 such as a quartz ampoule. Here, the container 5 is connected to a decompression device 6 such as a vacuum pump that sucks the gas in the container 5, for example, and a heater 10 for heating the container 5 is installed outside the container 5.

続いて、図1(C)の模式的構成図に示すように、坩堝1の下部に種結晶3を設置した後に坩堝1内に原料4を収容する。そして、容器5の上部にキャップ2を設置して容器5内を密閉する。ここで、原料4としては、目的とする化合物半導体単結晶を製造することができるものであれば特に限定されず、たとえば目的とする化合物半導体の多結晶などが用いられる。また、原料4にB23が含まれていてもよい。 Subsequently, as shown in the schematic configuration diagram of FIG. 1C, the seed crystal 3 is placed in the lower part of the crucible 1 and then the raw material 4 is accommodated in the crucible 1. And the cap 2 is installed in the upper part of the container 5, and the inside of the container 5 is sealed. Here, the raw material 4 is not particularly limited as long as a target compound semiconductor single crystal can be produced. For example, a target compound semiconductor polycrystal is used. Further, the raw material 4 may contain B 2 O 3 .

そして、減圧装置6により容器5内の圧力を低減させながら、ヒータ10によって容器5内の温度を100℃以上500℃以下、より好ましくは200℃以上300℃以下に加熱する。これにより容器5内に存在する水分が加熱され、水蒸気となった後に減圧装置6に吸引されて、容器5内の水分量が減少する。ここで、容器5内の温度を100℃以上500℃以下、より好ましくは200℃以上300℃以下に加熱した場合には、坩堝1、原料4および容器5の加熱による劣化を抑制しつつ、より効率的に容器5内の水分量を減少させることができる傾向にある。   Then, the temperature in the container 5 is heated to 100 ° C. or more and 500 ° C. or less, more preferably 200 ° C. or more and 300 ° C. or less by the heater 10 while reducing the pressure in the container 5 by the decompression device 6. As a result, the water present in the container 5 is heated to become water vapor, and then sucked into the decompression device 6 to reduce the amount of water in the container 5. Here, when the temperature in the container 5 is heated to 100 ° C. or more and 500 ° C. or less, more preferably 200 ° C. or more and 300 ° C. or less, while suppressing deterioration due to heating of the crucible 1, the raw material 4 and the container 5, There is a tendency that the amount of water in the container 5 can be efficiently reduced.

そして、ヒータ10による容器5の加熱を停止した後には、減圧装置6によって容器5内の圧力をさらに低減させることができる。すなわち、容器5内の水分量を減少させた分だけ従来よりもさらに容器5内の圧力を低減させることができるのである。ここで、容器5の加熱を停止した後の容器5内の圧力は10-4Pa以下であることが好ましい。この場合には、容器5内から水分が十分に除去されていることから化合物半導体単結晶の比抵抗のばらつきをより低減させることができる傾向にある。 After the heating of the container 5 by the heater 10 is stopped, the pressure in the container 5 can be further reduced by the decompression device 6. That is, the pressure in the container 5 can be further reduced as compared with the conventional case by the amount of water content in the container 5 decreased. Here, the pressure in the container 5 after the heating of the container 5 is stopped is preferably 10 −4 Pa or less. In this case, since the moisture has been sufficiently removed from the inside of the container 5, the variation in specific resistance of the compound semiconductor single crystal tends to be further reduced.

次いで、容器5とキャップ2とを融着した後に、容器5を減圧装置6から切り離し、その切り離された容器5の部分を閉じることによって図1(D)の模式的断面図に示すように容器5内に原料4が収容された坩堝1が封入される。ここで、坩堝1は、容器5内の水分量を減少させた分だけ容器5内の圧力が従来と比べて低減された状態で容器5内に封入されていることになる。   Next, after fusing the container 5 and the cap 2, the container 5 is separated from the decompression device 6, and the container 5 is closed as shown in the schematic sectional view of FIG. The crucible 1 in which the raw material 4 is accommodated in 5 is enclosed. Here, the crucible 1 is enclosed in the container 5 in a state in which the pressure in the container 5 is reduced as compared with the conventional case by the amount of water in the container 5 decreased.

なお、上記においては、坩堝1を容器5内に設置した後に坩堝1内に原料4を収容したが、坩堝1内に原料4を収容した後に坩堝1を容器5内に設置してもよく、坩堝1を容器5内に設置して容器5内の水分量を減少させた後に坩堝1内に原料4を収容してもよい。ただし、原料4の質量によって坩堝1が破壊するのを防止し、化合物半導体単結晶の比抵抗のばらつきをより低減させることができる観点からは、上記のように容器5内に坩堝1を設置した後に坩堝1内に原料4を収容することが好ましい。   In the above, the raw material 4 is stored in the crucible 1 after the crucible 1 is installed in the container 5, but the crucible 1 may be installed in the container 5 after the raw material 4 is stored in the crucible 1, After the crucible 1 is installed in the container 5 and the water content in the container 5 is reduced, the raw material 4 may be accommodated in the crucible 1. However, from the viewpoint of preventing the crucible 1 from being broken by the mass of the raw material 4 and reducing the variation in the specific resistance of the compound semiconductor single crystal, the crucible 1 is installed in the container 5 as described above. It is preferable to store the raw material 4 in the crucible 1 later.

(化合物半導体単結晶を成長させる工程)
図1(D)に示す坩堝1が封入された容器5は、たとえば図2に示す結晶成長装置の下軸7の上方にある支持台8上に設置される。そして、容器5の外側に設置されているヒータ9によって容器5を加熱して原料4の温度を上昇させ、原料4を溶融させる。この結晶成長装置においては、上方に設置されているヒータ9から下方に設置されているヒータ9にかけて温度が低下するように温度勾配が形成されている。そのため、下軸7を下方に移動させると、溶融している原料4が種結晶3の表面から上方へ次第に固化していき、種結晶3の表面上に化合物半導体単結晶が成長する。ここで、種結晶3を設置した場合には、種結晶3と同じ結晶方位を持った化合物半導体単結晶を種結晶3上に成長させることができる。
(Step of growing compound semiconductor single crystal)
The container 5 in which the crucible 1 shown in FIG. 1D is enclosed is installed on a support base 8 above the lower shaft 7 of the crystal growth apparatus shown in FIG. 2, for example. And the container 5 is heated with the heater 9 installed in the outer side of the container 5, the temperature of the raw material 4 is raised, and the raw material 4 is fuse | melted. In this crystal growth apparatus, a temperature gradient is formed so that the temperature decreases from the heater 9 installed above to the heater 9 installed below. Therefore, when the lower shaft 7 is moved downward, the molten raw material 4 gradually solidifies upward from the surface of the seed crystal 3, and a compound semiconductor single crystal grows on the surface of the seed crystal 3. Here, when the seed crystal 3 is installed, a compound semiconductor single crystal having the same crystal orientation as the seed crystal 3 can be grown on the seed crystal 3.

その後、成長した化合物半導体単結晶は徐々に冷却される。そして、容器5から坩堝1が取り出され、坩堝1から成長した化合物半導体単結晶が取り出される。   Thereafter, the grown compound semiconductor single crystal is gradually cooled. And the crucible 1 is taken out from the container 5, and the compound semiconductor single crystal grown from the crucible 1 is taken out.

本発明で製造することができる化合物半導体単結晶としてはGaAs単結晶が好適であるが、たとえばリン化ガリウム(GaP)単結晶またはリン化インジウム(InP)単結晶などの化合物半導体単結晶であってもよいことは言うまでもない。   A GaAs single crystal is suitable as the compound semiconductor single crystal that can be produced in the present invention. For example, a compound semiconductor single crystal such as a gallium phosphide (GaP) single crystal or an indium phosphide (InP) single crystal is used. It goes without saying.

(実施例1)
図1(A)に示す坩堝1を、図1(B)に示す容器5としての石英アンプル内に設置した。次に、坩堝1の下部に、図1(C)に示すようにGaAs単結晶からなる種結晶3を設置し、さらに原料4として10kgのGaAs多結晶を収容した。
Example 1
A crucible 1 shown in FIG. 1A was placed in a quartz ampule as a container 5 shown in FIG. Next, as shown in FIG. 1C, a seed crystal 3 made of a GaAs single crystal was placed at the bottom of the crucible 1, and 10 kg of GaAs polycrystal was accommodated as a raw material 4.

次に、容器5と連結している減圧装置6としての真空ポンプを用いて、図3に示すように容器5内の圧力をまず3×10-3Pa程度まで低減させた。次いで、引き続き容器5内の圧力を低減させながら、ヒータ10によって容器5の外側から容器5内の温度を240℃に加熱し、容器5内の水分を水蒸気にして真空ポンプ中に引き込み、容器5内の水分量を減少させた。そして、容器5内の圧力の低減を開始した時点から66分が経過した時点でヒータ10による加熱を停止した。その後も、容器5内の圧力を低減させ続け、容器5内の圧力を3×10-5Pa程度まで低減させた。このとき真空ポンプによる容器5内の圧力の低減を開始した時点から143分が経過していた。 Next, using a vacuum pump as the decompression device 6 connected to the container 5, the pressure in the container 5 was first reduced to about 3 × 10 −3 Pa as shown in FIG. Next, while continuously reducing the pressure in the container 5, the temperature in the container 5 is heated to 240 ° C. from the outside of the container 5 by the heater 10, the moisture in the container 5 is changed to water vapor, and drawn into the vacuum pump. The amount of water in the inside was reduced. And the heating by the heater 10 was stopped when 66 minutes passed from the time of starting the pressure reduction in the container 5. Thereafter, the pressure in the container 5 was continuously reduced, and the pressure in the container 5 was reduced to about 3 × 10 −5 Pa. At this time, 143 minutes had elapsed since the start of the pressure reduction in the container 5 by the vacuum pump.

そして、容器5と減圧装置6との連結を切り離し、切り離された容器5の部分を閉じることによって、図1(D)に示すように容器5内に坩堝1を封入した。   Then, the crucible 1 was enclosed in the container 5 as shown in FIG. 1D by disconnecting the connection between the container 5 and the decompression device 6 and closing the part of the disconnected container 5.

その後、図2に示す結晶成長装置の下軸7の上方にある支持台8上に坩堝1を封入した容器5を設置し、ヒータ9によって容器5を外側から1270℃に加熱して原料4を溶融させた。そして、上方から下方にかけて温度が低下するように温度勾配が形成されている温度領域内において下軸7を下方に移動させることにより、種結晶3上にGaAs単結晶を成長させた。そして、成長が終了した後のGaAs単結晶を冷却して坩堝1から取り出した。   After that, the container 5 in which the crucible 1 is sealed is placed on the support base 8 above the lower shaft 7 of the crystal growth apparatus shown in FIG. Melted. Then, a GaAs single crystal was grown on the seed crystal 3 by moving the lower shaft 7 downward in a temperature region where a temperature gradient was formed so that the temperature decreased from above to below. Then, the GaAs single crystal after completion of the growth was cooled and taken out from the crucible 1.

このような作業を数回繰り返し、製造されたGaAs単結晶の比抵抗を調べたところ、比抵抗の平均値は1.7×108(Ω・cm)であって、比抵抗のばらつきを示す標準偏差は6.3×107であった。 Such a work was repeated several times, and the resistivity of the manufactured GaAs single crystal was examined. The average value of the resistivity was 1.7 × 10 8 (Ω · cm), indicating variations in the resistivity. The standard deviation was 6.3 × 10 7 .

(比較例1)
容器5を加熱して容器5内の水分量を減少させなかったこと以外は実施例1と同様にしてGaAs単結晶の製造を行なった。
(Comparative Example 1)
A GaAs single crystal was produced in the same manner as in Example 1 except that the container 5 was not heated to reduce the water content in the container 5.

ここで、図3に示すように、比較例1においては、容器5内の圧力の低減を開始した時点から60分を経過する時点までは容器5内の圧力が指数関数的に低減した。しかし、その後は、容器5内の圧力はほとんど低減せず、容器5内の圧力の低減を開始した時点から180分を経過する時点まで圧力を低減させたが、容器5内の圧力を3×10-4Pa程度までしか低減させることができなかった。その後は実施例1と同様にして、種結晶3上にGaAs結晶を成長させた。 Here, as shown in FIG. 3, in Comparative Example 1, the pressure in the container 5 decreased exponentially from the time when the pressure in the container 5 started to decrease until 60 minutes passed. However, after that, the pressure in the container 5 hardly decreased, and the pressure was reduced from the time when the pressure in the container 5 started to decrease until 180 minutes passed. It could only be reduced to about 10 −4 Pa. Thereafter, a GaAs crystal was grown on the seed crystal 3 in the same manner as in Example 1.

このような作業を数回繰り返し、製造されたGaAs単結晶の比抵抗を調べたところ、比抵抗の平均値は1.6×108(Ω・cm)であって、比抵抗のばらつきを示す標準偏差は9.3×107であった。 Such a work was repeated several times, and the specific resistance of the manufactured GaAs single crystal was examined. As a result, the average value of the specific resistance was 1.6 × 10 8 (Ω · cm), indicating variations in specific resistance. The standard deviation was 9.3 × 10 7 .

上記の結果に示すように、実施例1のGaAs単結晶の比抵抗の標準偏差は比較例1と比べて小さく、実施例1のGaAs単結晶の比抵抗のばらつきが低減していることが確認された。これは、容器5内の圧力を低減させながら、ヒータ10によって容器5の外側から容器5内の温度を加熱し、容器5内の水分量を減少させたことによるものであると考えられる。   As shown in the above results, the standard deviation of the specific resistance of the GaAs single crystal of Example 1 is smaller than that of Comparative Example 1, and it is confirmed that the variation in specific resistance of the GaAs single crystal of Example 1 is reduced. It was. This is considered to be because the temperature in the container 5 was heated from the outside of the container 5 by the heater 10 while the pressure in the container 5 was reduced, and the water content in the container 5 was reduced.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は化合物半導体単結晶の製造、特にGaAs単結晶の製造に好適に利用される。   The present invention is suitably used for the production of compound semiconductor single crystals, particularly for the production of GaAs single crystals.

(A)は本発明に用いられる坩堝の好ましい一例の模式的な断面図であり、(B)は本発明に用いられる容器と減圧装置と坩堝の好ましい一例の模式的な構成図であり、(C)は(B)に示す坩堝内に種結晶および原料を収容した後の容器と減圧装置と坩堝の好ましい一例の模式的な構成図であり、(D)は容器内に封入された坩堝の好ましい一例の模式的な断面図である。(A) is a schematic cross-sectional view of a preferable example of a crucible used in the present invention, (B) is a schematic configuration diagram of a preferable example of a container, a decompression device and a crucible used in the present invention. (C) is a schematic configuration diagram of a preferable example of a container, a decompression device, and a crucible after the seed crystal and the raw material are stored in the crucible shown in (B), and (D) is a schematic view of the crucible enclosed in the container. It is typical sectional drawing of a preferable example. 本発明に用いられる結晶成長装置の一部の好ましい一例の模式的な断面図である。It is typical sectional drawing of a part of preferable example of the crystal growth apparatus used for this invention. 実施例と比較例における容器内の圧力の変化と経過時間との関係を示した図である。It is the figure which showed the relationship between the change of the pressure in the container in an Example and a comparative example, and elapsed time. (A)は従来のGaAs単結晶の製造方法において用いられる坩堝の一例の模式的な断面図であり、(B)は従来のGaAs単結晶の製造方法に用いられる容器と減圧装置と坩堝の一例の模式的な構成図であり、(C)は(B)に示す坩堝内に種結晶および原料を収容した後の容器と減圧装置と坩堝の好ましい一例の模式的な構成図であり、(D)は容器内に封入された坩堝の好ましい一例の模式的な断面図である。(A) is typical sectional drawing of an example of the crucible used in the manufacturing method of the conventional GaAs single crystal, (B) is an example of the container, decompression device, and crucible used for the manufacturing method of the conventional GaAs single crystal. (C) is a schematic configuration diagram of a preferable example of a container, a decompression device, and a crucible after containing a seed crystal and a raw material in the crucible shown in (B), (D ) Is a schematic cross-sectional view of a preferred example of a crucible enclosed in a container.

符号の説明Explanation of symbols

1 坩堝、2 キャップ、3 種結晶、4 原料、5 容器、6 減圧装置、7 下軸、8 支持台、9,10 ヒータ。   1 crucible, 2 cap, 3 seed crystal, 4 raw material, 5 container, 6 decompression device, 7 lower shaft, 8 support base, 9,10 heater.

Claims (2)

原料を収容する坩堝が設置された容器内の水分量を前記容器内の圧力を低減させながら前記容器を100℃以上500℃以下に加熱することによって減少させる工程と、前記加熱を停止した後にさらに前記容器内の圧力を10 -4 Pa以下まで低減させて前記容器を閉じる工程と、前記坩堝に収容された前記原料を溶融した後に固化することによって化合物半導体単結晶を成長させる工程と、を含むことを特徴とする、化合物半導体単結晶の製造方法。 A step of reducing the amount of water in a container provided with a crucible containing raw materials by heating the container to 100 ° C. or more and 500 ° C. or less while reducing the pressure in the container; and after the heating is stopped, Reducing the pressure in the vessel to 10 −4 Pa or less and closing the vessel; and growing the compound semiconductor single crystal by solidifying after melting the raw material stored in the crucible. A method for producing a compound semiconductor single crystal. 前記化合物半導体単結晶がヒ化ガリウム単結晶であることを特徴とする、請求項1に記載の化合物半導体単結晶の製造方法。 The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor single crystal is a gallium arsenide single crystal.
JP2004140977A 2004-05-11 2004-05-11 Method for producing compound semiconductor single crystal Expired - Lifetime JP4379195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004140977A JP4379195B2 (en) 2004-05-11 2004-05-11 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004140977A JP4379195B2 (en) 2004-05-11 2004-05-11 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2005320213A JP2005320213A (en) 2005-11-17
JP4379195B2 true JP4379195B2 (en) 2009-12-09

Family

ID=35467751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004140977A Expired - Lifetime JP4379195B2 (en) 2004-05-11 2004-05-11 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP4379195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524605B1 (en) * 2020-12-29 2023-05-15 Fametec Gmbh Method of making a single crystal

Also Published As

Publication number Publication date
JP2005320213A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP6813779B2 (en) Single crystal manufacturing equipment and single crystal manufacturing method
EP1574602B1 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP4379195B2 (en) Method for producing compound semiconductor single crystal
JPH04214089A (en) Method and apparatus for preparation of product
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2010064936A (en) Method for producing semiconductor crystal
JP4926633B2 (en) Single crystal pulling method
JPH10218699A (en) Growth of compound semiconductor single crystal
TWI257963B (en) Method for producing compound semiconductor single crystal
JP2017132655A (en) MANUFACTURING METHOD OF Mg2Si1-xSnx CRYSTAL AND MANUFACTURING APPARATUS
JP2021080141A (en) Manufacturing method and manufacturing apparatus of gallium oxide single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JP3698109B2 (en) II-VI compound semiconductor crystal growth method
US20030070612A1 (en) Vented susceptor
KR102060188B1 (en) Manufacturing apparatus for silicon carbide single crystal and manufacturing method of silicon carbide single crystal
JP3567662B2 (en) Single crystal growth method and apparatus
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP2011026176A (en) Method for production of groups iii-v compound crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4379195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250