JP4376480B2 - X線管冷却システム - Google Patents

X線管冷却システム Download PDF

Info

Publication number
JP4376480B2
JP4376480B2 JP2001510277A JP2001510277A JP4376480B2 JP 4376480 B2 JP4376480 B2 JP 4376480B2 JP 2001510277 A JP2001510277 A JP 2001510277A JP 2001510277 A JP2001510277 A JP 2001510277A JP 4376480 B2 JP4376480 B2 JP 4376480B2
Authority
JP
Japan
Prior art keywords
ray tube
shield structure
shield
fluid
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001510277A
Other languages
English (en)
Other versions
JP2003506817A5 (ja
JP2003506817A (ja
Inventor
アンドルーズ,グレゴリー・シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Technologies Inc
Original Assignee
Varian Medical Systems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Medical Systems Technologies Inc filed Critical Varian Medical Systems Technologies Inc
Publication of JP2003506817A publication Critical patent/JP2003506817A/ja
Publication of JP2003506817A5 publication Critical patent/JP2003506817A5/ja
Application granted granted Critical
Publication of JP4376480B2 publication Critical patent/JP4376480B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/025Means for cooling the X-ray tube or the generator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/02Constructional details
    • H05G1/04Mounting the X-ray tube within a closed housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1283Circulating fluids in conjunction with extended surfaces (e.g. fins or ridges)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/16Vessels
    • H01J2235/165Shielding arrangements
    • H01J2235/168Shielding arrangements against charged particles

Description

【0001】
【発明の属する技術分野】
本発明は、概してX線管に関する。より詳しくは、本発明の実施形態は、X線管から冷却システム媒体への熱転移率を増大させ、これによって、X線管構造中の熱誘起応力及び張力をかなり減少させる、X線管冷却システムに関する。
【0002】
【従来技術】
X線生成装置は、工業及び医療の両方において、様々な幅広い用途で使用される、きわめて有用なツールである。例えば、かかる設備は、診断及び治療放射線医学、半導体製造及び組み立て、並びに、材料分析及び試験などの分野で一般に使用される。
【0003】
X線装置の基本的な操作は、幾多の異なる用途で使用されるが、類似している。一般に、X線即ちX線放射は、電子が生成され、解離され、加速され、突然、停止されるときに生成される。基本的な典型のX線管は、一方の端部に、電子生成器を備えたカソードシリンダー、即ちカソードを有する。カソードのフィラメント部分に印加された電力は、熱イオン放射により電子を生成する。ターゲットとなるアノードは、カソードから軸方向に間隔を隔てられており、カソードにより放射された電子を受け取るように配置されている。更に設けられているものは、カソード及びアノードの間に高電位を印加するため使用される電圧源である。
【0004】
作動中において、高電位は、カソード及びアノードの間に印加され、該高電位は、熱イオン放射された電子を、電子の流れとしてカソードから離れてアノードに向かう方向に加速させる。次に、加速電子は、ターゲットとなるアノード表面(即ち焦点トラック)に高速度で当たる。アノード上のターゲット表面は、高い原子数を持つ材料から構成され、これによって、当たった電子流れの運動エネルギーの一部分は、非常に高い周波数の電磁波即ちX線に転換される。その結果生成されたX線は、タゲート表面から放射され、例えば患者の身体など、対象内を貫通させるためX線装置に形成された窓を通して平行化される。周知されているように、対象を通過したX線は、例えばX線医療診断試験又は材料分析処理など、幾多の用途のうち任意のもので使用されるように、検出され、分析されることができる。
【0005】
アノードターゲット表面を打つ電子のうちあるパーセンテージを占める電子は、X線を生成せず、その代わりに、表面から単に跳ね返るだけである。これらの電子は、「後方散乱」電子としばしば称される。幾つかのX線管では、これら跳ね返り電子のうちあるものは、なおまだ比較的高速度で移動しており、カソード及びアノードの間に配置されたシールド構造によって遮蔽され、収集され、その結果、それらはアノードのターゲット表面に再衝突しない。これは、跳ね返り電子がターゲットアノードに再衝突して、X線画像の品質に負の影響をもたらし得る焦点の外れたX線を生成することを防止する。跳ね返り電子の中には、カソードシリンダーの内部に衝突するものもある。
【0006】
そのようなシールド構造の使用によって跳ね返り電子がアノードターゲットを再度打つことを防止できる一方で、その使用は、究極的にはX線管装置に損傷を与え、その作動寿命を短縮し得る追加の問題を生じさせる。特に、シールド構造に対し、又は、カソードシリンダーの内側に対して跳ね返り電子が衝突した結果生成された高い運動エネルギーは、かなりの量の熱を副産物として生成する。これらの高い温度は、ターゲットアノードで生成された高温度に加えて、構造(カソードシリンダー及びシールドを含む)、及び、構造接続部において熱応力を引き起こし、特に、長い時間の経過を通して、X線管アセンブリに様々な構造的欠陥の発生へと導き得る。その上、跳ね返り電子は、カソードシリンダー及びシールド構造の幾つかの部分と、他の部分よりも比較的大きい頻度で衝突するため、生成された熱は均等には分布しない。異なる熱領域は、その結果として様々に変動する熱膨張率を生じさせ、特に、多数の作動サイクルに亘って、X線管装置に損傷を与え得る機械的応力を生じさせる。例えば、機械的応力及び張力は、構造中のより低温部分が、構造のより高温部分の膨張に抵抗を与えるとき誘起される。応力及び張力のレベルは、低い温度差で比較的微々たるものとなる。しかし、高い温度差により生成される不均一膨張は、究極的には当該部品中に機械的欠陥を引き起こし得る、破壊的な機械的応力及び張力を誘起する。その上、これらの応力は、取り付けられた構成部品の間の接合部に特に損傷を及ぼす。
【0007】
そのような高温度がシールド構造、カソードシリンダー及びX線装置の他の部品内で破壊的な熱的応力及び張力を引き起こすことができるため、様々な形式の冷却システムの使用により熱的応力及び張力を最小化するための試みがなされてきた。しかし、以前に販売されていたX線管冷却システムは、特にシールド構造及びカソードシリンダーの領域において、有効且つ効率的な冷却を提供することに関して完全には満足のいくものではなかった。
【0008】
存在する高熱を消失させるため、X線管は、典型的には、何らかの形式の液体冷却構成を利用してきた。そのようなシステムでは、カソードシリンダーの外側表面のうち少なくとも幾つかの表面が、循環する冷却流体と直接接触した状態に置かれ、これによって対流熱移動冷却プロセスを容易にしている。しかし、しばしば、このアプローチは、制限された外側表面積を有する隣接するシールド構造を冷却するためには十分ではなく、しかも、それは、跳ね返った電子から非常な高温度に曝されているので、対流によっては有意な量の熱を冷却流体に効率的に転移させることはできなくなる。この問題に取り組むため、シールド構造には、冷却流体の流れが循環するところの内部冷却通路が作られてきた。かくして、シールド構造は、その内側を通って流れる冷却流体に、主要には対流によって熱を捨て去る。このアプローチも、総じて満足のいくものでは無かった。そのような冷却通路の制限されたサイズに起因して、制限された量の熱のみが冷却流体によって吸収されることができ、その結果、シールド構造は適切に冷却されなくなる。かくして、この種のX線装置は、更に大きい失敗率、並びに、より高温度及びその結果としての応力への繰り返された露出に起因して、より短い作動寿命を経験し得る。
【0009】
また、この種のシステムでは、冷却流体は、シールド構造及びカソードシリンダーにおける有害な熱応力及び張力を排除するため有意な量の熱を吸収することができなければならない。しかし、現在の設計では、循環された冷却流体は、結局のところ、しばしば早々と、熱的破壊を被り、もはやX線管から熱を効率的に除去することは不可能となる。再び、これは、失敗をより多く被り、典型的には、全体的により短い作動寿命を有する、X線装置に移動する。
【0010】
現在利用可能な冷却システムの設計は、別の観点においても欠落している。前記した通り、X線管内部に生成された熱は、均等に分布されない。しかし、現在利用可能な冷却システムは、X線管の幾つかのより高温の領域から、より低温の領域よりも迅速には熱を除去することができない。その代わりに、熱移送率は、現存するシステムにおいてはX線管を通してかなり一定である。このように、より高温に曝される当該領域は、適切に冷却されず、より大きな失敗率を被る。
【0011】
現存するX線管設計には、余剰の作動温度により引き起こされる、追加の問題が存在する。特に、高い作動温度は、X線管装置の様々な部品部分の間の接続点に対し特に破壊的に作用する。例えば、カソードシリンダーは、シールド構造に取り付けなければならない、単一の一体部品として作られる。次に、シールド構造は、ハウジング、即ちX線管アセンブリを収容する金属容器に固定される。典型的には、これらの取り付けは、溶接即ちブレーズ接合の手段により達成される。しかし、従来技術のシステムでは、これらの接合は、存在する熱的及び機械的応力に対して特に損傷を受けやすい態様で装備され、しばしば早期に外れてしまう。かくして、熱の効率的な除去、並びに、構成部品間のロバストな接合取り付けが、構造的な一体性を維持し、X線装置の作動寿命の増加にとって重要である。
【0012】
かくして、X線管から、特にカソードシリンダー及び隣接するシールド構造の領域から熱を効率的且つ有効に取り除くため使用することのできる冷却システムに対する必要性が当該技術分野で存在する。その上、熱的及び機械的応力の量を減少させるほど十分な熱の除去を提供し、これによって、X線管及びX線装置の全体的な作動寿命を増加させるシステムであって、これが無ければ、カソードシリンダー及びシールド内に熱的及び機械的応力が存在するであろうような該システムを有することが望ましい。同様に、該システムは、カソードシリンダー及びシールドアセンブリを製作するため使用される材料に熱解放損傷が発生することを防止し、且つ、様々な構造的構成部品間の取り付け点の間にある、接合部及び/又は取り付け点の間に発生する構造的損傷を減少させなければならない。構成部品間の接合部は、よりロバストであり、且つ、高温に耐えることができなければならない。また、システムが、他の部分よりも高温となるシステムの当該領域からより高い率で熱を有効に除去することができ、これにより様々に異なる熱領域の発生を減少させるならば望ましい。
【0013】
【発明が解決しようとする課題】
従って、本発明の概括的な目的は、従来技術システムの前記した問題と取り組む、改善されたX線管冷却システムを提供することである。
【0014】
より詳しくは、本発明の主要な目的は、X線管の構成部品から冷却システム冷却剤への対流的且つ伝導的熱転移を強化すると共に、X線管を用いた後方散乱電子の結果として生成された熱を除去する際に特に効率的である、改善されたX線管冷却システムを提供することである。
【0015】
本発明の関連する目的は、X線管構成部品及び冷却剤内に存在する温度レベルを減少させ、これによって、熱応力に起因するX線管の破損の発生を減少させて、X線管の全体的な作動寿命を増加させる、冷却システムを提供することである。
【0016】
本発明の別の目的は、冷却剤が、対流によりシールドから熱をより効率的に除去するように該シールド内に形成された通路を通って循環される、改善されたX線管冷却システムを提供することである。
【0017】
本発明の更に別の目的は、冷却システムの冷却剤と接触する外側表面積を増加させたシールド構造を利用し、これによって、その効率並びにシールド構造から熱が除去される率を改善する、改善されたX線管冷却システムを提供することである。
【0018】
本発明の更に別の目的は、より高い熱容量を有するシールド構造の領域が、より低い熱容量を有するシールド構造の部分より高い率で冷却される、冷却システムを提供することである。
【0019】
本発明の別の目的は、作動しているX線管内に存在する熱的及び機械的応力に更に良く耐えることができる、X線管の構造間の改善されたブレーズ接合を提供することである。
【0020】
本発明の他の目的及び利点は、添付図面を参照して、以下の詳細な説明及び請求の範囲を読むとき明らかとなろう。
【0021】
【課題を解決するための手段】
手短に要約すると、前記した目的及び利点は、改善されたX線管冷却システムを用いて提供される。本システムの好ましい実施形態は、熱交換装置の手段により連続的に循環される液体冷却剤を蓄えるリザーバーを備える。冷却剤リザーバー内に配置されたものは、X線管であり、該X線管は、内部に配置されたカソードヘッドアセンブリなどの、電子源を有するカソードシリンダーから構成される。X線管は、電子源により放出された電子を受け取ることのできるターゲット表面を有するアノードを包む空のハウジングからも構成される。カソードシリンダー及びX線管ハウジングの間に配置されたものは、シールド構造である。シールド構造は、開口を備え、該開口を通って、電子が電子源からターゲット表面に通過され、X線を生成する。その上、シールド構造は、電子収集表面を提供し、ターゲット表面から跳ね返った電子が該ターゲットに再度衝突することを防止する。
【0022】
好ましい実施形態では、少なくとも1つの流体通路がシールド構造内に形成される。流体通路は、リザーバーからの冷却剤を入口ポートから受け取る。該冷却剤は、跳ね返り電子がシールドの内側表面を打つ結果として生成された熱を含む、シールド構造内に生成された熱を吸収するように、該通路を通過する。
【0023】
冷却システムの好ましい実施形態は、シールド構造の外側表面に取り付けられた、複数の延長表面又は冷却フィンも備えている。流体通路から出た冷却剤は、シールドから冷却剤へ熱を伝達させる態様で配位された、延長表面を横切って流れることを可能にされる。
【0024】
一つの好ましい実施形態では、冷却システムは、流体通路の熱転移能力を強化させるための手段を備える。図示の実施形態では、この手段は、流体通路内に配置されたコイル形成スプリングから構成される。該スプリングは、効率並びにシールド構造から熱が対流により除去される率を増加させる延長表面を提供する。
【0025】
別の好ましい実施形態では、シールド構造内に形成された流体通路は、シールド構造の第1及び第2の区分を通って冷却材が流れることを可能にする態様で配位されている。その上、通路は、熱が第2の区分よりも大きい率で第1の区分から転移されるように更に配位されている。このようにして、より高い熱容量を有する区分(即ち、第1の区分)は、より低い熱容量を有する区分(即ち、第2の区分)より速い率で冷却される。これは、より高い効率、並びに、熱の均等に分布された消失を保証する。冷却剤が過度の熱的応力を受けないことも保証させる。
【0026】
本発明の実施形態は、より構造的と思われるX線管アセンブリを設け、かくして、作動中のチューブに存在する熱的及び機械的応力により良く耐えることのできることも開示される。例えば、改善されたブレーズ接合が、シールド構造とX線管ハウジングの間に設けられる。特に、ブレーズ材料は、シールド構造の水平及び垂直表面の両方に沿って形成された接合部に沿って配置される。これは、より構造的と思われ、且つ、様々に変動する温度及びチューブの作動中に課された応力から生き残ることのできる、接続部を保証する。
【0027】
本発明の上記並びに他の利点及び目的が得られるところの態様をより完全に理解するため、添付図面に示された本発明の特定の実施形態を参照することにより、本発明のより特別の説明が以下になされる。これらの図面が、本発明の典型的な実施形態のみを表し、従って、その範囲を限定するものとはみなされないという理解の下、該実施形態を作り且つ使用する上で現在のところそのベストモードと理解される本発明が、添付図面を使用することにより、特定的で詳細な事項が追加された状態で記載され且つ説明される。
【0028】
【発明の実施の形態】
ここで、図面を参照する。該図面では、同様の構成要件が同様の参照番号に指示により与えられる。これらの図面は、本発明の現在のところ好ましい実施形態の図式的及び概略的表現であり、本発明を限定するものでも、必ずしもスケール通りに解釈されるものでもないことを理解するべきである。
【0029】
まず、図1及び図2を共に参照すると、X線管装置の関連部分が参照番号100で概略表されている。参照番号101で略示されたX線管は、典型的に「金属容器」107と称される、空にされたエンベロープハウジングが一般に形成される。空のエンベロープ、即ち、金属容器107は、ハウジング112内に配置される。X線管の空のエンベロープ107内部に配置されたものは、カソードヘッド106、フィラメント(図示せず)、及び、カソードシリンダー102内部に配置された関連する電子機器類(図示せず)の形態にある、電子源である。カソード106に隣接し、カソードシリンダー102の端部に取り付けられているものは、時折、「開口」と称され、本明細書中では、シールド構造108と称される電子収集装置である。また、X線管101内部に配置されているものは、カソード106の軸方向反対側に配置された回転式ターゲットアノード104である。電圧源は、アノード及びカソードに接続され、カソード106により放射された電位は、電圧差がカソード及びアノードの間に印加されたとき加速される。高速電子がアノードに向かって流れるとき、該電子は、シールド構造108内に形成された開口122を通過する。電子がターゲットのアノード104の表面と衝突するとき、その運動エネルギーの一部分は、X線に転換される。これらのX線は、部分的に平行化され、X線管101の側部に形成された窓103(図1)及びハウジング112内の対応する窓(図示せず)を通って放射される。
【0030】
前記され、更に後述されるように、ターゲットのアノード表面104を打つ電子のうちあるものは、X線に転換されず、その代わりに、ターゲットのアノード104から跳ね返る。更に後述されるように、シールド構造108は、跳ね返り電子が落ちて再度ターゲットのアノード104を打ち、これによって焦点の外れたX線が生成されることを防止するように機能する。更に加えて、跳ね返り電子のうちあるものは、カソードシリンダー102の内側表面を打つ。これらの跳ね返り電子は、かくして、ターゲットのアノード104を再度打つことを防止される間に、それらは、なおまだ比較的高速度で移動し、かくして、これら電子が該構造を打つときシールド構造108及びカソードシリンダー102内に大量の熱を発生する。その結果、この熱は、ターゲットアノード104で生成される熱に加えて、X線管101から絶えず除去されなければならず、さもなければ装置への損傷が発生し得る。前記したように、シールド構造内の余剰熱及びカソードハウジングは、とりわけ長い時間の間に、特に問題を孕むものとなる。
【0031】
図1は、現在のところ好ましい一実施形態において、ハウジング112により形成されたリザーバー内部に蓄えられた液体冷却剤114内にX線管101が如何に完全に浸漬されるかを示している。X線装置の作動の間、冷却剤は、ポンプ/冷却ユニット134を介してハウジング112を通って再循環される。冷却剤がハウジング112を通って循環されるとき、熱は、X線管構成部品から分散され、冷却剤により吸収される。次に、加熱された冷却剤は、熱交換器134へと循環され、該熱交換器では、熱は、放射表面などの任意の適切な手段により除去される。冷却された液体は、ハウジングリザーバーに戻って再循環される。
【0032】
一般には、熱移送率は、表面積に比例し、該表面積に亘って熱が転移される。かくして、上記した通り、熱がX線管から冷却剤に伝達される際の効率は、冷却される構成部品の表面積に部分的に基づいている。該表面積は、過去においては、制限されており、シールド構造及びカソードシリンダー102の問題のある領域においては特に制限されていた。本発明の実施形態は、シールド構造108の手段により、この問題に取り組んでおり、本発明の好ましい実施形態は、図1に概略的に示され、図2、3、4及び6に更に詳細に示されている。図1、2及び10に示されているように、シールド構造108は、X線管101の空のエンベロープである金属容器107の主要ボディ部分をカソードシリンダー102に相互接続する。図示の実施形態では、シールド構造108は、シールド108の底部に取り付けられた、開口ディスク137(図2及び8に示される)と称される、分離した底部カバーを備える。ディスク137は、金属容器107内部に形成された対応する凹部155に取り付けられる。好ましくは、この取り付けは、後述されるブレーズ接合を用いて達成される。現在のところ好ましい実施形態では、シールド108及び開口ディスク137は、例えばグリッドコップAL−15UNSC−15715という商標名で知られ、且つ、OMGアメリカ社により販売されている材料などのような酸化アルミニウムで分散強化された銅合金から各々構成される。グリッドコップAL−25、並びに、グリッドコップAL−60UNSC−15725及びUNSC−15760を含む他の材料も各々使用することができるが、これらに限定されるものではない。
【0033】
図2及び図3に最も良く示されているように、シールド構造108、並びに、開口ディスク137は、電子の流れがカソード106からターゲットのアノード104(図2)まで通過することを可能にする、開口即ち開口部122を有する。また、開口122の回りに配置されているのは、跳ね返り電子収集表面124であり、該表面は、跳ね返り電子が、ターゲットのアノード104に近づき、再度衝突することから防止する機能を提供する。電子収集表面124が形成され、跳ね返り電子のトラジェクトリが、アノードターゲット表面104に戻る代わりに、収集表面124に当たるような態様に配置される。図示の実施形態では、表面124は、凹形の開口122に向かって傾斜面を形成される。他の形状及び輪郭を使用することができることが理解されよう。
【0034】
現在のところ好ましい実施形態では、シールド構造は、熱をシールド構造から離れるように転移する手段を備える。例示によって、これに限定されないが、一つの好ましい実施形態では、熱転移手段は、図1に参照番号110で示され、図2、3、4及び6で更に詳細に示された複数の冷却部材、即ちフィンから構成される。これらの冷却フィン110は、シールド構造108の外側表面の周辺部の回りに形成された隣接する環状延在表面から構成され、図1に示されるように、リザーバー冷却剤114に少なくとも部分的に曝される。一般に、フィン110は、リザーバー冷却剤と接触するシールド108の表面積の量を効果的に増加させ、これによって、これらのフィンは、その効率、並びに、シールドから冷却剤に熱が伝達され且つ転移される率を増加させるように機能する。このことは、図3の好ましいシールド構造108の斜視図、及び、図4の側立面図において最も良く理解することができる。図示のように、複数の冷却フィン110は、シールド108の全外側表面の回りに形成され、冷却剤がフィンの間に流れ、これによって冷却剤に曝された表面積を最大にすることを可能にするように間隔を隔てられている。このようにして、収集表面124、シールドの内側表面125又はカソードシリンダー102の内側表面109(図2)において跳ね返り電子から生成された熱は、フィン110に伝達され、次に、冷却剤により効率的に転移されることができる。かくして、フィン110は、シールド構造108及びカソードシリンダー102の領域から冷却剤への対流による熱転移を容易にするため特に役立ち、これによって、跳ね返り電子の損傷を及ぼす熱的効果を減少させる。
【0035】
フィンにより提供された強化冷却効果は、他の仕方でX線管の作動寿命を改善する。シールド構造108から冷却剤へ比較的大きな熱を伝達させることにより、フィン110は、シールドに形成された冷却剤通路を通って循環される冷却剤に課された熱負荷を減少させる(後述される)。換言すれば、フィン110は、シールド構造108から伝達された熱をより効率的に再分配するため役立つ。好ましい実施形態では、フィンにより生成された冷却効果は、循環する冷却剤に課された熱負荷のうち約7%から約9%までの減少を生じさせる。循環冷却剤に課された熱負荷が減少されるので、循環する冷却剤は、事実上、熱的破壊を被る可能性がより少なくなる。この利点は、より長い耐久性を持ち、より高い信頼性のX線管装置をもたらす。
【0036】
本発明の好ましい実施形態は、シールド構造から、かくしてX線管からの全体に亘る熱転移率を増加させるためフィンを用いるが、代替構造即ちシールドの露出表面のエレメントの使用による表面積の増加を、熱がリザーバー冷却剤に転移される率の上昇を引き起こすため使用することができる。更には、シールド構造と一体の冷却フィンは好ましい実施形態であるが、本発明として、離散的な冷却フィン、即ち、シールド構造及び/又はカソードシリンダーに別体なものとして装着可能な冷却フィン構造、又は、その類似構造も考えられる。
【0037】
好ましい実施形態では、本発明の冷却システムは、熱源に事実上最も近く配置され、且つ、これによって、特にシールド構造108の領域において作動中のX線管内に生成された熱の除去を更に援助するように機能する、追加の流体通路も備える。図示の実施形態では、図2で参照番号131及び132で示された、これらの内部流体通路は、2つの仕方で形成される。第1に、複数の通路131は、シールド108のボディ内部に直接的且つ一体的に形成することができる(即ち、中空ボアの形態で)。或いは、図示の実施形態の場合のように、間隔を隔てられた隆起部133及び135がシールド108の底部にあるチャンネルを形成することによって形成することができる(図5及び図6)。図2の実施形態に示されたように、開口ディスク137と称される、分離した底部カバーが、シールド108の底部に取り付けられる。次に、開口ディスク137が、金属容器107に形成された凹部155に、好ましくはブレーズ接合(その実施形態が後述される)を介して取り付けられる。開口ディスク137は、これに対応する開口122、並びに、図2(図8にも示される)で133’及び135’で示された相補的隆起部を有する。該相補的隆起部は、シールド108上の隆起部133、135に対して当接し、これにより、ディスク137がシールド108と嵌合するとき通路131を形成する。図示の実施形態では、131とラベル付けされた流体通路の両方は、図5に示されたように(図8にも示される)、円状隆起部135に形成された隙間のおかげで互いに流体連通する。
【0038】
第2の組の通路132は、シールド108の外側周辺部の回りに形成される。これらは、間隔を隔てた複数の冷却表面126が、隆起部の形態で、形成される。該冷却表面は、金属容器107/マニホルド116の凹部155内に挿入されたとき、凹部155の内側表面に対して当接し、これによって個々の通路132を形成する。図3は、通路132の各々が隣接する隆起部126の間に形成された隙間141に起因して、どのように互いに流体連通するかを示している。更に加えて、好ましい実施形態では、通路131及び132は、後述する態様で互いに流体連通した状態に配置される。更に詳細に後述されるように、X線管の作動中に、冷却剤は、シールド構造108から対流により熱を除去するように、これらの通路を通して再循環される。
【0039】
再び図1を参照すると、現在のところ好ましい実施形態において、冷却剤114がハウジング112のリザーバー内に配置された導管105を介して、どのようにハウジング112に供給されるかが示されている。導管105は、冷却剤マニホルド116に取り付けられるか、又は、該冷却剤マニホルド116と一体成形された入口/出口接続部118に接続される。該冷却剤マニホルド116は、X線管101の空のハウジング107上に配置されるか又は該ハウジングと一体部分として成形される。冷却剤マニホルド116は、マニホルド(図示せず)内に形成された入口ポート孔を介して、入口導管105及び流体通路131の間に流体連通経路を形成する。好ましい実施形態では、これは、当接する隆起部133/133’に形成された隙間151/151’が、入口導管105から流入する冷却剤を受け取るべく入口ポート孔と整列されるようにマニホルド116内のシールド108を配列することによってなされる。かくして、冷却剤は、通路131内に流れることを可能とされる。冷却剤が通路131に入るとき、それは2つの流れに分けられ、各々の流れは反対方位方向に循環する。勿論、冷却剤が通路131を通って進行するとき、熱は、シールド構造から冷却剤に転移される。
【0040】
好ましい実施形態では、通路131は、通路132と流体連通した状態に配置される。これは、隙間151(並びに、図8に示される開口ディスク内の対応する隙間)とは反対側の点において隆起部133内に別の隙間153(図5)を設けることにより達成される。空洞部(図12A及び12Bで参照番号200で示される)は、凹部155の内側壁内に形成される。この空洞部200は、隙間153と整列され、通路132の少なくとも1つと流体連通した状態で通路131に位置するほど十分に大きい。かくして、この例の実施形態では、2つの冷却剤の流れが、通路131を通って進行し、次に、シールド108の反対側で集まる。冷却剤は、隙間153/153’を介して空洞部内に流れ込み、次に通路132を介してシールド108の上側半分内に流れ込み続ける。再び、冷却剤は分離し、2つの流れがシールド108の上側半分を横切る。また、下側半分においても同様に、冷却剤は、それがシールド及び表面126に亘って流れるとき、加熱される。
【0041】
マニホルドの入口/出口接続部118内に形成されているものは、通路132と流体連通している出口ポート孔(図示せず)である。冷却剤の2つの流れがシールド108の上側半分を横切るとき、該流れは集まって、出口導管120と流体連通している出口ポート孔において流出する。図1では、出口導管は、流体流れラインにより示されるように、リザーバーと流体連通している。幾つかのX線管形状では、リザーバーに吐出される前に、対流による追加の熱除去をもたらすためX線管の他の領域内に形成された他の冷却通路に冷却剤を差し向けるため別のマニホルドを使用してもよいと認められる。
【0042】
一旦、リザーバー112に吐出された場合、冷却剤は、前述したようにシールド108のフィン表面を含む、X線管の外側表面に亘って流れ、対流により冷却する。究極的には、冷却剤はリザーバーの吐出接続部136でリザーバー112から流出し、図1に示されたように、そのサイクルを繰り返すため外部熱交換器に戻る方向に流れる。かくして、フィン110により実行される対流熱転移は、冷却剤の通路131、132内の対流冷却を通して達成される熱転移を補完し、かくして、シールド108からの全体に亘る熱転移率の相対的増加に役立つ。
【0043】
通路131、132へ冷却剤を提供するため使用され得る他の構成を利用できることが理解されよう。例えば、入口ポートの導管は、通路131に接続され、出口ポートが通路132に接続されるが、その反対の構成も使用することができる。その上、多数の入口ポート及び/又は多数の出口ポートも利用することができ、前記したように、追加のマニホルドを、X線管の他の領域に冷却剤を差し向けるため使用することができる。また、当業者ならば、通路131及び132を流体連通した状態に置くため、異なる構成を利用できることが分かるであろう。
【0044】
更に加えて、マニホルド116から、シールド108の下側半分の通路131への流体入口ポートの相対的配位を変更してもよい。前述した説明では、流体入口ポート(図2Aの202)は、冷却剤がシールド108の上側半分及び通路132に流入するところの点と正反対の位置、即ち180度の角度に沿って配置されることが記された。この流れのスキームは、図12Aに概略表されており、該スキームでは、冷却剤が入口ポート202を介してシールド108の下側半分に入り、2つの流れに分離し、該流れの各々は反対の方位角方向に循環する。次に、2つの流れは、空洞部200で集まり、該空洞部では、それは、通路132を介してシールド108の上側半分に入る。この種のセットアップでは、2つの流れの流れ率は、おおよそ等しく、かくして、熱転移率は略等しい。
【0045】
しかしながら、上記したように、シールド108内部の熱は不均一である。即ち、X線窓103により近いシールドの側は、典型的には、反対側よりも高い温度を被る。これは、ターゲット角度により後方散乱電子に課された効果、即ち、中心線側よりも電子収集表面124の窓側をより多くの電子が打つ効果に起因する。このようにして、別の好ましい実施形態では、流れ率は、より高い熱容量を有するシールドの当該部分(即ち、窓103により近い側)において増大され、熱の除去率を増加させる。一実施形態では、これは、通路131に関して入口ポート202の相対的配置を変更することによって達成される。この特定の構成は、図12Bで表される。図示のように、180度より小さい角度αが、X線窓103に近い側で通路131及び空洞部200に関して入口ポート202を配位するため使用される。相対的な移動距離のこの減少は、冷却剤の流れ率を増加させ、これによって、当該側の対流熱転移係数を増加させ、方位角方向のシールドの温度勾配を減少させる。その結果、窓側の熱転移率は、増加される。反対に、熱転移は、シールド108の残りの側で減少される。
【0046】
熱転移率を増加させることは、他のアプローチを用いても達成することができる。例えば、窓103に近い側(又は、より高い熱容量を持つ任意の部分)において、通路131の流れ断面積を、増加させることができ、シールドの反対側/残りの部分に配置された通路では、減少することができる。これは、より高い熱容量を有するシールドの部分を通る冷却剤の流れ体積を増加させ、かくして、対流により転移される熱の率を増加させる。
【0047】
ここで、冷却システムの現在のところ好ましい代替実施形態を示す図7を参照する。該図では、冷却剤マニホルド116は、シールド構造108の、及びかくして全体としてのX線管100の強化された対流冷却を容易にするため、外側フィン110と連動して作動する。特に、冷却剤の流れは、前述したように、冷却ユニット134により生成され、冷却剤は、前述した態様で、入口導管105を通って流れ、冷却剤マニホルド116並びに通路131及び132に至る。しかし、図1で説明したように冷却剤をリザーバーに直接吐出する代わりに、出口導管120は、参照番号128で示され、冷却剤を2つの吐出流れに分離する、流れダイバーターに接続される。流れダイバーター128からの冷却剤流れのうち一方は、冷却剤出口ポート138を通ってリザーバー112(又は、オプションで、前述したように、X線管の他の領域に差し向けることができる別のマニホルド内)に吐出される。流れダイバーター128からの他の冷却剤の流れは、冷却剤出口ポート130を通って吐出され、該流れは、フィン110と交差するように方向付けられる。このように方向付けられた流れは、フィン110から熱をより効率的に除去する。図1に示されたように、冷却剤は、リザーバーの吐出接続部136でリザーバーから出て、サイクルを繰り返すため、冷却ユニット134に戻るように流れる。
【0048】
図7の代替実施形態は、X線管の冷却を次の工程により強化する。(i)X線管及び特にシールド108の表面積を増加させ、これによってX線管構造からリザーバー冷却剤への対流熱転移率を増加させるため冷却フィン110を設ける。(ii)フィンからの対流熱転移を増加させるためマニホルド冷却剤の一部分をフィンを横切って吐出するように差し向け、かくして、フィンの対流冷却効果を増大させる。(iii)シールド構造の内部を対流で冷却する。内部冷却通路、外部フィン及び二重吐出マニホルドの結合された効果は、熱がX線管から除去される率を有意に増加させることである。強化された熱転移率は、X線管作動温度を減少させ、かくして、合成された熱的機械的応力を減少させるため役立ち、冷却剤の熱的破壊を実質的に防止し、これによって冷却剤及び従ってX線管の寿命を延ばす。
【0049】
前記した好ましい実施形態は、二つの出口流れのダイバーターを教えているが、多数の出口を備えた流れダイバーターを利用することができることも理解されるべきである。従って、多数の(即ち、2より多い)出口を用いるX線管冷却システムが、本発明の範囲内にあるものとして考えられる。
【0050】
次に、図8及び図9A−9Bを参照する。これらの図は共に、参照番号108’で概略示されたシールド構造の別の実施形態を示している。シールド108’は、前述したシールド108と類似しており、同様の構成要件に関する説明は繰り返さないことにする。更に示されているものは、開口ディスク137であり、流体通路131を形成するようにシールド108’の底部に形成された対応する隆起部133及び135と嵌合する隆起部133’及び135’を備えている。図8の実施形態は、1つの主要な点において図1乃至7の実施形態とは異なる。即ち、シールドアセンブリ108’は、冷却剤の通路の熱転移能力を増加させるための手段を備えている。例示の方法により、この機能を実行するための1つの構造は、図8で参照番号300及び302で示されたコイル形成ワイヤであり、その各々は流体通路141内部に配置される。図9Aの側断面図は、流体通路131内に配置されたコイル化ワイヤ300、302を示している。コイル形成ワイヤ300、302は、銅、又は、シールドに使用された種類の酸化アルミニウム分散強化銅合金などの熱伝導材料から構成される。コイル形成ワイヤの各々の巻き部は、円形又は非円形断面のいずれかを持つことができ、オプションで、非均一の直径/厚さを持つことができる。コイル形成ワイヤの巻き部は、熱伝導を増加させることのできるブレーズ又は類似の取り付け手段によって流体通路の内側壁に固定することができる。各々のコイルは、通路131内部の冷却剤により提供された熱転移率を増加させる。特に、コイル形成ワイヤの存在は、通路内に追加の表面積を追加し、これによって熱転移を容易にする。加えて、コイルは、冷却剤が通路内でコイルに亘って通過するとき冷却剤の境界層を破壊する。これは、乱流を促進し、更に熱転移を改善する。その上、通路131内に形成された(図8のディスク137で139’/161’及び151’/153’で示された)隙間のため、冷却剤はコイルワイヤ300、302の軸に対し平行及び垂直の両方向に流れる。これは、熱がシールド108’から離れるように転移される率及び効率を更に増加させる。
【0051】
この熱転移増加機能を提供するため他の構造を使用することができることが理解されよう。通路内に延長した熱転移表面を提供する事実上任意の構造要素を使用することができる。例えば、螺旋状テープ、銅ホイル形式エレメントを使用することができる。また、図示されたコイル構成とは異なるワイヤ配位を使用することができる。
【0052】
上記したように、シールド及び開口ディスクアセンブリの領域内に存在する過度の温度は、機械的応力を引き起こし、これは2つの構成部品が取り付けられる領域で特に問題となり得る。これらの領域は、しばしば最も破損を受けやすい。このようにして本発明の実施形態は、シールド108及び開口ディスク137からX線管金属容器107に至るところで、この問題に取り組むことを志向する。特に、開口ディスク137及び金属容器107の間で改善されたブレーズ接合が提供される。従来技術で一般的であったように、水平表面にのみブレーズ接合された接合部を提供する代わりに、開口ディスクは、水平表面並びに垂直表面の両方に金属容器にブレーズ接合される。このブレーズ構成の好ましい実施形態は、ここで参照される図10及び図11に示されている。
【0053】
図10は、シールド108及び開口ディスク137のアセンブリに取り付けられたカソードシリンダー102の簡略図であり、該アセンブリはX線管の金属容器107に取り付けられる。図11は、図10のライン11−11に沿って取られた破断図であり、金属容器137及び開口ディスク137の間のブレーズ接合の現在のところ好ましい一実施形態を示している。図示のように、開口ディスク137は、ディスク137の周辺部の回りに外側に突出した肩領域350を備える。金属容器107は、ディスク137の肩領域と嵌合する対応して形成された肩領域352を備える。特に、2つの肩領域は、402で水平嵌合領域並びに垂直嵌合領域300を一緒に形成する。これらの2つの領域は一緒にブレーズ接合することができる。この構成は、水平表面に沿ってのみブレーズを有する接合構成と比較すると、好ましい実施形態において6又はそれ以上の因子によって、ディスク137及び金属容器107の間の応力を減少させる点で特に有利な効果を奏する。このようにして、改善されたブレーズ接合は、X線管の極端な高温度に伴う応力に更に良好な抵抗を有し、その結果、破損を受けることがより少なく、且つ、より長い全体的な作動寿命を提供する装置を与える。
【0054】
本発明は、その精神即ち本質的な特徴から逸脱することなく、他の特定の形態で実施することが可能である。説明した実施形態は、あらゆる点で図示としてだけみなされ、これらに限定されるものではないとみなすべきである。従って、本発明の範囲は、前述した説明によってというより、請求の範囲によって示される。請求の範囲の意味及び均等の範囲内に至る全ての変更は、それらの範囲内に包含されるべきである。
【0055】
請求され、且つ、米国レター特許により保障されると望まれるものは、請求の範囲である。
【図面の簡単な説明】
【図1】 図1は、冷却システムの1つの好ましい実施形態の平面図である。
【図2】 図2は、図1に表された、カソードシリンダー及びフィンが形成されたシールド構造の一実施形態の等角断面図である。
【図3】 図3は、シールド構造の現在のところ好ましい一実施形態の等角図である。
【図4】 図4は、図3に示すシールド構造の側面図である。
【図5】 図5は、シールド構造の平面図である。
【図6】 図6は、図3に表されたシールド構造の断面図である。
【図7】 図7は、冷却システムの代替実施形態の平面図である。
【図8】 図8は、シールド構造の現在のところ好ましい別の実施形態の破断斜視図である。
【図9】 図9Aは、図8の組み立てられたシールド構造の断面図である。
図9Bは、図8のシールド構造の平面図である。
【図10】 図10は、カソードシリンダー、シールド構造及びX線管の金属容器アセンブリの断面図である。
【図11】 図11は、図10のライン11−11に沿って取られた詳細図であり、開口ディスク及びX線管の金属容器の間のブレーズ接合形態を示す。
【図12】 図12Aは、シールド構造の下側半分を通過する流体流れを示す概略表現図である。
図12Bは、シールド構造の下側半分を通過する流体流れのための代替m構成を示す概略表現図である。

Claims (17)

  1. X線管であって、
    (a) X線管の空のハウジングと、
    (b) 前記空のハウジング内に配置された、アノード及び電子源であって、該アノードは前記電子源により放出された電子を受け取ることができるターゲット表面を有する、前記アノード及び電子源と、
    (c) 前記電子源及び前記アノードの間に位置決めされたシールド構造であって、該シールド構造は該構造内に形成された開口を有し、該開口を通って、電子が前記電子源から前記ターゲット表面まで通過させられる、前記シールド構造と、
    (d) 前記シールド構造の近傍に配置された少なくとも1つの流体通路であって、該流体通路は、冷却剤が通過し、これによって前記シールド構造の少なくとも一部分から熱を吸収することを可能にする、前記冷却通路と、
    (e) 前記シールド構造の外側表面に配置された、複数の延長表面であって、該延長表面は、前記少なくとも1つの流体通路を通過した冷却剤と少なくとも部分的に接触し、且つ、前記シールド構造から前記冷却剤まで熱が転移されるように配位されている、前記複数の延長表面と、
    を含む、X線管。
  2. 前記延長表面は、複数の隣接する環状フィンのエレメントから構成され、各々の環状フィンは、前記シールド構造の前記外側表面の回りに配置される、請求項1に記載のX線管。
  3. 前記延長表面は、前記流体通路の熱転移能力を増加させるように構成され配置されている、請求項1に記載のX線管。
  4. 少なくとも1つの流体通路内に配置されたコイル形成ワイヤを更に備える、請求項3に記載のX線管。
  5. 前記少なくとも1つの流体通路は、前記シールド構造の底部区分内に少なくとも2つの流体通路を画成する、流体通路として形成される、請求項1に記載のX線管。
  6. 前記2つの流体通路は、前記シールド構造の主要ボディ部分を開口ディスクに係合して取り付けることによって形成される、請求項5に記載のX線管。
  7. 前記少なくとも1つの流体通路は、前記シールド構造の側部内に形成された流体通路として形成される、請求項1に記載のX線管。
  8. 前記シールド構造の側部内に形成された流体通路は、該シールド構造がX線管ハウジングに作動的に取り付けられるとき、該シールド構造の外側周辺部の回りに形成された隣接する熱分散エレメントの間に形成される、請求項7に記載のX線管。
  9. 前記少なくとも1つの流体通路は、前記シールド構造の底部内に形成された少なくとも1つの流体通路と、該シールド構造の側部内に形成された少なくとも1つの流体通路と、を含む、請求項1に記載のX線管。
  10. 前記シールド構造の前記底部区分内に形成された流体通路と、該シールド構造の側部内に形成された流体通路とが流体連通している、請求項9に記載のX線管。
  11. 前記複数の延長表面は、前記シールド構造と一体成形されている、請求項1に記載のX線管。
  12. 前記少なくとも1つの流体通路は、冷却剤が該シールド構造の第1の区分及び第2の区分を通って流れることを可能にし、熱は、該第2の区分よりも大きい率で該第1の区分から転移される、請求項1に記載のX線管。
  13. 前記少なくとも1つの流体通路を通過した流れ冷却剤の一部分を、前記複数の延長表面の少なくとも一部分と直接交差するように差し向け、これによって、熱が該延長表面から差し向けられた冷却剤に転移される、流体流れ導管を更に含む、請求項1に記載のX線管。
  14. 前記シールド構造及び前記延長表面は、酸化アルミニウムで分散強化された銅合金から形成される、請求項1に記載のX線管。
  15. 前記シールド構造は、ブレーズ材料を用いて前記X線管ハウジングに取り付けられ、該ブレーズ材料は、該シールド構造及び該X線管ハウジングの水平及び垂直表面の両方に沿って形成された接続部に沿って配置される、請求項1に記載のX線管。
  16. X線管のシールド構造部分を冷却するための方法であって、
    (a) 前記シールド構造内に形成された対応する通路を通る、少なくとも第1の流体経路及び第2の流体経路を設け、前記シールド構造は前記X線管のカソード及びアノードの間に直接位置決めされており、
    (b) 前記第1の流体経路及び第2の流体経路の入口を通して液体冷却剤を前記第1の流体経路及び第2の流体経路に差し向け、
    (c) 前記第1の流体経路及び第2の流体経路に接続された出口から液体冷却剤を吐出し、
    (d) 前記シールド構造の外側表面に形成された複数の延長フィン表面を介して前記シールド構造の少なくとも一部の熱を前記吐出された液体冷却剤へと伝達させ
    (e) 前記液体冷却剤を冷却ユニットを通して循環させ、
    (f) 前記工程(b)乃至(e)を繰り返す、各工程を含む、前記方法。
  17. 前記第1の流れ経路を通過した流体流れ率は、前記第2の流体経路の流体流れ率よりも大きい、請求項16に記載の方法。
JP2001510277A 1999-07-12 2000-07-10 X線管冷却システム Expired - Lifetime JP4376480B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/351,579 US6400799B1 (en) 1999-07-12 1999-07-12 X-ray tube cooling system
US09/351,579 1999-07-12
PCT/US2000/018796 WO2001005196A2 (en) 1999-07-12 2000-07-10 X-ray tube cooling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008248952A Division JP4749456B2 (ja) 1999-07-12 2008-09-26 X線管冷却システム及びx線管生成装置

Publications (3)

Publication Number Publication Date
JP2003506817A JP2003506817A (ja) 2003-02-18
JP2003506817A5 JP2003506817A5 (ja) 2006-05-18
JP4376480B2 true JP4376480B2 (ja) 2009-12-02

Family

ID=23381485

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001510277A Expired - Lifetime JP4376480B2 (ja) 1999-07-12 2000-07-10 X線管冷却システム
JP2008248952A Expired - Lifetime JP4749456B2 (ja) 1999-07-12 2008-09-26 X線管冷却システム及びx線管生成装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008248952A Expired - Lifetime JP4749456B2 (ja) 1999-07-12 2008-09-26 X線管冷却システム及びx線管生成装置

Country Status (5)

Country Link
US (1) US6400799B1 (ja)
EP (1) EP1234320B1 (ja)
JP (2) JP4376480B2 (ja)
DE (1) DE60045160D1 (ja)
WO (1) WO2001005196A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164713B2 (en) 2020-03-31 2021-11-02 Energetiq Technology, Inc. X-ray generation apparatus

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6457859B1 (en) * 2000-10-18 2002-10-01 Koninklijke Philips Electronics Nv Integration of cooling jacket and flow baffles on metal frame inserts of x-ray tubes
US6993116B1 (en) * 2003-10-17 2006-01-31 Siemens Aktiengesellschaft Metallic vacuum housing for an X-ray tube
EP1707036B1 (en) * 2004-01-13 2010-12-29 Koninklijke Philips Electronics N.V. X-ray tube cooling collar
JP5237636B2 (ja) * 2004-06-30 2013-07-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線管冷却装置
US7289603B2 (en) * 2004-09-03 2007-10-30 Varian Medical Systems Technologies, Inc. Shield structure and focal spot control assembly for x-ray device
WO2006029026A2 (en) * 2004-09-03 2006-03-16 Varian Medical Systems Technologies Inc. Shield structure and focal spot control assembly for x-ray device
US20060228238A1 (en) * 2005-04-06 2006-10-12 Andrews Gregory C Coolant pump for x-ray device
US7486774B2 (en) * 2005-05-25 2009-02-03 Varian Medical Systems, Inc. Removable aperture cooling structure for an X-ray tube
US7354197B2 (en) * 2005-06-01 2008-04-08 Endicott Interconnect Technologies, Inc. Imaging inspection apparatus with improved cooling
US7261466B2 (en) * 2005-06-01 2007-08-28 Endicott Interconnect Technologies, Inc. Imaging inspection apparatus with directional cooling
US7661445B2 (en) * 2005-12-19 2010-02-16 Varian Medical Systems, Inc. Shielded cathode assembly
US7668298B2 (en) * 2005-12-20 2010-02-23 General Electric Co. System and method for collecting backscattered electrons in an x-ray tube
US7359486B2 (en) * 2005-12-20 2008-04-15 General Electric Co. Structure for collecting scattered electrons
US20080095317A1 (en) * 2006-10-17 2008-04-24 General Electric Company Method and apparatus for focusing and deflecting the electron beam of an x-ray device
US7410296B2 (en) * 2006-11-09 2008-08-12 General Electric Company Electron absorption apparatus for an x-ray device
US20080112540A1 (en) * 2006-11-09 2008-05-15 General Electric Company Shield assembly apparatus for an x-ray device
US8000450B2 (en) * 2007-09-25 2011-08-16 Varian Medical Systems, Inc. Aperture shield incorporating refractory materials
JP5519527B2 (ja) * 2007-12-19 2014-06-11 コーニンクレッカ フィリップス エヌ ヴェ 散乱電子コレクタ
US8867706B2 (en) * 2010-11-09 2014-10-21 Varian Medical Systems, Inc. Asymmetric x-ray tube
CN103975232B (zh) * 2011-10-04 2017-09-15 株式会社尼康 装置、x射线照射方法及结构的制造方法
KR101283935B1 (ko) 2011-11-21 2013-07-16 강릉원주대학교산학협력단 냉각기능을 갖는 수중물체
RU2509389C1 (ru) * 2012-07-30 2014-03-10 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Источник мягкого рентгеновского излучения на основе разборной рентгеновской трубки
US9717137B2 (en) 2013-11-19 2017-07-25 Varex Imaging Corporation X-ray housing having integrated oil-to-air heat exchanger
US9648710B2 (en) * 2013-11-19 2017-05-09 Varex Imaging Corporation High power X-ray tube housing
GB2599618A (en) * 2020-07-27 2022-04-13 Aquasium Tech Limited Electron beam welding apparatus
CN116033639B (zh) * 2023-02-15 2024-04-05 上海超群检测科技股份有限公司 X射线源的内置式液冷循环系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1015547B (de) * 1955-05-04 1957-09-12 Max Planck Gesellschaft Roentgenroehre
US4309637A (en) * 1979-11-13 1982-01-05 Emi Limited Rotating anode X-ray tube
JPS59128198A (ja) * 1983-01-07 1984-07-24 新立川航空機株式会社 車両昇降装置における車両受台の昇降駆動装置
US4625324A (en) * 1983-09-19 1986-11-25 Technicare Corporation High vacuum rotating anode x-ray tube
US4945562A (en) * 1989-04-24 1990-07-31 General Electric Company X-ray target cooling
US5541975A (en) * 1994-01-07 1996-07-30 Anderson; Weston A. X-ray tube having rotary anode cooled with high thermal conductivity fluid
US5689542A (en) * 1996-06-06 1997-11-18 Varian Associates, Inc. X-ray generating apparatus with a heat transfer device
US6115454A (en) * 1997-08-06 2000-09-05 Varian Medical Systems, Inc. High-performance X-ray generating apparatus with improved cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11164713B2 (en) 2020-03-31 2021-11-02 Energetiq Technology, Inc. X-ray generation apparatus

Also Published As

Publication number Publication date
WO2001005196A3 (en) 2002-06-27
WO2001005196A2 (en) 2001-01-18
EP1234320A4 (en) 2006-07-19
EP1234320B1 (en) 2010-10-27
US6400799B1 (en) 2002-06-04
JP2009009953A (ja) 2009-01-15
JP2003506817A (ja) 2003-02-18
JP4749456B2 (ja) 2011-08-17
DE60045160D1 (de) 2010-12-09
EP1234320A2 (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP4749456B2 (ja) X線管冷却システム及びx線管生成装置
EP1316103B1 (en) Large surface area x-ray tube shield structure
JP3988167B2 (ja) 熱移動装置を有するx線発生装置
US6115454A (en) High-performance X-ray generating apparatus with improved cooling system
US6215852B1 (en) Thermal energy storage and transfer assembly
JP4746335B2 (ja) 電子回収器システム
JP4374231B2 (ja) 噴流冷却式x線管透過窓
US6438208B1 (en) Large surface area x-ray tube window and window cooling plenum
US7016472B2 (en) X-ray tube window cooling apparatus
US7042981B2 (en) X-ray tube window and surrounding enclosure cooling apparatuses
US8000450B2 (en) Aperture shield incorporating refractory materials
JP2001319606A (ja) X線管蒸気チャンバ・ターゲット
JP5405413B2 (ja) X線管の液体冷却
US20180151324A1 (en) Heat sink for x-ray tube anode
CN117727607A (zh) X射线管及用于x射线管的管芯组件

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080626

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090114

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090413

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090513

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090520

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090615

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Ref document number: 4376480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term