JP2020005511A - Culture method and culture apparatus - Google Patents

Culture method and culture apparatus Download PDF

Info

Publication number
JP2020005511A
JP2020005511A JP2018126814A JP2018126814A JP2020005511A JP 2020005511 A JP2020005511 A JP 2020005511A JP 2018126814 A JP2018126814 A JP 2018126814A JP 2018126814 A JP2018126814 A JP 2018126814A JP 2020005511 A JP2020005511 A JP 2020005511A
Authority
JP
Japan
Prior art keywords
culture
concentration
range
value
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018126814A
Other languages
Japanese (ja)
Inventor
啓介 渋谷
Keisuke Shibuya
啓介 渋谷
近藤 健之
Takeyuki Kondo
健之 近藤
憲一郎 岡
Kenichiro Oka
憲一郎 岡
勝 難波
Masaru Nanba
勝 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2018126814A priority Critical patent/JP2020005511A/en
Publication of JP2020005511A publication Critical patent/JP2020005511A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a culture method and a culture apparatus each of which allows for efficient production of a substance by means of continuous culture of a cell.SOLUTION: A culture method for continuously culturing a cell is provided that comprises: measuring a state quantity having correlation with cell proliferation during cell culture; controlling the supply flow rate of culture medium supplied to a culture tank to a first flow rate value when a measured value of the state quantity is a preset value set beforehand or more; and controlling the supply flow rate of culture medium to a second flow rate value smaller than the first flow rate value when a measured value is less than a predetermined value. A culture apparatus 100 comprises: a culture tank 1 for culturing a cell; a supply pump P1 which supplies culture medium to the culture tank 1; a temperature regulator 4 which is capable of cooling culture medium supplied to the culture tank 1; an analyzer 8 which measures the state quantity having correlation with cell proliferation during cell culture; and a control device 9 which controls the supply flow rate of culture medium on the basis of the measured value of the state quantity.SELECTED DRAWING: Figure 12

Description

本発明は、目的物質を産生する細胞を連続培養する培養方法及び培養装置に関する。   The present invention relates to a culture method and a culture apparatus for continuously culturing cells that produce a target substance.

抗体医薬品をはじめとするバイオ医薬品は、細胞を培養し、細胞が産生した物質を精製することによって製造されている。細胞を培養する方法としては、培養中に培地を供給しない回分培養や、培養中に培地を供給するが培養が終わるまで排出しない流加培養(半回分培養)や、培養中に連続的に培地を供給し、且つ、同量の培地を連続的に排出する連続培養(灌流培養)がある。   Biopharmaceuticals, including antibody drugs, are produced by culturing cells and purifying substances produced by the cells. Methods for culturing cells include batch culture in which the medium is not supplied during the culture, fed-batch culture in which the medium is supplied during the culture but is not discharged until the end of the culture (semi-batch culture), or continuous culture during the culture. And a continuous culture (perfusion culture) in which the same amount of medium is continuously discharged.

回分培養によると、生産物の品質が培養毎にばらつき易いが、コンタミネーションのリスクを分散・低減することができる。一方、流加培養によると、生産物を高濃度化することが可能であり、大量培養を行う上で精製コストや培地コストを削減することができる。工業的な物質生産の分野においては、このような理由から、主として流加培養が用いられてきた。   According to batch culture, the quality of the product tends to vary from culture to culture, but the risk of contamination can be dispersed and reduced. On the other hand, according to fed-batch culture, the concentration of the product can be increased, and purification costs and medium costs can be reduced when performing large-scale culture. In the field of industrial substance production, for this reason, fed-batch culture has mainly been used.

しかし、流加培養は大型の培養設備を必要とするため、近年では、連続培養への変更が広く検討されている。連続培養によると、培養設備の小型化を図れるだけでなく、培養環境を容易に一定に維持することができるので、生産物の品質や生産量を安定させることができる。連続培養に関しては、目的物質の生産量を向上させるために培養中の細胞増殖を制御する技術が提案されている。   However, fed-batch cultivation requires a large cultivation facility, and in recent years, a change to continuous culturing has been widely studied. According to the continuous culture, not only the size of the culture equipment can be reduced, but also the culture environment can be easily maintained constant, so that the quality and production amount of the product can be stabilized. Regarding continuous culture, a technique for controlling cell growth during culture has been proposed to improve the production amount of a target substance.

特許文献1には、無血清培養培地中に哺乳類細胞培養物を確立すること、5mM以下のL−アスパラギン濃度を有する無血清灌流培地での灌流によって細胞増殖停止を誘導すること、5mM以下のL−アスパラギン濃度を有する無血清灌流培地での灌流によって哺乳類細胞を増殖停止した状態に維持することを含む方法が記載されている(請求項1等参照)。組換えタンパク質産生は、細胞がL−アスパラギンによって誘導される細胞増殖停止に供されない培養物と比較して増加するとされている(請求項51参照)。   US Pat. No. 5,059,097 discloses establishing a mammalian cell culture in a serum-free culture medium, inducing cell growth arrest by perfusion with a serum-free perfusion medium having an L-asparagine concentration of 5 mM or less, and -A method comprising maintaining mammalian cells in a growth arrested state by perfusion with a serum-free perfusion medium having an asparagine concentration (see claim 1). Recombinant protein production is said to be increased compared to cultures where the cells are not subjected to cell growth arrest induced by L-asparagine (see claim 51).

特表2014−520534号公報JP 2014-520534 A

細胞による物質生産に際しては、目的物質を大量に得るために、細胞を高い細胞数密度まで増殖させることが望まれる。しかし、連続培養においては、細胞の増殖と目的物質の産生とが同時期に進行するため、目的物質の生産中、細胞が少なからず死滅し、細胞の分解によって大量の不純物を生じる。培養液中の不純物濃度が高くなると、精製工程数や精製コストが増大したり、生産物の品質が損なわれたりすることが問題となる。   In the production of substances by cells, it is desired to grow the cells to a high cell number density in order to obtain a large amount of the target substance. However, in continuous culture, cell growth and production of the target substance proceed at the same time, so that during the production of the target substance, the cells die not a little, and a large amount of impurities are generated by cell decomposition. When the impurity concentration in the culture solution increases, the number of purification steps and the purification cost increase, and the quality of the product is impaired.

また、連続培養においては、目的物質の生産中、細胞の継代が進むため、変異の蓄積により目的タンパクの構造や代謝の経路・効率が変わる可能性があり、生産物の品質が損なわれることが問題となり得る。また、連続培養においては、培地の供給と排出を連続的に続けるため、細胞が必要とする以上の培地を供給する必要があるし、排出される培養液から低濃度の目的物質を精製する必要もあり、運転コストや精製コストの改善が求められている。   In continuous culture, the passage of cells proceeds during production of the target substance, and the accumulation of mutations may alter the structure and metabolic pathway / efficiency of the target protein, thereby impairing the quality of the product. Can be a problem. In addition, in continuous culture, it is necessary to supply more medium than the cells need to supply and discharge the medium continuously, and to purify low-concentration target substances from the discharged culture solution. There is also a need for improvements in operating and refining costs.

そこで、本発明は、細胞の連続培養による物質生産を効率的に行うことができる培養方法及び培養装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a culture method and a culture device that can efficiently perform substance production by continuous cell culture.

前記課題を解決するために本発明に係る培養方法は、細胞を連続培養する培養方法であって、細胞の培養中に前記細胞の増殖と相関を有する状態量を測定し、前記状態量の測定値が予め設定されている設定値の範囲外であって前記細胞の増殖速度が高いことを示すとき、培養槽に供給される培地の供給流量を第1流量値に制御し、前記測定値が前記設定値の範囲内であって前記細胞の増殖速度が低いことを示すとき、前記培地の供給流量を前記第1流量値よりも小さい第2流量値に制御する。   In order to solve the above problems, a culture method according to the present invention is a culture method for continuously culturing cells, wherein a state quantity having a correlation with the growth of the cells is measured during cell culture, and the state quantity is measured. When the value is outside the range of the preset set value and indicates that the growth rate of the cells is high, the supply flow rate of the medium supplied to the culture tank is controlled to the first flow rate value, and the measured value is When the growth rate of the cells is low within the range of the set value, the supply flow rate of the medium is controlled to a second flow rate value smaller than the first flow rate value.

また、本発明に係る培養装置は、培養槽に培地を連続的に供給し、且つ、培地を連続的に排出させながら細胞を連続培養する培養装置であって、細胞を培養するための培養槽と、前記培養槽に培地を供給する供給ポンプと、前記培養槽に供給される前記培地を冷却可能な温度調節装置と、細胞の培養中に前記細胞の増殖と相関を有する状態量を測定する分析装置と、前記状態量の測定値に基づいて前記培地の供給流量を制御する制御装置と、を備える。   Further, the culture apparatus according to the present invention is a culture apparatus for continuously supplying a medium to a culture tank, and continuously culturing cells while continuously discharging the medium, and a culture tank for culturing cells. And a supply pump for supplying a culture medium to the culture tank, a temperature control device capable of cooling the culture medium supplied to the culture tank, and measuring a state quantity having a correlation with the growth of the cell during the culture of the cell. An analysis device, and a control device that controls a supply flow rate of the culture medium based on the measured value of the state quantity is provided.

本発明に係る培養方法及び培養装置は、細胞の連続培養による物質生産を効率的に行うことができる。   The culture method and the culture apparatus according to the present invention can efficiently perform substance production by continuous culture of cells.

細胞の増殖曲線と細胞が産生する生産物の量的変化を示す図である。It is a figure which shows the growth curve of a cell, and the quantitative change of the product which a cell produces. グルコースの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。It is a figure which shows the relationship between the glucose concentration, the production rate of IgG, the specific growth rate, and the survival rate. グルタミンの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。It is a figure which shows the relationship between glutamine density | concentration and IgG production rate, specific growth rate, and survival rate. 乳酸の濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。It is a figure which shows the relationship between the concentration of lactic acid, the production rate of IgG, the specific growth rate, and the survival rate. アンモニアの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。It is a figure which shows the relationship between the density | concentration of ammonia, the production rate of IgG, specific growth rate, and the survival rate. グルコースの濃度・グルタミンの濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of glucose and the density | concentration of glutamine, and a specific growth rate. グルコースの濃度・乳酸の濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of glucose and the density | concentration of lactic acid, and a specific growth rate. グルコースの濃度・アンモニアの濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of glucose and the density | concentration of ammonia, and a specific growth rate. グルタミンの濃度・乳酸の濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of glutamine and the density | concentration of lactic acid, and a specific growth rate. グルタミンの濃度・アンモニアの濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of glutamine and the density | concentration of ammonia, and a specific growth rate. 乳酸の濃度・アンモニアの濃度と比増殖速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of lactic acid and the density | concentration of ammonia, and a specific growth rate. 培養装置の構成の一例を模式的に示す図である。It is a figure which shows an example of a structure of a culture apparatus typically. 培養装置における連続培養時の処理を示すフローチャートである。It is a flowchart which shows the process at the time of the continuous culture in a culture apparatus. 細胞内代謝フラックスの解析方法を示す図である。It is a figure which shows the analysis method of intracellular metabolic flux. 細胞周期の概念を示す図である。It is a figure showing the concept of a cell cycle. 核染色による蛍光強度と細胞数との関係を説明する図である。FIG. 4 is a diagram illustrating the relationship between the fluorescence intensity obtained by nuclear staining and the number of cells.

以下、本発明の一実施形態に係る培養方法及び培養装置について、図を参照しながら説明する。   Hereinafter, a culture method and a culture apparatus according to an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係る培養方法は、目的物質を産生する細胞を連続培養する方法に関する。連続培養は、培養槽に培地を連続的に供給し、且つ、供給した培地を培養槽から連続的に排出させながら行う培養方法である。連続培養では、培養槽に供給される液体培地の供給流量と、培養槽から排出される液体培地の排出流量とが、互いに同等の流量とされる。ここで言う連続は、培地供給制御及び排出制御を連続的に行うことを指し、培地供給及び排出が間欠的となっても構わない。   The culture method according to the present embodiment relates to a method for continuously culturing cells that produce a target substance. The continuous culture is a culture method in which a medium is continuously supplied to a culture tank and the supplied medium is continuously discharged from the culture tank. In continuous culture, the supply flow rate of the liquid culture medium supplied to the culture tank and the discharge flow rate of the liquid culture medium discharged from the culture tank are equal to each other. The term “continuous” as used herein refers to continuous control of medium supply and discharge, and medium supply and discharge may be intermittent.

培養する細胞としては、例えば、チャイニーズハムスター卵巣細胞(CHO細胞)、ベイビーハムスター腎臓細胞、マウス骨髄腫細胞等の動物細胞が挙げられる。また、培養する細胞としては、植物細胞、微細藻類、ラン藻類、昆虫細胞、細菌、酵母、真菌、藻類、酵母等であってもよい。   Examples of cells to be cultured include animal cells such as Chinese hamster ovary cells (CHO cells), baby hamster kidney cells, and mouse myeloma cells. The cells to be cultured may be plant cells, microalgae, cyanobacteria, insect cells, bacteria, yeasts, fungi, algae, yeasts, and the like.

目的物質としては、例えば、各種の生理活性物質、医薬品原料、化学原料、食品原料や、その他の有用性を有する機能物質等、任意の物質を生産することができる。本実施形態に係る培養方法において特に好ましい培養の目的は、浮遊細胞を用いた抗体の生産である。抗体としては、例えば、モノクローナル抗体、ポリクローナル抗体、ヒト化抗体、ヒト抗体、その他の抗体等のいずれを生産してもよい。   As the target substance, any substance such as various physiologically active substances, pharmaceutical raw materials, chemical raw materials, food raw materials, and functional substances having other usefulness can be produced. In the culture method according to the present embodiment, a particularly preferable purpose of the culture is production of antibodies using floating cells. As the antibody, for example, any of a monoclonal antibody, a polyclonal antibody, a humanized antibody, a human antibody, and other antibodies may be produced.

図1は、細胞の増殖曲線と細胞が産生する生産物の量的変化を示す図である。
図1に示すように、細胞は、対数増殖期に顕著に増殖し、培養時間が経過すると静止期に入って増殖と死滅が平衡になり、その後、死滅数が増えていく。一方、細胞によって生産される生産物量は、培養時間の経過に伴って増加し、細胞が静止期に入っても増え続ける。生産物量Pは、細胞による物質の産生速度をV、細胞数をNとしたとき、次の数式(I)のように表される。
P=∫V×Ndt・・・(I)
FIG. 1 is a diagram showing a growth curve of a cell and a quantitative change in a product produced by the cell.
As shown in FIG. 1, the cells proliferate remarkably in the logarithmic growth phase, and after a lapse of the culture time, the cells enter a stationary phase, where growth and death are balanced, and thereafter the number of deaths increases. On the other hand, the amount of product produced by the cells increases with the passage of the culture time, and continues to increase even when the cells enter the stationary phase. The product amount P is represented by the following formula (I), where V is the production rate of a substance by cells and N is the number of cells.
P = ∫V × Ndt (I)

目的物質の最終的な生産量を高くするためには、数式(I)に表されるように、産生速度Vと細胞数Nの両方が大きい培養系で物質生産を行うことが有効である。また、物質生産の所要時間を短縮することを考慮すると、図1に示されるように、細胞数密度が上昇し易い培養前期に、高い細胞数密度まで増殖させておくことが適切といえる。細胞の増殖は、死細胞や不純物の増加、栄養源や基質の浪費、継代による変異の蓄積等を伴うため、細胞数密度が高くなった培養後期に、細胞の増殖を抑制し、専ら目的物質を産生させることが適切といえる。   In order to increase the final production amount of the target substance, it is effective to produce the substance in a culture system in which both the production rate V and the number of cells N are large, as represented by the formula (I). In addition, in view of shortening the time required for substance production, as shown in FIG. 1, it can be said that it is appropriate to grow the cells to a high cell number density in the early stage of culture in which the cell number density tends to increase. Cell proliferation is accompanied by an increase in dead cells and impurities, waste of nutrients and substrates, accumulation of mutations due to subculture, and so on. It may be appropriate to produce the substance.

そこで、本実施形態に係る培養方法では、連続培養を行っている間に、細胞が時期に適した増殖速度となるように、培養環境を切り替える制御を行う。培養環境を切り替える制御によって、細胞数密度が上昇し易い培養前期を細胞数密度を高めるための培養期とし、細胞が増殖し易い培養環境にして細胞の増殖速度を高める。一方、細胞数密度が高くなった培養後期を目的物質を産生させるための生産期とし、細胞の増殖が抑制される培養環境にして細胞の増殖速度を低くする(図1参照)。   Therefore, in the culture method according to the present embodiment, control for switching the culture environment is performed so that the cells have a growth rate suitable for the time period during continuous culture. By controlling the switching of the culture environment, the first stage of the culture, in which the cell number density tends to increase, is defined as the culture period for increasing the cell number density, and the culture environment in which the cells can easily proliferate is increased to increase the cell growth rate. On the other hand, the latter stage of the culture, in which the cell number density is increased, is set as the production stage for producing the target substance, and the culture environment in which the cell proliferation is suppressed is reduced to reduce the cell growth rate (see FIG. 1).

培養環境を切り替える制御は、細胞の増殖と相関を有する状態量に基づいて行う。指標とする状態量としては、例えば、細胞数密度、細胞の比増殖速度、細胞の生存率、細胞の代謝反応速度(目的物質の代謝生産速度、栄養素の代謝消費速度、老廃物の代謝分泌速度等)、細胞の累積代謝量(目的物質の累積代謝生産量、栄養素の累積代謝消費量、老廃物の累積代謝分泌量等)、細胞周期(細胞集団中でG2期及びM期にある細胞の割合)等の細胞集団の倍加時間と相関を持つ量が挙げられる。   The control for switching the culture environment is performed based on a state quantity having a correlation with the cell growth. The state quantity used as an index includes, for example, cell number density, cell specific growth rate, cell viability, cell metabolic reaction rate (metabolic production rate of target substance, metabolic consumption rate of nutrients, metabolic secretion rate of waste products) Etc.), cumulative metabolic rate of cells (cumulative metabolic production of target substance, cumulative metabolic consumption of nutrients, cumulative metabolic secretion of waste products, etc.), cell cycle (of cells in G2 phase and M phase in cell population) Ratio) and the like which are correlated with the doubling time of the cell population.

培養環境を切り替える制御は、細胞の培養中に、細胞の増殖と相関を有する状態量を測定し、その状態量の測定値が、予め設定されている設定値の範囲の範囲内になったときに行う。測定値としては、培養系で直接的に測定された状態量の値を用いることができる。或いは、事前の培養試験に基づいたシミュレーションを利用して、培養系で直接的に測定された状態量の値から推定される推定値を用いることもできる。   Control for switching the culture environment measures a state quantity having a correlation with cell growth during cell culture, and when the measured value of the state quantity falls within a range of a preset set value. To do. As the measurement value, the value of the state quantity directly measured in the culture system can be used. Alternatively, using a simulation based on a previous culture test, an estimated value estimated from the value of the state quantity directly measured in the culture system can be used.

測定値と比較する設定値としては、細胞の増殖と相関を有する状態量であって、細胞の増殖速度が低いことを示し、物質の生産に適した状態に対応する状態量の値の範囲を、予備試験の結果等に基づいて予め設定することができる。設定値としては、対数増殖期の後期、対数増殖期から静止期への移行時期、静止期の初期等に対応する状態量の値の範囲を設定することが好ましい。   The set value to be compared with the measured value is a state quantity having a correlation with the cell growth, indicating that the cell growth rate is low, and setting a range of the value of the state quantity corresponding to a state suitable for producing a substance. , Can be set in advance based on the results of preliminary tests and the like. As the set value, it is preferable to set the range of the value of the state quantity corresponding to the later stage of the logarithmic growth phase, the transition time from the logarithmic growth phase to the stationary phase, the initial phase of the stationary phase, and the like.

このような設定値の範囲を設定すると、培養系で測定された測定値が設定値の範囲の範囲外である時期が、細胞の対数増殖期と重なり、細胞が増殖し易い培養環境とするべき培養期に相当するようになる。一方、培養系で測定された測定値が設定値の範囲の範囲内である時期が、細胞の静止期と重なり、細胞の増殖が抑制される培養環境とすべき生産期に相当するようになる。   When such a set value range is set, the period in which the measured value measured in the culture system is out of the set value range overlaps the logarithmic growth phase of the cells, and the culture environment in which the cells can easily grow should be established. It becomes equivalent to the culture period. On the other hand, the period when the measured value measured in the culture system is within the range of the set value overlaps with the stationary period of the cell, and corresponds to the production period in which the culture environment in which cell growth is suppressed should be set. .

例えば、細胞の増殖と正の相関を有する状態量を指標とする場合、細胞の増殖と正の相関を有する状態量の測定値が大きいままであり、正相関用に設定した設定値と測定値との差が閾値を超えているとき(設定値の範囲の範囲外であって細胞の増殖速度が高いことを示すとき)には、細胞が増殖中であるため、培養期の培養条件とする。一方、細胞の増殖と正の相関を有する状態量の測定値が小さくなり、正相関用に設定した設定値と測定値との差が閾値以下になったとき(設定値の範囲の範囲内であって細胞の増殖速度が低いことを示すとき)には、細胞が静止期に入り始めているため、生産期の条件に切り替える。   For example, when the state quantity having a positive correlation with the cell growth is used as an index, the measured value of the state quantity having a positive correlation with the cell growth remains large, and the set value and the measurement value set for the positive correlation remain. When the difference from the threshold value exceeds the threshold value (out of the range of the set value and indicates that the growth rate of the cells is high), the cells are growing, and thus the culture conditions in the culture period are set. . On the other hand, when the measured value of the state quantity having a positive correlation with the cell growth decreases and the difference between the set value set for the positive correlation and the measured value becomes equal to or smaller than the threshold (within the range of the set value) (When it indicates that the growth rate of the cells is low), the cells have begun to enter the stationary phase and are switched to production phase conditions.

或いは、細胞の増殖と負の相関を有する状態量を指標とする場合、細胞の増殖と負の相関を有する状態量の測定値が小さいままであり、負相関用に設定した設定値と測定値との差が閾値を超えているとき(設定値の範囲の範囲外であって細胞の増殖速度が高いことを示すとき)には、細胞が増殖中であるため、培養期の培養条件とする。一方、細胞の増殖と負の相関を有する状態量の測定値が大きくなり、負相関用に設定した設定値と測定値との差が閾値以下になったとき(設定値の範囲の範囲内であって細胞の増殖速度が低いことを示すとき)には、細胞の増殖が停滞し始めているため、生産期の条件に切り替える。   Alternatively, when the state quantity having a negative correlation with the cell growth is used as an index, the measured value of the state quantity having a negative correlation with the cell growth remains small, and the set value and the measurement value set for the negative correlation are used. When the difference from the threshold value exceeds the threshold value (out of the range of the set value and indicates that the growth rate of the cells is high), the cells are growing, and thus the culture conditions in the culture period are set. . On the other hand, when the measured value of the state quantity having a negative correlation with the cell growth becomes large and the difference between the set value set for the negative correlation and the measured value becomes equal to or less than the threshold value (within the range of the set value) (When it indicates that the growth rate of the cells is low), since the growth of the cells has begun to stagnate, the conditions are switched to the production phase.

培養環境を切り替える制御の方法としては、培養槽に供給する培地の供給流量を制御する方法を用いることができる。細胞の増殖と相関を有する状態量の測定値が予め設定されている設定値の範囲の範囲外であって細胞の増殖速度が高いことを示すとき、培地の供給流量を細胞の増殖に適した高流量値(第1流量値)に制御し、状態量の測定値が予め設定されている設定値の範囲の範囲内であって細胞の増殖速度が低いことを示すとき、培地の供給流量を高流量値(第1流量値)よりも小さい低流量値(第2流量値)に制御することができる。高流量値は、生産期での細胞数密度と同じ細胞数密度の増殖を可能とする最小流量である。   As a control method for switching the culture environment, a method for controlling the supply flow rate of the culture medium supplied to the culture tank can be used. When the measured value of the state quantity having a correlation with the cell growth is outside the range of the preset set value and indicates that the cell growth rate is high, the supply flow rate of the medium is suitable for the cell growth. The medium flow rate is controlled to a high flow rate value (first flow rate value), and when the measured value of the state quantity is within the range of the preset set value and indicates that the cell growth rate is low, the supply flow rate of the culture medium is reduced. It can be controlled to a low flow value (second flow value) smaller than the high flow value (first flow value). The high flow rate value is the minimum flow rate that allows the growth of the same cell number density as in the production phase.

連続培養中、このように培地の供給流量を低下させる制御を行うと、培養槽に供給される培地成分の濃度が低くなると共に、増殖を阻害する代謝生成物の培養槽における濃度が高くなる。そのため、培養槽内の培養環境が、細胞の増殖が抑制される培養環境に切り替えられる。   When the control for reducing the supply flow rate of the medium is performed in such a manner during the continuous culture, the concentration of the medium component supplied to the culture tank decreases, and the concentration of the metabolite that inhibits the growth in the culture tank increases. Therefore, the culture environment in the culture tank is switched to a culture environment in which cell growth is suppressed.

培地の供給流量の制御は、培養槽中の所定成分の濃度が閾値(境界値)を超えて変化するように行うことが好ましい。濃度を変化させる成分としては、例えば、グルコース等の炭素源や、グルタミン、グルタミン酸等のアミノ酸、アンモニウム塩、アンモニア等の窒素源や、ビタミン類、無機塩類、血清成分等のその他の栄養素や、細胞が代謝生成する乳酸、アンモニア等のように細胞の増殖を阻害する代謝生成物等が挙げられる。培地の供給流量の制御では、特に、培養槽におけるグルコースの濃度、培養槽におけるグルタミンの濃度、培養槽における乳酸の濃度、及び、培養槽におけるアンモニアの濃度のうち、一以上の濃度が調整されることが好ましい。   It is preferable to control the supply flow rate of the culture medium so that the concentration of the predetermined component in the culture tank changes beyond a threshold value (boundary value). Components that change the concentration include, for example, carbon sources such as glucose, glutamine, amino acids such as glutamic acid, ammonium salts, nitrogen sources such as ammonia, vitamins, inorganic salts, other nutrients such as serum components, and cells. And metabolites that inhibit cell growth, such as lactic acid and ammonia, which are metabolically produced. In the control of the supply flow rate of the culture medium, in particular, at least one of the concentration of glucose in the culture tank, the concentration of glutamine in the culture tank, the concentration of lactic acid in the culture tank, and the concentration of ammonia in the culture tank is adjusted. Is preferred.

ここで、グルコース、グルタミン、乳酸及びアンモニアについて、各成分の濃度と、細胞の増殖速度や目的物質の産生速度との関係を、培養実験で確認した結果を示す。   Here, the results of a culture experiment showing the relationship between the concentration of each component and the growth rate of cells and the production rate of a target substance for glucose, glutamine, lactic acid, and ammonia are shown.

供試細胞としては、免疫グロブリンG(Immunoglobulin G:IgG)の遺伝子を導入したチャイニーズハムスターの卵巣細胞(Chinese Hamster Ovary cells:CHO細胞)を用いた。また、培地としては、ダルベッコ改変イーグル培地(Dulbecco's Modified Eagle's Medium:DMEM培地)に10%のウシ胎児血清(Fetal bovine serum:FBS)を加えた液体培地を用いた。   As test cells, Chinese Hamster Ovary cells (CHO cells) into which the gene of immunoglobulin G (Immunoglobulin G: IgG) was introduced were used. As a medium, a liquid medium obtained by adding 10% of fetal bovine serum (FBS) to Dulbecco's Modified Eagle's Medium (DMEM medium) was used.

はじめに、培地(DMEM+10%FBS)に、0.2cells/mLの細胞密度となるように供試細胞を播種し、連続培養で3日間培養した。そして、グルコース、グルタミン、乳酸及びアンモニアのうち、いずれかを種々の濃度に変えた培地に置換して、更に1日間培養した。その後、培養後の各系列における、IgGの産生量の増加(産生速度)、細胞量の増加(比増殖速度)、全細胞中の生細胞の割合(生存率)をそれぞれ求めた。   First, test cells were seeded in a medium (DMEM + 10% FBS) so as to have a cell density of 0.2 cells / mL, and cultured for 3 days in continuous culture. Then, the medium was replaced with a medium in which any of glucose, glutamine, lactic acid and ammonia was changed to various concentrations, and the cells were further cultured for one day. Thereafter, the increase in the amount of IgG produced (production rate), the increase in the amount of cells (specific growth rate), and the ratio of viable cells to all the cells (survival rate) in each series after culturing were determined.

図2は、グルコースの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。
図2には、培地のグルコースの濃度を、0、0.2、0.4、1.5、4、6g/Lのそれぞれに変えた結果を示す。図のとおり、グルコースの濃度が低いほど、比増殖速度が低くなる一方で、産生速度がやや高くなった。
FIG. 2 is a graph showing the relationship between the concentration of glucose and the production rate, specific growth rate, and survival rate of IgG.
FIG. 2 shows the results when the concentration of glucose in the medium was changed to 0, 0.2, 0.4, 1.5, 4, and 6 g / L. As shown in the figure, the lower the glucose concentration, the lower the specific growth rate, but the higher the production rate.

図2に破線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルコースの濃度を0.4g/L以上に調整することが好ましいといえる。一方、生産期には、グルコースの濃度を0.4g/L未満に調整することが好ましいといえる。 As shown by the broken line in FIG. 2, considering the specific growth rate = 0.025 h −1 , it can be said that it is preferable to adjust the glucose concentration to 0.4 g / L or more in the culture period. On the other hand, it can be said that it is preferable to adjust the glucose concentration to less than 0.4 g / L during the production period.

図3は、グルタミンの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。
図3には、培地のグルタミンの濃度を、0、0.2、0.4、1.5、4、6mMのそれぞれに変えた結果を示す。図のとおり、グルタミンの濃度が低いほど、比増殖速度や産生速度が低くなった。
FIG. 3 is a graph showing the relationship between the concentration of glutamine and the production rate, specific growth rate, and survival rate of IgG.
FIG. 3 shows the results obtained by changing the glutamine concentration in the medium to 0, 0.2, 0.4, 1.5, 4, and 6 mM. As shown, the lower the glutamine concentration, the lower the specific growth rate and production rate.

図3に破線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルタミンの濃度を1.5mM以上に調整することが好ましいといえる。一方、生産期には、グルタミンの濃度を1.5mM未満に調整することが好ましいといえる。生産期の濃度は、ある程度高い産生速度を維持する観点からは、0.4mM以上1.5mM未満がより好ましいといえる。 As shown by the broken line in FIG. 3, in view of the specific growth rate = 0.025 h- 1 , it can be said that it is preferable to adjust the concentration of glutamine to 1.5 mM or more in the culture period. On the other hand, it can be said that it is preferable to adjust the concentration of glutamine to less than 1.5 mM during the production period. From the viewpoint of maintaining a somewhat high production rate, it can be said that the concentration in the production period is more preferably 0.4 mM or more and less than 1.5 mM.

図4は、乳酸の濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。
図4には、培地の乳酸の濃度を、0、0.2、0.4、1.5、3.5g/Lのそれぞれに変えた結果を示す。図のとおり、乳酸の濃度が高いほど、産生速度、比増殖速度、生存率がいずれも低くなった。
FIG. 4 is a diagram showing the relationship between the concentration of lactic acid and the production rate, specific growth rate, and survival rate of IgG.
FIG. 4 shows the results when the concentration of lactic acid in the medium was changed to 0, 0.2, 0.4, 1.5, and 3.5 g / L, respectively. As shown in the figure, the higher the concentration of lactic acid, the lower the production rate, specific growth rate, and survival rate.

図4に破線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、乳酸の濃度を1.0g/L以下に調整することが好ましいといえる。一方、生産期には、乳酸の濃度を1.0g/Lを超える濃度に調整することが好ましいといえる。生産期の濃度は、約90%以上の高い生存率を維持する観点からは、1.0g/Lを超え5.0g/L以下がより好ましいといえる。 As shown by the broken line in FIG. 4, it can be said that it is preferable to adjust the concentration of lactic acid to 1.0 g / L or less during the culture period in consideration of the specific growth rate = 0.025 h -1 . On the other hand, it can be said that it is preferable to adjust the concentration of lactic acid to a concentration exceeding 1.0 g / L during the production period. From the viewpoint of maintaining a high survival rate of about 90% or more, it can be said that the concentration during the production period is more than 1.0 g / L and 5.0 g / L or less.

図5は、アンモニアの濃度とIgGの産生速度・比増殖速度・生存率との関係を示す図である。
図5には、培地のアンモニアの濃度を、0、2、6、10、20、30mMのそれぞれに変えた結果を示す。図のとおり、アンモニアの濃度が高いほど、産生速度、比増殖速度、生存率がいずれも低くなった。
FIG. 5 is a graph showing the relationship between the concentration of ammonia and the production rate, specific growth rate, and survival rate of IgG.
FIG. 5 shows the results when the concentration of ammonia in the medium was changed to 0, 2, 6, 10, 20, and 30 mM, respectively. As shown in the figure, the higher the concentration of ammonia, the lower the production rate, specific growth rate, and survival rate.

図5に破線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、アンモニアの濃度を2.0mM以下に調整することが好ましいといえる。一方、生産期には、アンモニアの濃度を2.0mMを超える濃度に調整することが好ましいといえる。生産期の濃度は、約90%以上の高い生存率を維持する観点からは、2.0mMを超え20mM以下がより好ましいといえる。 As shown by the broken line in FIG. 5, in view of the specific growth rate = 0.025 h −1 , it can be said that it is preferable to adjust the concentration of ammonia to 2.0 mM or less in the culture period. On the other hand, it can be said that it is preferable to adjust the concentration of ammonia to a concentration exceeding 2.0 mM in the production period. From the viewpoint of maintaining a high survival rate of about 90% or more, it can be said that the concentration in the production phase is more than 2.0 mM and 20 mM or less.

図6は、グルコースの濃度・グルタミンの濃度と比増殖速度との関係を示す図である。
図6には、培地のグルコースの濃度を、0〜2.5g/L、グルタミンの濃度を、0〜2.5mMのそれぞれに変えた結果を示す。二種の濃度を調整した場合、グルコースの濃度及びグルタミンの濃度がいずれも高いほど、比増殖速度が高くなり、グルコースの濃度及びグルタミンの濃度がいずれも低いほど、比増殖速度が低くなった。一種の成分の濃度を調整した図2や図3と比較すると、各成分の濃度が加算される方向に効果を示しており、比増殖速度を低下させるために低くすべきグルコースの濃度が、一種の成分を調整する場合よりも高くなった。
FIG. 6 is a graph showing the relationship between the concentration of glucose / glutamine and the specific growth rate.
FIG. 6 shows the results when the concentration of glucose in the medium was changed to 0 to 2.5 g / L and the concentration of glutamine was changed to 0 to 2.5 mM. When the two concentrations were adjusted, the specific growth rate increased as the glucose concentration and the glutamine concentration increased, and the specific growth rate decreased as the glucose concentration and the glutamine concentration decreased. Compared with FIGS. 2 and 3 in which the concentration of one type of component is adjusted, the effect is shown in the direction in which the concentration of each component is added, and the concentration of glucose that should be lowered to reduce the specific growth rate is one type. Was higher than when the component was adjusted.

図6に太線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルコースの濃度を1.5g/L以上、且つ、グルタミンの濃度を1.5mM以上に調整することが好ましいといえる。一方、生産期には、グルコースの濃度を1.5g/L未満、且つ、グルタミンの濃度を1.5mM未満に調整することが好ましいといえる。 As shown by the thick line in FIG. 6, in consideration of the specific growth rate = 0.025 h −1 , in the culture period, the glucose concentration was adjusted to 1.5 g / L or more and the glutamine concentration was adjusted to 1.5 mM or more. It can be said to be preferable. On the other hand, it can be said that it is preferable to adjust the glucose concentration to less than 1.5 g / L and the glutamine concentration to less than 1.5 mM during the production period.

図7は、グルコースの濃度・乳酸の濃度と比増殖速度との関係を示す図である。
図7には、培地のグルコースの濃度を、0〜3.0g/L、乳酸の濃度を、0〜2.5g/Lのそれぞれに変えた結果を示す。一種の成分の濃度を調整した図2や図4と比較すると、各成分の濃度が相反する方向に効果を示しており、比増殖速度を低下させるために低くすべきグルコースの濃度が、一種の成分を調整する場合よりも高くなり、比増殖速度を低下させるために高くすべき乳酸の濃度は、一種の成分を調整する場合よりも高くなった。
FIG. 7 is a diagram showing the relationship between the concentration of glucose / the concentration of lactic acid and the specific growth rate.
FIG. 7 shows the results when the concentration of glucose in the medium was changed to 0 to 3.0 g / L and the concentration of lactic acid was changed to 0 to 2.5 g / L. Compared to FIGS. 2 and 4 in which the concentration of one kind of component is adjusted, the effects of the concentration of each kind of component are shown to be opposite to each other. The concentration of lactic acid, which should be higher than in the case of adjusting the component and should be increased to reduce the specific growth rate, was higher than in the case of adjusting one type of component.

図7に太線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルコースの濃度を1.5g/L以上、且つ、乳酸の濃度を2.0g/L以下に調整することが好ましいといえる。一方、生産期には、グルコースの濃度を1.5g/L未満、且つ、乳酸の濃度を2.0g/Lを超える濃度に調整することが好ましいといえる。 As shown by the thick line in FIG. 7, considering the specific growth rate = 0.025 h −1 , in the culture period, the glucose concentration was 1.5 g / L or more and the lactic acid concentration was 2.0 g / L or less. It can be said that it is preferable to adjust to. On the other hand, it can be said that it is preferable to adjust the glucose concentration to less than 1.5 g / L and the lactic acid concentration to more than 2.0 g / L during the production period.

図8は、グルコースの濃度・アンモニアの濃度と比増殖速度との関係を示す図である。
図8には、培地のグルコースの濃度を、0〜5.0g/L、アンモニアの濃度を、0〜2.5mMのそれぞれに変えた結果を示す。一種の成分の濃度を調整した図2や図5と比較すると、各成分の濃度が相反する方向に効果を示しており、比増殖速度を低下させるために低くすべきグルコースの濃度が、一種の成分を調整する場合よりも高くなった。
FIG. 8 is a diagram showing the relationship between the concentration of glucose / the concentration of ammonia and the specific growth rate.
FIG. 8 shows the results when the concentration of glucose in the medium was changed to 0 to 5.0 g / L and the concentration of ammonia was changed to 0 to 2.5 mM. Compared with FIGS. 2 and 5 in which the concentration of one kind of component is adjusted, the effect of each component is opposite to each other, and the concentration of glucose that should be lowered in order to decrease the specific growth rate is one kind. It was higher than when adjusting the components.

図8に太線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルコースの濃度を1.5g/L以上、且つ、アンモニアの濃度を2.0mM以下に調整することが好ましいといえる。一方、生産期には、グルコースの濃度を1.5g/L未満、且つ、アンモニアの濃度を2.0mMを超える濃度に調整することが好ましいといえる。 As shown by the thick line in FIG. 8, considering the specific growth rate = 0.025 h −1 , in the culture period, the glucose concentration was adjusted to 1.5 g / L or more and the ammonia concentration was adjusted to 2.0 mM or less. It can be said to be preferable. On the other hand, in the production period, it can be said that it is preferable to adjust the glucose concentration to be less than 1.5 g / L and the ammonia concentration to be more than 2.0 mM.

図9は、グルタミンの濃度・乳酸の濃度と比増殖速度との関係を示す図である。
図9には、培地のグルタミンの濃度を、0〜3.0mM、乳酸の濃度を、0〜2.5g/Lのそれぞれに変えた結果を示す。一種の成分の濃度を調整した図3や図4と比較すると、各成分の濃度が相反する方向に効果を示しており、比増殖速度を低下させるために低くすべきグルタミンの濃度が、一種の成分を調整する場合よりも低くなり、比増殖速度を低下させるために高くすべき乳酸の濃度は、一種の成分を調整する場合よりも高くなった。
FIG. 9 is a diagram showing the relationship between the concentration of glutamine / the concentration of lactic acid and the specific growth rate.
FIG. 9 shows the results of changing the concentration of glutamine in the medium to 0 to 3.0 mM and the concentration of lactic acid to 0 to 2.5 g / L. Compared with FIGS. 3 and 4 in which the concentration of one kind of component is adjusted, the effects of the concentrations of each kind of component are opposite to each other, and the concentration of glutamine to be lowered in order to reduce the specific growth rate is one kind of glutamine. The concentration of lactic acid, which was lower than in the case of adjusting the component and which should be increased to reduce the specific growth rate, was higher than in the case of adjusting one type of component.

図9に太線で示すように、比増殖速度=0.025h−1を考慮すると、培養期には、グルタミンの濃度を1.0mM以上、且つ、乳酸の濃度を2.0g/L以下に調整することが好ましいといえる。一方、生産期には、グルタミンの濃度を1.0mM未満、且つ、乳酸の濃度を2.0g/Lを超える濃度に調整することが好ましいといえる。 As shown by the bold line in FIG. 9, in consideration of the specific growth rate = 0.025 h −1 , during the culture period, the glutamine concentration was adjusted to 1.0 mM or more and the lactic acid concentration was adjusted to 2.0 g / L or less. It can be said to be preferable. On the other hand, in the production period, it can be said that it is preferable to adjust the glutamine concentration to less than 1.0 mM and the lactic acid concentration to more than 2.0 g / L.

図10は、グルタミンの濃度・アンモニアの濃度と比増殖速度との関係を示す図である。
図10には、培地のグルタミンの濃度を、0〜5.0mM、アンモニアの濃度を、0〜2.5mMのそれぞれに変えた結果を示す。一種の成分の濃度を調整した図3や図5と比較すると、各成分の濃度が相反する方向に効果を示しており、比増殖速度を低下させるために低くすべきグルタミンの濃度が、一種の成分を調整する場合よりも低くなり、比増殖速度を低下させるために高くすべきアンモニアの濃度が、一種の成分を調整する場合よりも低くなった。
FIG. 10 is a graph showing the relationship between the glutamine concentration / ammonia concentration and the specific growth rate.
FIG. 10 shows the results obtained by changing the concentration of glutamine in the medium to 0 to 5.0 mM and the concentration of ammonia to 0 to 2.5 mM. Compared to FIGS. 3 and 5 in which the concentration of one kind of component was adjusted, the effects of the concentrations of each component were opposite to each other, and the concentration of glutamine, which should be lowered in order to reduce the specific growth rate, was one kind. The concentration of ammonia, which should be higher to lower the specific growth rate than in the case of adjusting one component, was lower than that in the case of adjusting one type of component.

図10に太線で示すように、比増殖速度=0.025h−1を考慮すると、増殖期には、グルタミンの濃度を1.0mM以上、且つ、アンモニアの濃度を1.5mM以下に調整することが好ましいといえる。一方、生産期には、グルタミンの濃度を1.0mM未満、且つ、アンモニアの濃度を1.5mMを超える濃度に調整することが好ましいといえる。 As shown by the thick line in FIG. 10, considering the specific growth rate = 0.025 h −1 , in the growth phase, the glutamine concentration should be adjusted to 1.0 mM or more and the ammonia concentration to 1.5 mM or less. Is preferred. On the other hand, in the production period, it can be said that it is preferable to adjust the glutamine concentration to less than 1.0 mM and the ammonia concentration to more than 1.5 mM.

図11は、乳酸の濃度・アンモニアの濃度と比増殖速度との関係を示す図である。
図11には、培地の乳酸の濃度を、0〜5.0g/L、アンモニアの濃度を、0〜2.5mMのそれぞれに変えた結果を示す。一種の成分の濃度を調整した図4や図5と比較すると、各成分の濃度が加算される方向に効果を示しており、比増殖速度を低下させるために高くすべき乳酸の濃度が、一種の成分を調整する場合よりも高くなった。
FIG. 11 is a diagram showing the relationship between the concentration of lactic acid / the concentration of ammonia and the specific growth rate.
FIG. 11 shows the results obtained by changing the concentration of lactic acid in the medium to 0 to 5.0 g / L and the concentration of ammonia to 0 to 2.5 mM. Compared to FIGS. 4 and 5 in which the concentration of one kind of component is adjusted, the effect is shown in the direction in which the concentration of each component is added, and the concentration of lactic acid that should be increased to reduce the specific growth rate is one kind. Was higher than when the component was adjusted.

図11に太線で示すように、比増殖速度=0.025h−1を考慮すると、増殖期には、乳酸の濃度を2.0g/L以下、且つ、アンモニアの濃度を2.0mM以下に調整することが好ましいといえる。一方、生産期には、乳酸の濃度を2.0g/Lを超える濃度、且つ、アンモニアの濃度を1.5mMを超える濃度に調整することが好ましいといえる。 As shown by the thick line in FIG. 11, considering the specific growth rate = 0.025 h −1 , the lactic acid concentration was adjusted to 2.0 g / L or less and the ammonia concentration was adjusted to 2.0 mM or less in the growth phase. It can be said to be preferable. On the other hand, in the production period, it can be said that it is preferable to adjust the concentration of lactic acid to a concentration exceeding 2.0 g / L and the concentration of ammonia to a concentration exceeding 1.5 mM.

したがって、培地の供給流量の制御は、培養液に含まれる一成分の濃度を調整する場合、その成分の濃度を、次の表1に示す条件とすることが好ましいといえる。また、培養液に含まれる複数成分の濃度を調整する場合、その成分の濃度を、次の表2に示す条件とすることが好ましいといえる。これらの成分は、各種の細胞に共通する成分であるため、信頼性が高く有効な指標となる。   Therefore, in controlling the supply flow rate of the culture medium, when adjusting the concentration of one component contained in the culture solution, it can be said that the concentration of the component is preferably set to the condition shown in Table 1 below. When adjusting the concentrations of a plurality of components contained in the culture solution, it can be said that the concentrations of the components are preferably set to the conditions shown in Table 2 below. Since these components are components common to various cells, they are highly reliable and effective indicators.

Figure 2020005511
Figure 2020005511

Figure 2020005511
Figure 2020005511

表1に示すように、一成分の濃度を閾値(境界値)を超えるように調整すると、大きな濃度変化を生じさせる必要があるが、細胞の増殖速度を簡単に低下させることができるため、培養期と生産期とを明確に分離して効率的な連続培養を行うことができる。   As shown in Table 1, when the concentration of one component is adjusted to exceed a threshold value (boundary value), it is necessary to cause a large change in concentration. However, since the growth rate of cells can be easily reduced, culture It is possible to carry out efficient continuous culture by clearly separating the production phase from the production phase.

また、表2に示すように、増殖を促進する複数成分の濃度を閾値(境界値)を超えるように調整すると、個々の成分に大きな濃度変化を生じさせる必要がないので、培養されている細胞に対する影響を低減できる。一方、増殖を阻害する代謝生成物の濃度のみを閾値(境界値)を超えるように調整する場合、その他の培地成分等の濃度が比較的高く保たれ、細胞に対する影響がより低減されるため、場合により、目的物質の代謝生成・タンパクの修飾等を停滞し難くすることができる。   Further, as shown in Table 2, if the concentrations of a plurality of components that promote proliferation are adjusted to exceed a threshold value (boundary value), it is not necessary to cause a large change in the concentration of each component. Can be reduced. On the other hand, when only the concentration of the metabolite that inhibits growth is adjusted to exceed the threshold value (boundary value), the concentration of other medium components and the like is kept relatively high, and the effect on cells is further reduced. In some cases, stagnation of metabolic production of target substances, modification of proteins, and the like can be suppressed.

培養環境を切り替える制御の方法としては、培地の供給流量の制御と培地の温度の制御との組み合わせを用いることもできる。細胞の増殖と相関を有する状態量の測定値が予め設定されている設定値の範囲の範囲外であって細胞の増殖速度が高いことを示すとき、培地の供給流量を増殖に適した高流量値(第1流量値)に制御すると共に、培地の温度を増殖に適した高温度域(第1温度域)に制御し、状態量の測定値が予め設定されている設定値の範囲の範囲内であって細胞の増殖速度が低いことを示すとき、培地の供給流量を増殖に適した高流量値(第1流量値)よりも小さい低流量値(第2流量値)に制御すると共に、培地の温度を増殖に適した高温度域(第1温度域)よりも低い低温度域(第2温度域)に制御することができる。   As a control method for switching the culture environment, a combination of control of the supply flow rate of the culture medium and control of the temperature of the culture medium can be used. When the measured value of the state quantity having a correlation with the cell growth is out of the range of the preset set value and indicates that the cell growth rate is high, the supply flow rate of the medium is set to a high flow rate suitable for growth. Value (first flow rate value), the temperature of the culture medium is controlled to a high temperature range (first temperature range) suitable for growth, and the measured value of the state quantity is set in a preset value range. And when the cell growth rate is low, the supply flow rate of the culture medium is controlled to a low flow rate value (second flow rate value) smaller than the high flow rate value (first flow rate value) suitable for growth, The temperature of the culture medium can be controlled to a low temperature range (second temperature range) lower than a high temperature range (first temperature range) suitable for growth.

連続培養中、このように培地の供給流量を低下させる制御と、培地の温度を低下させる制御とを行うと、培養槽に供給される培地成分の濃度が低くなると共に、増殖を阻害する代謝生成物の培養槽における濃度が高くなり、更に、培養槽中の培養液の温度も低くなる。そのため、培養槽内の培養環境が、細胞の増殖が抑制される培養環境に確実に切り替えられる。   During the continuous culture, when the control for decreasing the supply flow rate of the culture medium and the control for decreasing the temperature of the culture medium are performed as described above, the concentration of the culture medium component supplied to the culture tank decreases, and the metabolic production that inhibits the growth is reduced. The concentration of the product in the culture tank increases, and the temperature of the culture solution in the culture tank also decreases. Therefore, the culture environment in the culture tank can be reliably switched to a culture environment in which cell growth is suppressed.

培地の温度は、具体的には、35℃以上39℃以下、より好ましくは36℃以上38℃以下の高温度域から、29℃以上35℃以下、より好ましくは31℃以上33℃以下の低温度域に切り替えることが好ましい。   The temperature of the medium is, specifically, from a high temperature range of 35 ° C to 39 ° C, more preferably 36 ° C to 38 ° C, and a low temperature of 29 ° C to 35 ° C, more preferably 31 ° C to 33 ° C. Switching to a temperature range is preferred.

次に、前記の培養方法に用いることができる培養装置の構成、及び、その運転方法について説明する。   Next, the configuration of a culture apparatus that can be used in the above-described culture method and the operation method thereof will be described.

図12は、培養装置の構成の一例を模式的に示す図である。
図12に示すように、本実施形態に係る培養装置100は、培養槽1と、攪拌機2と、散気管3と、温度調節装置4と、培地容器5と、細胞分離装置6と、回収槽7と、分析装置8と、制御装置9と、供給ポンプP1と、排出ポンプP2と、吸引ポンプP3と、を備えている。
FIG. 12 is a diagram schematically illustrating an example of the configuration of a culture device.
As shown in FIG. 12, the culture apparatus 100 according to the present embodiment includes a culture tank 1, a stirrer 2, an air diffuser 3, a temperature control device 4, a medium container 5, a cell separation device 6, a collection tank. 7, an analyzer 8, a controller 9, a supply pump P1, a discharge pump P2, and a suction pump P3.

培養槽1は、連続的に供給及び排出される液体培地中で細胞を培養する密閉型の容器とされている。培養槽1内には、培養液を攪拌するための攪拌機2や、培養液に酸素、空気、炭酸ガス等を通気するための散気管3が備えられている。また、培養槽1は、槽内の温度を調整する温度調節装置4を備えている。また、培養槽1内には、温度、pH、溶存酸素濃度、二酸化炭素濃度等を測定する不図示のセンサが備えられる。   The culture tank 1 is a closed container for culturing cells in a liquid medium continuously supplied and discharged. The culture tank 1 is provided with a stirrer 2 for stirring the culture solution and an air diffuser 3 for aerating oxygen, air, carbon dioxide gas, and the like to the culture solution. Further, the culture tank 1 is provided with a temperature control device 4 for adjusting the temperature in the tank. The culture tank 1 is provided with sensors (not shown) for measuring temperature, pH, dissolved oxygen concentration, carbon dioxide concentration and the like.

温度調節装置4は、例えば、ウォータージャケット式の熱交換器等で構成され、培養槽に供給される培地を冷却可能とされる。培地を冷却可能な温度調節装置4によって、連続培養中、培地の温度が高温度域から低温度域に切り替えられる。温度調節装置4は、培養槽1内の培養環境を至適温度に維持する観点から、加熱と冷却の両方を行う装置とされることが好ましい。   The temperature control device 4 is composed of, for example, a water jacket type heat exchanger or the like, and is capable of cooling the culture medium supplied to the culture tank. The temperature of the culture medium is switched from a high temperature range to a low temperature range during continuous culture by the temperature control device 4 that can cool the culture medium. The temperature control device 4 is preferably a device that performs both heating and cooling, from the viewpoint of maintaining the culture environment in the culture tank 1 at an optimum temperature.

図12に示すように、培養槽1は、配管を介して培地容器5と接続される。培地容器5としては、複数個の容器を連続培養に用いることができる。各培地容器5の出口には、バルブVが設けられている。連続培養中、いずれかのバルブVが開放されると、培地容器5に用意された培地が、供給ポンプP1によって所定の流量で連続的に培養槽1に供給される。   As shown in FIG. 12, the culture tank 1 is connected to a culture vessel 5 via a pipe. As the medium container 5, a plurality of containers can be used for continuous culture. A valve V is provided at the outlet of each medium container 5. When any of the valves V is opened during the continuous culture, the culture medium prepared in the culture medium container 5 is continuously supplied to the culture tank 1 at a predetermined flow rate by the supply pump P1.

また、培養槽1は、配管を介して細胞分離装置6と接続されている。連続培養時、培養槽1内の培養液は、排出ポンプP2によって供給流量と同等の流量で引き抜かれ、細胞分離装置6に送られる。細胞分離装置6は、培養液から細胞を分離する装置であり、例えば、濾過分離、重力沈降分離、遠心分離、超音波凝集分離、膜分離等の各種の原理の装置で構成される。   The culture tank 1 is connected to a cell separation device 6 via a pipe. At the time of continuous culture, the culture solution in the culture tank 1 is withdrawn by the discharge pump P2 at a flow rate equal to the supply flow rate, and sent to the cell separation device 6. The cell separation device 6 is a device that separates cells from a culture solution, and is configured by, for example, a device based on various principles such as filtration separation, gravity sedimentation separation, centrifugation, ultrasonic coagulation separation, and membrane separation.

胞分離装置6で分離された細胞は、培養槽1に戻され、連続培養を続けられる。一方、細胞分離装置6で細胞が分離された培養液は、吸引ポンプP3によって回収槽7に送られる。細胞が産生した目的物質は、培地成分、老廃物等と共に回収槽7に回収されるため、回収された培養液は、後工程の精製処理等に供される。   The cells separated by the cell separation device 6 are returned to the culture tank 1 and continuous culture is continued. On the other hand, the culture solution from which the cells have been separated by the cell separation device 6 is sent to the collection tank 7 by the suction pump P3. Since the target substance produced by the cells is collected in the collection tank 7 together with the medium components, waste products, and the like, the collected culture solution is subjected to a subsequent purification treatment or the like.

分析装置8は、培養されている細胞の状態や、培養液の状態を分析する装置である。分析する項目としては、細胞の増殖と相関を有する状態量、培地成分の濃度、浸透圧等が挙げられる。状態量としては、細胞数密度、比増殖速度、生存率、細胞の代謝反応速度、細胞の累積代謝量、細胞周期等が挙げられる。また、培地成分の濃度としては、目的物質、グルコース、グルタミン、乳酸、アンモニア、アミノ酸、ビタミン類、代謝生成物、成長因子、血清成分等の濃度が挙げられる。   The analyzer 8 is a device that analyzes the state of the cultured cells and the state of the culture solution. Items to be analyzed include a state quantity, a concentration of a medium component, an osmotic pressure, and the like that have a correlation with cell growth. The state quantity includes cell number density, specific growth rate, viability, metabolic reaction rate of cells, accumulated metabolic rate of cells, cell cycle, and the like. Examples of the concentration of the medium component include concentrations of a target substance, glucose, glutamine, lactic acid, ammonia, amino acids, vitamins, metabolites, growth factors, serum components, and the like.

また、分析装置8は、細胞の増殖と相関を有する状態量について、事前の培養試験に基づいたシミュレーションを利用して、培養系で直接的に測定された値から推定値を推定する機能が備えられる。状態量の測定結果や推定結果等は、制御装置9に出力される。   In addition, the analyzer 8 has a function of estimating an estimated value from a value directly measured in the culture system using a simulation based on a preliminary culture test for a state quantity correlated with cell growth. Can be The measurement result and the estimation result of the state quantity are output to the control device 9.

制御装置9は、細胞の増殖と相関を有する状態量の測定値に基づいて、培養槽1に培地を供給する供給ポンプP1の供給流量や、温度調節装置4による培地の冷却温度の制御を行う。また、制御装置9は、培養槽1の培養環境因子や、攪拌機2の回転数の制御を行う。培養環境因子としては、培養温度、pH、溶存酸素濃度、二酸化炭素濃度等が挙げられる。   The control device 9 controls the supply flow rate of the supply pump P1 that supplies the culture medium to the culture tank 1 and the cooling temperature of the culture medium by the temperature control device 4 based on the measured value of the state quantity that has a correlation with the cell growth. . Further, the control device 9 controls a culture environment factor of the culture tank 1 and a rotation speed of the stirrer 2. The culture environment factors include culture temperature, pH, dissolved oxygen concentration, carbon dioxide concentration and the like.

図13は、培養装置における連続培養時の処理を示すフローチャートである。
図13には、培養装置100における連続培養の途中に、培養環境を切り替える制御を一回行う処理の流れを例示する。
FIG. 13 is a flowchart showing a process during continuous culture in the culture device.
FIG. 13 illustrates a flow of a process of performing a single control for switching the culture environment during the continuous culture in the culture device 100.

培養装置100には、はじめに、細胞の培養に必要な培養条件を設定する(ステップS1)。設定する項目としては、培養槽1の培養液量、培養温度、pH、溶存酸素濃度、二酸化炭素濃度、攪拌機2の回転速度、培地の供給流量等が挙げられる。培地の供給流量については、培養期と生産期のそれぞれに、個別の制御目標値が設定される。また、培養環境を切り替える制御の開始条件である設定値、連続培養を終了する終了条件が設定される。制御装置9に各項目が入力されると、攪拌機2、散気管3、温度調節装置4等が制御され、培養槽1内の培養環境が培養期に適した培養環境に調整される。   First, culture conditions necessary for culturing cells are set in the culture device 100 (step S1). Items to be set include the amount of culture solution in the culture tank 1, the culture temperature, the pH, the dissolved oxygen concentration, the carbon dioxide concentration, the rotation speed of the stirrer 2, the supply flow rate of the culture medium, and the like. Regarding the supply flow rate of the medium, individual control target values are set for each of the culture period and the production period. In addition, a set value as a start condition of control for switching the culture environment and an end condition for ending the continuous culture are set. When each item is input to the controller 9, the stirrer 2, the air diffuser 3, the temperature controller 4, and the like are controlled, and the culture environment in the culture tank 1 is adjusted to a culture environment suitable for the culture period.

続いて、目的物質を産生する細胞を培地に播種する(ステップS2)。培養槽1内の培養環境が増殖期に適した培養環境に調整された段階、又は、その直前の段階で、培養槽1内に細胞を無菌的に投入して培養を開始する。細胞は適宜の細胞数や状態で投入してよいが、増殖期と同等の培養環境で前培養し、播種する場合の5〜10倍の細胞数密度に調整した細胞懸濁液を投入することが好ましい。   Subsequently, cells producing the target substance are seeded on a medium (step S2). At a stage where the culture environment in the culture tank 1 is adjusted to a culture environment suitable for the growth phase, or at a stage immediately before that, cells are aseptically introduced into the culture tank 1 to start culture. Cells may be introduced in an appropriate number and state of cells, but it is necessary to pre-culture in a culture environment equivalent to that in the growth phase, and to introduce a cell suspension adjusted to 5 to 10 times the cell number density in the case of seeding. Is preferred.

続いて、細胞を培養槽1内で培養して増殖させる(ステップS3)。増殖期の培養温度は、高い増殖速度を保つ観点から、37℃±2℃に制御することが好ましい。増殖期において、細胞は連続培養によって増殖させるが、連続培養の前段階として一時的に回分培養を行ってもよい。   Subsequently, the cells are cultured and grown in the culture tank 1 (step S3). The culture temperature during the growth phase is preferably controlled at 37 ° C. ± 2 ° C. from the viewpoint of maintaining a high growth rate. In the growth phase, the cells are grown by continuous culture, but batch culture may be performed temporarily as a step prior to continuous culture.

続いて、連続培養(培養期の培養)を行っている間に、培養液の分析を行う(ステップS4)。分析装置8によって、細胞の増殖と相関を有する状態量の測定が行われ、直接的な測定や推定によって測定値が取得される。培養液の分析は、連続培養中、連続的に行ってもよいし、間欠的に行ってもよい。また、不図示のセンサによって、培養温度、pH、溶存酸素濃度、二酸化炭素濃度等がモニターされる。   Subsequently, the culture solution is analyzed during the continuous culture (culture during the culture period) (step S4). The analyzer 8 measures a state quantity having a correlation with cell proliferation, and acquires a measured value by direct measurement or estimation. The analysis of the culture solution may be performed continuously or intermittently during continuous culture. Further, a culture temperature, a pH, a dissolved oxygen concentration, a carbon dioxide concentration, and the like are monitored by a sensor (not shown).

続いて、培養槽1内の培養環境が予め設定されている培養期の培養条件に適合しているか否かが判定される(ステップS5)。培養液の分析によって取得された、培養温度、pH、溶存酸素濃度、二酸化炭素濃度等の培養環境因子が、ステップS1で設定された増殖期の培養条件の範囲を逸脱していないかどうかが判定される。   Subsequently, it is determined whether or not the culture environment in the culture tank 1 matches the culture conditions of the culture period set in advance (step S5). It is determined whether or not the culture environment factors such as the culture temperature, pH, dissolved oxygen concentration, and carbon dioxide concentration obtained by the analysis of the culture solution do not deviate from the range of the culture conditions in the growth phase set in step S1. Is done.

判定の結果、培養槽1内の培養環境が培養期の培養条件に適合していないと(ステップS5;No)、培養条件に適合させるための培養環境の制御を行う(ステップS6)。分析された項目が、ステップS1で設定された増殖期の培養条件の範囲を逸脱しないように、攪拌機2、散気管3、温度調節装置4等の制御目標値が更新され、PID制御、比例制御、オン・オフ制御等によって培養環境が調整される。その後、処理を戻し、適切な培養条件の下で培養期の培養が続けられる(ステップS3)。   As a result of the determination, if the culture environment in the culture tank 1 does not conform to the culture conditions in the culture period (Step S5; No), the culture environment is controlled to conform to the culture conditions (Step S6). The control target values of the stirrer 2, the diffuser 3, the temperature control device 4, etc. are updated so that the analyzed items do not deviate from the range of the culture conditions in the growth phase set in step S1, and the PID control and the proportional control are performed. The culture environment is adjusted by ON / OFF control. Thereafter, the process is returned, and the culture in the culture period is continued under appropriate culture conditions (step S3).

一方、判定の結果、培養槽1内の培養環境が培養期の培養条件に適合していると(ステップS5;Yes)、処理を進め、細胞の状態が切替条件に適合しているか否かが判定される(ステップS7)。培養液の分析によって取得された、細胞の増殖と相関を有する状態量の測定値が、ステップS1で設定された培養環境を切り替える制御の設定値の範囲の範囲内か否かが判定される。   On the other hand, as a result of the determination, if the culture environment in the culture tank 1 matches the culture condition in the culture period (Step S5; Yes), the process proceeds, and it is determined whether the state of the cell matches the switching condition. A determination is made (step S7). It is determined whether or not the measured value of the state quantity having a correlation with the cell growth obtained by the analysis of the culture solution is within the range of the set value of the control for switching the culture environment set in step S1.

判定の結果、細胞の状態が切替条件に適合していないと(ステップS7;No)、増殖期から生産期への切り替えが適切でないため、処理を戻し、培養期の培養条件の下で培養期の培養が続けられる(ステップS3)。   As a result of the determination, if the state of the cells does not conform to the switching condition (Step S7; No), the process is returned to the original state because the switching from the growth phase to the production phase is not appropriate. Is continued (step S3).

一方、判定の結果、細胞の状態が切替条件に適合していると(ステップS7;Yes)、増殖期から生産期への切り替えが適切であるため、処理を進め、培養環境を切り替える制御を行う(ステップS8)。培養環境の切り替えは、培養槽に供給する培地の供給流量の制御や、培地の供給流量の制御と培地の温度の制御との組み合わせによって行われる。   On the other hand, as a result of the determination, if the state of the cell conforms to the switching condition (Step S7; Yes), since the switching from the growth phase to the production phase is appropriate, the processing is advanced and control for switching the culture environment is performed. (Step S8). The switching of the culture environment is performed by controlling the supply flow rate of the culture medium supplied to the culture tank, or by controlling the supply flow rate of the culture medium and controlling the temperature of the culture medium.

続いて、細胞を培養槽1内で培養して目的物質を産生させる(ステップS9)。培地の温度の切り替えを行う場合、生産期の培養温度は、細胞の増殖をより確実に抑制する観点から、32℃±3℃に制御することが好ましい。   Subsequently, the cells are cultured in the culture tank 1 to produce the target substance (Step S9). When the temperature of the medium is switched, the culture temperature in the production phase is preferably controlled to 32 ° C. ± 3 ° C. from the viewpoint of more surely suppressing cell growth.

続いて、連続培養(生産期の培養)を行っている間に、培養液の分析を行う(ステップS10)。分析装置8によって、細胞の増殖と相関を有する状態量の測定が行われ、直接的な測定や推定によって測定値が取得される。培養液の分析は、連続培養中、連続的に行ってもよいし、間欠的に行ってもよい。また、不図示のセンサによって、培養温度、pH、溶存酸素濃度、二酸化炭素濃度等がモニターされる。   Subsequently, the culture solution is analyzed during the continuous culture (culture during the production phase) (step S10). The analyzer 8 measures a state quantity having a correlation with cell proliferation, and acquires a measured value by direct measurement or estimation. The analysis of the culture solution may be performed continuously or intermittently during continuous culture. Further, a culture temperature, a pH, a dissolved oxygen concentration, a carbon dioxide concentration, and the like are monitored by a sensor (not shown).

続いて、培養槽1内の培養環境が予め設定されている生産期の培養条件に適合しているか否かが判定される(ステップS11)。培養液の分析によって取得された、培養温度、pH、溶存酸素濃度、二酸化炭素濃度等の培養環境因子が、ステップS1で設定された生産期の培養条件の範囲を逸脱していないかどうかが判定される。   Subsequently, it is determined whether or not the culture environment in the culture tank 1 conforms to the culture conditions in the production period that are set in advance (Step S11). It is determined whether or not the culture environment factors such as the culture temperature, pH, dissolved oxygen concentration, and carbon dioxide concentration obtained by the analysis of the culture solution do not deviate from the range of the culture conditions in the production period set in step S1. Is done.

判定の結果、培養槽1内の培養環境が生産期の培養条件に適合していないと(ステップS11;No)、培養条件に適合させるための培養環境の制御を行う(ステップS12)。分析された項目が、ステップS1で設定された増殖期の培養条件の範囲を逸脱しないように、攪拌機2、散気管3、温度調節装置4等の制御目標値が更新され、PID制御、比例制御、オン・オフ制御等によって培養環境が調整される。その後、処理を戻し、適切な培養条件の下で生産期の培養が続けられる(ステップS9)。   As a result of the determination, if the culture environment in the culture tank 1 does not conform to the culture conditions in the production phase (Step S11; No), the culture environment is controlled to conform to the culture conditions (Step S12). The control target values of the stirrer 2, the diffuser 3, the temperature control device 4, etc. are updated so that the analyzed items do not deviate from the range of the culture conditions in the growth phase set in step S1, and the PID control and the proportional control are performed. The culture environment is adjusted by ON / OFF control. Thereafter, the process is returned, and the culture in the production phase is continued under appropriate culture conditions (step S9).

一方、判定の結果、培養槽1内の培養環境が生産期の培養条件に適合していると(ステップS11;Yes)、処理を進め、細胞の状態が終了条件に適合しているか否かが判定される(ステップS13)。培養液の分析によって取得された、細胞の増殖と相関を有する状態量の測定値が、ステップS1で設定された連続培養を終了する終了条件を満たしているか否かが判定される。   On the other hand, as a result of the determination, if the culture environment in the culture tank 1 conforms to the culture conditions in the production phase (Step S11; Yes), the process proceeds, and it is determined whether the state of the cells conforms to the termination condition. A determination is made (step S13). It is determined whether or not the measured value of the state quantity having a correlation with the cell growth obtained by the analysis of the culture solution satisfies the termination condition for terminating the continuous culture set in step S1.

終了条件としては、細胞の増殖と相関を有する状態量であって、細胞の死滅が顕著であり、物質の生産に適さない状態に対応する状態量の値の範囲を、予備試験の結果等に基づいて予め設定することができる。測定値がこのような終了条件値を下回った状態は、細胞の死滅により不純物の混入等が進むため、連続培養を終了するのが好ましい状態となる。   The termination condition is a state quantity that has a correlation with cell growth, and the range of the value of the state quantity corresponding to a state in which cell death is remarkable and is not suitable for producing a substance is determined by a preliminary test result or the like. It can be set in advance based on this. When the measured value is lower than such an end condition value, it is preferable to end the continuous culture, because the death of the cells causes contamination and the like to proceed.

判定の結果、細胞の状態が終了条件に適合していないと(ステップS13;No)、連続培養の終了が適切でないため、処理を戻し、生産期の培養条件の下で生産期の培養が続けられる(ステップS9)。   As a result of the determination, if the state of the cell does not conform to the termination condition (Step S13; No), the process is returned to the end of the continuous culture because the termination of the continuous culture is not appropriate, and the culture in the production phase is continued under the culture conditions in the production phase. (Step S9).

一方、判定の結果、細胞の状態が終了条件に適合していると(ステップS13;Yes)、連続培養の終了が適切であるため、処理を進め、培養を停止して目的物質の生産を終了する。   On the other hand, as a result of the determination, if the state of the cell conforms to the termination condition (step S13; Yes), the process is advanced, the culture is stopped, and the production of the target substance is terminated because the end of the continuous culture is appropriate. I do.

なお、以上の処理においては、連続培養の途中に、培養環境を切り替える制御を一回行っているが、複数回行ってもよい。培養環境を複数回切り替える場合は、培養環境を切り替える制御の指標値(測定値)として、互いに異なる値を設定することができる。培養環境を複数回切り替える場合、培養期及び生産期のうちの少なくとも一方が、複数の段階に分割される。培養期及び生産期のいずれかに、ステップS3〜7やステップS9〜13(図13参照)を、切り替える回数に応じて繰り返すことができる。   In the above process, the control for switching the culture environment is performed once during the continuous culture, but may be performed a plurality of times. When the culture environment is switched a plurality of times, different values can be set as index values (measured values) of the control for switching the culture environment. When the culture environment is switched a plurality of times, at least one of the culture period and the production period is divided into a plurality of stages. Steps S3 to S7 and steps S9 to S13 (see FIG. 13) can be repeated according to the number of times of switching during any of the culture period and the production period.

以下、細胞の増殖と相関を有する状態量の具体的な分析方法について説明する。   Hereinafter, a specific method of analyzing a state quantity having a correlation with cell proliferation will be described.

<細胞数密度・比増殖速度・生存率>
細胞の状態を表す指標のうち、細胞数密度、比増殖速度、生存率は、次の方法によって求めることができる。
<Cell number density, specific growth rate, viability>
The cell number density, the specific growth rate, and the survival rate among the indexes indicating the state of the cells can be obtained by the following method.

生存率は、全細胞中の生細胞の割合として求めることができる。細胞数は、血球計算盤等を用いた顕微鏡観察、乾燥重量法、濁度法、静電容量法や、酸化型NADや還元型NADHを定量するNAD測定や、フローサイトメトリー等の各種の測定法を用いて測定することができる。また、生細胞数は、トリパンブルー染色法による判別を利用して測定することができる。 The survival rate can be determined as a ratio of living cells to all cells. The number of cells can be measured by various methods such as microscopic observation using a hemocytometer, dry weight method, turbidity method, capacitance method, NAD measurement for quantifying oxidized NAD + and reduced NADH, and flow cytometry. It can be measured using a measuring method. In addition, the number of living cells can be measured by utilizing the determination by trypan blue staining.

比増殖速度は、生細胞数の経時変化を測定して求めることができる。細胞の増殖速度vは、生細胞数をX、比増殖速度をμ、時間をtとしたとき、次の数式(II)のように表される。
v=dX/dt=μX・・・(II)
The specific growth rate can be determined by measuring the change over time in the number of living cells. The cell growth rate v is represented by the following formula (II), where X is the number of living cells, μ is the specific growth rate, and t is the time.
v = dX / dt = μX (II)

細胞の増殖速度vは、数式(II)に表されるように、生細胞数と時間との直線的な関係となるため、異なる2以上の培養時間の測定から求められる。なお、測定数が少なく誤差が無視できない場合があるため、対数増殖期に多数の測定を行い、対数グラフ上に示した測定結果を最小二乗法で直線近似して求めてもよい。   Since the cell growth rate v has a linear relationship between the number of viable cells and time as represented by the formula (II), it can be determined from measurements of two or more different culture times. Since the number of measurements is small and the error may not be negligible, a large number of measurements may be performed during the logarithmic growth phase, and the measurement results shown on the logarithmic graph may be linearly approximated by the least square method.

<代謝反応速度・累積代謝量>
細胞の状態を表す指標のうち、代謝反応速度(目的物質の代謝生産速度、栄養素の代謝消費速度、老廃物の代謝分泌速度等)や、累積代謝量(目的物質の累積代謝生産量、栄養素の累積代謝消費量、老廃物の累積代謝分泌量等)は、次の方法によって求めることができる。
<Metabolic reaction rate / cumulative metabolic rate>
Among the indices indicating the state of the cell, metabolic reaction rates (metabolic production rate of target substance, metabolic consumption rate of nutrients, metabolic secretion rate of waste products, etc.) and cumulative metabolic rate (cumulative metabolic production of target substance, nutrient The cumulative metabolic consumption, the cumulative metabolic secretion of waste products, etc.) can be determined by the following method.

目的物質の代謝生産速度は、産生される目的物質の濃度の経時変化を測定し、単位時間当たり、単位細胞数当たりの生産量に換算して求めることができる。目的物質の濃度は、例えば、目的物質がタンパクである場合、ELISA(Enzyme-Linked ImmunoSorbent Assay)法により定量することができる。測定対象のタンパクと抗原抗体反応を生じる抗体を使用し、標識の蛍光分析、酵素活性分析等を行う。ELISA法としては、直接法、間接法、サンドイッチ法、競合法等のいずれを用いてもよい。   The metabolic production rate of the target substance can be determined by measuring the time-dependent change in the concentration of the target substance to be produced and converting it into the amount of production per unit time per unit number of cells. For example, when the target substance is a protein, the concentration of the target substance can be determined by an ELISA (Enzyme-Linked ImmunoSorbent Assay) method. Using an antibody that produces an antigen-antibody reaction with the protein to be measured, label fluorescence analysis, enzyme activity analysis, and the like are performed. As the ELISA method, any of a direct method, an indirect method, a sandwich method, a competitive method and the like may be used.

栄養素の代謝消費速度、老廃物の代謝分泌速度は、培養槽内の濃度の経時変化を測定し、単位時間当たり、単位細胞数当たりの変化量に換算して求めることができる。栄養素の濃度や老廃物の濃度は、高速液体クロマトグラフィ(High Performance Liquid Chromatography:HPLC)、液体クロマトグラフィ質量分析(Liquid Chromatography-Mass spectrometry:LC/MS)、液体クロマトグラフィタンデム質量分析(LC/MS−MS)、ガスクロマトグラフィ質量分析(Gas Chromatography-Mass spectrometry:GC/MS)、ガスクロマトグラフィタンデム質量分析(GC/MS−MS)等に、細胞を除いた培養液を供して定量することができる。   The rate of metabolic consumption of nutrients and the rate of metabolic secretion of waste products can be determined by measuring the change over time in the concentration in the culture tank and converting the change per unit time per unit number of cells. The concentration of nutrients and the concentration of wastes can be measured by High Performance Liquid Chromatography (HPLC), Liquid Chromatography-Mass spectrometry (LC / MS), and Liquid Chromatography Tandem Mass Spectrometry (LC / MS-MS). Gas chromatography mass spectrometry (GC / MS), gas chromatography tandem mass spectrometry (GC / MS-MS), or the like can be used to quantify the cells by removing the cells.

目的物質の累積代謝生産量、栄養素の累積代謝消費量、老廃物の累積代謝分泌量は、求めた代謝速度を時間積分する方法や、累積量を実測する方法で求めることができる。   The cumulative metabolic production of the target substance, the cumulative metabolic consumption of nutrients, and the cumulative metabolic secretion of waste products can be obtained by a method of integrating the obtained metabolic rate over time or a method of actually measuring the cumulative amount.

図14は、細胞内代謝フラックスの解析方法を示す図である。
図14に示すように、代謝反応速度(目的物質の代謝生産速度、栄養素の代謝消費速度、老廃物の代謝分泌速度)は、細胞内代謝フラックスを解析して求めることもできる。解析の結果を利用すると、計算上で、目的物質の代謝生産速度、栄養素の代謝消費速度、老廃物の代謝分泌速度等の推定が可能である。
FIG. 14 is a diagram showing a method of analyzing intracellular metabolic flux.
As shown in FIG. 14, the metabolic reaction rate (the rate of metabolic production of the target substance, the rate of metabolic consumption of nutrients, and the rate of metabolic secretion of waste products) can also be determined by analyzing the intracellular metabolic flux. By utilizing the results of the analysis, it is possible to estimate the metabolic production rate of the target substance, the metabolic consumption rate of nutrients, the metabolic secretion rate of waste products, and the like in calculation.

細胞内代謝フラックスの解析に用いる代謝反応モデルは、既知の代謝経路に基づいて作成した初期モデルを基礎としてシミュレーションを行い、その結果を培養実験の結果で補正することによって構築することができる。既知の代謝経路としては、例えば、解糖系、糖新生、クエン酸回路、グリオキシル酸回路、酸化的リン酸化、ペントースリン酸回路、還元的ペントースリン酸回路、尿素回路、β酸化、アミノ酸生合成、ヌクレオチド代謝、グリコーゲン合成、脂質生合成、脂肪酸生合成、コレステロール生合成、プリン合成、ピリミジン合成、シキミ酸経路等の各種の代謝経路を用いることができる。   A metabolic reaction model used for analyzing intracellular metabolic flux can be constructed by performing a simulation based on an initial model created based on a known metabolic pathway, and correcting the result with the result of a culture experiment. Known metabolic pathways include, for example, glycolysis, gluconeogenesis, citrate cycle, glyoxylate cycle, oxidative phosphorylation, pentose phosphate cycle, reductive pentose phosphate cycle, urea cycle, β oxidation, amino acid biosynthesis, nucleotide Various metabolic pathways such as metabolism, glycogen synthesis, lipid biosynthesis, fatty acid biosynthesis, cholesterol biosynthesis, purine synthesis, pyrimidine synthesis, and shikimate pathway can be used.

培養実験では、対象の細胞を、炭素の放射性同位体で標識した基質を用いて培養する。そして、各代謝経路を通じて個々に生成される代謝物・中間代謝物の同位体比率をGC/MSで測定する。例えば、培養した細胞を培養槽から採取し、その細胞を固定した後、分析に必要な多種類の代謝物・中間代謝物を抽出する。そして、GC/MS用に誘導体化するために、2%メチルヒドロキシルアミン塩酸塩を加え、55℃で2時間反応させた後、N−メチル−N−tert−ブチルジメチルシリルトリフルオロアセトアミド(MTBSTFA)の1%tert−ブチルジメチルクロロシラン(t−BDMCS)溶液を45μL加え、37℃で1時間反応させた後、GC/MSで分析する。   In culture experiments, cells of interest are cultured using a substrate labeled with a radioactive isotope of carbon. Then, isotope ratios of metabolites / intermediate metabolites individually generated through each metabolic pathway are measured by GC / MS. For example, the cultured cells are collected from a culture tank, and after fixing the cells, various metabolites and intermediate metabolites necessary for analysis are extracted. Then, for derivatization for GC / MS, after adding 2% methylhydroxylamine hydrochloride and reacting at 55 ° C. for 2 hours, N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide (MTBSTFA) After adding 45 μL of a 1% tert-butyldimethylchlorosilane (t-BDMCS) solution and reacting at 37 ° C. for 1 hour, analysis is performed by GC / MS.

GC/MS−MSの分析条件は、例えば、カラムとして、DB−35ms(ジーエルサイエンス社製、長さ30m)を使用し、昇温条件:100℃から300℃まで3.5℃/min、注入口温度:270℃、キャリアガス:ヘリウム、キャリアガス流量:1mL/minとすることができる。   The analysis conditions of GC / MS-MS are, for example, using DB-35 ms (manufactured by GL Sciences, length 30 m) as a column, and increasing the temperature: 3.5 ° C./min from 100 ° C. to 300 ° C. Inlet temperature: 270 ° C., carrier gas: helium, carrier gas flow rate: 1 mL / min.

一方、シミュレーションでは、はじめに、細胞内で連鎖・分岐する代謝反応について代謝反応モデルを仮定し、各代謝反応の代謝反応速度(図14のR1〜R8)の初期値を乱数として与える。そして、定常状態で各代謝物・中間代謝物に含まれる同位体の比率を計算し、この計算値を培養実験の測定結果と比較する。計算値と測定結果とに統計学的に有意差がある場合は、QP(Quadratic Programming)部分問題法とした数値解法により、互いの平均自乗誤差が最小となるように代謝反応速度値を補正する。そして、補正後の条件で再計算を行い、計算値と測定結果との有意差がなくなるまで計算と補正を繰り返す。   On the other hand, in the simulation, first, a metabolic reaction model is assumed for a metabolic reaction chained and branched in a cell, and initial values of metabolic reaction rates (R1 to R8 in FIG. 14) of each metabolic reaction are given as random numbers. Then, in the steady state, the ratio of the isotope contained in each metabolite / intermediate metabolite is calculated, and this calculated value is compared with the measurement result of the culture experiment. If there is a statistically significant difference between the calculated value and the measurement result, the metabolic reaction rate value is corrected by a numerical solution based on the QP (Quadratic Programming) subproblem method so that the mutual mean square error is minimized. . Then, recalculation is performed under the corrected condition, and the calculation and correction are repeated until there is no significant difference between the calculated value and the measurement result.

有意差がない状態は、計算上、妥当な代謝反応モデルであるため、計算した代謝反応速度値等を推定値として用いることができる。このような解析を利用すると、連続培養中、分析・定量を頻繁に行う必要がなくなり、時間がかかる分析・定量を行う制約をなくすることができる。   Since a state where there is no significant difference is a metabolic reaction model that is appropriate for calculation, the calculated metabolic reaction rate value or the like can be used as an estimated value. The use of such an analysis eliminates the need for frequent analysis and quantification during continuous culture, and eliminates the time-consuming restriction of performing analysis and quantification.

<細胞周期>
細胞の状態を表す指標のうち、細胞周期は、ヨウ化プロピジウム(Propidium Iodide:PI)染色法による判別を利用し、フローサイトメトリーを行うことによって求めることができる。
<Cell cycle>
Among the indices indicating the state of the cell, the cell cycle can be determined by performing flow cytometry using discrimination by propidium iodide (PI) staining.

図15は、細胞周期の概念を示す図である。
図15に示すように、細胞周期は、細胞の分裂・増殖や、細胞内代謝に影響する。真核細胞の細胞周期は、有糸分裂期(M期)と、それ以外の間期(G1期、S期、G2期)とからなる。細胞周期は約16〜24時間、M期は約1時間、S期は約6〜8時間、G2期は約2〜6時間であり、M期、G1期、S期及びG2期の時間比は、凡そ1:5:7:3である。G1期には、様々な要因で細胞周期を中断し、G0期に入って休眠状態となる細胞がある。
FIG. 15 is a diagram showing the concept of the cell cycle.
As shown in FIG. 15, the cell cycle affects cell division / proliferation and intracellular metabolism. The cell cycle of eukaryotic cells consists of mitosis (M phase) and other interphases (G1, S, G2). The cell cycle is about 16 to 24 hours, the M phase is about 1 hour, the S phase is about 6 to 8 hours, the G2 phase is about 2 to 6 hours, and the time ratio between the M phase, G1, S phase and G2 phase Is approximately 1: 5: 7: 3. In the G1 phase, there are cells that interrupt the cell cycle due to various factors and enter the G0 phase and become dormant.

G2期やM期の細胞は、細胞分裂を開始しようとしている一方で、G1期やG0期の細胞は、細胞分裂までに時間があり、G0期は不定の長さである。細胞が増殖し易い培養環境とするべき培養期は、細胞周期がG2期やM期にある細胞の割合が高い状態、すなわち、培養されている細胞の多くが細胞分裂を開始しようとしている状態と一致させることが好ましいといえる。一方、細胞の増殖が抑制される培養環境とすべき生産期は、細胞周期がG1期やG0期にある細胞の割合が高い状態、すなわち、培養されている細胞の多くが間期にある状態と一致させることが好ましいといえる。   Cells in the G2 and M phases are about to initiate cell division, while cells in the G1 and G0 phases have time to divide, and the G0 phase has an indefinite length. The culture period in which the culture environment in which the cells can easily proliferate should be a state in which the proportion of cells in the G2 or M phase of the cell cycle is high, that is, a state in which many of the cultured cells are about to start cell division. It can be said that it is preferable to match them. On the other hand, the production period, which should be a culture environment in which cell growth is suppressed, is a state in which the proportion of cells in the cell cycle in the G1 or G0 phase is high, that is, a state in which most of the cultured cells are in the interphase. It can be said that it is preferable to match with.

図16は、核染色による蛍光強度と細胞数との関係を説明する図である。
図16において、縦軸は、細胞数、横軸は、PI染色法によって核染色した細胞の蛍光強度を示す。細胞を培養し、細胞周期が混在している細胞集団を核染色してフローサイトメトリーで蛍光検出すると、図16に示すような特異的なプロファイル(C11,C12,C13)が得られる。
FIG. 16 is a diagram illustrating the relationship between the fluorescence intensity obtained by nuclear staining and the number of cells.
In FIG. 16, the vertical axis indicates the number of cells, and the horizontal axis indicates the fluorescence intensity of cells stained for nuclei by the PI staining method. When cells are cultured, and a cell population having a mixed cell cycle is subjected to nuclear staining and fluorescence detection by flow cytometry, specific profiles (C11, C12, C13) as shown in FIG. 16 are obtained.

曲線C11は、G1期やG0期の細胞から得られるプロファイルの一例を示している。G1期やG0期の細胞は、染色体DNAの複製が開始していないため、検出される蛍光強度が弱くなる。   A curve C11 shows an example of a profile obtained from cells in the G1 or G0 phase. Since the replication of chromosomal DNA has not started in cells in the G1 or G0 phase, the detected fluorescence intensity is weak.

また、曲線C12は、S期の細胞から得られるプロファイルの一例を示している。S期の細胞は、染色体DNAの複製を開始しており、DNA量が増加段階にあるため、検出される蛍光強度が一様でなくなり広範囲に広がる。   A curve C12 shows an example of a profile obtained from cells in the S phase. Since cells in the S phase have begun replication of chromosomal DNA and the amount of DNA is in an increasing stage, the detected fluorescence intensity is not uniform and spreads over a wide range.

一方、曲線C13は、G2期やM期の細胞から得られるプロファイルの一例を示している。G2期やM期の細胞は、細胞分裂に十分なDNAが合成されているため、検出される蛍光強度が強くなる。   On the other hand, a curve C13 shows an example of a profile obtained from cells in the G2 or M phase. In the cells in the G2 phase and the M phase, since sufficient DNA for cell division is synthesized, the detected fluorescence intensity is high.

図16に示すプロファイルは、細胞数の度数分布として得られる。よって、フローサイトメトリーで蛍光検出を行い、度数分布上の各曲線の積分面積を計算すると、G2期やM期にある細胞の細胞数や割合を知ることができる。このような細胞周期(細胞集団中でG2期及びM期にある細胞の割合)は、細胞の増殖と相関があるが、分析のために細胞の増殖を待つ必要が無く、1時間程度で終了させることができるため、培養環境の切り替えを適切な時期に行うことができる。   The profile shown in FIG. 16 is obtained as a frequency distribution of the number of cells. Therefore, when fluorescence is detected by flow cytometry and the integrated area of each curve on the frequency distribution is calculated, the number and ratio of cells in the G2 and M phases can be known. Such a cell cycle (the proportion of cells in the G2 phase and the M phase in the cell population) is correlated with cell growth, but does not have to wait for cell growth for analysis and is completed in about one hour. Therefore, the culture environment can be switched at an appropriate time.

以上の培養方法及び培養装置によると、細胞の増殖と相関を有する状態量が細胞の培養中に測定され、その状態量に基づいて培養環境を切り替える制御が行われるため、細胞を時期に適した増殖速度で効率的に連続培養することができる。培養前期の増殖期には、細胞数密度を効率的に上昇させることができるので、十分に増殖させた細胞に目的物質を大量に産生させることができる。一方、培養後期の生産期には、細胞の増殖を抑制して目的物質を産生させることができるので、死細胞や不純物の増加、栄養源や基質の浪費、継代による変異の蓄積等を抑制して、目的物質を高純度化と運転コストや精製コストの低減とを図ることができる。   According to the above culturing method and culturing apparatus, the state quantity having a correlation with the cell growth is measured during the culturing of the cell, and control for switching the culture environment is performed based on the state quantity, so that the cell is suitable for the time. Continuous culture can be performed efficiently at the growth rate. Since the cell density can be efficiently increased in the growth phase in the early stage of the culture, the target substance can be produced in a large amount by sufficiently grown cells. On the other hand, during the late production phase, the target substance can be produced by suppressing cell growth, thus suppressing the increase of dead cells and impurities, waste of nutrient sources and substrates, accumulation of mutations due to passage, etc. As a result, the target substance can be highly purified and the operating cost and the purification cost can be reduced.

以上、本発明の実施形態について説明したが、本発明は、前記の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、或る実施形態の構成の一部を他の構成に置き換えたり、或る実施形態の構成の一部を省略したりすることも可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, a part of the configuration of an embodiment can be replaced with another configuration, or a part of the configuration of an embodiment can be omitted.

100 培養装置
1 培養槽
2 攪拌機
3 散気管
4 温度調節装置
5 培地容器
6 細胞分離装置
7 回収槽
8 分析装置
9 制御装置
P1 供給ポンプ
P2 排出ポンプ
P3 吸引ポンプ
V バルブ
REFERENCE SIGNS LIST 100 culture device 1 culture tank 2 stirrer 3 diffuser 4 temperature control device 5 medium container 6 cell separation device 7 recovery tank 8 analysis device 9 control device P1 supply pump P2 discharge pump P3 suction pump V valve

Claims (10)

細胞を連続培養する培養方法であって、
細胞の培養中に前記細胞の増殖と相関を有する状態量を測定し、
前記状態量の測定値が予め設定されている設定値の範囲の範囲外であって前記細胞の増殖速度が高いことを示すとき、培養槽に供給される培地の供給流量を第1流量値に制御し、
前記測定値が前記設定値の範囲の範囲内であって前記細胞の増殖速度が低いことを示すとき、前記培地の供給流量を前記第1流量値よりも小さい第2流量値に制御する培養方法。
A method for continuously culturing cells, comprising:
Measuring the state quantity having a correlation with the proliferation of the cells during the culture of the cells,
When the measured value of the state quantity is outside the range of the preset set value and indicates that the growth rate of the cells is high, the supply flow rate of the medium supplied to the culture tank is set to the first flow rate value. Control and
A culture method for controlling the supply flow rate of the medium to a second flow rate value smaller than the first flow rate value when the measured value is within the range of the set value and indicates that the growth rate of the cells is low; .
前記測定値が前記設定値の範囲の範囲外であるとき、前記培地の供給流量を前記第1流量値に制御すると共に、前記培地の温度を第1温度域に制御し、
前記測定値が前記設定値の範囲の範囲内であるとき、前記培地の供給流量を前記第2流量値に制御すると共に、前記培地の温度を前記第1温度域よりも低い第2温度域に制御する請求項1に記載の培養方法。
When the measured value is out of the range of the set value, while controlling the supply flow rate of the culture medium to the first flow rate value, and controlling the temperature of the culture medium to a first temperature range,
When the measured value is within the range of the set value, the supply flow rate of the culture medium is controlled to the second flow rate value, and the temperature of the culture medium is set to a second temperature range lower than the first temperature range. The culture method according to claim 1, which is controlled.
前記状態量が、細胞数密度、比増殖速度、細胞の生存率、代謝反応速度、累積代謝量、又は、細胞集団中でG2期及びM期にある細胞の割合である請求項1又は請求項2に記載の培養方法。   The said state quantity is a cell number density, a specific growth rate, a cell viability, a metabolic reaction rate, a cumulative metabolic rate, or a ratio of cells in the G2 phase and the M phase in the cell population. 3. The culture method according to 2. 前記培地の供給流量の制御によって、前記培養槽におけるグルコースの濃度、グルタミンの濃度、乳酸の濃度、及び、アンモニアの濃度のうち、一以上の濃度が調整される請求項1又は請求項2に記載の培養方法。   The concentration of at least one of a concentration of glucose, a concentration of glutamine, a concentration of lactic acid, and a concentration of ammonia in the culture tank is controlled by controlling a supply flow rate of the culture medium. Culture method. 前記培養槽におけるグルコースの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには0.4g/L以上の濃度、前記測定値が前記設定値の範囲の範囲内であるときには0.4g/L未満の濃度に調整されるか、又は、前記培養槽におけるグルタミンの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.5mM以上の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.5mM未満の濃度に調整される請求項1又は請求項2に記載の培養方法。   The concentration of glucose in the culture tank is 0.4 g / L or more when the measured value is out of the range of the set value, and the concentration is 0.4 g / L when the measured value is in the range of the set value. The concentration is adjusted to less than 4 g / L, or the concentration of glutamine in the culture tank is 1.5 mM or more when the measured value is out of the range of the set value, and the measured value is The culture method according to claim 1 or 2, wherein the concentration is adjusted to less than 1.5 mM when the concentration is within the range of the set value. 前記培養槽における乳酸の濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.0g/L以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.0g/Lを超える濃度に調整されるか、又は、前記培養槽におけるアンモニアの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0mM以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0mMを超える濃度に調整される請求項1又は請求項2に記載の培養方法。   The concentration of lactic acid in the culture tank is 1.0 g / L or less when the measured value is out of the range of the set value, and 1. when the measured value is in the range of the set value. The concentration is adjusted to a concentration exceeding 0 g / L, or the concentration of ammonia in the culture tank is 2.0 mM or less when the measured value is out of the range of the set value. The culture method according to claim 1 or 2, wherein the concentration is adjusted to exceed 2.0 mM when the concentration is within the range of the set value. 前記培養槽におけるグルコースの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.5g/L以上の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.5g/L未満の濃度に調整され、且つ、前記培養槽におけるグルタミンの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.5mM以上の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.5mM未満の濃度に調整されるか、又は、前記培養槽における乳酸の濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0g/L以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0g/Lを超える濃度に調整されるか、又は、前記培養槽におけるアンモニアの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0mM以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0mMを超える濃度に調整される請求項1又は請求項2に記載の培養方法。   The concentration of glucose in the culture tank is 1.5 g / L or more when the measured value is out of the range of the set value, and 1. when the measured value is in the range of the set value. When the concentration is adjusted to less than 5 g / L and the concentration of glutamine in the culture tank is outside the range of the set value, the concentration is 1.5 mM or more, and the measured value is the set value. Is adjusted to a concentration of less than 1.5 mM when the concentration is within the range of, or 2.0 g / l when the measured value is out of the range of the set value. L or less, when the measured value is within the range of the set value, the concentration is adjusted to more than 2.0 g / L, or the concentration of ammonia in the culture tank, Set value The culture according to claim 1 or 2, wherein the concentration is adjusted to 2.0 mM or less when out of the range, and to a concentration exceeding 2.0 mM when the measured value is within the set value range. Method. 前記培養槽におけるグルタミンの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.0mM以上の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.0mM未満の濃度に調整され、且つ、前記培養槽における乳酸の濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0g/L以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0g/Lを超える濃度に調整されるか、又は、前記培養槽におけるアンモニアの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには1.5mM以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには1.5mMを超える濃度に調整される請求項1又は請求項2に記載の培養方法。   The concentration of glutamine in the culture tank is 1.0 mM or more when the measured value is outside the range of the set value, and less than 1.0 mM when the measured value is within the range of the set value. And the concentration of lactic acid in the culture tank is 2.0 g / L or less when the measured value is out of the range of the set value, and the measured value is in the range of the set value. Is adjusted to a concentration exceeding 2.0 g / L when the concentration is within the range, or the concentration of ammonia in the culture tank is 1.5 mM or less when the measured value is outside the range of the set value. The culture method according to claim 1 or 2, wherein the concentration is adjusted to a concentration exceeding 1.5 mM when the measured value is within the range of the set value. 前記培養槽における乳酸の濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0g/L以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0g/Lを超える濃度に調整され、且つ、前記培養槽におけるアンモニアの濃度が、前記測定値が前記設定値の範囲の範囲外であるときには2.0mM以下の濃度、前記測定値が前記設定値の範囲の範囲内であるときには2.0mMを超える濃度に調整される請求項1又は請求項2に記載の培養方法。   1. The concentration of lactic acid in the culture tank is 2.0 g / L or less when the measured value is out of the range of the set value, and 2. when the measured value is within the range of the set value. When the concentration is adjusted to more than 0 g / L, and the concentration of ammonia in the culture tank is outside the range of the set value, the concentration is 2.0 mM or less, and the measured value is the set value. The culture method according to claim 1 or 2, wherein the concentration is adjusted to more than 2.0 mM when the concentration is within the range of (3). 培養槽に培地を連続的に供給し、且つ、培地を連続的に排出させながら細胞を連続培養する培養装置であって、
細胞を培養するための培養槽と、
前記培養槽に培地を供給する供給ポンプと、
前記培養槽に供給される前記培地を冷却可能な温度調節装置と、
細胞の培養中に前記細胞の増殖と相関を有する状態量を測定する分析装置と、
前記状態量の測定値に基づいて前記培地の供給流量を制御する制御装置と、を備える培養装置。
A culture apparatus that continuously supplies a medium to a culture tank, and continuously cultures cells while continuously discharging the medium,
A culture tank for culturing cells,
A supply pump for supplying a culture medium to the culture tank,
A temperature control device capable of cooling the medium supplied to the culture tank,
An analyzer for measuring a state quantity having a correlation with the growth of the cell during the culture of the cell,
A controller that controls a supply flow rate of the culture medium based on the measured value of the state quantity.
JP2018126814A 2018-07-03 2018-07-03 Culture method and culture apparatus Pending JP2020005511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126814A JP2020005511A (en) 2018-07-03 2018-07-03 Culture method and culture apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126814A JP2020005511A (en) 2018-07-03 2018-07-03 Culture method and culture apparatus

Publications (1)

Publication Number Publication Date
JP2020005511A true JP2020005511A (en) 2020-01-16

Family

ID=69149564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126814A Pending JP2020005511A (en) 2018-07-03 2018-07-03 Culture method and culture apparatus

Country Status (1)

Country Link
JP (1) JP2020005511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190300A1 (en) * 2022-03-28 2023-10-05 富士フイルム株式会社 Method for producing product and product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146290A (en) * 1991-03-11 1993-06-15 Teijin Ltd Culture method for animal cell
JPH0975077A (en) * 1995-09-19 1997-03-25 Suntory Ltd New cultivation method of animal cell
JP2001504710A (en) * 1997-02-19 2001-04-10 ファイトバイオテック・インコーポレーテッド How to increase the growth of plant cell cultures
WO2002101019A2 (en) * 2001-06-13 2002-12-19 Genentech, Inc. Methods of culturing animal cells and polypeptide production in animal cells
JP2003235544A (en) * 2002-02-20 2003-08-26 Hitachi Ltd Method for controlling culture of biological cell, control device for controlling culture apparatus and culture apparatus
JP2008178344A (en) * 2007-01-24 2008-08-07 Hitachi Plant Technologies Ltd Method and apparatus for cell culture
JP2011177063A (en) * 2010-02-26 2011-09-15 Hitachi Plant Technologies Ltd Method and apparatus for counting cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146290A (en) * 1991-03-11 1993-06-15 Teijin Ltd Culture method for animal cell
JPH0975077A (en) * 1995-09-19 1997-03-25 Suntory Ltd New cultivation method of animal cell
JP2001504710A (en) * 1997-02-19 2001-04-10 ファイトバイオテック・インコーポレーテッド How to increase the growth of plant cell cultures
WO2002101019A2 (en) * 2001-06-13 2002-12-19 Genentech, Inc. Methods of culturing animal cells and polypeptide production in animal cells
JP2003235544A (en) * 2002-02-20 2003-08-26 Hitachi Ltd Method for controlling culture of biological cell, control device for controlling culture apparatus and culture apparatus
JP2008178344A (en) * 2007-01-24 2008-08-07 Hitachi Plant Technologies Ltd Method and apparatus for cell culture
JP2011177063A (en) * 2010-02-26 2011-09-15 Hitachi Plant Technologies Ltd Method and apparatus for counting cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOTECHNOLOGY AND BIOENGINEERING, vol. 63, no. 5, JPN6012040257, 1999, pages 573 - 582, ISSN: 0005021130 *
BIOTECHNOLOGY AND BIOENGINEERING, vol. 85, no. 2, JPN6012040258, January 2004 (2004-01-01), pages 177 - 184, ISSN: 0005021129 *
CYTOTECHNOLOGY, 1994, VOL.16, P.37-42, JPN6011013805, ISSN: 0005021128 *
JOURNAL OF BIOTECHNOLOGY, vol. 15, JPN6012040256, 1990, pages 113 - 128, ISSN: 0005021127 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190300A1 (en) * 2022-03-28 2023-10-05 富士フイルム株式会社 Method for producing product and product

Similar Documents

Publication Publication Date Title
Bielser et al. Perfusion mammalian cell culture for recombinant protein manufacturing–A critical review
JP6608705B2 (en) Continuous purification of therapeutic proteins
Xu et al. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study
RU2694327C2 (en) Method of cultivation in system of inoculating fermentors (embodiments)
Müller et al. Process intensification in the biopharma industry: Improving efficiency of protein manufacturing processes from development to production scale using synergistic approaches
JP5018104B2 (en) Cell culture method and cell culture apparatus
US20200255785A1 (en) Online biomass capacitance monitoring during large scale production of polypeptides of interest
CN102391995A (en) Serum-free high density suspension perfusion culture technology of hybridoma cells
JP2021168681A (en) Perfusion culturing method and use thereof
CN112662551B (en) Cell culture control method and system
US11774287B2 (en) Raman spectroscopy integrated perfusion cell culture system for monitoring and auto-controlling perfusion cell culture
US20210189452A1 (en) Method and apparatus for screening of cell strains and culture conditions
Ozturk Equipment for large-scale mammalian cell culture
Woodgate Perfusion N-1 culture—opportunities for process intensification
JP2020005511A (en) Culture method and culture apparatus
JP2020124169A (en) Culture apparatus and culture method
Winder et al. The use of continuous culture in systems biology investigations
WO2018235441A1 (en) Screening method for continuous culture conditions and screening device for continuous culture conditions
Choo et al. High‐level production of a monoclonal antibody in murine myeloma cells by perfusion culture using a gravity settler
US20220403316A1 (en) Process and system for producing an inoculum
JP5913084B2 (en) CULTURE CONTROL METHOD, CELL CULTURE DEVICE, AND CELL CHARACTERISTICS EVALUATION DEVICE
Yang Mammalian fed‐batch cell culture for biopharmaceuticals
Lang et al. WAVE-based intensified perfusion cell culture for fast process development
WO2024079840A1 (en) Method for controlling culture device, and method for controlling culture device in association with cell culture
Josefano et al. Bioprocessing of mAb (Monoclonal Antibodies) using Chinese Hamster Ovary (CHO) Cells: A Review

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328