JPH0644863B2 - Method for setting up high-density continuous culture of cells - Google Patents

Method for setting up high-density continuous culture of cells

Info

Publication number
JPH0644863B2
JPH0644863B2 JP62018988A JP1898887A JPH0644863B2 JP H0644863 B2 JPH0644863 B2 JP H0644863B2 JP 62018988 A JP62018988 A JP 62018988A JP 1898887 A JP1898887 A JP 1898887A JP H0644863 B2 JPH0644863 B2 JP H0644863B2
Authority
JP
Japan
Prior art keywords
culture
fresh medium
cell density
rate
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62018988A
Other languages
Japanese (ja)
Other versions
JPS63188384A (en
Inventor
勲 遠藤
輝行 長棟
宏 三沢
経男 寺島
方彦 務台
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Yakult Honsha Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Yakult Honsha Co Ltd
Priority to JP62018988A priority Critical patent/JPH0644863B2/en
Publication of JPS63188384A publication Critical patent/JPS63188384A/en
Publication of JPH0644863B2 publication Critical patent/JPH0644863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/44Means for regulation, monitoring, measurement or control, e.g. flow regulation of volume or liquid level
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種の細胞を高密度連続培養するために、新鮮
培地の供給と培養液の濾過を同時に行いつつ、目標とす
る細胞密度まで細胞密度を増加させる立ち上げ方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention, in order to carry out high-density continuous culture of various cells, simultaneously supplies fresh medium and filters the culture solution, and at the same time, achieves cell density up to a target cell density. A startup method for increasing the density.

〔従来の技術〕[Conventional technology]

培養槽と限外濾過膜あるいは精密濾過膜を組み合わせた
培養装置を用い、細胞を高密度に連続培養する試みは実
験室レベルでは既に試みられている(Biotechnology an
d Bioengineering Vol.28,No.4,p.523〜p.53
3,1986,理研シンポジウム「分離型反応器」予稿
集p.9,1986,および特開昭61−88872)。こ
の種の従来の培養方法は、いずれも目標とする細胞密度
に到達するまで、濾過膜の最大能力で培養液を濾過し、
その濾過量に等しい量の新鮮培地を、液位センサなどの
信号を利用して補給することによって、細胞の高密度連
続培養の立ち上げを計っている。すなわち、培養液の濾
過速度は膜の目詰り、膜面の汚れなどが原因となって時
間の経過とともに減少するため、新鮮培地の供給速度も
時間の経過とともなって減少させる方式の立ち上げ方法
が採用されている。
Attempts to continuously culture cells at high density using a culture device that combines a culture tank with an ultrafiltration membrane or a microfiltration membrane have already been attempted at the laboratory level (Biotechnology an
d Bioengineering Vol.28, No.4, p.523-p.53
3, 1986, RIKEN Symposium "Separate Reactor" Proceedings p. 9, 1986 and JP-A-61-88872). The conventional culture method of this kind is that the culture solution is filtered with the maximum capacity of the filtration membrane until the target cell density is reached.
A high-density continuous culture of cells is set up by replenishing a fresh medium in an amount equal to the filtration amount using a signal from a liquid level sensor or the like. That is, the filtration rate of the culture solution decreases with the passage of time due to clogging of the membrane, fouling of the membrane surface, etc., so the method of starting up the method in which the supply rate of the fresh medium also decreases with the passage of time Has been adopted.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の立ち上げ方法は、培養装置内における細胞の増殖
特性、基質消費特性、代謝産物生産特性を無視し、濾過
膜の最大濾過能力を実現させるという条件だけを考慮し
て、培養液の濾過速度ならびに新鮮培地の供給速度を制
御していたので、細胞密度が低く、培養装置内での細胞
による基質の消費速度、代謝産物の生産速度が低い立ち
上げ初期段階において新鮮培地の供給速度ならびに培養
液の濾過速度が高く、逆に、細胞密度が高く、基質の消
費速度、代謝産物の生産速度が高い立ち上げ最終段階で
新鮮培地の供給速度、濾過速度が低くなるという不合理
な操作方法となっていた。すなわち、立ち上げの初期段
階では、供給した基質が培養装置内で十分に消費されな
いまま培養濾液とともに装置外に排出されて利用効率が
低下したり、不必要に大きな速度で濾過をするために濾
過膜の目詰りを早めるなどの問題点があった。また、立
ち上げの最終段階では、細胞の基質消費量に見合うだけ
の基質を供給できなくなったり、装置内に細胞の増殖を
阻害する代謝産物が蓄積するなどして、細胞の増殖速度
が低下するなどの欠点があった。
The conventional start-up method considers only the condition that the maximum filtration capacity of the filtration membrane is realized by ignoring the growth characteristics, substrate consumption characteristics, and metabolite production characteristics of cells in the culture device, and the filtration rate of the culture solution is considered. Since the supply rate of the fresh medium was controlled, the cell density was low, the consumption rate of the substrate by the cells in the culture device, the production rate of the metabolites were low, and the supply rate of the fresh medium and the culture solution at the initial stage of start-up. The filtration rate is high, conversely, the cell density is high, the consumption rate of the substrate and the production rate of the metabolites are high, and the supply rate of the fresh medium and the filtration rate are low at the final stage of startup, which is an irrational operation method. Was there. That is, in the initial stage of start-up, the supplied substrate is not fully consumed in the culture device and is discharged together with the culture filtrate to the outside of the device to reduce the utilization efficiency, or to perform filtration at an unnecessarily large rate. There was a problem that the membrane was clogged earlier. In addition, at the final stage of start-up, it becomes impossible to supply a substrate commensurate with the amount of consumption of the substrate of the cell, and metabolites that inhibit the growth of the cell accumulate in the device, resulting in a decrease in the cell growth rate. There were drawbacks such as.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために本発明は、培養装置内に
細胞密度を直接オンライン計測するためのセンサを配置
して細胞密度の経時変化をモニタリングし、培養液中の
細胞密度が目標値に到達する時点まで細胞密度の増加に
合わせて新鮮培地供給ポンプを自動制御して新鮮培地の
供給速度を増加させ、かつ培養濾液の排出速度を、培養
装置内に配置した培養液液位センサの信号に基づいて制
御し、新鮮培地の供給速度とほぼ等しく保ち、細胞密度
が目標値に到達した後培養液排出用ポンプにより細胞培
養装置から培養液を連続的に排出して高密度連続培養に
切り替えることを特徴とする。
In order to solve the above-mentioned problems, the present invention arranges a sensor for directly measuring the cell density online in a culture device to monitor a change over time in the cell density, and the cell density in a culture solution reaches a target value. The fresh medium supply pump is automatically controlled to increase the supply rate of the fresh medium according to the increase of the cell density until the time of reaching, and the discharge rate of the culture filtrate is the signal of the culture liquid level sensor arranged in the culture device. Based on the above, the feed rate of the fresh medium is kept almost equal, and after the cell density reaches the target value, the culture medium is continuously discharged from the cell culture device by the culture medium discharge pump and switched to high-density continuous culture. It is characterized by

〔作用〕[Action]

本発明では、培養装置内に細胞密度をオンライン計測す
るためのセンサを配置して細胞密度の経時変化をモニタ
リングし、培養液中の細胞密度が目標値に到達する時点
まで細胞密度の増加に合わせて新鮮培地の供給速度を増
加させ、かつ培養濾液の排出速度も同様に増加させるこ
とにより、立ち上げの全期間を通じて、適正量の基質の
供給ならびに増殖阻害性代謝産物の除去が行える。
In the present invention, a sensor for measuring the cell density online is arranged in the culture device to monitor the time-dependent change of the cell density, and the cell density in the culture solution is adjusted to the increase of the cell density until the time when the cell density reaches a target value. By increasing the supply rate of the fresh medium and the discharge rate of the culture filtrate in the same manner, it is possible to supply an appropriate amount of the substrate and remove the growth-inhibiting metabolites during the entire start-up.

〔発明の効果〕〔The invention's effect〕

本発明によれば、立ち上げの全期間を通じて、細胞の増
殖に必要な適正量の基質が供給され、かつ増殖阻害性代
謝産物の除去が行えるので、供給した基質の利用効率が
高まり、代謝産物の蓄積による細胞の増殖速度の低下が
防げ、また不必要に大きな速度で濾過を行わないため、
濾過膜の目詰りが起りにくいなどの効果があり、その結
果立ち上げ期間の短縮による生産性の向上、使用基質当
りの細胞収量の向上が可能となる。
According to the present invention, an appropriate amount of substrate necessary for cell growth is supplied and the growth-inhibiting metabolite can be removed throughout the entire period of startup, so that the utilization efficiency of the supplied substrate is increased and the metabolite is increased. It is possible to prevent the growth rate of cells from slowing down due to the accumulation of, and not to perform filtration at an unnecessarily large rate,
There is an effect that the filter membrane is less likely to be clogged, and as a result, it is possible to improve productivity by improving the start-up period and improve the cell yield per substrate used.

〔実施例〕〔Example〕

第1図は、本発明の一実施例として後述する乳酸菌の高
密度連続培養の立ち上げに用いた細胞培養装置である。
培養槽(1)内の細胞密度は細胞密度センサ(5)によ
ってオンライン計測され、コンピューター(3)に伝送
される。コンピューターは、この細胞密度から後述の方
法によって新鮮培地の供給速度を算出し、新鮮培地供給
ポンプ(7)の流量を制御する。新鮮培地は、新鮮培地
用タンク(2)から新鮮培地供給ライン(12)を経て
培養槽に供給される。また培養槽内の培養液は、培養液
供給ポンプ(8)により培養液供給ライン(15)から
培養液供給流量制御バルブ(18)を経て培養液濾過モ
ジュール(4)に供給され、培養液帰環流量制御バルブ
(19)、培養液帰環ライン(16)を経て培養槽に戻
るようになっている。2本の濾過モジュールは、培養液
循環ライン(17)によって接続され、この閉回路には
常時培養液が培養液循環用ポンプ(9)によって循環さ
れている。なお、濾過モジュール内の培養液流速は、培
養液循環流量制御バルブ(20)によって調節される。
新鮮培地の供給による培地槽内の液面上昇を液位センサ
(6)で検出し、この信号で培養濾液排出用電磁弁(1
1)を開けることによって培養液は濾過され培養濾液排
出ライン(13)から排出される。このように、細胞密
度の増加に合わせて新鮮培地の供給速度および培養濾液
の排出速度を増加させ、培養装置内の細胞密度が目標値
に到達した時点で、培養液排出用ポンプ(10)を作動
させ、培養液を連続的に培養液排出ラインから抜き出す
ことにより、高密度連続培養に切り替えることができ
る。
FIG. 1 shows a cell culture device used for starting a high-density continuous culture of lactic acid bacteria, which will be described later, as an embodiment of the present invention.
The cell density in the culture tank (1) is measured online by the cell density sensor (5) and transmitted to the computer (3). The computer calculates the supply rate of the fresh medium from this cell density by the method described below, and controls the flow rate of the fresh medium supply pump (7). The fresh medium is supplied from the fresh medium tank (2) to the culture tank via the fresh medium supply line (12). Further, the culture solution in the culture tank is supplied from the culture solution supply line (15) by the culture solution supply pump (8) to the culture solution filtration module (4) through the culture solution supply flow rate control valve (18) to return the culture solution. The circulation flow control valve (19) and the culture fluid return line (16) are used to return to the culture tank. The two filtration modules are connected by a culture fluid circulation line (17), and the culture fluid is constantly circulated in the closed circuit by a culture fluid circulation pump (9). The culture fluid flow rate in the filtration module is adjusted by the culture fluid circulation flow control valve (20).
A liquid level sensor (6) detects an increase in the liquid level in the culture medium tank due to the supply of fresh medium, and the signal is used to discharge the culture filtrate solenoid valve (1
By opening 1), the culture solution is filtered and discharged from the culture filtrate discharge line (13). In this way, the supply rate of the fresh medium and the discharge rate of the culture filtrate are increased according to the increase of the cell density, and when the cell density in the culture device reaches the target value, the culture medium discharge pump (10) is turned on. It is possible to switch to high-density continuous culture by operating the medium and continuously withdrawing the medium from the medium discharge line.

以下乳酸菌の高密度連続培養の立ち上げの実施例につい
て説明する。
An example of starting high-density continuous culture of lactic acid bacteria will be described below.

容積30の培養槽にグルコース40g/、コーンス
ティープリカー150g/、K2HPO4 1g/,KH
2 PO4 1g/,MnSO4 0.06g/からなる組成の
培地を仕込み、あらかじめ前培養を行ったLactobacillu
s casei の種菌を150ml接種し、35℃±0.5
℃、pH6.5±0.3の範囲で温度、pHを定値制御しつ
つ回分培養を行った。
Glucose 40 g /, corn steep liquor 150 g /, K 2 HPO 4 1 g /, KH in a 30-volume culture tank.
Lactobacillus pre-cultured with a medium consisting of 2 PO 4 1 g /, MnSO 4 0.06 g /
Inoculate 150 ml of s casei seeds at 35 ° C ± 0.5
Batch culture was performed while the temperature and pH were controlled at constant values within the range of ℃ and pH 6.5 ± 0.3.

培養16時間後には、L−乳酸濃度が25g/に到達
し、これを越えると次第に細胞の増殖速度が低下するの
で、この時期から、本発明で明示した立ち上げ方法で新
鮮培地を供給しつつ培養液を濾過し細胞密度を高めた。
供給する新鮮培地は、グルコース25g/、コーンス
ティープリカー100g/、K2 HPO4 1g/、
KH2 PO4 1g/、MnSO4 0.06g/の組成
のものを使用した。また実験に使用した膜は住友機械エ
ンバイロテック(株)製のカーボセップSV7モジュール
(ジルコニア膜、分画分子量15000 、膜面積0.16
m2、操作温度<150℃、操作pH0〜14)2本であ
る。細胞密度センサは、理化学研究所技術部製のレーザ
濁度計(光源He−Neレーザ5mW、波長632.8n
m、光路長2mm、検出器フォトマル)を用いた。
After 16 hours of culturing, the L-lactic acid concentration reached 25 g /, and beyond that, the growth rate of cells gradually decreased. From this time, while supplying the fresh medium by the start-up method specified in the present invention, The culture solution was filtered to increase the cell density.
The fresh medium supplied was glucose 25 g /, corn steep liquor 100 g /, K 2 HPO 4 1 g /,
The composition of KH 2 PO 4 1 g / and MnSO 4 0.06 g / was used. The membrane used in the experiment was a CarboSep SV7 module (zirconia membrane, molecular weight cut-off 15,000, membrane area 0.16, manufactured by Sumitomo Kikai Envirotech Co., Ltd.).
m 2 , operating temperature <150 ° C., operating pH 0 to 14) 2. The cell density sensor is a laser turbidimeter (light source He-Ne laser 5 mW, wavelength 632.8n manufactured by RIKEN Institute of Technology.
m, optical path length 2 mm, detector photomultiplier).

細胞密度のオンライン計測結果から培地供給速度を算出
する方法を以下に述べる。乳酸菌を新鮮培地を供給しつ
つ培養すると、増殖制限基質であるグルコース濃度が0
g/付近では、グルコース比消費速度νと比増殖速度
μとの間には、第2図に示すような直線関係が得られ
る。このような関係をあらかじめ実験的に求めコンピュ
ーター内に記憶させておく。さらに、オンライン計測し
た細胞密度Xc から、(1)式に従って比増殖速度μc
算出し、さらに好ましくは、特開昭59−11390 の方法で
ノイズの影響を除去して比増殖速度μc を算出し、第4
図の関係からこれに対応するグルコース比消費速度νc
を求める。
The method of calculating the medium supply rate from the online measurement result of the cell density will be described below. When lactic acid bacteria were cultivated while supplying a fresh medium, the concentration of glucose, which is a growth limiting substrate, was 0.
At around g /, a linear relationship as shown in FIG. 2 is obtained between the glucose specific consumption rate ν and the specific growth rate μ. Such a relationship is experimentally obtained in advance and stored in the computer. Further, the specific growth rate μ c is calculated from the cell density X c measured online according to the equation (1), and more preferably, the specific growth rate μ c is removed by the method of JP-A-59-11390 to eliminate the influence of noise. And calculate the fourth
From the relationship in the figure, the corresponding glucose specific consumption rate ν c
Ask for.

μc =(△X/△t)/Xc (1) ここで△Xは単位時間当りの細胞密度の増加量、△tは
単位時間である。
μ c = (ΔX / Δt) / X c (1) where ΔX is the increase in cell density per unit time, and Δt is the unit time.

この培養装置内でのグルコースSの物質収支式は(2)式
で与えられる。
The mass balance equation for glucose S in this culture device is given by equation (2).

ds/dt=(Fin Sf−Fout S)/V−νX (2) ここでFin 、Sfはそれぞれ新鮮培地の供給速度、新鮮培
地中のグルコース濃度、Foutは培養濾液の排出速度、V
は培養液量を表わしている。さて、本発明の立ち上げ方
法では、新鮮培地の供給速度と培養濾液の排出速度を等
しく保つことを特徴としており、さらに本実施例では供
給した培地の利用効率を高めるために、培養濾液中のグ
ルコース濃度すなわち培養液中のグルコース濃度Sを0
g/付近に調節するようにしたので、それぞれ(3)、
(4)式の関係が成立する。
ds / dt = (Fin Sf−Fout S) / V−νX (2) where Fin and Sf are the supply rate of the fresh medium, the glucose concentration in the fresh medium, and Fout is the discharge rate of the culture filtrate, V
Represents the amount of culture solution. Now, the start-up method of the present invention is characterized by keeping the supply rate of the fresh medium and the discharge rate of the culture filtrate equal, and further, in this example, in order to improve the utilization efficiency of the supplied medium, The glucose concentration, that is, the glucose concentration S in the culture solution is set to 0.
Since it was adjusted to around g /, (3),
The relationship of equation (4) is established.

Fin =Fout (3) SO, ds/dtO (4) これら(3),(4)式の関係を(2)式に代入し、Fin につい
て解くと(5)式が得られる。
Fin = Fout (3) SO, ds / dtO (4) Substituting the relationships of these equations (3) and (4) into equation (2) and solving for Fin yields equation (5).

Fin =νXV/Sf (5) (5)式の培養液量V、新鮮培地中のグルコース濃度Sfに
培養条件で決まる一定値を、またグルコース比消費速度
νには目標とする比増殖速度μc に対応する一定値νc
を、さらに細胞密度Xには細胞密度センサから伝送され
てくる信号から求めた細胞密度をそれぞれ代入して、細
胞密度の増加に合わせた新鮮培地の供給速度Fin を求め
ることができる。
Fin = νXV / Sf (5) The culture solution volume V in the equation (5), the glucose concentration Sf in the fresh medium are constant values determined by the culture conditions, and the glucose specific consumption rate ν is the target specific growth rate μ c Constant value ν c corresponding to
Further, by substituting the cell density obtained from the signal transmitted from the cell density sensor for the cell density X, the supply rate Fin of the fresh medium corresponding to the increase of the cell density can be obtained.

(実施例1) 第3図は、培養過程における細胞密度、グルコース濃
度、L−乳酸濃度、新鮮培地の供給速度および積算供給
量の経時変化を示したものである。16時間目の立ち上
げ直後からL−乳酸濃度は25g/以下に、またグル
コース濃度も20時間目以降はほぼ0g/に維持するこ
とができた。その結果、立ち上げ14時間後の30時間
目には、細胞密度は目標値である40g−dry −cell/
胃に到達し、その時点で培養液を2.54/hで連
続的に排出することにより、培養装置内での細胞の増殖
速度と排出速度がほぼ釣り合い、細胞密度40g−dry
−cell/を維持して連続培養することができた。また
立ち上げ期間の細胞の比増殖速度μは0.169(h-1)
に保つことができた。
(Example 1) FIG. 3 shows changes with time in cell density, glucose concentration, L-lactic acid concentration, supply rate of fresh medium and integrated supply amount in the course of culture. Immediately after the 16th hour, the L-lactic acid concentration could be maintained at 25 g / or less, and the glucose concentration could be maintained at almost 0 g / after 20 hours. As a result, the cell density was 40 g-dry-cell / the target value at 30 hours after 14 hours from the start-up.
By reaching the stomach and continuously discharging the culture solution at 2.54 / h at that time, the growth rate and the discharge rate of the cells in the culture device are almost balanced, and the cell density is 40 g-dry.
-Cell / could be maintained for continuous culture. The specific growth rate μ of the cells during the start-up period is 0.169 (h -1 ).
I was able to keep it.

なお、立ち上げ期間に供給した新鮮培地量は、123
であった。
The amount of fresh medium supplied during the startup period was 123
Met.

(実施例2) 第4図は、新鮮培地の供給速度を一定とするような立ち
上げ方法を採用した場合の実施例であり、新鮮培地の供
給速度は5.06/hとした。その他の培養条件は、
実施例1の場合と同様である。この場合とも16時間目
の立ち上げ直後からL−乳酸濃度、グルコース濃度は減
少し、20時間目以降はL−乳酸濃度は25g/以下
に、またグルコース濃度も0g/に維持することがで
きた。しかし、細胞密度が目標とした40g−dry −ce
ll/に到達するのに32時間を要し、立ち上げ期間に
供給した新鮮培地量は162であった。
(Example 2) FIG. 4 is an example in the case of adopting a start-up method such that the supply rate of the fresh medium was constant, and the supply rate of the fresh medium was 5.06 / h. Other culture conditions are
This is similar to the case of the first embodiment. In this case as well, the L-lactic acid concentration and the glucose concentration decreased immediately after the start-up at the 16th hour, and after the 20th hour, the L-lactic acid concentration could be maintained at 25 g / or less and the glucose concentration at 0 g /. . However, the target cell density was 40g-dry-ce.
It took 32 hours to reach ll /, and the amount of fresh medium supplied during the start-up period was 162.

このように、新鮮培地を一定速度で供給した場合には、
細胞密度の増加に従ってグルコース比消費速度νが低下
し、その結果、第2図の関係からも明らかなように細胞
の比増殖速度μおよび細胞の対グルコース収率Yx/s
低下するため、実施例1と比較して立ち上げ期間が2、
3倍、使用新鮮培地量が1.3倍となった。
Thus, when the fresh medium was supplied at a constant rate,
As the cell density increases, the glucose specific consumption rate ν decreases, and as a result, the cell specific growth rate μ and the cell-to-glucose yield Y x / s decrease, as is clear from the relationship in FIG. Compared to the first embodiment, the startup period is 2,
3 times, the amount of fresh medium used was 1.3 times.

以上の2つの実施例からも明らかなように、細胞の増殖
速度を高く維持して立ち上げ期間を短縮したり、新鮮培
地の使用量を削減するためには、単にL−乳酸濃度を低
く維持したり、グルコース濃度を低く維持するだけでは
不十分であり、本発明の立ち上げ方法に従った実施例1
のように、細胞密度の増加に合わせて新鮮培地の供給速
度および培養濾液の排出速度を増加させることによっ
て、立ち上げ期間の短縮化、新鮮培地使用量の削減が可
能となる。
As is clear from the above two examples, in order to maintain a high cell growth rate to shorten the start-up period and to reduce the amount of fresh medium used, simply maintain the L-lactic acid concentration low. Or maintaining the glucose concentration low is not sufficient, and Example 1 according to the start-up method of the present invention was used.
As described above, by increasing the supply rate of the fresh medium and the discharge rate of the culture filtrate in accordance with the increase of the cell density, it is possible to shorten the start-up period and the amount of the fresh medium used.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施に用いた高密度細胞培養装置の
構成図、 第2図は、グルコース比消費速度と細胞の比増殖速度お
よび対グルコース収率の関係図、 第3図は、新鮮培地を細胞密度の増加に合わせて供給し
た場合の培養のタイムコース図、 第4図は、新鮮培地を一定速度で供給した場合のタイム
コース図。 1……培養槽、 2……新鮮培地用タンク、 3……コンピューター、 4……培養液濾過モジュール、 5……細胞密度センサ、 6……液位センサ、 7……新鮮培地供給用ポンプ、 11……培養濾液排出用電磁弁。
FIG. 1 is a block diagram of a high-density cell culture device used for carrying out the present invention, FIG. 2 is a relationship diagram of glucose specific consumption rate, specific growth rate of cells, and glucose yield, and FIG. Time-course diagram of culture when fresh medium was supplied according to increase in cell density, and FIG. 4 is time-course diagram when fresh medium was supplied at a constant rate. 1 ... Culture tank, 2 ... Fresh medium tank, 3 ... Computer, 4 ... Culture fluid filtration module, 5 ... Cell density sensor, 6 ... Liquid level sensor, 7 ... Fresh medium supply pump, 11 ... Solenoid valve for discharging culture filtrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三沢 宏 東京都港区東新橋1丁目1番19号 株式会 社ヤクルト本社内 (72)発明者 寺島 経男 東京都港区東新橋1丁目1番19号 株式会 社ヤクルト本社内 (72)発明者 務台 方彦 東京都港区東新橋1丁目1番19号 株式会 社ヤクルト本社内 (56)参考文献 特公 昭60−15307(JP,B2) 特公 昭54−11392(JP,B2) Biotechnology and Beoengineering(28)P. 523−533(1986) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Misawa 1-1-19 Higashishimbashi, Minato-ku, Tokyo Yakult Honsha Co., Ltd. (72) Inventor Tsuneo Terajima 1-1-1 Higashishimbashi, Minato-ku, Tokyo No. 19 Yakult Honsha Co., Ltd. (72) Inventor Takahiko Makudai 1-1-19 Higashishimbashi, Minato-ku, Tokyo Yakult Honsha Co., Ltd. (56) References Japanese Patent Publication Sho 60-15307 (JP, B2) Japanese Patent Publication Sho 54-11392 (JP, B2) Biotechnology and Beoengineering (28) P. 523-533 (1986)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】新鮮培地供給口、培養濾液排出口および培
養液排出口を備えてなる細胞培養装置で細胞を高密度連
続培養するにあたり、培養装置内に細胞密度を直接オン
ライン計測するためのセンサを配置して細胞密度の経時
変化をモニタリングし、培養液中の細胞密度が目標値に
到達する時点まで細胞密度の増加に合わせて新鮮培地供
給ポンプを自動制御して新鮮培地の供給速度を増加さ
せ、かつ培養濾液の排出速度を、培養装置内に配置した
培養液液位センサの信号に基づいて制御し、新鮮培地の
供給速度とほぼ等しく保ち、細胞密度が目標値に到達し
た後培養液排出用ポンプにより細胞培養装置から培養液
を連続的に排出して高密度連続培養に切り替えることを
特徴とする細胞の高密度連続培養の立ち上げ方法。
1. A sensor for directly online measuring the cell density in a culture device for high-density continuous culture of cells in a cell culture device comprising a fresh medium supply port, a culture filtrate discharge port, and a culture solution discharge port. To monitor the change over time in cell density and increase the supply rate of fresh medium by automatically controlling the fresh medium supply pump according to the increase in cell density until the cell density in the culture reaches the target value. And the discharge rate of the culture filtrate is controlled based on the signal of the culture liquid level sensor placed in the culture device to keep it almost equal to the supply rate of the fresh medium, and after the cell density reaches the target value, the culture liquid is reached. A method for starting a high-density continuous culture of cells, which comprises continuously discharging a culture solution from a cell culture device by a discharge pump to switch to a high-density continuous culture.
JP62018988A 1987-01-29 1987-01-29 Method for setting up high-density continuous culture of cells Expired - Lifetime JPH0644863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62018988A JPH0644863B2 (en) 1987-01-29 1987-01-29 Method for setting up high-density continuous culture of cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62018988A JPH0644863B2 (en) 1987-01-29 1987-01-29 Method for setting up high-density continuous culture of cells

Publications (2)

Publication Number Publication Date
JPS63188384A JPS63188384A (en) 1988-08-03
JPH0644863B2 true JPH0644863B2 (en) 1994-06-15

Family

ID=11986962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62018988A Expired - Lifetime JPH0644863B2 (en) 1987-01-29 1987-01-29 Method for setting up high-density continuous culture of cells

Country Status (1)

Country Link
JP (1) JPH0644863B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19953372A1 (en) 1999-02-10 2000-08-17 Sachs Race Eng Gmbh Variable damper with adjustable damping force has damping valve housing closed off at one end by a cover which has a device for engagement with the external adjusting unit
JP4378909B2 (en) * 2002-02-20 2009-12-09 株式会社日立プラントテクノロジー Biological cell culture control method, culture apparatus control apparatus, and culture apparatus
DE102007009451B4 (en) * 2007-02-27 2010-04-01 Uts Biogastechnik Gmbh Biogas plant fermenter with a motor-height-adjustable submersible mixer
US9644221B2 (en) 2012-03-30 2017-05-09 Toray Industries, Inc. Method of producing chemical by continuous fermentation and continuous fermentation apparatus
ES2848701T3 (en) * 2016-12-21 2021-08-11 Hoffmann La Roche Control of eukaryotic cell proliferation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177980A (en) * 1977-05-23 1979-12-11 Cutting Room Appliances Corporation Cloth-laying machine
JPS6015307A (en) * 1983-06-30 1985-01-26 ストルク ベパツク ベ−・ヴエ Conveyor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BiotechnologyandBeoengineering(28)P.523−533(1986)

Also Published As

Publication number Publication date
JPS63188384A (en) 1988-08-03

Similar Documents

Publication Publication Date Title
US20220325708A1 (en) Alternating tangential flow rapid harvesting
Taniguchi et al. High-concentration cultivation of lactic acid bacteria in fermentor with cross-flow filtration
CN103261427B (en) Method for producing chemical by continuous fermentation
JPH0644863B2 (en) Method for setting up high-density continuous culture of cells
Taniguchi et al. High concentration cultivation of Bifidobacterium longum in fermenter with cross-flow filtration
JPS61107903A (en) Method and device for ultrafiltrating liquid for prolonged time
CN109045744B (en) Method and device for continuously and stably preparing acesulfame potassium crystals
JPS6188872A (en) Method and apparatus for continuous cultivation at high concentration
JPH0347074A (en) Method and device for culturing animal cell with lactic acid as indicator
JPS60133891A (en) Method and apparatus for producing amino acid by fermentation
LU86584A1 (en) PROCESS FOR THE PREPARATION OF LACTIC ACID BY FERMENTATION OF WHEY
JPH02174674A (en) Method for culturing lactic acid bacterium and apparatus used therefor
SU1314990A1 (en) Method of concentrating liquid food products
JP2775803B2 (en) Bioreactor system
JPS61293380A (en) Cultivation of microorganism and apparatus therefor
RU2105814C1 (en) Method of penicillin producing
Pizzichini et al. Performance of a membrane reactor for cellobiose hydrolysis
JPH0671422B2 (en) Raw material supply control method for tubular bioreactor
SU498940A1 (en) Method for producing lysine
JPS62262927A (en) Plant culture apparatus
JPH0428352B2 (en)
JPS6136920B2 (en)
JPH0824563B2 (en) Vinegar manufacturing method
CN113005031A (en) Membrane reactor for enzymolysis reaction and use method thereof
SU1555362A1 (en) Method of obtaining ferments