JP2933941B2 - Control method, control device, culture method, and culture device for culture conditions of animal cells - Google Patents

Control method, control device, culture method, and culture device for culture conditions of animal cells

Info

Publication number
JP2933941B2
JP2933941B2 JP1059721A JP5972189A JP2933941B2 JP 2933941 B2 JP2933941 B2 JP 2933941B2 JP 1059721 A JP1059721 A JP 1059721A JP 5972189 A JP5972189 A JP 5972189A JP 2933941 B2 JP2933941 B2 JP 2933941B2
Authority
JP
Japan
Prior art keywords
culture
concentration
glucose
animal cells
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1059721A
Other languages
Japanese (ja)
Other versions
JPH02242669A (en
Inventor
康二 竹内
英夫 川口
整 石橋
範夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1059721A priority Critical patent/JP2933941B2/en
Priority to KR90003321A priority patent/KR0132666B1/en
Priority to DE69010529T priority patent/DE69010529T2/en
Priority to US07/493,369 priority patent/US5304483A/en
Priority to EP90104822A priority patent/EP0387840B1/en
Publication of JPH02242669A publication Critical patent/JPH02242669A/en
Application granted granted Critical
Publication of JP2933941B2 publication Critical patent/JP2933941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は動物細胞の培養環境条件の制御方法及び制御
方法、動物細胞の培養方法及び培養装置に係る。
Description: TECHNICAL FIELD The present invention relates to a control method and a control method of animal cell culture environment conditions, an animal cell culture method and a culture apparatus.

〔従来の技術〕[Conventional technology]

動物細胞は、遺伝子組換え菌では産生できない蛋白
質、すなわち糖鎖の付加したもの、高分子量のもの及び
複雑な立体構造を有するものなどの蛋白質を産生するこ
とができる。このため動物細胞を培養してこれらの蛋白
質を生産することが注目されており、なかでも動物細胞
の大量培養方法の確立が急務となっている。
Animal cells can produce proteins that cannot be produced by genetically modified bacteria, that is, proteins with added sugar chains, those with high molecular weight, and those with complex tertiary structures. Therefore, attention has been paid to the production of these proteins by culturing animal cells. In particular, establishment of a method for culturing animal cells on a large scale is urgently required.

動物細胞の大量培養に際し、伝統的な微生物培養方式
を適用するのは難しい。その理由としては、動物細胞は
細胞壁がないため撹拌による剪断力に対して弱い、培養
液中に含まれる血清が液中通気時に発泡する、世代時間
が数十時間のため長期間無菌系を維持しなければならな
い等がある。特に長期間の培養を行うことから培養液中
の溶存酸素濃度を測定するセンサーは長期間安定に維持
されることが必要である。しかし蒸気殺菌時に熱や圧力
変動によって測定不能になったり、長期間連続使用する
とセンサーの内部液の枯渇やセンサーの接液部に蛋白質
の膜が形成され測定不能になることがある。センサーの
不調により溶存酸素濃度が測定できなくなると培養が維
持できなくなる。つまり動物細胞は酸素供給過剰になる
と酸素による毒性が生じるし、また酸素供給不足になる
と増殖が低下するからである。
When mass-culturing animal cells, it is difficult to apply a traditional microorganism culture method. The reason is that animal cells are weak against shearing force due to agitation because there is no cell wall, serum contained in the culture medium foams when aerated in the liquid, and the sterilization system is maintained for a long time because the generation time is several tens of hours And so on. In particular, since culturing is performed for a long period of time, a sensor for measuring the concentration of dissolved oxygen in a culture solution needs to be stably maintained for a long period of time. However, measurement may not be possible due to heat or pressure fluctuations during steam sterilization, or if used continuously for a long period of time, the internal liquid of the sensor may be depleted or a protein film may be formed on the liquid contact part of the sensor, making measurement impossible. If dissolved oxygen concentration cannot be measured due to sensor malfunction, culture cannot be maintained. That is, animal cells become toxic by oxygen when the oxygen supply is excessive, and the proliferation is reduced when the oxygen supply is insufficient.

さらに、動物細胞の最適環境条件を表わす指標は未だ
知られておらず、細胞の増殖状態を迅速に判断すること
が困難であった。
Furthermore, an index indicating the optimal environmental condition of animal cells has not been known yet, and it has been difficult to quickly determine the cell growth state.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は、溶存酸素濃度が測定不能になったと
きの対応及び細胞の増殖活性を診断する点について配慮
されておらず、細胞を長期間連続培養することが困難で
あるという問題であった。
The prior art described above does not take into account the measures to be taken when the dissolved oxygen concentration becomes unmeasurable and diagnosing the proliferation activity of the cells, and it is difficult to continuously culture the cells for a long period of time. .

そこで、本発明の目的は、長期間安定に動物細胞を培
養するための方法及び装置を提供することにある。
Therefore, an object of the present invention is to provide a method and an apparatus for stably culturing animal cells for a long period of time.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、動物細胞の培養における生成した乳酸量
と消費したグルコース量の比を算出し、これにより細胞
の増殖状態を診断し、培養環境条件を制御することによ
り達成される。
The above object is achieved by calculating the ratio of the amount of lactic acid produced to the amount of glucose consumed in culturing animal cells, thereby diagnosing the growth state of the cells, and controlling the culture environment conditions.

即ち、本発明は、動物細胞の培養液中のグルコース濃
度と乳酸濃度を測定し、その測定値から得られる生成し
た乳酸量と消費されたグルコース量との比(L/G)が所
定範囲を逸脱した場合、それに応じて培養液中の溶存酸
素濃度及び/又はグルコース濃度を制御することを特徴
とする動物細胞の培養環境条件の制御方法であり、そし
て、上記所定範囲の好ましい範囲は0〜0.6(0は含ま
ない)の範囲である。また、上記所定範囲を逸脱した場
合の培養液中の溶存酸素濃度及び/又はグルコース濃度
の制御は培養液中の溶存酸素濃度の増加及び/又はグル
コース濃度の減少により行われる。
That is, the present invention measures the concentration of glucose and the concentration of lactic acid in the culture solution of animal cells, and the ratio (L / G) of the amount of generated lactic acid to the amount of consumed glucose obtained from the measured values is within a predetermined range. If it deviates, a method for controlling the environmental conditions of animal cell culture characterized by controlling the concentration of dissolved oxygen and / or the concentration of glucose in the culture solution in accordance therewith, and the preferable range of the predetermined range is 0 to It is in the range of 0.6 (0 is not included). In addition, the control of the dissolved oxygen concentration and / or the glucose concentration in the culture solution in the case where the concentration deviates from the predetermined range is performed by increasing the dissolved oxygen concentration and / or decreasing the glucose concentration in the culture solution.

また、本発明は、動物細胞の培養液中のグルコース濃
度と乳酸濃度を測定する手段、その測定値から消費され
たグルコース量と生成した乳酸量との比を算出し、前記
算出値を予め入力された所定範囲の値と比較する手段、
及び、前記比較結果に基づいて培養液中の溶存酸素濃度
及び/又はグルコース濃度を制御する手段を具備するこ
とを特徴とする動物細胞の培養環境条件の制御装置にあ
る。
Further, the present invention provides a means for measuring glucose concentration and lactic acid concentration in a culture solution of animal cells, calculating a ratio between an amount of consumed glucose and an amount of generated lactic acid from the measured value, and inputting the calculated value in advance. Means for comparing with a predetermined range of values,
And a control device for controlling the environmental conditions for culturing animal cells, comprising means for controlling the concentration of dissolved oxygen and / or the concentration of glucose in the culture solution based on the comparison result.

更に本発明は、動物細胞の培養方法において、上記培
養環境条件の制御を行う動物細胞の培養方法、及び、上
記培養環境条件の制御装置を具備している動物細胞の培
養装置である。
Further, the present invention relates to a method for culturing an animal cell, the method for culturing an animal cell for controlling the above-mentioned culture environment conditions, and an apparatus for culturing an animal cell comprising the above-mentioned apparatus for controlling the culture environment conditions.

以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

動物細胞は、好気的環境下ではグルコースをトリカル
ボン酸回路を通して二酸化炭素と水にすることでエネル
ギーを獲得している。この際グルコース1モルから38モ
ルのAPT(adensinetriphosphate)を生成することがで
きるため、トリカルボン酸回路を使用することは増殖に
適した状態である。一方酸素供給が不足した環境下では
パスツール効果によりグルコースを解糖経路を通して乳
酸にすることでエネルギーを獲得している。この際には
グルコース1モルから2モルのAPTしか生成することが
できず、解糖経路だけを使用することはグルコースの利
用効率が悪い状態である。このことから、グルコースの
消費量に対する乳酸の生成量の比を指標にすることで酸
素の供給状態及び増殖活性が推測可能になると考えられ
る。また酸素供給状態が良好であっても培養液中のグル
コース濃度が高い場合にはクラブトリー効果〔クラブト
リー:バイオケミストリー,23,537−545(1929)〕に
より乳酸が生成する。この場合にもトリカルボン酸回路
を使わず、解糖経路だけでエネルギーを獲得することに
なるから細胞の増殖活性は悪い状態である。
Animal cells acquire energy in an aerobic environment by converting glucose into carbon dioxide and water through a tricarboxylic acid cycle. At this time, 38 mol of APT (adensinetriphosphate) can be produced from 1 mol of glucose, so that using a tricarboxylic acid cycle is a state suitable for growth. On the other hand, in an environment with insufficient oxygen supply, energy is obtained by converting glucose into lactic acid through a glycolysis pathway by the Pasteur effect. In this case, only 2 mol of APT can be produced from 1 mol of glucose, and using only the glycolytic pathway is in a state of poor glucose utilization efficiency. From this, it is considered that the supply state of oxygen and the growth activity can be estimated by using the ratio of the amount of lactic acid produced to the amount of glucose consumed as an index. Even when the oxygen supply condition is good, lactic acid is produced by the Crabtree effect [Crabtree: Biochemistry, 23 , 537-545 (1929)] when the glucose concentration in the culture solution is high. In this case as well, energy is obtained only through the glycolysis pathway without using the tricarboxylic acid cycle, and thus the cell growth activity is in a poor state.

本発明者らは、培養液中のグルコース濃度と乳酸濃度
を測定し、その測定値から得られる生成した乳酸量と消
費されたグルコース量の比(L/G)を指標として、細胞
の増殖活性を診断することにより、培養環境条件を把握
し制御しうることを見出し、本発明を完成したものであ
る。
The present inventors measured the concentration of glucose and the concentration of lactate in the culture solution, and used the ratio of the amount of generated lactic acid and the amount of consumed glucose (L / G) obtained from the measured values as an index, to determine the cell growth activity. The present inventors have found that culture environment conditions can be grasped and controlled by diagnosing, and the present invention has been completed.

L/G比の最適条件は0〜0.6(0は含まない)の範囲で
あり、次のような種々な条件での培養実験により得られ
た。
The optimal conditions for the L / G ratio are in the range of 0 to 0.6 (excluding 0), and were obtained by culture experiments under the following various conditions.

〔実験例1〕 まず、全容量200mlのタッピングカルチャーフラスコ
の上部の蓋にエアーフィルター(ゲルマン・サイエンス
社製,7.5cm2)を取り付け、酸素含有気体が容器内へ流
通するようにした。この容器に80mlの10%新生仔牛血清
含有DM160−AU培地(極東製薬工業製)を仕込み、1×1
06cells/mlになるように種細胞JTS−1株(ラット腹水
肝癌細胞)を接種した。撹拌速度は400rpm、温度は37℃
としCO2インキュベーターで培養した。2日毎に培養液
を遠心分離(1200rpm,10分間)することにより培地を全
量交換した。この時の培養液の初発グルコース濃度を35
00ppmとした。培養液の全量交換時の前後に培養液を2ml
ずつサンプリングし、グルコース濃度と乳酸濃度を酵素
センサーで測定し、細胞濃度を血球計数盤で計数した。
その結果を第1図に示す。細胞はきわめて順調に増殖
し、10日目に細胞濃度は1×107cells/mlに到着した。
この時のL/Gは最初0.6と高かったが、徐々に低下し最終
的に0.3になった。このことからL/Gが0.6以下であれ
ば、培養環境は好気的条件下にあり、かつグルコース供
給量も十分であり、細胞の増殖活性が良く増殖に適した
環境条件が得られていると判断できる。
Experimental Example 1 First, an air filter (manufactured by Germanic Science, 7.5 cm 2 ) was attached to the upper lid of a tapping culture flask having a total capacity of 200 ml, so that an oxygen-containing gas flowed into the container. 80 ml of DM160-AU medium (manufactured by Kyokuto Pharmaceutical Co., Ltd.) containing 10% newborn calf serum was charged into this container, and 1 × 1
0 6 cells / ml in so as to seed cells JTS-1 strain (rat ascites hepatoma cells) were inoculated. Stirring speed 400rpm, temperature 37 ℃
And cultured in a CO 2 incubator. Every two days, the whole medium was exchanged by centrifuging the culture solution (1200 rpm, 10 minutes). The initial glucose concentration of the culture at this time was 35
It was set to 00 ppm. 2 ml of culture solution before and after replacing the total volume of culture solution
Each sample was taken, the glucose concentration and the lactate concentration were measured with an enzyme sensor, and the cell concentration was counted with a hemocytometer.
The result is shown in FIG. The cells proliferated very well and reached a cell concentration of 1 × 10 7 cells / ml on day 10.
The L / G at this time was initially high at 0.6, but gradually decreased and finally reached 0.3. From this, if L / G is 0.6 or less, the culture environment is under aerobic conditions, and the glucose supply is sufficient, and the cell growth activity is good, and environmental conditions suitable for growth are obtained. Can be determined.

〔実験例2〕 つぎに、全量交換する培養液中のグルコース濃度を10
00ppmとし、かつエアーフィルターをはずし密封状態で
培養を行った。その結果を第2図に示す。最終細胞濃度
は5.5×106cell/mlであり、L/Gは培養期間を通じて0.6
を越えた値であった。このことから、グルコース濃度が
過剰でない条件下では、L/Gが0.6を越えた値であると酸
素供給不足であり、細胞の増殖能が低下することがわか
った。
[Experimental Example 2] Next, the concentration of glucose in the culture solution to be completely exchanged was adjusted to 10%.
The culture was carried out in a sealed state with the air filter removed and the air filter removed. The result is shown in FIG. The final cell concentration is 5.5 × 10 6 cell / ml and L / G is 0.6
It exceeded the value. From this, it was found that under conditions where the glucose concentration was not excessive, when L / G exceeded 0.6, oxygen supply was insufficient and the cell growth ability was reduced.

〔実験例3〕 つぎに、全量交換する培養液中のグルコース濃度を10
00ppmとし、エアーフィルターを蓋に取り付けて培養を
行った。その結果を第3図に示す。最終細胞濃度は7.5
×106cells/mlであった。L/Gは時間とともに低下し、8
日目にはグルコースの枯渇により0となった。このこと
からグルコース濃度1000ppmの条件では、1×107cells/
mlの高密度の細胞濃度を得るにはグルコースが不足して
いることがわかった。
[Experimental Example 3] Next, the concentration of glucose in the culture solution to be completely exchanged was adjusted to 10%.
The concentration was adjusted to 00 ppm, and an air filter was attached to the lid to perform culturing. FIG. 3 shows the results. Final cell concentration 7.5
× 10 6 cells / ml. L / G decreases with time, 8
On the day, it became zero due to glucose depletion. Therefore, under the condition of glucose concentration of 1000 ppm, 1 × 10 7 cells /
Glucose was found to be insufficient to obtain a high cell concentration of ml.

〔実験例4〕 つぎに、マウス−マウスハイブリドーマ(親株P3−U
1)である11D−11−1株を用いて培養した。前記タッピ
ングカルチャーフラスコにエアーフィルターを取り付
け、酸素含有気体(酸素濃度可変)が容器内へ流通する
ようにした。この容器に80mlの無血清培地E−RDF+RD
−1(極東製薬工業製)を仕込み、1×106cells/mlに
なるように種細胞(11D−11−1)を接着した。撹拌速
度は300rpm、温度は37℃としCO2インキュベーターで培
養した。毎日培養液を遠心分離(1200rpm、10分間)す
ることにより培地を全量交換した。培養液の初発グルコ
ース濃度は3423ppmとした。培養液の全量交換時の前後
に培養液を2mlずつサンプリングし、グルコース濃度と
乳酸濃度を酵素センサーで測定し、細胞濃度を血球計数
盤で計数した。その結果を第4図に示す。培養後4日間
に3×106cells/mlの細胞濃度で増殖が止まり、L/Gは0.
6を越えた値であった。しかし、酸素含有気体中の酸素
濃度を60%にしたところ、7日目には細胞濃度が5×10
6cells/mlとなり、L/Gも0.4まで下がった。このことか
らL/Gが0.6以下であれば、培養条件は好気的条件下にあ
り、かつグルコース供給量も十分であり、細胞の増殖活
性が良く増殖に適した環境条件が得られていると判断で
きる。
[Experimental Example 4] Next, a mouse-mouse hybridoma (parent strain P3-U)
Culture was performed using the 11D-11-1 strain described in 1). An air filter was attached to the tapping culture flask so that an oxygen-containing gas (variable in oxygen concentration) flowed into the container. 80 ml of serum-free medium E-RDF + RD
-1 (manufactured by Far Eastern Pharmaceutical Co., Ltd.) was charged, and seed cells (11D-11-1) were adhered to 1 × 10 6 cells / ml. The culture was performed in a CO 2 incubator at a stirring speed of 300 rpm and a temperature of 37 ° C. Every day, the medium was completely exchanged by centrifuging the culture solution (1200 rpm, 10 minutes). The initial glucose concentration of the culture solution was 3423 ppm. Before and after the exchange of the total amount of the culture solution, 2 ml of the culture solution was sampled, glucose and lactic acid concentrations were measured with an enzyme sensor, and the cell concentration was counted with a hemocytometer. The result is shown in FIG. Proliferation stopped at a cell concentration of 3 × 10 6 cells / ml for 4 days after culture, and L / G was 0.
The value exceeded 6. However, when the oxygen concentration in the oxygen-containing gas was set to 60%, on the seventh day, the cell concentration was 5 × 10 5
It became 6 cells / ml, and L / G also dropped to 0.4. From this, if L / G is 0.6 or less, the culture conditions are under aerobic conditions, and the glucose supply is sufficient, and cell growth activity is good and environmental conditions suitable for growth are obtained. Can be determined.

〔実験例5〕 つぎに、酸素含有気体中の酸素濃度を20%の一定条件
下で培養した。その結果を第5図に示す。細胞濃度は3
日目に3×106cells/mlに達したがそれ以上増殖せず、L
/Gは培養期間を通じて0.6を越えた値であった。このこ
とから、グルコース濃度が過剰でない条件下では、L/G
が0.6を越えた値であると酸素供給不足であり、細胞の
増殖能が低下することが判る。
[Experimental example 5] Next, the cells were cultured under a constant condition of 20% oxygen concentration in the oxygen-containing gas. The results are shown in FIG. Cell concentration is 3
On the day, it reached 3 × 10 6 cells / ml, but did not grow any more.
/ G exceeded 0.6 throughout the culture period. From this, under conditions where the glucose concentration is not excessive, L / G
If the value exceeds 0.6, oxygen supply is insufficient, and it can be seen that the proliferation ability of cells decreases.

以上の各実験例の結果から、消費グルコース量と生成
乳酸量の比をとることで細胞の増殖状態を診断できるこ
とが明らかになった。特にL/Gが0<L/G<0.6の範囲内
の時は細胞の増殖が良いことからグルコースと酸素の供
給条件が適している。
From the results of each of the experimental examples described above, it was clarified that the cell growth state could be diagnosed by taking the ratio of the amount of consumed glucose to the amount of produced lactic acid. In particular, when L / G is in the range of 0 <L / G <0.6, the conditions of supply of glucose and oxygen are suitable because the cell growth is good.

従って、本発明の培養環境条件の制御方法において
は、L/Gが所定範囲、好ましくは0〜0.6(0は含まな
い)の範囲を逸脱した場合に、培養液中の溶存酸素濃度
及び/又はグルコース濃度を制御する。
Therefore, in the method for controlling the culture environment conditions of the present invention, when L / G deviates from a predetermined range, preferably from 0 to 0.6 (not including 0), the dissolved oxygen concentration in the culture solution and / or Control glucose concentration.

この制御は、培養液中の溶存酸素濃度を増加及び/又
はグルコース濃度の減少により行うことができる。例え
ばL/Gが0.6を越えた値の時は、まず酸素供給量を増加さ
せL/Gが0.6以下になるか確認する。それでもL/Gが0.6以
下にならない時はグルコース供給量を減少させることで
制御可能である。
This control can be performed by increasing the dissolved oxygen concentration in the culture solution and / or decreasing the glucose concentration. For example, when L / G exceeds 0.6, first increase the oxygen supply amount and check whether L / G becomes 0.6 or less. If L / G still does not fall below 0.6, it can be controlled by reducing the glucose supply.

本発明制御装置を備えた培養装置の一例を、第6図を
用いて具体的に説明する。培養槽1内には細胞あるいは
マイクロキャリアー等へ固定化した細胞が浮遊する培養
液2を含んでおり、モーター3を用いて撹拌羽根4を回
転させることで懸濁させている。酸素供給方式は、上面
通気、液中通気、膜通気等どれでも構わない。この酸素
含有気体は、導管13により培養槽1に供給されるが、供
給量を流量調節弁6で制御する。グルコース含有液槽に
は、グルコースを含む培地あるいはグルコース水溶液等
を貯留する。グルコース含有液を導管14により培養槽1
に供給し、供給量を流量調節弁7で制御する。培養方式
には、半回分培養、連続培養がある。大量生産には連続
培養が望ましく、細胞と培養液の分離手段10により培養
上清を分離し、導管17により培養上清送液ポンプ11を用
いて培養槽外へ培養上清を抜き出す。培養液2の中の乳
酸とグルコースの濃度測定は、酵素センサー、液体クロ
マトグラフィー等いずれを用いてもよく、これらのグル
コース濃度検出手段8、乳酸濃度検出手段9を設置し測
定する。これらのデータは演算制御手段12に入力され、
流量調節弁6及び流量調節弁7に信号を出力することに
より酸素供給量及び基質供給量の制御を行う。
An example of a culture device provided with the control device of the present invention will be specifically described with reference to FIG. The culture tank 1 contains a culture solution 2 in which cells or cells immobilized on microcarriers or the like are suspended, and is suspended by rotating a stirring blade 4 using a motor 3. The oxygen supply method may be any of top surface ventilation, submerged ventilation, membrane ventilation, and the like. The oxygen-containing gas is supplied to the culture tank 1 through the conduit 13, and the supply amount is controlled by the flow control valve 6. In the glucose-containing liquid tank, a medium containing glucose or an aqueous glucose solution is stored. The glucose-containing solution is supplied to the culture tank 1 through the conduit 14.
And the supply amount is controlled by the flow rate control valve 7. The culture method includes a semi-batch culture and a continuous culture. For mass production, continuous culture is desirable. The culture supernatant is separated by the cell and culture solution separation means 10, and the culture supernatant is drawn out of the culture tank by using the culture supernatant sending pump 11 through the conduit 17. The concentration of lactic acid and glucose in the culture solution 2 may be measured using an enzyme sensor, liquid chromatography, or the like. The glucose concentration detecting means 8 and the lactic acid concentration detecting means 9 are installed and measured. These data are input to the arithmetic control means 12,
By outputting signals to the flow control valves 6 and 7, the supply of oxygen and the supply of substrate are controlled.

〔作 用〕(Operation)

本発明者らは培養液中の生成した乳酸濃度と消費され
たグルコース量との比(L/G)が培養液中の溶存酸素濃
度及び細胞の増殖状態と相関関係にあることを実験的に
見出した。そして、このL/Gが所定範囲、特に0から0.6
(0は含まない)の範囲、にある場合の細胞の増殖が良
好である。したがって、L/Gを前記範囲内に保持するこ
とにより動物細胞の培養環境条件が良好に制御される。
そして、本発明においては、培養液中の溶存酸素濃度及
び/又はグルコース濃度を制御することによりL/Gを前
記範囲内に保持するものである。
The present inventors experimentally demonstrated that the ratio (L / G) between the concentration of lactic acid produced and the amount of glucose consumed in the culture was correlated with the concentration of dissolved oxygen in the culture and the growth state of the cells. I found it. This L / G is within a predetermined range, especially 0 to 0.6.
(0 is not included), the cell growth is good. Therefore, by keeping L / G within the above range, the culture environment conditions for animal cells are well controlled.
And in this invention, L / G is maintained in the said range by controlling the dissolved oxygen concentration and / or glucose concentration in a culture solution.

〔実施例〕〔Example〕

以下、本発明の実施例について具体的に説明するが、
本発明にこれにより何ら限定されるものではない。
Hereinafter, examples of the present invention will be specifically described,
The invention is not limited in any way by this.

実施例1 全容量200mlのタッピングカルチャーフラスコ上部の
蓋にエアーフィルター(ゲルマン・サイエンス社製,7.5
cm2)を取り付け、酸素含有気体が容器内へ流通するよ
うにした。この容器に80mlの10%新生仔牛血清含有DM16
0−AU培地(極東製薬製)を仕込み、1×106cells/mlに
なるように種細胞JTC−1株(ラット腹水肝癌細胞)を
接種した。撹拌は400rpm、温度は37℃としCO2インキュ
ベーターで培養した。毎日培養液を遠心分離(1200rpm,
10分間)して培養上清を除き新鮮培地を添加した。培養
液の全量交換時の前後に培養液を2mlずつサンプリング
し、グルコースと乳酸濃度を酵素センサーで測定し、細
胞濃度を血球計数盤で計数した。また、交換する培地中
のグルコース濃度は、L/Gが0<L/G<0.6の範囲になる
ように計算して調整した。ここでJTC−1株細胞1個当
りのグルコース消費速度を1×10-7mg/cell/dayと仮定
し、L/Gが0.6以上の時はこの値を小さくし、0.4以下に
なった時点で安全のためこの値を大きくするようにして
供給量を算出した。培養結果を第7図に示す。細胞濃度
は5日目に1×107cells/mlに到達した。L/Gは1日目は
高かったが、徐々に低下して3日目には0.4となった。
そこでグルコースの供給量を増加させたところ、L/Gが
上昇した。1日目を除けばL/Gは0<L/G<0.6の範囲に
入っており、細胞の増殖は良好であり、1×107cells/m
lの高密度培養を行うことができた。
Example 1 An air filter (manufactured by Germanic Science, Inc., 7.5
cm 2 ) to allow the oxygen-containing gas to flow into the container. 80 ml of DM16 containing 10% newborn calf serum
A 0-AU medium (manufactured by Far East Pharmaceutical Co., Ltd.) was prepared, and seed cells JTC-1 (rat ascites hepatoma cells) were inoculated at 1 × 10 6 cells / ml. Agitation was performed at 400 rpm and the temperature was 37 ° C., and the cells were cultured in a CO 2 incubator. Centrifuge the culture every day (1200rpm,
10 minutes), the culture supernatant was removed, and a fresh medium was added. Before and after the exchange of the total amount of the culture solution, the culture solution was sampled by 2 ml each, glucose and lactic acid concentrations were measured by an enzyme sensor, and the cell concentration was counted by a hemocytometer. Further, the glucose concentration in the medium to be exchanged was calculated and adjusted so that L / G was in the range of 0 <L / G <0.6. Here, it is assumed that the glucose consumption rate per JTC-1 strain cell is 1 × 10 −7 mg / cell / day, and when L / G is 0.6 or more, this value is decreased, and when L / G becomes 0.4 or less. Thus, the supply amount was calculated by increasing this value for safety. The results of the culture are shown in FIG. The cell concentration reached 1 × 10 7 cells / ml on day 5. L / G was high on the first day, but gradually declined to 0.4 on the third day.
Then, when the supply amount of glucose was increased, L / G increased. Except for the first day, L / G is in the range of 0 <L / G <0.6, cell proliferation is good, and 1 × 10 7 cells / m
l high-density cultivation could be performed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、長期間安定に動物細胞の培養環境条
件を制御することができ、従って長期間安定に動物細胞
を培養しうる。
ADVANTAGE OF THE INVENTION According to this invention, the culture environment conditions of animal cells can be controlled stably for a long period of time, and therefore, animal cells can be stably cultured for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

第1,2,3,4及び5図は、実験結果を示す図、第6図は本
発明培養装置の略図、第7図は本発明の一実施例の実験
結果を示す図である。 1……培養槽、2……培養液、3……モーター、4……
撹拌羽根、5……グルコース含有液槽、6,7……流量調
節弁、8……グルコース濃度検出手段、9……乳酸濃度
検出手段、10……細胞と培養液の分離手段、11……培養
上清送液ポンプ、12……演算制御手段、13,14,15,16,17
……導管。
FIGS. 1, 2, 3, 4 and 5 show the experimental results, FIG. 6 is a schematic diagram of the culture apparatus of the present invention, and FIG. 7 is a view showing the experimental results of one embodiment of the present invention. 1 ... culture tank, 2 ... culture solution, 3 ... motor, 4 ...
Stirring blade, 5 ... Glucose-containing liquid tank, 6,7 ... Flow control valve, 8 ... Glucose concentration detection means, 9 ... Lactate concentration detection means, 10 ... Separation means for cell and culture solution, 11 ... Culture supernatant feed pump, 12 …… Calculation control means, 13, 14, 15, 16, 17
……conduit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清水 範夫 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所基礎研究所内 (56)参考文献 Biotechnology and Bioengineering,27 (6),837−841(1985) (58)調査した分野(Int.Cl.6,DB名) C12N 5/00 - 5/28 C12M 3/00 - 3/10 BIOSIS(DIALOG)──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Norio Shimizu 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo Inside the Basic Research Laboratory, Hitachi, Ltd. (56) References Biotechnology and Bioengineering, 27 (6), 837-841 (1985) (58) Field surveyed (Int. Cl. 6 , DB name) C12N 5/00-5/28 C12M 3/00-3/10 BIOSIS (DIALOG)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】動物細胞の培養液中のグルコース濃度と乳
酸濃度を測定し、その測定値から得られる生成した乳酸
量と消費されたグルコース量との比(L/G)が0から0.6
(但し0は含まない)の範囲を逸脱した場合、それに応
じて、培養液中の溶存酸素濃度及び/又はグルコース濃
度を制御することを特徴とする動物細胞の培養環境条件
の制御方法。
The present invention relates to a method for measuring the concentration of glucose and the concentration of lactic acid in a culture solution of animal cells, wherein the ratio (L / G) of the amount of produced lactic acid to the amount of consumed glucose obtained from the measured values is from 0 to 0.6.
A method for controlling the environmental conditions for culturing animal cells, wherein the concentration of dissolved oxygen and / or the concentration of glucose in the culture solution is controlled accordingly when the value deviates from the range (however, 0 is not included).
【請求項2】培養液中の溶存酸素濃度及び/又はグルコ
ース濃度の制御を、培養液中の溶存酸素濃度の増加及び
/又はグルコース濃度の減少により行うことを特徴とす
る請求項1記載の動物細胞の培養環境条件の制御方法。
2. The animal according to claim 1, wherein the concentration of dissolved oxygen and / or glucose in the culture is controlled by increasing the concentration of dissolved oxygen and / or decreasing the concentration of glucose in the culture. Control method of cell culture environment conditions.
【請求項3】動物細胞の培養液中のグルコース濃度と乳
酸濃度を測定する手段、その測定値から生成した乳酸量
と消費されたグルコース量との比(L/G)を算出し、前
記算出値を予め入力された0から0.6(但し0は含まな
い)の範囲の値と比較する手段、及び、前記比較結果に
基づいて培養液中の溶存酸素濃度及び/又はグルコース
濃度を制御する手段を具備することを特徴とする動物細
胞の培養環境条件の制御装置。
3. A means for measuring a glucose concentration and a lactic acid concentration in a culture solution of animal cells, calculating a ratio (L / G) between an amount of lactic acid generated and an amount of consumed glucose from the measured values, and Means for comparing the value with a value in the range of 0 to 0.6 (but not including 0) which has been input in advance, and means for controlling the dissolved oxygen concentration and / or glucose concentration in the culture solution based on the comparison result. An apparatus for controlling environmental conditions for culturing animal cells, comprising:
【請求項4】動物細胞の培養方法において、請求項1又
は2記載の培養環境条件の制御を行うことを特徴とする
動物細胞の培養方法。
4. A method for culturing animal cells, which comprises controlling the culture environment conditions according to claim 1 or 2.
【請求項5】物細胞の培養装置において、請求項3記載
の培養環境条件の制御装置を具備したことを特徴とする
動物細胞の培養装置。
5. An apparatus for culturing animal cells, comprising the apparatus for culturing environmental conditions according to claim 3, wherein the apparatus for culturing animal cells is provided.
JP1059721A 1989-03-14 1989-03-14 Control method, control device, culture method, and culture device for culture conditions of animal cells Expired - Fee Related JP2933941B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1059721A JP2933941B2 (en) 1989-03-14 1989-03-14 Control method, control device, culture method, and culture device for culture conditions of animal cells
KR90003321A KR0132666B1 (en) 1989-03-14 1990-03-13 Method for controlling cultivation conditions for animal cells
DE69010529T DE69010529T2 (en) 1989-03-14 1990-03-14 Method and device for controlling the cultivation conditions of animal cells.
US07/493,369 US5304483A (en) 1989-03-14 1990-03-14 Controlling cultivation conditions for animal cells
EP90104822A EP0387840B1 (en) 1989-03-14 1990-03-14 Method and apparatus for controlling cultivation conditions for animal cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059721A JP2933941B2 (en) 1989-03-14 1989-03-14 Control method, control device, culture method, and culture device for culture conditions of animal cells

Publications (2)

Publication Number Publication Date
JPH02242669A JPH02242669A (en) 1990-09-27
JP2933941B2 true JP2933941B2 (en) 1999-08-16

Family

ID=13121349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059721A Expired - Fee Related JP2933941B2 (en) 1989-03-14 1989-03-14 Control method, control device, culture method, and culture device for culture conditions of animal cells

Country Status (1)

Country Link
JP (1) JP2933941B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378909B2 (en) * 2002-02-20 2009-12-09 株式会社日立プラントテクノロジー Biological cell culture control method, culture apparatus control apparatus, and culture apparatus
JP4778746B2 (en) * 2005-07-29 2011-09-21 株式会社カネカ Cell culture equipment
JP2007244341A (en) * 2006-03-20 2007-09-27 Hitachi Ltd Method and system for culture control of biological cell
WO2024084779A1 (en) * 2022-10-17 2024-04-25 Phcホールディングス株式会社 Culture control device and culture control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biotechnology and Bioengineering,27(6),837−841(1985)

Also Published As

Publication number Publication date
JPH02242669A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
Toma et al. Inhibition of microbial growth and metabolism by excess turbulence
Sokol Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida)
US5304483A (en) Controlling cultivation conditions for animal cells
Su et al. Production of rosmarinic acid from perfusion culture of Anchusa officinalis in a membrane-aerated bioreactor
Heinzle et al. Modelling of sustained oscillations observed in continuous culture of Saccharomyces cerevisiae
JP2933941B2 (en) Control method, control device, culture method, and culture device for culture conditions of animal cells
Mehmetoglu et al. Oxygen diffusivity in calcium alginate gel beads containing Gluconobacter suboxydans
Luli et al. An automatic, on-line glucose analyzer for feed-back control of fed-batch growth of Escherichia coli
Win et al. Growth kinetics of Saccharomyces cerevisiae in batch and fedbatch cultivation using sugarcane molasses and glucose syrup from cassava starch
JPH0347074A (en) Method and device for culturing animal cell with lactic acid as indicator
Walker et al. Magnesium-limited growth of Saccharomyces cerevisiae
Wasserman Whey Utilization: II. Oxygen Requirements of Saccharomyces fragilis Growing in Whey Medium
Sakurai et al. Simulation of citric acid production by rotating disk contactor
Mandenius et al. Process control of an ethanol fermentation with an enzyme thermistor as a sucrose sensor
Wei ELUCIDATING THE TRANSITION BETWEEN SUBMERGED CULTURE AND SOLID STATE BAKER'S YEAST FERMENTATIONS.
de Alteriis et al. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase
Xu et al. Continuous glucose monitoring and control in a rotating wall perfused bioreactor
Ogawa et al. Production of kojic acid from Aspergillus oryzae var. oryzae by membrane-surface liquid culture
Mason et al. Growth kinetics of a yeast grown on glucose or hexadecane
Bertola et al. Continuous cultivation of glucose-limited bean cells (Phaseolus vulgaris L.) in a modified bacterial fermentor
Rohner et al. Kinetics and modeling of the stereoselective reduction of acetoacetic acid esters by continuously growing cultures of Saccharomyces cerevisiae
RU2473677C1 (en) Apparatus for producing plasmid-containing hydrocarbon-oxidising microorganisms
Lee et al. Continuous medium perfusion leads to long-term cell viability and oxygen production in high-density photobioreactors
Wang et al. High cell density perfusion culture of hybridoma cells for production of monoclonal antibodies in the celligen packed bed reactor
Larsen et al. A new principle of continuous flow cell cultivation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees