JP4378909B2 - Biological cell culture control method, culture apparatus control apparatus, and culture apparatus - Google Patents
Biological cell culture control method, culture apparatus control apparatus, and culture apparatus Download PDFInfo
- Publication number
- JP4378909B2 JP4378909B2 JP2002042510A JP2002042510A JP4378909B2 JP 4378909 B2 JP4378909 B2 JP 4378909B2 JP 2002042510 A JP2002042510 A JP 2002042510A JP 2002042510 A JP2002042510 A JP 2002042510A JP 4378909 B2 JP4378909 B2 JP 4378909B2
- Authority
- JP
- Japan
- Prior art keywords
- culture
- value
- control
- evaluation factor
- target value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Computer Hardware Design (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、生体細胞の培養制御方法及び培養装置の制御装置並びに培養装置に関する。
【0002】
【従来の技術】
生体の細胞を培養する場合においては、培養環境、すなわち培養槽内を培養に最適な条件に維持することが求められる。このため、溶存酸素濃度,pH,温度,撹拌速度、等を至適条件に維持することが行われている。
【0003】
溶存酸素濃度を制御する方法として、特公昭60−18390号公報(特許第1552563号)がある。これは溶存酸素濃度を測定するセンサーを培養槽に設置して、その指示値に合わせて培養槽の運転条件を制御する方法である。
【0004】
また、pHを制御する方法として、特開昭58−81781号公報がある。これは培養槽気相部の炭酸ガス濃度を変化させることにより培養液のpHを調節する方法である。
【0005】
また、撹拌速度を制御する方法として、特開平5−30962号公報がある。これは培養槽内に培養液の粘度を測定するセンサーを設け、その指示値と回転速度から剪断応力を算出し生体の細胞を破壊するに至らない剪断応力の範囲で撹拌速度を調節する方法である。
【0006】
これらの従来の手法は、予め設定した目標値を満足するよう制御するものであり、培養状況に対応して制御するものではなかった。
【0007】
培養状況の異常を判定する方法として、特開平5−240673号公報がある。これは培養槽に設けた検出手段の指示値の標準値に対する相対偏位量を算出し、ファジー推論演算によって培養の正常度・異常度を計算して判定する方法である。
【0008】
このような従来の手法では、予め入力した正常な培養状態での標準値をもとに培養の異常の有無を判定するものであり、刻々と変化する培養状況に的確に対応して判断を行うものではない。
【0009】
【発明が解決しようとする課題】
培養状況は刻々と変化し、培養初期の生体細胞の濃度が低い状況では良好に制御されていたものが、培養によって生体細胞の濃度が高まることによって目標とする培養環境を維持できない状況の発生もありうる。通常の培養装置では計測手段を多数設置することはまれであり、培養槽内に不適切な培養環境が存在していたとしてもこれを検出することができない。また、培養の進行に伴って制御目標値の変更が必須な培養もある。
【0010】
本発明の目的は、生体細胞の培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行い、必要に応じて目標値の変更を適切に実施することができる生体細胞の培養制御方法及び培養装置の制御装置並びに培養装置を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、培養装置により生体細胞を培養する生体細胞の培養制御で、前記培養装置の運転状態を計測した計測値が予め設定された目標値に一致するよう制御を行い、前記計測値と前記培養装置から採取した培養液試料を分析して得た分析値とに基づき該目標値を変更することを特徴とする。
【0012】
【発明の実施の形態】
本発明の実施の形態を図面を用いて以下詳細に説明する。図1は、生体の細胞を培養する培養装置の制御方法を示すブロック図である。
【0013】
本発明の実施の形態による制御方法は、培養装置により生体細胞を培養する生体細胞の培養制御で、前記培養装置の運転状態を計測した計測値が予め設定された目標値に一致するよう制御を行い、前記計測値と前記培養装置から採取した培養液試料を分析して得た分析値とに基づき該目標値を変更するものである。
【0014】
個別制御手段22は、予め設定された目標値と培養槽に設けた計測手段6より得られる計測値を比較して動作信号を操作手段28に伝達して操作量を変更することにより、制御目標値にそれぞれの計測値が収束するよう自律的に制御動作を実行する第1のステップの制御を行う。
【0015】
個別制御手段22としては特に限定するものではなく、pH,溶存酸素濃度および温度等を制御量とするものが用いられる。なお、培養する生体の細胞が動物細胞である場合、制御量がpHである個別制御手段22の操作手段は炭酸ガス供給弁およびポンプであり、それぞれ操作量は炭酸ガス供給量およびアルカリ注入量である。制御量が溶存酸素濃度である個別制御手段22の操作手段は酸素供給弁および窒素供給弁であり、それぞれの操作因子は酸素供給量および窒素供給量である。制御量が温度である個別制御手段22の操作手段は加温用ヒーター電流調節器または蒸気供給弁、および冷却水供給弁であり、操作因子はヒーターへの供給電力量または蒸気供給量、および冷却水供給量を操作量とする。個別制御手段22については特に限定するものではなく、比例制御法,PID制御法等の公知のフィードバック制御手法を用いれば良い。なお、それぞれの制御目標値の設定・変更がコンピュータ23によって行えることが好ましい。
【0016】
コンピュータ23は、計測手段6からの計測値と入力手段27から入力される分析値とを用いて前記目標値の妥当性を検証し、記憶手段24に格納された前回の検証過程と結果および過去の培養データと比較し、前記目標値の妥当性を検証して表示手段25に表示するとともに、必要な場合には該目標値を変更し、および必要な場合には警報手段26によって異常警報を出力する第2ステップの制御を行う。コンピュータ23は下記▲1▼〜▲8▼の動作を実行する。
【0017】
▲1▼計測手段6からの計測値と入力手段27から入力される分析値とを用いて演算を行い、培養評価因子の算出と数時間〜数日後の予測値を算出する。
【0018】
▲2▼計測手段6からの計測値と入力手段27から入力される分析値とが現状の培養状況において妥当な数値であるかどうか、および▲1▼の演算結果が前回の予測値の許容範囲内にあるか否か判定する。許容範囲内にあるときは▲4▼に進む。許容範囲外であるときは▲3▼に進む。
【0019】
▲3▼▲1▼の演算結果が記憶手段24に保存されたデータベースの許容範囲内にあるか否か判定する。許容範囲内にあるときは▲4▼に進む。許容範囲外であるときは表示手段25,警報手段26により培養が異常状態にあることを表示し、▲5▼に進む。
【0020】
▲4▼現状の培養状況とデータベースとを比較し、制御目標値の変更が必要かどうか判定する。すなわち、組み替えた遺伝子の発現制御が温度やpH,溶存酸素,剪断応力によって行われる場合や発現誘導剤の添加で行われる場合に、現状の培養状況が遺伝子発現操作をすべき時期か否かを判定する。必要がないと判定した場合は▲5▼に進む。変更が必要と判定した場合は▲6▼に進む。
【0021】
▲5▼現状の制御目標値で培養槽内での物質収支を演算し、培養槽内に不適切な環境の存在の有無を判定する。不適切な環境の存在があると判断された場合は▲6▼に進む。ないと判定された場合は▲1▼に戻り、第2のステップの制御を繰り返す。
【0022】
▲6▼変更すべき制御因子とその制御目標値候補値を決定する。
【0023】
▲7▼制御目標値候補値を用いて培養槽内での物質収支を演算し、培養槽内に不適切な環境形成の有無を判定する。不適切な環境が形成されると判断した場合は▲6▼に戻り、新たな制御目標値候補値を決定する。不適切な環境は形成されないと判定した場合は▲8▼に進む。
【0024】
▲8▼個別制御手段の制御目標値の設定を変更する。▲1▼に戻り、終了の指令が出されるまで第2ステップの一連の制御動作を繰り返す。なお、安全性の確保の観点からは、目標値を変更するに際しては、予め登録された目標値変更の実施権限を付与された変更認定者の立会いを確認する動作と、該変更認定者の目標値変更認可を確認する動作を完了した後でなければ制御目標値の変更ができないようにすることが好ましい。
【0025】
培養評価因子としては特に限定するものではないが、比増殖速度,生存率,基質消費速度,生産物生産速度,酸素消費速度,炭酸ガス生成速度、等を用い、必要に応じて他の因子を加える。培養の数時間〜数日後を予測する方法としては特に限定するものではなく、過去の培養データについてpH,温度,酸素消費速度,基質濃度等の影響を多重解析法によって近似した実験式を用いて算出する方法等を用いれば良い。培養槽内での物質収支を演算する手法としては特に限定するものではなく、槽内の流れの乱流エネルギー散逸速度εを用いる乱流モデルを利用して流体力学的手法により解析する方法等を用いることができる。
【0026】
以上のように、本発明の実施の形態による制御方法によれば、刻々と変化する培養状況に対応して目標値の変更を適切に実施することができ、かつ培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行うことが可能となり、安全で確実な培養が可能となる。
【0027】
図2は、本発明の実施の形態による制御装置の一実施例の動作を説明するフロー図である。制御対象の培養装置には溶存酸素濃度,pH,温度の計測手段を設置し、それぞれの計測値に基づいて予め定めた制御目標値に収束させるべく各手段毎に個別制御手段22が設けられておりそれぞれ独立した制御操作を実施する。なお、図2に記載した計測手段とは、培養装置に設置した計測手段のいずれか一つを例として示すものであって、計測手段毎に図2のフローが独立的に実行される。また、計測手段としては前記の手段に限定されるものではなく、培養液濁度等の他の手段を加えても良い。
【0028】
培養開始の信号が入力されることにより制御が開始される。制御フローの各ステップの動作を以下に説明する。
【0029】
S11:培養装置に設置した溶存酸素濃度,pH,温度の計測手段により、それぞれの計測値を得る。
【0030】
S12:個別制御手段において、それぞれの計測値が予め設定された制御目標値に一致するかどうか判定する。一致する場合はS11に戻る。一致しない場合はS13に進む。
【0031】
S13:S12において、制御目標値に一致していないと判断された場合には、制御目標値に収束するよう、それぞれの個別制御手段において操作手段に対して動作信号を伝達し、操作量を変更する。それぞれの個別制御手段における制御手法としては特に限定するものではなく、ON/OFF制御法,比例制御法,
PID制御法等の公知の手法を用いることができる。変更後、S11に戻る。なお、各制御手段での操作量としては、下記のものが用いられる。
【0032】
pH:通気ガス中の炭酸ガス供給量の増減、および酸性溶液またはアルカリ性溶液の注入量。
【0033】
溶存酸素濃度:通気ガス中の酸素供給量の増減,培養液撹拌速度の増減,培養槽圧力の増減。
【0034】
温度:ジャケット供給水温度の増減,冷却水供給速度の増減,加熱用電気ヒーター供給電力量の増減または加熱用蒸気供給量の増減。
【0035】
動作S11〜S13は、終了命令が発せられるまで反復して実行される。反復の周期は培養する生体細胞の特性、および培養装置の動特性をもとに適宜決定されるが、概ね1秒〜10分の範囲で実施される。
【0036】
S21:培養装置より生体細胞の培養液を無菌的に採取する。採取の手法は特に限定するものではなく、作業者が手作業で採取しても自動採取装置を用いても良い。
【0037】
S22:S21で採取した培養液試料について必要な分析を行う。分析項目としては細胞濃度,細胞生存率,基質物質であるグルコースおよびグルタミンの濃度,代謝物質である乳酸,アンモニア,乳酸脱水素酵素および目的生産物の濃度、のいずれか1つ以上を実施するのが好ましいが、特にこれらに限定するものではない。
【0038】
S23:S22で得た分析値をコンピュータに入力する。
【0039】
S24:S21の動作を実施する時点で、S11の計測データをコンピュータに取込む。
【0040】
S25:S24で取込んだ計測データおよびS23で入力した分析データをもとに演算を行い、培養評価因子の算出と数時間〜数日後の予測値を算出する。
【0041】
S26:S25での解析結果をもとに、培養が正常に行われているか検証を実施する。すなわち、計測値と分析値とが現状の培養状況において妥当な数値であるかどうか、およびS25の演算結果が前回の予測値の許容範囲内にあるか否か判定する。許容範囲内にあるときはS29に進む。許容範囲外であるときはS27に進む。
【0042】
S27:S25の演算結果が過去の培養データで構成されたデータベースでの許容範囲にあるかどうかを判定する。図3は総細胞濃度と生細胞濃度についてのS25での演算結果と過去の培養データの関係を表す表示画面の一例を示す。上限値43および下限値44とで挟まれた領域が許容範囲である。本表示例では培養経過点41、および予測値42ともに許容範囲内にあることから、培養は良好に行われていると判断される。なお、許容範囲は正常に行われたと判断された過去の培養データをもとに算出する。本実施例ではデータベースの80%が含まれる領域として決定した。許容範囲内にあるときはS29に進む。許容範囲外であるときはS28に進む。
【0043】
S28:現状の培養状況が異常であることを告知する異常警報を表示する。
S29に進む。
【0044】
S29:現状の培養状況とデータベースとを比較し、制御目標値の変更が必要かどうか判定する。必要がないと判定した場合はS30に進む。変更が必要と判定した場合はS31に進む。
【0045】
S30:現状の制御目標値で培養槽内での物質収支を演算し、培養槽内に不適切な環境の存在の有無を判定する。不適切な環境の存在があると判断された場合はS31に進む。ないと判定された場合はS21に戻り、第2ステップの制御を繰り返す。
【0046】
S31:変更すべき制御因子とその制御目標値候補値を決定する。
【0047】
S32:制御目標値候補値を用いて培養槽内での物質収支を演算し、培養槽内に不適切な環境形成の有無を判定する。不適切な環境が形成されると判断した場合はS31に戻り、新たな制御目標値候補値を決定する。不適切な環境は形成されないと判定した場合はS35に進む。
【0048】
S35:個別制御手段の制御目標値を上記目標値候補値に変更する。S21に戻り、終了の指令が出されるまで第2ステップの一連の制御動作を繰り返す。
【0049】
本実施の形態の制御装置によれば、刻々と変化する培養状況に対応して目標値の変更を適切に実施することができ、かつ培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行うことが可能となり、安全で確実な培養を実施できる。
【0050】
図4は、本発明の実施の形態による制御装置の他の実施例の動作を説明するフロー図である。図5は、本発明の実施の形態による動物細胞を培養するための培養装置の1例を示す。
【0051】
本培養装置は、培養槽1および制御装置21とで構成される。また、図1中には図示していないが、培養設備には不可欠である、空気,酸素,窒素および炭酸ガス等のガス供給設備,温水冷水供給設備,蒸気供給設備および給排水設備を具備している。
【0052】
また、計測手段6,7,8および9、並びに個別制御手段22については、実装置では検出項目毎または制御項目毎に1つの検出手段が用いているが、図1中には簡略化の為それぞれ1つのみ記載した。
【0053】
培養槽1は断面で表わしている。培養槽1内に張り込まれた培養液2は、駆動用モーター3により駆動される攪拌機4で撹拌され、均一に混合される。培養に必要な酸素は、酸素含有ガスを槽底部に配置されたスパージャー5から液中に供給する液中通気法と槽上部気相部に通気する上面通気法の二つの方法により供給される。
【0054】
培養槽1には、計測手段6,供給ガスを計測する計測手段7および8,計測手段9を具備している。培養液2の性状を計測する計測手段6,排気ガスを計測する計測手段9および駆動用モーター3よりpH,溶存酸素濃度,温度,撹拌速度,培養液濁度,排ガス中酸素濃度および排ガス中炭酸ガス濃度等の計測値15を得る。計測値15は後述するコンピュータ23に伝送される。また、pH,溶存酸素濃度および温度の計測値については個別制御手段22にも直接伝送される。計測手段7および8は、供給ガスおよび中和用アルカリ液の供給量を計測しかつ供給量調節する機能を有しており、総通気,空気,酸素,窒素,炭酸ガスの各供給量およびアルカリ供給量等の計測値17を得る。各計測データ値は後述するコンピュータ23に伝送される。
【0055】
培養槽1には、培養液2の一部を採取する試料採取ライン10を設けてあり、培養中に無菌的に培養液の一部を分析用の試料11として採取することができる。試料11は各種の分析装置12に供され、細胞濃度,細胞生存率,グルコース濃度,乳酸濃度,アンモニア濃度,グルタミン濃度,乳酸脱水素酵素活性濃度および目的生産物濃度等の分析値16を得る。分析値16は入力手段27を用いてコンピュータ23に入力される。
【0056】
制御装置21は、図1に示す本発明の実施の形態による制御方法を実施するための機能を有するものであり、個別制御手段22,コンピュータ23,記憶手段24,表示手段25および警報手段26とを具備する。
【0057】
本制御装置21は計測値15を用いて予め設定された目標値を目標として培養制御を行う第一の制御手段と、計測値15,計測値17および分析値16とを用いて前記目標値の妥当性を検証し、該検証過程と結果、前記データベースに格納された前回の検証過程と結果および過去の培養データと比較し、前記目標値の妥当性を検証して必要な場合には該目標値を変更し、および必要な場合には異常警報を出力する第二の制御手段を備えている。そしてこの第一及び第二の制御手段である2段階の制御を行う。
【0058】
個別制御手段22は前記第1ステップの制御を実行する第一の制御手段であり、pH,溶存酸素濃度および温度を制御量とする3基が設けられている。それぞれの個別制御手段は、それぞれ直接伝送されるpH,溶存酸素濃度および温度の計測値が、あらかじめ設定された制御目標値にそれぞれの計測値が収束するよう操作手段28に動作信号を伝達し、自律的に制御動作を実行する。なお、制御量がpHである個別制御手段22の操作手段は炭酸ガス供給弁およびポンプであり、それぞれ操作量は炭酸ガス供給量およびアルカリ注入量である。
【0059】
制御量が溶存酸素濃度である個別制御手段22の操作手段は酸素供給弁および窒素供給弁であり、それぞれの操作因子は酸素供給量および窒素供給量である。制御量が温度である個別制御手段22の操作手段は加温用ヒーター電流調節器または蒸気供給弁、および冷却水供給弁であり、操作因子はヒーターへの供給電力量または蒸気供給量、および冷却水供給量を操作量とする。個別制御手段22については特に限定するものではなく、比例制御法,PID制御法等の公知のフィードバック制御手法を用いる。なお、それぞれの制御目標値の設定・変更がコンピュータ23によって行える。
【0060】
コンピュータ23は前記第2ステップの制御を実行する第二の制御手段であり、下記▲1▼〜▲8▼の動作を実行する。
【0061】
▲1▼計測値15,計測値17および分析値16を用いて演算を行い、培養評価因子の算出と数時間〜数日後の予測値を算出する。演算結果をデータベースに格納する。
【0062】
▲2▼計測値15,計測値17および分析値16が現状の培養状況において妥当な数値であるかどうか、および▲1▼の演算結果が前回の予測値の許容範囲内にあるか否か判定する。許容範囲内にあるときは▲4▼に進む。許容範囲外であるときは▲3▼に進む。判定結果をデータベースに格納する。
【0063】
▲3▼▲1▼の演算結果が記憶手段24に保存されたデータベースの許容範囲内にあるか否か判定する。許容範囲内にあるときは▲4▼に進む。許容範囲外であるときは表示手段25,警報手段26により培養が異常状態にあることを表示し、▲5▼に進む。判定結果をデータベースに格納する。
【0064】
▲4▼現状の培養状況とデータベースとを比較し、制御目標値の変更が必要かどうか判定する。必要がないと判定した場合は▲5▼に進む。変更が必要と判定した場合は▲6▼に進む。判定結果をデータベースに格納する。
【0065】
▲5▼現状の制御目標値を用いて培養槽内での物質収支を演算し、溶存酸素濃度,pH,温度,剪断応力、等について不適切な環境が培養槽内に存在するかどうかを判定する。不適切な環境が存在すると判断された場合は▲6▼に進む。ないと判定された場合は▲1▼に戻り、第2ステップの制御を繰り返す。判定結果をデータベースに格納する。
【0066】
▲6▼変更すべき制御因子とその制御目標値候補値を決定する。
【0067】
▲7▼制御目標値候補値を用いて▲5▼と同様な培養槽内での物質収支を演算し、培養槽内に不適切な環境の有無を判定する。不適切な環境が形成されると判断した場合は▲6▼に戻り、新たな制御目標値候補値を決定する。不適切な環境はないと判定した場合は▲8▼に進む。判定結果をデータベースに格納する。
【0068】
▲8▼個別制御手段の制御目標値の設定を変更する。▲1▼に戻り、終了の指令が出されるまで第2ステップの一連の制御動作を繰り返す。なお、目標値を変更するに際しては、予め登録された目標値変更の実施権限を付与された変更認定者の立会いを確認する動作と、該変更認定者の目標値変更認可を確認する動作の完了を必要とする。制御目標値の変更値,立会いの変更認定者名,変更時間の情報をデータベースに格納する。
【0069】
第2ステップの制御は、上記▲1▼での演算に必要な分析値の入力によって開始される。第2ステップの制御の頻度は特に限定するものではないが、培養対象が動物細胞である場合には通常1時間〜24時間の間隔で実行される。また、培養対象が微生物である場合には通常30分〜24時間の間隔で実行される。何れも、培養槽から採取された培養液の分析に要する時間を勘案して適宜決定される。
【0070】
本実施の形態の培養装置によれば、刻々と変化する培養状況に対応して目標値の変更を適切に実施することができ、かつ培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行うことが可能となり、安全で確実な培養を実施できる。
【0071】
つまり、本発明の実施の形態によると、生体細胞の培養を行うことにより、刻々と変化する培養状況に対応して培養槽内の環境を培養に好適な条件に維持することが可能となり、安全で確実な培養を実施できる。また、培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行うことから、培養によって生産される有用物質の安全性の検証が容易となる。さらに、培養における培養槽の計測値,培養液の分析値,検証の結果,目標値の変更時間,承認者等の情報を時系列的培養データベースとして記憶手段に格納しておくことにより、事後に行う製品の安全性にかかわる検証が容易となる。
【0072】
【発明の効果】
本発明によると、生体細胞の培養に適切な培養環境が確実に維持できていることを検証しつつ培養を行い、必要に応じて目標値の変更を適切に実施することができるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の制御方法の一実施例を示すブロック図である。
【図2】本発明の制御装置の一実施例の動作を示すフロー図である。
【図3】本発明の制御装置の一実施例における表示の一例を示す図である。
【図4】本発明の制御装置の他の実施例の動作を示すフロー図である。
【図5】動物細胞を培養対象とする本発明の培養装置の一実施例を示す概要図である。
【符号の説明】
1…培養槽、2…培養液、3…駆動用モーター、4…攪拌機、6,7,8,9…計測手段、21…制御装置、22…個別制御手段、23…コンピュータ、24…記憶手段、25…表示手段、26…警報手段、27…入力手段。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biological cell culture control method, a culture apparatus control apparatus, and a culture apparatus.
[0002]
[Prior art]
In the case of culturing living cells, it is required to maintain the culture environment, that is, the inside of the culture tank, under the optimum conditions for the culture. For this reason, it is performed to maintain the dissolved oxygen concentration, pH, temperature, stirring speed, and the like under optimum conditions.
[0003]
As a method for controlling the dissolved oxygen concentration, there is JP-B-60-18390 (Patent No. 1552563). This is a method in which a sensor for measuring the dissolved oxygen concentration is installed in a culture tank, and the operating conditions of the culture tank are controlled in accordance with the indicated value.
[0004]
JP-A-58-81781 discloses a method for controlling pH. This is a method of adjusting the pH of the culture solution by changing the carbon dioxide concentration in the gas phase part of the culture tank.
[0005]
Japanese Laid-Open Patent Publication No. 5-30962 discloses a method for controlling the stirring speed. This is a method in which a sensor for measuring the viscosity of the culture solution is installed in the culture tank, and the shear rate is calculated from the indicated value and the rotational speed, and the stirring speed is adjusted within the range of shear stress that does not lead to destruction of living cells. is there.
[0006]
These conventional methods are controlled so as to satisfy a preset target value, and are not controlled according to the culture state.
[0007]
Japanese Patent Laid-Open No. 5-240673 discloses a method for determining abnormalities in culture conditions. This is a method of calculating a relative deviation amount with respect to a standard value of an indication value of a detection means provided in a culture tank, and calculating and determining the normality / abnormality of culture by fuzzy inference calculation.
[0008]
In such a conventional method, the presence or absence of culture abnormality is determined based on a standard value in a normal culture state inputted in advance, and a determination is made in response to the constantly changing culture situation. It is not a thing.
[0009]
[Problems to be solved by the invention]
The culture situation changes from moment to moment, and it was well controlled when the concentration of living cells at the initial stage of culture was low, but there was also a situation where the target culture environment could not be maintained due to the increase in the concentration of living cells due to cultivation. It is possible. In a normal culture apparatus, it is rare to install a large number of measuring means, and even if an inappropriate culture environment exists in the culture tank, this cannot be detected. In addition, there is a culture in which the control target value must be changed as the culture progresses.
[0010]
An object of the present invention is to perform a culture while verifying that a culture environment suitable for the culture of biological cells can be reliably maintained, and to appropriately change the target value as necessary. An object of the present invention is to provide a culture control method, a control apparatus for the culture apparatus, and a culture apparatus.
[0011]
[Means for Solving the Problems]
The present invention performs control so that a measurement value obtained by measuring the operating state of the culture apparatus matches a preset target value in the culture cell culture control for culturing a living cell by the culture apparatus, and the measurement value and the The target value is changed based on the analysis value obtained by analyzing the culture solution sample collected from the culture apparatus.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a control method of a culture apparatus for culturing living cells.
[0013]
In the control method according to the embodiment of the present invention, the control is performed so that the measured value obtained by measuring the operating state of the culture apparatus matches the preset target value in the culture cell culture control for culturing the living cell by the culture apparatus. The target value is changed based on the measured value and the analysis value obtained by analyzing the culture fluid sample collected from the culture apparatus.
[0014]
The individual control means 22 compares the target value set in advance with the measurement value obtained from the measurement means 6 provided in the culture tank, transmits an operation signal to the operation means 28, and changes the operation amount. Control of the first step of autonomously executing the control operation is performed so that each measurement value converges to the value.
[0015]
The individual control means 22 is not particularly limited, and an individual control means having pH, dissolved oxygen concentration, temperature and the like as control amounts is used. When the living cells to be cultured are animal cells, the operation means of the individual control means 22 whose control amount is pH is a carbon dioxide supply valve and a pump, and the operation amounts are the carbon dioxide supply amount and the alkali injection amount, respectively. is there. The operation means of the individual control means 22 whose control amount is the dissolved oxygen concentration is an oxygen supply valve and a nitrogen supply valve, and the respective operation factors are the oxygen supply amount and the nitrogen supply amount. The operation means of the individual control means 22 in which the control amount is the temperature is a heater current regulator for heating or a steam supply valve, and a cooling water supply valve, and the operating factors are the amount of electric power or steam supply to the heater, and the cooling The amount of water supply is the operation amount. The individual control means 22 is not particularly limited, and a known feedback control method such as a proportional control method or a PID control method may be used. In addition, it is preferable that each control target value can be set and changed by the
[0016]
The
[0017]
(1) An operation is performed using the measured value from the measuring means 6 and the analysis value input from the input means 27, and the calculation of the culture evaluation factor and the predicted value after several hours to several days are calculated.
[0018]
(2) Whether the measured value from the measuring means 6 and the analytical value input from the input means 27 are appropriate values in the current culture state, and the calculation result of (1) is the allowable range of the previous predicted value It is judged whether it is in. If it is within the allowable range, proceed to (4). If it is outside the allowable range, proceed to (3).
[0019]
(3) It is determined whether the calculation result of (1) is within the allowable range of the database stored in the storage means 24. If it is within the allowable range, proceed to (4). When it is out of the allowable range, the display means 25 and alarm means 26 indicate that the culture is in an abnormal state, and proceed to (5).
[0020]
(4) The current culture state is compared with the database to determine whether it is necessary to change the control target value. In other words, when the expression control of the recombined gene is performed by temperature, pH, dissolved oxygen, shear stress, or by the addition of an expression inducer, whether or not the current culture status is the time when gene expression manipulation should be performed. judge. If it is determined that it is not necessary, proceed to (5). If it is determined that a change is necessary, proceed to (6).
[0021]
(5) The material balance in the culture tank is calculated with the current control target value, and the presence or absence of an inappropriate environment in the culture tank is determined. If it is determined that there is an inappropriate environment, proceed to (6). If it is determined that there is no, return to {circle around (1)} and repeat the control of the second step.
[0022]
(6) The control factor to be changed and its control target value candidate value are determined.
[0023]
(7) The material balance in the culture tank is calculated using the control target value candidate value, and the presence or absence of inappropriate environment formation in the culture tank is determined. If it is determined that an inappropriate environment is formed, the process returns to (6) and a new control target value candidate value is determined. If it is determined that an inappropriate environment is not formed, proceed to (8).
[0024]
(8) Change the setting of the control target value of the individual control means. Returning to {circle around (1)}, the series of control operations in the second step is repeated until an end command is issued. From the viewpoint of ensuring safety, when changing the target value, the operation of confirming the presence of a change authorized person who has been granted the authority to perform the target value change registered in advance, and the target of the change authorized person It is preferable that the control target value can be changed only after the operation for confirming the value change authorization is completed.
[0025]
Although the culture evaluation factor is not particularly limited, the specific growth rate, survival rate, substrate consumption rate, product production rate, oxygen consumption rate, carbon dioxide production rate, etc. are used. Add. The method for predicting several hours to several days after the culture is not particularly limited, and an experimental formula that approximates the influence of pH, temperature, oxygen consumption rate, substrate concentration, etc. on past culture data by a multiple analysis method is used. A calculation method or the like may be used. The method for calculating the mass balance in the culture tank is not particularly limited, and a method of analyzing by a hydrodynamic method using a turbulent flow model using a turbulent energy dissipation rate ε of the flow in the tank is used. Can be used.
[0026]
As described above, according to the control method according to the embodiment of the present invention, it is possible to appropriately change the target value in response to the constantly changing culture state and to ensure a culture environment suitable for culture. Therefore, it is possible to carry out the culture while verifying that it can be maintained in a safe, reliable culture.
[0027]
FIG. 2 is a flowchart for explaining the operation of an example of the control device according to the embodiment of the present invention. The culture apparatus to be controlled is provided with measuring means for dissolved oxygen concentration, pH, and temperature, and individual control means 22 is provided for each means so as to converge to a predetermined control target value based on each measured value. Each control operation is carried out independently. Note that the measurement means described in FIG. 2 shows any one of the measurement means installed in the culture apparatus as an example, and the flow of FIG. 2 is executed independently for each measurement means. The measuring means is not limited to the above means, and other means such as culture turbidity may be added.
[0028]
Control is started by inputting a culture start signal. The operation of each step of the control flow will be described below.
[0029]
S11: Each measured value is obtained by means of measuring the dissolved oxygen concentration, pH, and temperature installed in the culture apparatus.
[0030]
S12: In the individual control means, it is determined whether or not each measured value matches a preset control target value. If they match, the process returns to S11. If they do not match, the process proceeds to S13.
[0031]
S13: When it is determined in S12 that the control target value does not match, the operation signal is transmitted to the operation means in each individual control means so as to converge to the control target value, and the operation amount is changed. To do. The control method for each individual control means is not particularly limited, and is an ON / OFF control method, a proportional control method,
A known method such as a PID control method can be used. After the change, the process returns to S11. In addition, the following are used as the operation amount in each control means.
[0032]
pH: Increase / decrease in the supply amount of carbon dioxide gas in the aeration gas, and the injection amount of acidic solution or alkaline solution.
[0033]
Dissolved oxygen concentration: Increase / decrease in oxygen supply in the aeration gas, increase / decrease in culture solution agitation rate, increase / decrease in culture tank pressure.
[0034]
Temperature: Increase / decrease in jacket supply water temperature, increase / decrease in cooling water supply speed, increase / decrease in heating electric heater supply power amount, or increase / decrease in heating steam supply amount.
[0035]
Operations S11 to S13 are repeatedly executed until an end command is issued. The cycle of repetition is appropriately determined based on the characteristics of the living cells to be cultured and the dynamic characteristics of the culture apparatus, and is generally performed in the range of 1 second to 10 minutes.
[0036]
S21: A culture solution of living cells is aseptically collected from the culture apparatus. The collection method is not particularly limited, and an automatic collection device may be used even if an operator manually collects the sample.
[0037]
S22: Necessary analysis is performed on the culture solution sample collected in S21. Analysis items include cell concentration, cell viability, concentrations of substrate substances glucose and glutamine, and metabolites lactic acid, ammonia, lactate dehydrogenase and target product concentrations. However, it is not particularly limited to these.
[0038]
S23: The analysis value obtained in S22 is input to the computer.
[0039]
S24: When the operation of S21 is performed, the measurement data of S11 is taken into the computer.
[0040]
S25: An operation is performed based on the measurement data captured in S24 and the analysis data input in S23, and a culture evaluation factor is calculated and a predicted value after several hours to several days is calculated.
[0041]
S26: Based on the analysis result in S25, it is verified whether the culture is normally performed. That is, it is determined whether the measured value and the analyzed value are appropriate numerical values in the current culture state, and whether the calculation result of S25 is within the allowable range of the previous predicted value. When it is within the allowable range, the process proceeds to S29. If it is outside the allowable range, the process proceeds to S27.
[0042]
S27: It is determined whether or not the calculation result of S25 is within an allowable range in a database composed of past culture data. FIG. 3 shows an example of a display screen showing the relationship between the calculation result in S25 for the total cell concentration and the living cell concentration and the past culture data. An area between the
[0043]
S28: An abnormal alarm for notifying that the current culture state is abnormal is displayed.
Proceed to S29.
[0044]
S29: The current culture state is compared with the database, and it is determined whether it is necessary to change the control target value. If it is determined that it is not necessary, the process proceeds to S30. If it is determined that a change is necessary, the process proceeds to S31.
[0045]
S30: The mass balance in the culture tank is calculated with the current control target value, and the presence or absence of an inappropriate environment is determined in the culture tank. If it is determined that there is an inappropriate environment, the process proceeds to S31. If it is determined that there is not, the process returns to S21 and the control of the second step is repeated.
[0046]
S31: The control factor to be changed and the control target value candidate value are determined.
[0047]
S32: The material balance in the culture tank is calculated using the control target value candidate value, and the presence or absence of inappropriate environment formation in the culture tank is determined. If it is determined that an inappropriate environment is formed, the process returns to S31, and a new control target value candidate value is determined. If it is determined that an inappropriate environment is not formed, the process proceeds to S35.
[0048]
S35: The control target value of the individual control means is changed to the target value candidate value. Returning to S21, the series of control operations in the second step is repeated until an end command is issued.
[0049]
According to the control device of the present embodiment, it is possible to appropriately change the target value corresponding to the culturing situation that changes every moment, and that the culturing environment suitable for culturing can be reliably maintained. Culture can be performed while verifying, and safe and reliable culture can be performed.
[0050]
FIG. 4 is a flowchart for explaining the operation of another example of the control device according to the embodiment of the present invention. FIG. 5 shows an example of a culture apparatus for culturing animal cells according to an embodiment of the present invention.
[0051]
The main culture apparatus includes a
[0052]
As for the measuring means 6, 7, 8 and 9, and the individual control means 22, one detection means is used for each detection item or for each control item in the actual apparatus, but for simplification in FIG. Only one of each was listed.
[0053]
The
[0054]
The
[0055]
The
[0056]
The
[0057]
The
[0058]
The individual control means 22 is the first control means for executing the control of the first step, and three units having the control amounts of pH, dissolved oxygen concentration and temperature are provided. Each individual control means transmits an operation signal to the operation means 28 so that the measured values of pH, dissolved oxygen concentration, and temperature that are directly transmitted are converged to preset control target values, respectively. Perform control operations autonomously. The operation means of the individual control means 22 whose control amount is pH is a carbon dioxide supply valve and a pump, and the operation amounts are a carbon dioxide supply amount and an alkali injection amount, respectively.
[0059]
The operation means of the individual control means 22 whose control amount is the dissolved oxygen concentration is an oxygen supply valve and a nitrogen supply valve, and the respective operation factors are the oxygen supply amount and the nitrogen supply amount. The operation means of the individual control means 22 in which the control amount is the temperature is a heater current regulator for heating or a steam supply valve, and a cooling water supply valve, and the operating factors are the amount of electric power or steam supply to the heater, and the cooling The amount of water supply is the operation amount. The individual control means 22 is not particularly limited, and a known feedback control method such as a proportional control method or a PID control method is used. Each control target value can be set and changed by the
[0060]
The
[0061]
(1) Calculation is performed using the measured
[0062]
(2) Judgment whether the measured
[0063]
(3) It is determined whether the calculation result of (1) is within the allowable range of the database stored in the storage means 24. If it is within the allowable range, proceed to (4). When it is out of the allowable range, the display means 25 and alarm means 26 indicate that the culture is in an abnormal state, and proceed to (5). Store the judgment result in the database.
[0064]
(4) The current culture state is compared with the database to determine whether it is necessary to change the control target value. If it is determined that it is not necessary, proceed to (5). If it is determined that a change is necessary, proceed to (6). Store the judgment result in the database.
[0065]
(5) Calculate the material balance in the culture tank using the current control target value, and determine whether there is an inappropriate environment in the culture tank for dissolved oxygen concentration, pH, temperature, shear stress, etc. To do. If it is determined that an inappropriate environment exists, proceed to (6). If it is determined that there is no, return to {circle around (1)} and repeat the control of the second step. Store the judgment result in the database.
[0066]
(6) The control factor to be changed and its control target value candidate value are determined.
[0067]
(7) Using the control target value candidate value, the material balance in the culture tank similar to (5) is calculated, and the presence or absence of an inappropriate environment in the culture tank is determined. If it is determined that an inappropriate environment is formed, the process returns to (6) and a new control target value candidate value is determined. If it is determined that there is no inappropriate environment, proceed to (8). Store the judgment result in the database.
[0068]
(8) Change the setting of the control target value of the individual control means. Returning to {circle around (1)}, the series of control operations in the second step is repeated until an end command is issued. When changing the target value, the operation for confirming the presence of the change authorized person who has been granted the authority to perform the target value change registered in advance and the operation for confirming the target value change approval of the change authorized person are completed. Need. Stores the information on the change value of the control target value, the witness change authorized person name, and the change time in the database.
[0069]
The control of the second step is started by inputting the analysis value necessary for the calculation in the above (1). The frequency of the control in the second step is not particularly limited, but when the culture target is an animal cell, it is usually executed at an interval of 1 hour to 24 hours. Moreover, when the culture target is a microorganism, it is usually performed at intervals of 30 minutes to 24 hours. In any case, the time is appropriately determined in consideration of the time required for analyzing the culture solution collected from the culture tank.
[0070]
According to the culture device of the present embodiment, it is possible to appropriately change the target value in response to the constantly changing culture situation, and to ensure that a culture environment suitable for culture can be reliably maintained. Culture can be performed while verifying, and safe and reliable culture can be performed.
[0071]
In other words, according to the embodiment of the present invention, it is possible to maintain the environment in the culture tank under conditions suitable for culture in response to the constantly changing culture conditions by culturing living cells. With this, reliable culture can be performed. In addition, since the culture is performed while verifying that the culture environment suitable for the culture can be reliably maintained, the safety of useful substances produced by the culture can be easily verified. Furthermore, by storing information such as culture tank measurement values, culture solution analysis values, verification results, target value change times, and approver information in the storage means as a time-series culture database, post-event Verification related to the safety of the product to be performed becomes easy.
[0072]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to perform culture while verifying that a culture environment suitable for culture of living cells can be reliably maintained, and it is possible to appropriately change target values as necessary. .
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a control method of the present invention.
FIG. 2 is a flowchart showing the operation of an embodiment of the control device of the present invention.
FIG. 3 is a diagram showing an example of display in an embodiment of the control device of the present invention.
FIG. 4 is a flowchart showing the operation of another embodiment of the control apparatus of the present invention.
FIG. 5 is a schematic view showing an embodiment of the culture apparatus of the present invention for culturing animal cells.
[Explanation of symbols]
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042510A JP4378909B2 (en) | 2002-02-20 | 2002-02-20 | Biological cell culture control method, culture apparatus control apparatus, and culture apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002042510A JP4378909B2 (en) | 2002-02-20 | 2002-02-20 | Biological cell culture control method, culture apparatus control apparatus, and culture apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003235544A JP2003235544A (en) | 2003-08-26 |
JP4378909B2 true JP4378909B2 (en) | 2009-12-09 |
Family
ID=27782571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002042510A Expired - Fee Related JP4378909B2 (en) | 2002-02-20 | 2002-02-20 | Biological cell culture control method, culture apparatus control apparatus, and culture apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4378909B2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3742894B2 (en) * | 2004-01-14 | 2006-02-08 | ダイキン工業株式会社 | Temperature control device |
KR100808345B1 (en) * | 2004-06-03 | 2008-02-27 | 다이킨 고교 가부시키가이샤 | Method and device for controlling temperature |
US7634330B2 (en) | 2004-06-03 | 2009-12-15 | Daikin Industries, Ltd. | Temperature controlling method and temperature controller |
JP4670439B2 (en) * | 2004-06-03 | 2011-04-13 | ダイキン工業株式会社 | Temperature control method and temperature control apparatus |
WO2006071716A2 (en) * | 2004-12-29 | 2006-07-06 | Biogen Idec Ma Inc. | Bioreactor process control system and method |
JP2006288201A (en) * | 2005-04-04 | 2006-10-26 | Asahi Breweries Ltd | Method and apparatus for fed-batch culture of microorganism |
WO2007001002A1 (en) * | 2005-06-29 | 2007-01-04 | Nikon Corporation | Transfer device for culture vessel, culture device, and holder for culture vessel |
JP2007202500A (en) * | 2006-02-03 | 2007-08-16 | Hitachi Ltd | Operation-regulating device of culturing vessel |
JP2007244341A (en) * | 2006-03-20 | 2007-09-27 | Hitachi Ltd | Method and system for culture control of biological cell |
JP6135599B2 (en) | 2014-05-19 | 2017-05-31 | 横河電機株式会社 | Cell culture control system and cell culture control method |
JP6327009B2 (en) * | 2014-06-25 | 2018-05-23 | 大日本印刷株式会社 | Abnormality determination apparatus and program |
CN104062924B (en) * | 2014-07-04 | 2017-11-14 | 珠海格力电器股份有限公司 | Early warning method and system and air conditioner |
JP6113311B2 (en) * | 2016-01-18 | 2017-04-12 | 株式会社日立製作所 | CULTURE CONTROL METHOD, CELL CULTURE DEVICE, AND CELL CHARACTERISTICS EVALUATION DEVICE |
EP3559203B1 (en) * | 2016-12-21 | 2020-12-02 | H. Hoffnabb-La Roche Ag | Growth control of eukaryotic cells |
JP6824050B2 (en) * | 2017-01-25 | 2021-02-03 | 株式会社日立プラントサービス | Cell culture device |
US20200202051A1 (en) * | 2017-06-16 | 2020-06-25 | Ge Healthcare Bio-Sciences Ab | Method for Predicting Outcome of an Modelling of a Process in a Bioreactor |
JP6924653B2 (en) * | 2017-08-30 | 2021-08-25 | 株式会社日立プラントサービス | Mixing device and mixing method |
JP2018117639A (en) * | 2018-04-18 | 2018-08-02 | 大日本印刷株式会社 | Abnormality determination device and program |
JP2020005511A (en) * | 2018-07-03 | 2020-01-16 | 株式会社日立製作所 | Culture method and culture apparatus |
JP7392573B2 (en) * | 2020-05-22 | 2023-12-06 | 横河電機株式会社 | Penetration estimation device and penetration estimation method |
JP2022157460A (en) * | 2021-03-31 | 2022-10-14 | 本田技研工業株式会社 | Culture method and culture apparatus |
JP2024081213A (en) * | 2022-12-06 | 2024-06-18 | 花王株式会社 | Cultivation behavior prediction method |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0644863B2 (en) * | 1987-01-29 | 1994-06-15 | 理化学研究所 | Method for setting up high-density continuous culture of cells |
JP2810140B2 (en) * | 1988-08-26 | 1998-10-15 | 株式会社日立製作所 | Cell culture method and device |
JPH06104057B2 (en) * | 1988-12-12 | 1994-12-21 | 株式会社日立製作所 | Temperature control method for culture device |
JP2933941B2 (en) * | 1989-03-14 | 1999-08-16 | 株式会社日立製作所 | Control method, control device, culture method, and culture device for culture conditions of animal cells |
JPH03160980A (en) * | 1989-11-20 | 1991-07-10 | Sumitomo Heavy Ind Ltd | Apparatus for monitoring contamination of various germ in bioprocess |
JP2622024B2 (en) * | 1990-10-09 | 1997-06-18 | 東洋エンジニアリング株式会社 | Fermenter control method |
JPH04299973A (en) * | 1991-03-27 | 1992-10-23 | Hitachi Ltd | Method for controlling culture device |
JPH05103663A (en) * | 1991-10-15 | 1993-04-27 | Toyobo Co Ltd | Method for controlling culture of animal cell |
JPH0654679A (en) * | 1992-06-12 | 1994-03-01 | Sankyo Co Ltd | Method for culturing and producing microbial cell |
JPH07184634A (en) * | 1993-12-28 | 1995-07-25 | Ajinomoto Co Inc | Culture method for aerobic culture of microorganism and apparatus therefor |
JPH07203945A (en) * | 1994-01-12 | 1995-08-08 | Hitachi Ltd | Apparatus for culturing cell of living body |
JPH07249178A (en) * | 1994-03-08 | 1995-09-26 | Hitachi Ltd | Discount processing system |
JP3865354B2 (en) * | 2000-03-02 | 2007-01-10 | 高木産業株式会社 | Cell or tissue culture method |
-
2002
- 2002-02-20 JP JP2002042510A patent/JP4378909B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003235544A (en) | 2003-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4378909B2 (en) | Biological cell culture control method, culture apparatus control apparatus, and culture apparatus | |
US3926737A (en) | Method and apparatus for control of biochemical processes | |
EP1816188A1 (en) | Operation controller of culture tank | |
US7510864B2 (en) | Decision-making spectral bioreactor | |
EP1851303B1 (en) | Integrated bio-reactor monitor and control system | |
Singh et al. | Model-based computer-aided framework for design of process monitoring and analysis systems | |
US3926738A (en) | Method and apparatus for control of biochemical processes | |
US8615324B2 (en) | Integrated bio-reactor monitor and control system | |
EP3291038B1 (en) | Controlling and monitoring a process to produce a chemical, pharmaceutical or biotechnological product | |
JP6824050B2 (en) | Cell culture device | |
JPS60203180A (en) | Fermentation control apparatus and method | |
EP1728853A1 (en) | Optimization of process variables in oxygen enriched fermentors through real-time process controls | |
EP1705243A1 (en) | Control device for fermenter | |
Williams et al. | On‐line adaptive control of a fed‐batch fermentation of Saccharomyces cerevisiae | |
RU2561461C2 (en) | Method of producing biogas and apparatus therefor | |
CN101748186A (en) | FSVM-based lysine fermentation process key state variable soft measuring method and system | |
CN108681297A (en) | A kind of biological fermentation process control device | |
CN110462018A (en) | Method for controlling biotechnology processes | |
Yang | Scale‐Up of Microbial Fermentation Process | |
JP2010081805A (en) | Method and apparatus for cell culture | |
CN106022532A (en) | Glutamic acid product concentration online estimation method and device, and monitoring system | |
Lattermann et al. | Design and operation of microbioreactor systems for screening and process development | |
JPH03500847A (en) | Methods and devices for regulating growth processes in living organisms | |
Schaepe et al. | Current advances in tools improving bioreactor performance | |
EP2383621A1 (en) | Yeast growth maximization with feedback for optimal control of filled batch fermentation in a biofuel manufacturing facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060419 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20060823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061107 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081205 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090302 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20090402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090623 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090907 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4378909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |