JP4376988B2 - Hydrogen storage alloy negative electrode - Google Patents

Hydrogen storage alloy negative electrode Download PDF

Info

Publication number
JP4376988B2
JP4376988B2 JP36048998A JP36048998A JP4376988B2 JP 4376988 B2 JP4376988 B2 JP 4376988B2 JP 36048998 A JP36048998 A JP 36048998A JP 36048998 A JP36048998 A JP 36048998A JP 4376988 B2 JP4376988 B2 JP 4376988B2
Authority
JP
Japan
Prior art keywords
negative electrode
hydrogen storage
storage alloy
alloy
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36048998A
Other languages
Japanese (ja)
Other versions
JP2000182608A (en
Inventor
賢一 小林
浩 小倉
雅人 大沢
宣行 室町
隆一郎 原田
美枝子 木村
秀樹 豊島
博之 鈴木
恭一 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Sanoh Industrial Co Ltd
Original Assignee
Honda Motor Co Ltd
Japan Metals and Chemical Co Ltd
Sanoh Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Japan Metals and Chemical Co Ltd, Sanoh Industrial Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP36048998A priority Critical patent/JP4376988B2/en
Publication of JP2000182608A publication Critical patent/JP2000182608A/en
Application granted granted Critical
Publication of JP4376988B2 publication Critical patent/JP4376988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明が属する技術分野】
この発明は、水素吸蔵合金負極に関し、とくに使用状態において瞬間的に高負荷がかかった場合でも、その負荷に応じた高率放電ができる負極について提案する。
【0002】
【従来の技術】
一般に、ニッケル水素電池は、水酸化ニッケル正極と、水素吸蔵合金負極とを組み合わせて構成されている。このようなニッケル水素電池は、エネルギー密度の大きな電池構成が可能となるが、水素吸蔵合金の電解液による腐食や充放電に伴う水素吸蔵合金の微粉化、過充時の発生酸素等によって起こる電池性能の劣化という課題を抱えていた。
このような課題を解決する目的で従来、種々の提案がなされている。特に、水素吸蔵合金粒子の大きさを選択調整することにより、上記課題を解決する下記のような提案がある。
【0003】
▲1▼ 特開平1−132049号公報には、平均粒子径5〜10μmと25〜35μmの2種の合金粉末から構成される負極を用いることで、酸素ガス吸収が優れかつ高率放電特性の良好な水素吸蔵電極を開示している。
▲2▼ 特許第2642144 号には、高率放電特性の改善、大電流で放電したときの放電電圧及び放電容量の低下を防止し、併せて、表面酸化物の影響により水素吸蔵効率の低下がない水素吸蔵合金電極を製造するために、合金粉末の粒度を149μm以下とし、74μm以上のものを30重量%以上含有する焼成合金粉末を提案している。
▲3▼ 特開平2−65058 号公報には、単一粒径の従来の水素吸蔵合金が充放電初期から所定以上の容量がないこと、寿命が短いことから、粒径が15〜100μmの大きな第一の粉末と、15μm以下の小さな第2の粉末を組み合わせにかかる水素吸蔵合金電極を開示している。
▲4▼ 特開平5−266887号公報には、粉砕によって水素吸蔵合金の粒径を小さくした方が、充放電効率が良いと考えられるが、粉砕過程で合金表面が酸化を受けて充放電反応が阻害されるので、これを防止するために、平均粒径20μm以下の合金に鉄および/または水酸化鉄を添加して初期特性の向上を図り、化成処理に要する時間を短縮することを特徴とする金属−水素アルカリ蓄電池を開示している。
【0004】
【発明が解決しようとする課題】
上記各提案は、ニッケル水素電池の負極に要求される基本的な電池特性をある程度は改善した。しかし、負極に用いられる水素吸蔵合金粒子が、充・放電サイクルを繰り返すことによって微粉化するという問題までを解決する方途を示してはいない。即ち、上記各提案はいずれも、このような微粉化の問題を解決するものでなく、この点についての課題は依然として潜在したままというのが実情である。
もし、このような課題を残したままだと、上記各提案のような広範囲な粒度範囲をもつ水素吸蔵合金粒子や粒度そのものが大きい水素吸蔵合金粒子では、オーム抵抗の増加を抑制することができなくなる。たとえば、発明者らの研究によると、平均粒径34μmの水素吸蔵合金を用いて作製した負極を装備した円筒型電池を使い、活性化後150サイクルの充・放電を繰り返したときの該水素吸蔵合金の平均粒径は10μm程度まで微粉化することがわかっている。
そして、水素吸蔵合金が充・放電によって微粉化すると、合金粒子同士またはこの合金粒子と負極を構成する基板との接触抵抗が増加し、その結果として負極のオーム抵抗が高くなり電池特性が劣化するのである。
【0005】
また、従来技術が抱えているもう一つの大きな課題は、家電製品用電池のように、放電が一定の時間一定の電流で流れるような用途ではなく、一時的に高い負荷がかかるために瞬間的に高率放電させなければならないような用途に適合する電池構成になっていないことである。このような用途の電池は、高負荷時に高率放電させた場合でも、その負荷が低下するときは放電容量を抑制する必要があり、こうした高負荷−低負荷を繰り返すようなサイクルで放電させることが求められる電池については、従来の二次電池とくに水素吸蔵合金負極では不可能であり、こうした要求をも十分に満足させる電池がないという課題があった。
【0006】
本発明は、繰り返し高率放電性能に優れ、かつサイクル寿命特性のよい負極を得ることを目的としており、しかも充・放電サイクルを繰り返しても水素吸蔵合金粒子同士の密着性が優れ、負極の基板と該合金粒子とが剥離することのないの負極を開発するところにある。
とくに、本発明は、充・放電サイクルにあっても微粉化が少なく、高率放電ができ、不規則な放電パターンにおいても電池性能の低下がない負極を提供するところにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために本発明は、次の事項を骨子とする課題解決手段を提案する
【0008】
すなわち、本発明は、水素吸蔵合金を主体とする負極と、金属酸化物を主体とする正極と、セパレータおよびアルカリ電解液とで構成される二次電池に用いられる負極であって、この負極は、50%通過率で表わされる中心径(D50)が8〜15μmの範囲にあり、90%通過率で表わされる最大粒子径分布(D90)が30μm以下となるような粉砕後の粒度分布をもつ水素吸蔵合金粒子を、基板に対し付着せしめたものからなる水素吸蔵合金負極である。
【0009】
上記水素吸蔵合金粒子は、負極作製前に電解液よりも低濃度でかつ0.1〜5モル/リットルのアルカリ水溶液と0.01〜0.5モル/リットルの錯化剤の混合溶液で表面処理し、電解液中での耐食性を向上したものであることが好ましい。
【0010】
なお、本発明においては、100 サイクル後の水素吸蔵合金の粉化率は10%以下に抑制でき、負極の100 サイクル後の膨張率は電極厚みの10%以下に抑制できるものであることが好ましい。
【0011】
【発明の実施の形態】
さて、発明者らは、2次電池について、充・放電サイクル試験を行った。その結果、寿命に至る (容量低下) の原因は、負極のオーム抵抗の増加にあることを知見した。即ち、オーム抵抗の増加により充電中の水素発生量が増加し、電池の内圧が上昇し、ベントオーブンによって電解液が減少してセパレータがドライアウトするため、寿命に至ることがわかった。即ち、負極のオーム抵抗は、充・放電 (水素の吸・放出) の繰り返しによって、合金体積の膨張, 収縮が繰り返されて微粉化したときに、その合金粒子同士および基板との接触低下することで増加することがわかった。
【0012】
そこで、本発明では、充・放電のサイクルによって微粉化させる程度の大きさまで、予め合金を粉砕しておくことで、基本的に割れによって生じる電極膨張を小さくし、合金粒子同士および基板との接触抵抗の増加を抑制することにしたのである。
【0013】
一般に、合金は、粒度が細かくなると比表面積が増加するため (反応面積の増加) 、合金粒度が大きいものに比べると初期活性化や高率放電特性および低温特性が良好になる。また、合金は、粒子の粒度分布を調整すると、合金粒子同士およびその粒子と基板との接触抵抗の増加を抑制することが可能となり、ひいてはサイクル寿命を向上させ得ることがわかった。ただし、この合金が充・放電によって微粉化し新生面が生じた場合には、たとえ細かくなったとしても、電解液中では腐食を受けて各種特性の低下が起こり、好ましくない。
【0014】
というのは、電解液による合金腐食量と比表面積には正の相関があり、合金表面が増加することにより電解液中での腐食量が増加することが予想される。もし、合金が腐食すると、表面の反応抵抗が増加したり、また電解液を消費することで、サイクルにはいずれも悪影響を及ぼす。しかし、合金表面を低濃度のアルカリ液とクエン酸等の錯化剤の混合溶液で処理すると、耐食性の向上した合金粒子を得ることが可能である。
その表面処理法としては、電解液よりも低濃度のアルカリを用いることが好ましい。それは、電解液で腐食する量の一部がこのアルカリ処理によって除去できるため、電解液の消費量を幾分か低減できるからである。また、処理液に錯化剤を含ませることにより、処理後の合金表面には水酸化物の析出がなくなり、合金表面の反応抵抗が高まるようなことがなくなる。むしろ、この処理によって合金表面のNi濃度が高まり、特に低温時の高率放電特性が向上するといった利点がある。
ただしこの場合、微粉化が進行する粒度の合金粉にこの表面処理を用いると効果が半減する。それは、割れによって生じる新生面は未処理と同様に電解液による腐食を受けるからである。したがって本発明においては、微粉化が進行しない粒度の合金粉に対し、この表面処理を施すことが好適である。
【0015】
このような知見の下に開発した本発明の水素吸蔵合金負極は、ニツケル多孔体の如き基板に対し、粒径加積曲線において、粒径加積通過率が50%に相当する粒径を中心径(D50)とした場合、この中心粒径(D50)が8〜15μmの大きさであり、より好ましくはさらに、最大粒子径分布(D90)が30μm以下となるような粒度分布をもつ水素吸蔵合金粒子を被覆充填することにより付着させ、これを常法に従って圧延, 切断して負極とした点に特徴がある。
なお、本発明のかかる粒子径の定義を、平均粒径ではなく中心径(D50)で定義した理由は、平均粒径で粒子を規定した場合、粒子はどの程度の粒度範囲および分布を持ったものかわからない。これに対し、中心径(D50)と共にD10およびD90を規定すれば、粒度範囲がわかり、また電極特性に大きく影響すると考えられる微粉量および粗粒子径が正確に規定でき、平均粒径で規定するよりもより現実的と考えられるからである。
【0016】
さて、水素吸蔵合金粒子の中心径(D50)を8〜15μmに限定した理由は、この中心径が8〜15μmの範囲を外れると、充・放電により水素吸蔵合金粒子が微細化して膨張−収縮を繰り返し、合金粒子が電極基板から剥離すると共に合金粒子間の密着度が低下するおそれがある。そして、このことにより、負極はそれ自体の抵抗が大きくなり、サイクル寿命が低下し、高率放電ができなくなる。その結果、一定のピークをもった放電パターンに対応できなくなる。
【0017】
次に、最大粒子径分布(D90)を30μm以下の範囲に限定することが好ましい理由は、最大粒子径分布が30μmを超える粒子を多く含みすぎると、微細化した粒子が基板から剥離し、放電容量が低下するためである。
【0018】
このような構成になる合金粒子は、100 サイクル後の合金の粉化率を10%以下に抑制でき、好ましい放電特性が得られる。
なお、本発明における粉化率とは、まだ活性化しない水素吸蔵合金粒子の中心径(D50)に対し、充・放電を100 サイクル繰り返した後の該合金粒子の中心径(D50)の比率であり、100 サイクルとしたのは、充・放電100 サイクルで粉化がほぼ終結し、100 サイクルを超えても粉化が進行しなくなる指数だからである。
【0019】
また、本発明に適合する粒度分布をもつ水素吸蔵合金粒子を取り付けた負極は、充・放電を繰り返した際に生ずる負極の膨張率を負極厚みの10%以下に抑制でき、好ましい放電特性が得られる。ここで電極厚みとは、基板に合金ペーストを塗布して乾燥・プレス後の電極厚みをいい、本発明においては、100 サイクル充放電後の電極厚みが10%以下であれば、水素吸蔵合金粒子が微細化しないこととなり、基板からの合金の剥離等が少なく好ましいと言える。
なお、本発明の負極に用いられる水素吸蔵合金粒子は、低濃度のアルカリと錯化剤の混合溶液で表面処理されることが好ましい。
【0020】
本発明で用いる錯化剤は、アルカリ水溶液に含有させて用いられ、水素吸蔵合金を表面処理する際に、合金の金属元素と反応するものであって、そのなかでも水またはアルカリ水溶液に可溶性であるものが好ましい。例えば、グリコール酸、クエン酸、グリシン酸、コハク酸、サリチル酸、ニコチン酸、安息香酸、ピクリン酸、フタル酸、フマル酸、マレイン酸、マロン酸、アジピン酸、アスコルビン酸、酒石酸、リンゴ酸、乳酸、ニトリロトリ酢酸 (NTA)、エチレンジアミンテトラ酢酸 (EDTA)、1−10フェナントロリン、2, 2' ,2" −トリアミノトリエチルアミン、N, N' −ジ (2−アミノエチル) エチレンジアミン、トリエタノールアミン等が挙げられる。
【0021】
また、表面処理される水素吸蔵合金の種類によっても異なるが、本発明においては、これらの錯化剤を、単独または2種以上を組み合わせて適宜に使用することができる。
このうち、重金属との結合力が強く、金属錯化物のアルカリ溶液中での安定性という観点から、特にクエン酸、酒石酸、EDTA、トリエタノールアミン等がより好適に使用されるものである。
この錯化剤は、アルカリ水溶液に、好ましくは0.01〜0.5 モル/リットルの濃度で含有させればよい。その濃度が下限値未満では、合金表面から除去させたい元素を反応させて可溶性にしても、また合金表面に再析出したりして、表面処理の効果を十分に発揮させることができない恐れがある。また、上限値を超えると、その添加量の割に効果が発揮されず、単にコスト的に不利になるだけである。なお、本発明では、好ましくは0.01〜0.5 モル/リットル、特に好ましくは0.05〜0.2 モル/リットルの範囲で使用するのがよい。
【0022】
また、アルカリ水溶液としては、周期律表第1族のアルカリ金属元素の水酸化物、炭酸塩および重炭酸塩から選ばれた少なくとも1種を含むアルカリ水溶液が挙げられる。そのうち本発明では、取扱い性、処理上の安定性から、好ましくは炭酸アルカリよりは、強アルカリ性の水酸化アルカリが好適であり、且つその水酸化アルカリのなかでも水酸化ナトリウムよりは、水酸化カリウム、水酸化リチウムがより好適に使用される。このアルカリ水溶液の濃度は、特に制限はないが、好ましくは0.1〜モル/リットルの濃度範囲であればよい。その濃度が下限値未満では、表面処理時のアルカリ濃度が低すぎて、アルカリ処理の目的を十分に発揮されない恐れがある。また、上限値を超えるとアルカリ濃度が高すぎて錯化剤を分散させる傾向があることから好ましくない。よって、本発明では、より好ましくは0.5〜5モル/リットルの濃度範囲である。
【0023】
【実施例】
以下、実施例につき具体的に説明する。
(実施例1)
Mm(ミッシュメタル)、Ni、Co、Mn、Alの各試料を所定量秤量し、混合した後、誘導溶解法にて溶解することにより、合金組成がMmNi4.0 Co0.4 Mn0.3 Al0.3 の水素吸蔵合金を得た。この合金をAr雰囲気中で1000℃、10hr の加熱処理を施し、機械粉砕した後、低濃度のアルカリ (1N) とクエン酸 (0.1 N) の混合溶液で70℃、1.5 hr表面処理した。このようにして得られた合金粒子のうち、加積通過率が50%の中心径(D50) が10μmのものを本発明例 (実施例1) とした。実施例2として、上記表面処理を施していない該中心径 (D50) が10μmの水素吸蔵合金粒子を供試した。また、比較例1として該中心径 (D50) が34μmの水素吸蔵合金粒子を供試した。
この3つの異なる水素吸蔵合金粒子に、導電剤のカーボンブラック、カルボキシメチルセルロース、バインダー(PTFE)および水を加えて得られたペーストを、負極基板であるパンチングメタルに塗着・乾燥し、所定の寸法に裁断して本発明例 (実施例1、2) および比較例1の各3枚の水素吸蔵合金負極を作製した。
【0024】
上記方法により作成した各負極を、セパレータを介して焼結式正極2枚で挟み、一定圧力で固定し、リチウム入りの電解液に浸漬させて単極試験に供した。
また、上記方法により作製した負極およびペースト式正極をセパレータを介して対向させ電極を取り巻き、その後、円筒型容器に挿入してリードを接続してリチウム入り電解液を注入して密閉し、円筒電池試験に供した。
【0025】
単極試験の結果を図1、図2、図3に示す。
図1は、温度20℃で放電電流860mA/MHgで行った際のサイクル試験結果である。なお、この時のサイクルは、860mA/MHgで放電後に約300mA/MHg、約300mA/MHg、約60mA/MHgと負荷を徐々に減じ、連続して放電したパターンを1サイクルとしている。図1から、粒度の違いによる差は (実施例2と比較例1) 、D50=10μmの実施例2の方が初期の立ち上がりが早く、また高率放電特性が高いことが確認された。
一方、同じ粒度をもつ合金粒子に表面処理を施したもの (実施例1) は、さらに高率放電特性は向上することがわかった。
また、20サイクル目の放電容量/最大放電容量×100で見たサイクル特性は、比較例1が91.1%であったのに対し、実施例2は93.9%、実施例1は93.6%といずれもD50=10μmの方がD50=34μmと比較してサイクル特性は向上している。これは、D50=34μm品は、充放電の繰り返しで微粉化し基板から合金粒子が剥離したために見掛け上サイクル特性が低下したと考えられる。
【0026】
図2は、温度20℃で20サイクル目の放電電流860〜約60mA/MHgまで負荷を徐々に減じたときの結果である。合金粒度D50=10μm品に表面処理を施した実施例1が最も高い高率放電特性を示している。
【0027】
図3は、2次サイクルで温度0℃とし、同様に負荷を変えて評価した結果である。D50=34μm品 (比較例1) は860mA/MHg (3C相当) で全く放電できなかった。これに対して実施例2のD50=10μm品は40mAh/MHg放電でき、また、実施例1のように表面処理を施した場合には、放電容量をさらに10mAh/MHg高めることができた。
【0028】
図4は、実施例1および実施例2で用いた合金粉を20℃、40℃、60℃に設定した電解液に3日間浸漬したときの水酸化物生成量を比較したものである。表面処理を施すことにより、水酸化物生成量が少なくなることがわかった。即ち、表面処理を施した合金粉を用いることで、電池の電解液消費量が少なくなることが考えられ、サイクル特性は向上するものと予想される。
【0029】
表1は、円筒型電池に供した活性化前および120サイクル後に電子顕微鏡500倍の画面において、実施例1, 2、比較例1の最大粒径および最小粒径を測定した結果である。120サイクル後は、各負極とも最大値・最小値が等しくなり、比較例1の微粉化が顕著に顕れている。
表2は、各負極の活性化前および120サイクル後の厚みを測定した結果である。D50=10μmの実施例1および実施例2の負極は、初期厚みからの膨張率が10%以下であることがわかった。
【0030】
【表1】

Figure 0004376988
【0031】
【表2】
Figure 0004376988
【0032】
【発明の効果】
以上説明したように本発明によれば、充・放電を繰り返しても水素吸蔵合金の微細化が少なく、サイクル特性が良好となる。また、特に低温下でも高率放電が可能となる。しかも、不規則な放電パターンの下で瞬間的に高負荷を生じるような環境下でも高率放電できる電池を提供できる。
【図面の簡単な説明】
【図1】実施例の単極試験におけるサイクル試験結果である。
【図2】実施例の単極試験における20℃、860 〜約60 mA/MHgの放電特性を示すグラフである。
【図3】実施例の単極試験における0℃、860 〜約60 mA/MHgの放電特性を示すグラフである。
【図4】合金粒度D50=10μmのもので表面処理を施したものと未処理のものの電解液浸漬後の水酸化物生成量を比較するグラフである。[0001]
[Technical field to which the invention belongs]
The present invention relates to a hydrogen storage alloy negative electrode, and in particular, proposes a negative electrode capable of high-rate discharge according to the load even when a high load is instantaneously applied in use.
[0002]
[Prior art]
Generally, the nickel metal hydride battery is configured by combining a nickel hydroxide positive electrode and a hydrogen storage alloy negative electrode. Such a nickel-metal hydride battery can be constructed with a high energy density, but it is caused by corrosion of the hydrogen storage alloy by the electrolyte, pulverization of the hydrogen storage alloy due to charging / discharging, oxygen generated during overcharging, etc. There was a problem of performance degradation.
Conventionally, various proposals have been made for the purpose of solving such problems. In particular, there are the following proposals for solving the above problems by selectively adjusting the size of the hydrogen storage alloy particles.
[0003]
(1) Japanese Patent Application Laid-Open No. 1-132049 discloses that a negative electrode composed of two kinds of alloy powders having an average particle diameter of 5 to 10 μm and 25 to 35 μm is used, which has excellent oxygen gas absorption and high rate discharge characteristics. A good hydrogen storage electrode is disclosed.
(2) Patent No. 2642144 improves high-rate discharge characteristics, prevents a decrease in discharge voltage and discharge capacity when discharged at a large current, and also reduces the hydrogen storage efficiency due to the influence of surface oxides. In order to manufacture a hydrogen-absorbing alloy electrode, a sintered alloy powder having a particle size of 149 μm or less and containing 30% by weight or more of 74 μm or more is proposed.
(3) Japanese Patent Application Laid-Open No. 2-65058 discloses that a conventional hydrogen storage alloy having a single particle size has no capacity beyond a predetermined level from the beginning of charge / discharge and has a short life. The hydrogen storage alloy electrode concerning the combination of the first powder and the small second powder of 15 μm or less is disclosed.
(4) In Japanese Patent Application Laid-Open No. 5-266887, it is considered that the charge / discharge efficiency is better when the particle size of the hydrogen storage alloy is reduced by pulverization. In order to prevent this, iron and / or iron hydroxide is added to an alloy having an average particle size of 20 μm or less to improve the initial characteristics, and the time required for the chemical conversion treatment is shortened. A metal-hydrogen alkaline storage battery is disclosed.
[0004]
[Problems to be solved by the invention]
Each of the above proposals has improved the basic battery characteristics required for the negative electrode of a nickel metal hydride battery to some extent. However, there is no way to solve the problem that the hydrogen storage alloy particles used in the negative electrode are pulverized by repeating the charge / discharge cycle. In other words, none of the proposals described above solves the problem of pulverization, and it is the actual situation that the problem on this point still remains.
If such a problem remains, the increase in ohmic resistance cannot be suppressed with the hydrogen storage alloy particles having a wide particle size range as described above or the hydrogen storage alloy particles with a large particle size itself. . For example, according to the research by the inventors, when a cylindrical battery equipped with a negative electrode prepared using a hydrogen storage alloy having an average particle size of 34 μm is used, the hydrogen storage is repeated after 150 cycles of charge / discharge after activation. It has been found that the average grain size of the alloy is pulverized to about 10 μm.
When the hydrogen storage alloy is pulverized by charging / discharging, the contact resistance between the alloy particles or between the alloy particles and the substrate constituting the negative electrode increases, and as a result, the ohmic resistance of the negative electrode increases and the battery characteristics deteriorate. It is.
[0005]
Another major problem with the conventional technology is that it is not an application in which discharge flows at a constant current for a certain period of time, such as a battery for home appliances. In other words, the battery configuration is not suitable for applications that require high-rate discharge. Even if the battery for such a use is discharged at a high rate at a high load, it is necessary to suppress the discharge capacity when the load decreases, and the battery must be discharged in a cycle that repeats such a high load-low load. However, there is a problem in that there is no battery that can sufficiently satisfy these requirements, which is impossible with a conventional secondary battery, particularly a hydrogen storage alloy negative electrode.
[0006]
An object of the present invention is to obtain a negative electrode having excellent repeated high-rate discharge performance and good cycle life characteristics, and excellent adhesion between hydrogen storage alloy particles even after repeated charge / discharge cycles, and a negative electrode substrate. And developing a negative electrode in which the alloy particles do not peel off.
In particular, the present invention provides a negative electrode that is less pulverized even in a charge / discharge cycle, enables high-rate discharge, and has no deterioration in battery performance even in an irregular discharge pattern.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention proposes problem-solving means based on the following matters .
[0008]
That is, the present invention is a negative electrode used in a secondary battery composed of a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode mainly composed of a metal oxide, a separator, and an alkaline electrolyte. The particle size distribution after pulverization is such that the center diameter (D50) represented by 50% passing rate is in the range of 8 to 15 μm and the maximum particle size distribution (D90) represented by 90% passing rate is 30 μm or less. This is a hydrogen storage alloy negative electrode made of hydrogen storage alloy particles adhered to a substrate.
[0009]
The hydrogen storage alloy particles have a lower concentration than that of the electrolytic solution before the negative electrode is prepared , and the surface is a mixed solution of an alkaline aqueous solution of 0.1 to 5 mol / liter and a complexing agent of 0.01 to 0.5 mol / liter. It is preferable that the corrosion resistance in the electrolytic solution is improved.
[0010]
In the present invention, it is preferable that the powdering rate of the hydrogen storage alloy after 100 cycles can be suppressed to 10% or less, and the expansion rate after 100 cycles of the negative electrode can be suppressed to 10% or less of the electrode thickness. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors conducted a charge / discharge cycle test on the secondary battery. As a result, it was found that the cause of the end of life (decrease in capacity) was an increase in the ohmic resistance of the negative electrode. That is, it was found that the amount of hydrogen generated during charging increased due to the increase in ohmic resistance, the internal pressure of the battery increased, the electrolyte decreased in the vent oven, and the separator was dried out, leading to the end of life. In other words, the ohmic resistance of the negative electrode decreases when the alloy particles expand and contract by repeated charge / discharge (hydrogen absorption / release) and become fine powder, and the contact between the alloy particles and the substrate decreases. It turned out to increase.
[0012]
Therefore, in the present invention, the alloy is pulverized in advance to a size that can be pulverized by a charge / discharge cycle, thereby basically reducing electrode expansion caused by cracks, and contacting the alloy particles with each other and the substrate. We decided to suppress the increase in resistance.
[0013]
In general, an alloy has a specific surface area that increases as the particle size becomes smaller (increase in reaction area), and therefore, initial activation, high rate discharge characteristics, and low-temperature characteristics become better than those having a large alloy particle size. Further, it has been found that adjusting the particle size distribution of the particles can suppress an increase in contact resistance between the alloy particles and between the particles and the substrate, thereby improving the cycle life. However, when this alloy is pulverized by charging / discharging to form a new surface, even if it becomes finer, it is not preferable because it suffers corrosion in the electrolyte and deteriorates various properties.
[0014]
This is because there is a positive correlation between the amount of corrosion of the alloy by the electrolytic solution and the specific surface area, and it is expected that the amount of corrosion in the electrolytic solution increases as the alloy surface increases. If the alloy corrodes, the reaction resistance of the surface increases, and the cycle is adversely affected by consuming electrolyte. However, when the alloy surface is treated with a mixed solution of a low-concentration alkaline solution and a complexing agent such as citric acid, alloy particles with improved corrosion resistance can be obtained.
As the surface treatment method, it is preferable to use an alkali having a lower concentration than the electrolytic solution. This is because a part of the amount corroded by the electrolytic solution can be removed by this alkali treatment, so that the consumption of the electrolytic solution can be somewhat reduced. Further, by adding a complexing agent to the treatment liquid, there is no precipitation of hydroxide on the treated alloy surface, and there is no increase in reaction resistance on the alloy surface. Rather, this treatment has the advantage of increasing the Ni concentration on the alloy surface and improving the high rate discharge characteristics particularly at low temperatures.
However, in this case, if this surface treatment is used for an alloy powder having a particle size that is finely divided, the effect is reduced by half. This is because the new surface caused by cracking is subject to corrosion by the electrolyte as in the case of untreated. Therefore, in the present invention, it is preferable to perform this surface treatment on an alloy powder having a particle size that does not progress in pulverization.
[0015]
The hydrogen storage alloy negative electrode of the present invention developed based on such knowledge is centered on a particle size corresponding to 50% of the particle size accumulation passage rate in a particle size accumulation curve with respect to a substrate such as a nickel porous body. In the case of the diameter (D50), the center particle size (D50) is 8 to 15 μm, and more preferably, the hydrogen storage has a particle size distribution such that the maximum particle size distribution (D90) is 30 μm or less. It is characterized in that the alloy particles are adhered by being covered and filled, and are rolled and cut according to a conventional method to form a negative electrode.
The definition of the particle size according to the present invention is defined not by the average particle size but by the center diameter (D50). When the particles are defined by the average particle size, what size range and distribution the particles have? I do n’t know. On the other hand, if D10 and D90 are defined together with the center diameter (D50), the particle size range can be known, and the fine powder amount and coarse particle diameter, which are considered to have a great influence on the electrode characteristics, can be accurately defined. Because it is considered more realistic.
[0016]
The reason why the center diameter (D50) of the hydrogen storage alloy particles is limited to 8 to 15 μm is that if the center diameter is out of the range of 8 to 15 μm, the hydrogen storage alloy particles become finer due to charge / discharge and expand / contract. The alloy particles may peel from the electrode substrate, and the adhesion between the alloy particles may be reduced. As a result, the negative electrode has its own resistance, the cycle life is reduced, and high-rate discharge cannot be performed. As a result, it becomes impossible to deal with a discharge pattern having a certain peak.
[0017]
Next, the reason why it is preferable to limit the maximum particle size distribution (D90) to a range of 30 μm or less is that if the maximum particle size distribution contains too many particles exceeding 30 μm, the finely divided particles are peeled off from the substrate and discharged. This is because the capacity decreases.
[0018]
The alloy particles having such a structure can suppress the powdering rate of the alloy after 100 cycles to 10% or less, and preferable discharge characteristics can be obtained.
In the present invention, the pulverization rate is the ratio of the center diameter (D50) of the alloy particles after 100 cycles of charge / discharge to the center diameter (D50) of the hydrogen storage alloy particles that are not yet activated. Yes, 100 cycles is used because it is an index at which powdering is almost completed after 100 cycles of charge and discharge, and powdering does not proceed even after 100 cycles.
[0019]
In addition, the negative electrode provided with hydrogen storage alloy particles having a particle size distribution conforming to the present invention can suppress the expansion coefficient of the negative electrode that occurs when charging and discharging are repeated to 10% or less of the negative electrode thickness, thereby obtaining preferable discharge characteristics. It is done. Here, the electrode thickness means the electrode thickness after applying and drying / pressing the alloy paste on the substrate. In the present invention, if the electrode thickness after 100 cycles of charge and discharge is 10% or less, the hydrogen storage alloy particles Therefore, it can be said that it is preferable that there is little peeling of the alloy from the substrate.
The hydrogen storage alloy particles used in the negative electrode of the present invention are preferably surface-treated with a mixed solution of low concentration alkali and complexing agent.
[0020]
The complexing agent used in the present invention is used by being contained in an alkaline aqueous solution, and reacts with the metal element of the alloy when the hydrogen storage alloy is surface-treated. Among them, it is soluble in water or an alkaline aqueous solution. Some are preferred. For example, glycolic acid, citric acid, glycine acid, succinic acid, salicylic acid, nicotinic acid, benzoic acid, picric acid, phthalic acid, fumaric acid, maleic acid, malonic acid, adipic acid, ascorbic acid, tartaric acid, malic acid, lactic acid, Examples include nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), 1-10 phenanthroline, 2,2 ', 2 "-triaminotriethylamine, N, N'-di (2-aminoethyl) ethylenediamine, triethanolamine, etc. It is done.
[0021]
In addition, although depending on the type of the hydrogen storage alloy to be surface-treated, in the present invention, these complexing agents can be appropriately used singly or in combination of two or more.
Of these, citric acid, tartaric acid, EDTA, triethanolamine, and the like are more preferably used from the viewpoint of strong bonding strength with heavy metals and stability of the metal complex in an alkaline solution.
The complexing agent may be contained in the aqueous alkali solution, preferably at a concentration of 0.01 to 0.5 mol / liter. If the concentration is less than the lower limit, the element to be removed from the alloy surface may be reacted to be soluble, or may be reprecipitated on the alloy surface, so that the effect of the surface treatment may not be exhibited sufficiently. . On the other hand, if the upper limit is exceeded, the effect is not exhibited for the amount of addition, and only the cost is disadvantageous. In the present invention, it is preferably used in the range of 0.01 to 0.5 mol / liter, particularly preferably 0.05 to 0.2 mol / liter.
[0022]
Examples of the alkaline aqueous solution include an alkaline aqueous solution containing at least one selected from hydroxides, carbonates and bicarbonates of alkali metal elements belonging to Group 1 of the periodic table. Among them, in the present invention, from the viewpoint of handling property and stability in processing, a strong alkali alkali hydroxide is preferable to an alkali carbonate, and potassium hydroxide is more preferable than sodium hydroxide among the alkali hydroxides. Lithium hydroxide is more preferably used. The concentration of the alkaline aqueous solution is not particularly limited, but it is preferably in the concentration range of 0.1 to 5 mol / liter. If the concentration is less than the lower limit, the alkali concentration during the surface treatment is too low, and the purpose of the alkali treatment may not be sufficiently exhibited. On the other hand, if the upper limit is exceeded, the alkali concentration is too high and the complexing agent tends to be dispersed, which is not preferable. Therefore, in the present invention, the concentration range is more preferably 0.5 to 5 mol / liter.
[0023]
【Example】
Hereinafter, specific examples will be described.
(Example 1)
Mm (Misch metal), Ni, Co, Mn, Al samples are weighed in predetermined amounts, mixed, and then melted by induction melting, so that the alloy composition is MmNi 4.0 Co 0.4 Mn 0.3 Al 0.3 . An alloy was obtained. This alloy was heat-treated at 1000 ° C. for 10 hours in an Ar atmosphere, mechanically pulverized, and then surface-treated at 70 ° C. for 1.5 hr with a mixed solution of low concentration alkali (1N) and citric acid (0.1 N). Of the alloy particles thus obtained, those having a median passage ratio of 50% and a center diameter (D50) of 10 μm were used as examples of the present invention (Example 1). As Example 2, hydrogen storage alloy particles having a central diameter (D50) of 10 μm and not subjected to the surface treatment were used. As Comparative Example 1, hydrogen storage alloy particles having a central diameter (D50) of 34 μm were used.
A paste obtained by adding carbon black, carboxymethyl cellulose, binder (PTFE) and water as a conductive agent to these three different hydrogen storage alloy particles is applied to a punching metal as a negative electrode substrate and dried to a predetermined size. The three hydrogen storage alloy negative electrodes for each of the inventive examples (Examples 1 and 2) and Comparative Example 1 were produced.
[0024]
Each negative electrode prepared by the above method was sandwiched between two sintered positive electrodes via a separator, fixed at a constant pressure, and immersed in an electrolyte containing lithium for a single electrode test.
In addition, the negative electrode and the paste type positive electrode prepared by the above method are opposed to each other with a separator interposed therebetween, and then the electrode is wrapped around, and then inserted into a cylindrical container, connected to a lead, injected with lithium-containing electrolyte, and sealed. It used for the test.
[0025]
The results of the monopolar test are shown in FIG. 1, FIG. 2, and FIG.
FIG. 1 shows the results of a cycle test performed at a temperature of 20 ° C. and a discharge current of 860 mA / MHg. In addition, the cycle at this time is a pattern in which the load is gradually reduced to about 300 mA / MHg, about 300 mA / MHg, and about 60 mA / MHg after discharging at 860 mA / MHg, and the pattern is continuously discharged. From FIG. 1, it was confirmed that the difference due to the difference in particle size (Example 2 and Comparative Example 1) was that Example 2 with D50 = 10 μm had a faster initial rise and higher high rate discharge characteristics.
On the other hand, it was found that the high rate discharge characteristics were further improved by subjecting the alloy particles having the same particle size to the surface treatment (Example 1).
Further, the cycle characteristics as seen by the discharge capacity at the 20th cycle / maximum discharge capacity × 100 were 91.1% in Comparative Example 1, whereas 93.9% in Example 2 and 93 in Example 1. .6% and D50 = 10 μm both have improved cycle characteristics compared to D50 = 34 μm. This is probably because the D50 = 34 μm product was pulverized by repeated charge and discharge, and the alloy particles were peeled off from the substrate, so that the cycle characteristics apparently deteriorated.
[0026]
FIG. 2 shows the results when the load is gradually reduced to a discharge current of 860 to about 60 mA / MHg at the 20th cycle at a temperature of 20 ° C. Example 1 in which a surface treatment was performed on an alloy grain size D50 = 10 μm showed the highest high-rate discharge characteristics.
[0027]
FIG. 3 shows the results of evaluation with the temperature changed to 0 ° C. in the secondary cycle and the load changed in the same manner. D50 = 34 μm product (Comparative Example 1) was 860 mA / MHg (corresponding to 3C) and could not be discharged at all. In contrast, the D50 = 10 μm product of Example 2 was able to discharge 40 mAh / MHg, and when the surface treatment was applied as in Example 1, the discharge capacity could be further increased by 10 mAh / MHg.
[0028]
FIG. 4 compares the amount of hydroxide produced when the alloy powders used in Example 1 and Example 2 were immersed in an electrolyte set at 20 ° C., 40 ° C., and 60 ° C. for 3 days. It was found that the amount of hydroxide produced was reduced by applying the surface treatment. That is, by using the surface-treated alloy powder, it is conceivable that the battery electrolyte consumption is reduced, and the cycle characteristics are expected to be improved.
[0029]
Table 1 shows the results of measuring the maximum particle size and the minimum particle size of Examples 1 and 2 and Comparative Example 1 on the screen of an electron microscope 500 times before activation and after 120 cycles provided for the cylindrical battery. After 120 cycles, the maximum and minimum values are equal for each negative electrode, and the pulverization of Comparative Example 1 is noticeable.
Table 2 shows the results of measuring the thickness of each negative electrode before activation and after 120 cycles. The negative electrodes of Example 1 and Example 2 with D50 = 10 μm were found to have an expansion rate of 10% or less from the initial thickness.
[0030]
[Table 1]
Figure 0004376988
[0031]
[Table 2]
Figure 0004376988
[0032]
【The invention's effect】
As described above, according to the present invention, even when charging and discharging are repeated, the hydrogen storage alloy is less refined and the cycle characteristics are improved. In addition, high rate discharge is possible even at low temperatures. In addition, it is possible to provide a battery that can discharge at a high rate even in an environment in which a high load is instantaneously generated under an irregular discharge pattern.
[Brief description of the drawings]
FIG. 1 is a cycle test result in a unipolar test of an example.
FIG. 2 is a graph showing discharge characteristics at 20 ° C. and 860 to about 60 mA / MHg in a unipolar test of an example.
FIG. 3 is a graph showing discharge characteristics at 0 ° C. and 860 to about 60 mA / MHg in a unipolar test of an example.
FIG. 4 is a graph comparing the amount of hydroxide produced after immersion in an electrolyte having an alloy grain size D50 = 10 μm and having been subjected to a surface treatment;

Claims (4)

水素吸蔵合金を主体とする負極と、金属酸化物を主体とする正極と、セパレータおよびアルカリ電解液とで構成される二次電池に用いられる負極であって、この負極は、50%通過率で表わされる中心径(D50)が8〜15μmの範囲にあり、90%通過率で表わされる最大粒子径分布(D90)が30μm以下となるような粉砕後の粒度分布をもつ水素吸蔵合金粒子を、基板に対し付着せしめたものからなる水素吸蔵合金負極。A negative electrode used in a secondary battery composed of a negative electrode mainly composed of a hydrogen storage alloy, a positive electrode mainly composed of a metal oxide, a separator and an alkaline electrolyte, and the negative electrode has a 50% pass rate. Hydrogen storage alloy particles having a particle size distribution after pulverization such that the center diameter (D50) represented is in the range of 8 to 15 μm, and the maximum particle size distribution (D90) represented by 90% passing rate is 30 μm or less, A hydrogen storage alloy negative electrode made of a material adhered to a substrate. 水素吸蔵合金粒子は、負極作製前に電解液よりも低濃度でかつ0.1〜5モル/リットルのアルカリ水溶液と0.01〜0.5モル/リットルの錯化剤の混合溶液で表面処理し、電解液中での耐食性を向上したものであることを特徴とする請求項1に記載の水素吸蔵合金負極。The hydrogen storage alloy particles are surface-treated with a mixed solution of a 0.1 to 5 mol / liter alkaline aqueous solution and a 0.01 to 0.5 mol / liter complexing agent at a concentration lower than that of the electrolytic solution before the anode preparation. The hydrogen storage alloy negative electrode according to claim 1, wherein the corrosion resistance in the electrolyte is improved. 負極は、100サイクル後の膨張率が電極厚みの10%以下であることを特徴とする請求項1または2に記載の水素吸蔵合金負極。The hydrogen storage alloy negative electrode according to claim 1 or 2 , wherein the negative electrode has an expansion coefficient of 10% or less after 100 cycles. 100サイクル後の水素吸蔵合金の粉化率が10%以下であることを特徴とする請求項1,2または3に記載の水素吸蔵合金負極。The hydrogen storage alloy negative electrode according to claim 1, 2 or 3 powdering rate of the hydrogen-absorbing alloy after 100 cycles is equal to or less than 10%.
JP36048998A 1998-12-18 1998-12-18 Hydrogen storage alloy negative electrode Expired - Fee Related JP4376988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36048998A JP4376988B2 (en) 1998-12-18 1998-12-18 Hydrogen storage alloy negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36048998A JP4376988B2 (en) 1998-12-18 1998-12-18 Hydrogen storage alloy negative electrode

Publications (2)

Publication Number Publication Date
JP2000182608A JP2000182608A (en) 2000-06-30
JP4376988B2 true JP4376988B2 (en) 2009-12-02

Family

ID=18469623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36048998A Expired - Fee Related JP4376988B2 (en) 1998-12-18 1998-12-18 Hydrogen storage alloy negative electrode

Country Status (1)

Country Link
JP (1) JP4376988B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004508A (en) * 2018-06-25 2020-01-09 凸版印刷株式会社 Negative electrode composition for alkaline secondary battery and negative electrode for alkaline secondary battery
JP6736065B2 (en) * 2018-11-15 2020-08-05 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
WO2020195543A1 (en) 2019-03-26 2020-10-01 日本重化学工業株式会社 Hydrogen storage alloy for alkaline storage battery, alkaline storage battery using the same in negative electrode, and vehicle

Also Published As

Publication number Publication date
JP2000182608A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US8563170B2 (en) Negative electrode for alkaline storage battery, fabrication method thereof, and alkaline storage battery
US20090047576A1 (en) Nickel Metal-Hydride Battery and Method of Manufacturing the Same
US5935732A (en) Hydrogen absorbing electrode and its manufacturing method
US6524746B2 (en) Hydrogen absorbing alloy powder and process for producing same
JP2000164221A (en) Paste type hydrogen storage alloy electrode for alkaline storage battery
JP4376988B2 (en) Hydrogen storage alloy negative electrode
JP2982805B1 (en) Hydrogen storage alloy for battery, method for producing the same, and alkaline storage battery using the same
EP1113512A1 (en) Positive active material for alkaline secondary cell and method for producing the same, and alkaline secondary cell using the positive active material and method for producing the same
JP3553750B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
US6605387B1 (en) Alkaline storage battery
EP1030392B1 (en) Hydrogene storage alloy electrode and method for manufacturing the same
JP2004124132A (en) Hydrogen occlusion alloy powder, hydrogen occlusion alloy electrode, and nickel-hydrogen storage battery using the same
JP4743997B2 (en) Hydrogen storage alloy electrode
JP3433008B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
US5552246A (en) Materials for hydrogen storage, hydride electrodes and hydride batteries
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3370071B2 (en) Hydrogen storage alloy electrode and nickel-metal hydride storage battery using this electrode
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP3573934B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP4366729B2 (en) Cathode active material for alkaline storage battery
JP3653412B2 (en) Hydrogen storage alloy electrode and nickel-hydrogen storage battery using this electrode
JPH11283619A (en) Manufacture of hydrogen storage alloy for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees